WO2016171105A1 - 逆浸透膜洗浄方法及び逆浸透膜洗浄装置 - Google Patents

逆浸透膜洗浄方法及び逆浸透膜洗浄装置 Download PDF

Info

Publication number
WO2016171105A1
WO2016171105A1 PCT/JP2016/062280 JP2016062280W WO2016171105A1 WO 2016171105 A1 WO2016171105 A1 WO 2016171105A1 JP 2016062280 W JP2016062280 W JP 2016062280W WO 2016171105 A1 WO2016171105 A1 WO 2016171105A1
Authority
WO
WIPO (PCT)
Prior art keywords
reverse osmosis
cleaning
osmosis membrane
water
membrane
Prior art date
Application number
PCT/JP2016/062280
Other languages
English (en)
French (fr)
Inventor
嘉晃 伊藤
英正 垣上
横濱 克彦
田畑 雅之
慎太郎 田浦
孝義 堀
克憲 松井
匡仙 河田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US15/567,243 priority Critical patent/US20180104652A1/en
Publication of WO2016171105A1 publication Critical patent/WO2016171105A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • B01D2311/252Recirculation of concentrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/08Use of hot water or water vapor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/162Use of acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/10Cellulose; Modified cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides

Definitions

  • the present invention relates to a reverse osmosis membrane cleaning method and a reverse osmosis membrane cleaning device.
  • seawater to be treated is first passed through a pretreatment apparatus filled with a hollow fiber membrane or the like to remove impurities such as solid matter.
  • Seawater treated by the pretreatment device is pressurized by a high-pressure pump and brought into contact with the reverse osmosis membrane, and separated into fresh water that passes through the reverse osmosis membrane and concentrated seawater that does not pass through.
  • the obtained fresh water is used for uses such as drinking water.
  • clogging is caused by the adhesion of metal compounds such as iron and manganese, and scales containing organic substances including microorganisms and their metabolites contained in seawater. It is done.
  • a chemical washing line is generally installed in a seawater desalination apparatus equipped with a reverse osmosis membrane. When the amount of treated water in the reverse osmosis membrane or the hollow fiber membrane decreases, the operation is stopped and chemical cleaning using a chemical is performed.
  • Patent Document 1 discloses a method of cleaning a membrane module using a cleaning liquid containing citric acid 50 to 1500 mg / liter and adjusted to pH 1.0 to 3.0.
  • the present invention has been made to solve the above-described problems, and improves the cleaning effect using an increase in water permeability coefficient as an index while suppressing membrane deterioration using the rate of increase in salt permeability coefficient as an index.
  • a reverse osmosis membrane cleaning method and a reverse osmosis membrane cleaning device are provided.
  • the first aspect of the present invention is a reverse osmosis membrane cleaning method for cleaning a reverse osmosis membrane with cleaning water at a temperature higher than 45 ° C and lower than 60 ° C.
  • the reverse osmosis membrane cleaning method of the first aspect since the temperature of the cleaning water to be used exceeds 45 ° C. is higher than the conventional one, the cleaning power for peeling or elution of the scale from the reverse osmosis membrane is high. . In addition, when the cleaning water is 60 ° C. or lower, it is possible to suppress the deterioration of the reverse osmosis membrane due to heat while enhancing the cleaning effect.
  • the second aspect of the present invention is the reverse osmosis membrane cleaning method according to the first aspect, wherein the washing water is circulated through the reverse osmosis membrane while passing through a filter.
  • the reverse osmosis membrane cleaning method of the second aspect dust and scale dissolved in the circulating cleaning water can be removed by a filter, so that the cleaning water can be reused and is required for disposal of the cleaning water. Cost can be reduced.
  • a third aspect of the present invention is the reverse osmosis membrane cleaning method according to the first or second aspect, wherein the cleaning water contains an organic acid.
  • the cleaning effect can be enhanced while suppressing deterioration of the reverse osmosis membrane even in a high temperature range of more than 45 ° C. and 60 ° C. or less.
  • a fourth aspect of the present invention is the reverse of the third aspect, characterized in that the citric acid and citrate as the organic acid are contained in a citric acid concentration in the range of 2.0 to 22 g / L.
  • This is a osmotic membrane cleaning method.
  • the cleaning effect can be enhanced while suppressing deterioration of the reverse osmosis membrane even in a high temperature range of more than 45 ° C. and 60 ° C. or less.
  • the fifth aspect of the present invention is the reverse osmosis membrane cleaning according to any one of the first to fourth aspects, wherein the pH of the cleaning water is adjusted to 3.5 to 5.5. Is the method. According to the reverse osmosis membrane cleaning method of the fifth aspect, the cleaning effect can be enhanced while suppressing the deterioration of the reverse osmosis membrane even in a high temperature range of more than 45 ° C. and 60 ° C. or less.
  • the sixth aspect of the present invention is the reverse osmosis according to any one of the first to fifth aspects, wherein the cleaning time in which the cleaning water contacts the reverse osmosis membrane is 12 hours or less.
  • This is a film cleaning method.
  • the cleaning effect can be enhanced while suppressing the deterioration of the reverse osmosis membrane even in a high temperature range of more than 45 ° C. and 60 ° C. or less.
  • a seventh aspect of the present invention is the reverse osmosis membrane according to any one of the first to sixth aspects, wherein the reverse osmosis membrane is composed of a cellulose polymer or a polyamide polymer. It is a cleaning method. According to the reverse osmosis membrane cleaning method of the seventh aspect, the cleaning effect can be enhanced while suppressing deterioration of the reverse osmosis membrane even in a high temperature range of more than 45 ° C. and 60 ° C. or less.
  • the eighth aspect of the present invention is a membrane module comprising a reverse osmosis membrane, a wash water tank for storing wash water, a heating unit for heating wash water supplied from the wash water tank to the reverse osmosis membrane,
  • a reverse osmosis membrane cleaning device comprising: a temperature control device that controls the heating unit such that cleaning water heated by the heating unit is more than 45 ° C and not more than 60 ° C.
  • the reverse osmosis membrane cleaning device of the eighth aspect since the temperature control device is provided, the reverse osmosis membrane can be cleaned by stably supplying cleaning water at a predetermined temperature.
  • a ninth aspect of the present invention is the reverse osmosis membrane according to the eighth aspect, wherein the temperature control device controls the heating unit such that the washing water heated by the heating unit is more than 45 ° C. and not more than 55 ° C. It is a cleaning device.
  • the reverse osmosis membrane cleaning device of the ninth aspect since the temperature control device is provided, the reverse osmosis membrane can be cleaned by stably supplying cleaning water at a predetermined temperature.
  • a tenth aspect of the present invention is the eighth aspect or ninth aspect, comprising: a circulation pump that circulates the wash water between the membrane module and the wash water tank; and a filter through which the circulated wash water passes. It is a reverse osmosis membrane washing
  • An eleventh aspect of the present invention is the reverse osmosis membrane cleaning device according to any one of the eighth to tenth aspects, wherein the cleaning water contains an organic acid.
  • the reverse osmosis membrane cleaning apparatus of the eleventh aspect a high cleaning effect can be obtained while suppressing deterioration of the reverse osmosis membrane even in a high temperature range of more than 45 ° C. and not more than 60 ° C.
  • the citric acid and citrate as the organic acid are contained in a citric acid concentration in the range of 2.0 to 22 g / L.
  • This is a reverse osmosis membrane cleaning device.
  • a high cleaning effect can be obtained while suppressing deterioration of the reverse osmosis membrane even in a high temperature range of more than 45 ° C. and not more than 60 ° C.
  • a thirteenth aspect of the present invention is the reverse osmosis membrane cleaning device according to any one of the eighth to twelfth aspects, wherein the pH of the cleaning water is 3.5 to 5.5.
  • the reverse osmosis membrane cleaning apparatus of the thirteenth aspect a high cleaning effect can be obtained while suppressing deterioration of the reverse osmosis membrane even in a high temperature range of more than 45 ° C. and not more than 60 ° C.
  • a fourteenth aspect of the present invention is the reverse osmosis according to any one of the eighth to thirteenth aspects, comprising a pump control device that stops and controls the driving of the circulating pump within 12 hours after the driving of the circulating pump. It is a membrane cleaning device.
  • the cleaning is inadvertently prolonged by reverse osmosis by stopping the circulation pump after operation for 12 hours or less and finishing the cleaning process under the control of the pump control device. It is possible to prevent the film from deteriorating. Therefore, a high cleaning effect can be obtained while suppressing deterioration of the reverse osmosis membrane in a high temperature range of more than 45 ° C. and 60 ° C. or less.
  • the reverse osmosis membrane according to any one of the eighth to fourteenth aspects, wherein the reverse osmosis membrane is composed of a cellulose polymer or a polyamide polymer. It is a membrane cleaning device. According to the reverse osmosis membrane cleaning device of the fifteenth aspect, a high cleaning effect can be obtained while suppressing deterioration of the reverse osmosis membrane even in a high temperature range of more than 45 ° C. and 60 ° C. or less.
  • the reverse osmosis membrane cleaning method of the present invention it is possible to suppress the deterioration of the membrane and improve the cleaning effect.
  • the reverse osmosis membrane cleaning apparatus of the present invention it is possible to supply cleaning water maintained at a predetermined temperature to the reverse osmosis membrane and obtain a high cleaning effect.
  • Example 1 It is a cross-sectional schematic diagram of the reverse osmosis membrane module provided with the reverse osmosis membrane in the vessel. It is a figure which shows the structure of the reverse osmosis membrane washing
  • Example 1 it is a bar graph which shows the test result which changed the temperature of the wash water in steps.
  • Example 2 it is a bar graph which shows the test result which changed washing
  • Example 3 it is a bar graph which shows the test result which changed pH of washing water in steps.
  • Example 4 it is a bar graph which shows the test result which changed the citric acid concentration contained in washing water in steps.
  • Example 5 it is a bar graph which shows the test result which changed the temperature of the wash water containing a citric acid in steps.
  • the cleaning method of the present invention can be applied to a known reverse osmosis membrane (RO membrane).
  • RO membrane reverse osmosis membrane
  • the type and shape of the RO membrane to which the cleaning method of the present invention can be applied are not particularly limited, and may be, for example, a flat disk-like membrane, a hollow fiber membrane, a spiral membrane, or a tubular membrane.
  • the RO membrane has at least two surfaces, a front surface and a back surface, that is, a primary surface (front surface) into which untreated water to be treated flows and a secondary surface from which treated water that has passed through the RO membrane flows out. (Back surface).
  • the type of untreated water that is processed by the RO membrane is not particularly limited, and examples include seawater, river water, water and sewage, rainwater, industrial wastewater, and the like.
  • the cleaning method of the present invention can efficiently clean an RO membrane installed in a large-scale water treatment apparatus in an online state without removing it from the apparatus.
  • the RO installed in a seawater desalination plant Suitable for membrane cleaning.
  • the constituent material of the RO membrane to which the cleaning method of the present invention is applied is not particularly limited.
  • cellulose acetate, cellulose triacetate, cellulose nitrate, cellulose, polyamide, aromatic polyamide, polyolefin, polysulfone, polyacrylonitrile, polyester, polycarbonate examples thereof include polyvinyl chloride, polyvinyl alcohol, polyvinylidene chloride, polyvinyl fluoride, polyvinylidene fluoride, hexafluoropropylene, chlorotrifluoroethylene, tetrafluoroethylene, and a silicone polymer.
  • the constituent material of the RO membrane is a cellulose-based polymer such as cellulose acetate, cellulose triacetate, cellulose nitrate, cellulose, polyamide, aromatic polyamide, etc. It is preferable that the material is selected from polyamide-based polymers.
  • FIG. 1 An example of a water treatment apparatus equipped with an RO membrane to which the cleaning method of the present invention can be applied is an RO membrane module 1 shown in FIG.
  • the RO membrane module 1 in FIG. 1 has a plurality of hollow fiber-like RO membranes 2 folded back in a U shape, resin-fixed in a state in which the open state of the end of each hollow fiber is maintained, and a vessel (pressure vessel) 6 It is stored in.
  • seawater SW is supplied from the supply pipe 3 into the vessel 6 and passes through the primary surface constituting the outer periphery of the hollow fiber RO membrane 2.
  • the desalinated permeated water FW is collected from the secondary surface constituting the inner periphery of the hollow fiber-like RO membrane 2 to both ends of each hollow fiber-like RO membrane 2 and collected from the permeate outlet pipe 4.
  • the concentrated water that has not permeated into the hollow fiber RO membrane 2 is discharged from the brine outlet pipe 5 to the outside of the vessel 6.
  • the metallic scale containing the metal ions contained in the seawater and the organic scale containing the organic matter are attached to at least the primary surface of the RO membrane 2 after the seawater desalination treatment. Similar scales may be attached not only to the primary surface but also to the inside and the secondary surface of the RO membrane 2. Generally, the amount of scale attached to the primary surface is larger than the scale attached to the inside of the RO membrane 2 and the secondary surface.
  • the RO membrane 2 is cleaned using cleaning water of more than 45 ° C. and not more than 60 ° C. Since the cleaning water of the present embodiment is hotter than before, the cleaning power for peeling or elution of the scale from the RO membrane 2 is high. A cleaning effect superior to that of the prior art can be obtained by bringing the hot cleaning water into contact with the RO membrane 2.
  • Conventional cleaning liquids generally contain an oxidizing agent such as hypochlorous acid or hydrogen peroxide for the purpose of enhancing the cleaning power.
  • an oxidizing agent such as hypochlorous acid or hydrogen peroxide
  • an oxidizing agent such as hypochlorous acid or hydrogen peroxide may be included in the cleaning water of this embodiment.
  • the specific concentration is, for example, preferably 0.001 to 1.0% by mass, more preferably 0.01 to 0.1% by mass.
  • the total mass of the washing water containing the oxidizing agent is 100% by mass.
  • the oxidizing agent examples include hydrogen peroxide, percarbonate, persulfate, hypochlorite, permanganate, chlorine dioxide, and ozone.
  • the cation which comprises each salt is not specifically limited, For example, inorganic cations, such as sodium, potassium, lithium, calcium, magnesium, beryllium, ammonium, are mentioned. More specifically, for example, sodium percarbonate, sodium persulfate, ammonium persulfate, sodium hypochlorite, and potassium permanganate are mentioned as suitable salts as the oxidizing agent.
  • the washing water may contain any one or more oxidizing agents selected from the group consisting of a plurality of oxidizing agents exemplified here.
  • a sufficient detergency can be obtained while suppressing deterioration of the RO membrane 2 by using washing water in which fresh water or seawater is heated to a temperature of more than 45 ° C. and not more than 60 ° C.
  • the temperature of the washing water is preferably more than 45 ° C. and 55 ° C. or less, more preferably 48 ° C. or more and 55 ° C. or less, and more preferably 50 ° C. or more, from the viewpoint of saving energy required for heating and preventing the change in physical properties of the RO membrane. 54 ° C. or lower is more preferable.
  • the higher the washing water temperature is in the range of more than 45 ° C., the more sufficient cleaning power can be obtained without using an oxidizing agent.
  • the cleaning water is in the range of 60 ° C. or less, the deterioration of the RO membrane 2 can be suppressed to an extent acceptable in practical use.
  • the pH of the washing water is preferably pH 3.5 to 5.5, more preferably pH 4.0 to 5.5, and even more preferably pH 4.0 to 5.0.
  • the method for adjusting the pH is not particularly limited, and examples thereof include a method of adding an inorganic acid such as hydrochloric acid or sulfuric acid, or an alkaline aqueous solution such as sodium hydroxide or magnesium hydroxide.
  • the washing water heated to a temperature of more than 45 ° C. and not more than 60 ° C. may contain an organic acid.
  • Organic acids are less likely to cause film degradation than the oxidants described above, and can enhance the cleaning effect.
  • the washing water of this embodiment may contain one or more organic acids selected from the group consisting of a plurality of organic acids exemplified here.
  • the organic acid may be contained as an organic acid salt having a counter cation such as ammonium, sodium, calcium, and magnesium. Note that cleaning water containing an organic acid or an organic acid salt can also be referred to as a cleaning liquid.
  • the concentration of the organic acid contained in the cleaning water of the present embodiment is not particularly limited, and can be appropriately set depending on the type of organic acid to be used within a range in which film deterioration can be more sufficiently suppressed.
  • the concentration range of the suitable organic acid exemplified above is preferably 0.001 to 5.0% by mass (0.01 to 50 g / L), for example, and 0.01 to 3.0% by mass (0.1 to 30 g / L) is more preferable, and 0.02 to 2.0% by mass (0.2 to 20 g / L) is more preferable.
  • the total mass of the washing water containing the organic acid is 100% by mass. When it is at least the lower limit of the above range, the cleaning effect by the organic acid is sufficiently obtained. When the amount is not more than the upper limit of the above range, film deterioration due to an organic acid can be sufficiently suppressed.
  • the organic acid contained in the cleaning water of this embodiment is preferably citric acid from the viewpoint of enhancing the cleaning effect and sufficiently suppressing film deterioration.
  • Citric acid may be included in the form of a citrate paired with a counter cation.
  • a counter cation is not specifically limited, For example, cations, such as ammonium, sodium, potassium, magnesium, are mentioned.
  • washing water containing citric acid and ammonium citrate salt adjusted to pH 3.0 to 5.5, for example, can be obtained.
  • the citric acid concentration is preferably contained in the range of 2.0 to 22 g / L.
  • the content of citric acid and citrate per liter of washing water containing citric acid is preferably 3.0 to 22 g, more preferably 5.0 to 20 g, more preferably 7.0 to 15 g is more preferable.
  • the citric acid content is preferably 0.3 to 2.2%, more preferably 0.5 to 2.0%, and more preferably 0.7 to 100% of the cleaning liquid. More preferred is 1.5%.
  • the cleaning effect by citric acid can be more sufficiently obtained.
  • it is below the upper limit of the above range film deterioration due to citric acid can be more sufficiently suppressed.
  • the cleaning water adjusted as described above is brought into contact with at least the primary surface of the RO membrane 2, and the scale adhering to the RO membrane 2 is removed. It is preferable that the cleaning water also contacts the inside and the secondary surface of the RO membrane 2.
  • ⁇ Washing procedure> As a procedure of the cleaning method of the present embodiment, first, the concentrated water is discharged from the brine outlet pipe 5, the cleaning water is injected into the vessel 6 from the supply pipe 3, and at least the primary surface is kept immersed in the cleaning water. . By allowing the wash water to permeate in the forward direction, it is possible to supply fresh wash water that does not contain the eluate from the scale to the primary surface where the amount of scale attached is large. In addition, when injecting washing water into the vessel 6, the washing water may be allowed to permeate from the primary surface of the RO membrane 2 in the forward direction (in the filtration direction).
  • the cleaning water is injected into the vessel 6 from the permeate outlet pipe 4, and the reverse cleaning is performed to allow the cleaning water to permeate from the secondary surface of the RO membrane 2 to the reverse direction of the primary surface.
  • the organic acid is consumed on the secondary surface side or trapped on the secondary surface without passing through the RO membrane 2, and a sufficient amount of organic acid is not supplied to the primary surface.
  • the cleaning efficiency is reduced as compared with the case.
  • an organic acid that can permeate the RO membrane 2 is used, or a washing water that does not contain an organic acid is used.
  • the space on the primary surface side of the RO membrane 2 in the vessel 6 is held in a state where the cleaning water is filled, so that at least the primary surface can be held in a state immersed in the cleaning water. it can.
  • a part of the washing water penetrates into the RO membrane 2 and oozes out to the secondary surface.
  • the inside and the secondary surface of the RO membrane 2 may be immersed simultaneously with the primary surface.
  • even when the secondary surface of the RO membrane 2 is immersed in the cleaning water by injecting the cleaning water from the permeate outlet pipe 4 into the vessel 6 and filling the in-membrane space on the water collecting side. Good.
  • the method of holding the RO membrane 2 in a state immersed in the cleaning water is not particularly limited.
  • the cleaning water is supplied from the supply pipe 3 to fill the space on the primary surface side of the RO membrane 2 in the vessel 6, and then The supply of cleaning water may be stopped and the vessel 6 may be sealed to stop the flow of cleaning water.
  • the cleaning water is continuously supplied and the cleaning water of the same amount as the supply amount is discharged from the brine outlet pipe 5.
  • the RO membrane 2 may be immersed in the cleaning water while circulating the cleaning water.
  • the cleaning method of the present embodiment it is preferable to perform cleaning while circulating cleaning water because the cleaning effect is enhanced. Further, as will be described later, it is preferable to heat the cleaning water while circulating it, because it becomes easy to maintain the temperature of the cleaning water at a predetermined temperature and the cleaning effect can be stably obtained.
  • the scale adhering to the primary surface and the secondary surface is sufficiently eluted.
  • the removal efficiency can be further improved.
  • the holding time in the immersed state is preferably within the range of the cleaning time described above.
  • the turbidity, the concentration of the eluted scale, TOC (Total Organic Carbon), COD (Chemical Oxygen Demand), etc. are measured by a known method, thereby completing the washing.
  • a reference time may be set.
  • the eluted scale is discharged out of the vessel 6 together with the washing water.
  • the outlet for discharging the washing water is not particularly limited, and it is preferable to discharge from the brine outlet pipe 5 or the supply pipe 3 from the viewpoint of preventing fouling of the RO membrane 2.
  • the above cleaning procedure may be repeated twice or more to perform the cleaning to an allowable level.
  • a known agent such as a surfactant or a pH adjusting agent that promotes washing may be added as necessary.
  • the method of rinsing the RO membrane 2 is not particularly limited.
  • the seawater is supplied from the supply pipe 3 and brought into contact with the primary surface of the RO membrane 2 to maintain the state in which the RO membrane 2 is immersed in seawater.
  • Examples thereof include a method of continuously discharging from the outlet pipe 5 and a method of flushing (backwashing) the RO membrane 2 by injecting fresh water from the permeate outlet pipe 4 in the reverse direction.
  • the amount of the drug contained in the discharged rinse solution can be measured by a known method to determine whether the rinsing process can be completed. After the rinsing process is complete, normal operation can begin.
  • the cleaning water is preheated to a predetermined temperature, and then the cleaning water is injected into the vessel 6.
  • the method for supplying the heated washing water is not particularly limited.
  • the washing water is heated by a heat exchanger connected to a boiler and then supplied into the vessel 6, or the washing water is heated by an electric heater. Then, there is a method of supplying it into the vessel 6.
  • the washing water discharged after washing the RO membrane 2 through the vessel 6 it is preferable to circulate the washing water discharged after washing the RO membrane 2 through the vessel 6 to the reverse osmosis membrane while passing through the filter. Since the dust and scale dissolved in the cleaning water that has cleaned the RO membrane 2 can be removed by a filter, the cleaning water can be reused, and the cost required for the disposal of the cleaning water can be reduced.
  • the washing water that flows through the vessel 6 and is discharged after washing the RO membrane 2 is still warm.
  • the discharged wash water is collected, filtered through another filter, and the scale eluted in the wash water is removed to regenerate the warm wash water, and again the RO membrane in the vessel 6 for washing purposes. 2 can be supplied.
  • the method of heating while circulating the wash water is not particularly limited, and examples thereof include a method of using the reverse osmosis membrane cleaning device 10 illustrated in FIG. Below, the structure of the reverse osmosis membrane washing
  • the reverse osmosis membrane cleaning apparatus 10 of the present embodiment includes an RO membrane module 1, a cleaning tank 11, a circulation pump 12, a heat exchanger (heating unit) 13, a control valve 14, A temperature sensor 15, a filter 16, and a control device 17 are provided.
  • the cleaning tank 11 is provided between the discharge port of the RO membrane module 1 and the circulation pump 12 and temporarily stores cleaning water circulating through the flow path of the reverse osmosis membrane cleaning device 10.
  • the circulation pump 12 is provided between the cleaning tank 11 and the heat exchanger 13 and the control valve 14, and the cleaning water stored in the cleaning tank 11 is passed through the heat exchanger 13 or the control valve 14 through the filter 16 and The cleaning water supplied to the RO membrane module 1 and discharged from the RO membrane module 1 is sent to the cleaning tank 11.
  • the circulation pump 12 may be controlled to be driven and stopped by a pump control device (not shown).
  • the circulation pump 12 is stopped after the operation for a predetermined time (for example, 12 hours or less), and the cleaning process is completed, thereby preventing the reverse osmosis membrane from being deteriorated due to unintentionally prolonged cleaning. .
  • the heat exchanger 13 is an example of a heating unit, and is provided between the circulation pump 12 and the filter 16 and performs heat exchange between the cleaning water and separately prepared high-temperature water through physical heat conduction.
  • the washing water is heated (heated).
  • a heating part is not limited to a heat exchanger, The various apparatus which can heat washing water is applied.
  • the control valve 14 is provided between the circulation pump 12 and the filter 16.
  • the control valve 14 is heated after passing through the heat exchanger 13, and the flow rate A of the cleaning water supplied to the filter 16 and the RO membrane module 1, and the filter 16 and the RO membrane bypassing the heat exchanger 13.
  • the distribution ratio of the flow rate B of the cleaning water supplied to the module 1 is adjusted. Specifically, when the valve opening of the control valve 14 is controlled to be small, the flow rate A increases and the flow rate B relatively decreases. On the other hand, when the valve opening of the control valve 14 is controlled to be large, the flow rate A decreases and the flow rate B relatively increases.
  • the temperature sensor 15 is obtained by mixing the washing water that has passed through the heat exchanger 13 and the washing water that has bypassed the heat exchanger 13 before being supplied to the filter 16 and the RO membrane module 1 or the RO membrane. The temperature of the washing water before being supplied to the module 1 is detected. The temperature sensor 15 inputs the detected temperature to the control unit 18.
  • the filter 16 is provided between the heat exchanger 13 and the control valve 14 and the RO membrane module 1 and removes dust and scale contained in the washing water immediately before being supplied to the RO membrane module 1 by filtration.
  • the control device 17 includes a control unit 18.
  • the control unit 18 controls each functional unit of the reverse osmosis membrane cleaning apparatus 10 so that the temperature of the cleaning water supplied to the RO membrane module 1 becomes a desired temperature.
  • the control unit 18 controls the opening degree of the control valve 14 and adjusts the distribution ratio of the flow rate A and the flow rate B, thereby adjusting the temperature of the circulating wash water.
  • the control unit 18 sets the ratio of the flow rate A of the cleaning water heated through the heat exchanger 13. Control to increase.
  • the control part 18 performs control which increases the ratio of the flow volume B of the wash water which detours the heat exchanger 13, when the temperature of the wash water which the temperature sensor 15 detects is higher than desired temperature.
  • the filter 16 and the RO membrane module allow the cleaning water in the cleaning tank 11 to pass through the first flow path having the heat exchanger 13 or the second flow path having the control valve 14 by the circulation pump 12. 1, and the cleaning water that has cleaned the RO membrane 2 provided in the RO membrane module 1 is collected in the cleaning tank 11. As a result, the reused cleaning water can be circulated while heating.
  • the reverse osmosis membrane cleaning device 10 may include a warm water generator 19, a warm water pump 20, and a three-way valve 21 as arbitrary configurations.
  • the hot water generator 19 is a heat source device that generates high-temperature water to be supplied to the heat exchanger 13, and examples thereof include a boiler and an electric heater.
  • the arrow G in FIG. 2 represents the gas exhausted from the boiler.
  • the hot water pump 20 is provided between the heat exchanger 13 and the hot water generator 19, and sends high temperature water generated by the hot water generator 19 to the three-way valve 21.
  • a three-way valve 21 having three valves is provided between the hot water generator 19, the heat exchanger 13, and the hot water pump 20. One of the three valves is connected to the heat exchanger 13. Another one of the three valves is connected to the hot water generator 19. Another one of the three valves is connected to the hot water pump 20.
  • the control unit 18 includes at least one of the hot water generator 19, the hot water pump 20, and the three-way valve 21 so that the temperature of the cleaning water supplied to the RO membrane module 1 becomes a desired temperature.
  • One functional unit may be controlled.
  • the control unit 18 controls the opening and closing of each valve of the three-way valve 21, and increases the flow rate of high-temperature water sent to the heat exchanger 13 when the heat exchanger 13 requires a lot of heat. .
  • the heat exchanger 13 does not require a lot of heat, the flow rate of the high-temperature water that is directly sent to the hot water pump 20 bypassing the heat exchanger 13 is increased.
  • the control unit 18 performs control to increase the flow rate of the high-temperature water that is sent to the heat exchanger 13. Further, when the temperature of the washing water detected by the temperature sensor 15 is higher than a desired temperature, the control unit 18 performs control to increase the flow rate of the high-temperature water that is bypassed the heat exchanger 13 and sent to the hot water pump 20. Do. By controlling in this way, the amount of heat supplied to the heat exchanger 13 is adjusted, the amount of heat supplied from the heat exchanger 13 to the wash water is adjusted, and the temperature of the circulating wash water is adjusted.
  • the control unit 18 may control the operation and stop of the hot water generator 19 and the hot water pump 20 as necessary.
  • the present invention is not limited to the above embodiment, and can be appropriately changed without departing from the spirit of the present invention. It is possible to appropriately replace the constituent elements in the embodiment described above with known constituent elements.
  • the RO membrane made of cellulose triacetate which was used in a seawater desalination treatment plant and passed through an operation history of 35,000 hours or more, was installed in the test RO membrane module 1 shown in FIG. 1 and washed as follows. .
  • the water permeability coefficient (A-value) and the salt permeability coefficient (B-value) were measured by a conventional method.
  • the water permeation coefficient (A-value) is also referred to as the A value, and is a coefficient representing the permeation performance of the liquid in the RO membrane or the NF membrane. P ⁇ osmotic pressure difference ⁇ ).
  • the salt permeation coefficient (B-value) is also called the B value, and is a coefficient representing the permeability of the solute in the RO membrane or NF membrane.
  • the solute permeation flux Js B value ⁇ (solute concentration Cm ⁇ It is represented by the relational expression of the solute concentration Cp) of the permeated water.
  • Example 1 Hot water at 45 ° C., 48 ° C., 50 ° C., and 54 ° C. was used as cleaning water, and the primary surface of the RO membrane 2 was cleaned. At this time, the washing water was continuously supplied from the supply pipe 3 into the vessel 6, and the drainage liquid after washing the RO membrane 2 was continuously discharged from the brine outlet pipe 5, thereby maintaining the predetermined temperature. Circulating washing with washing water was performed for 4 hours. The pH of the wash water was about 6. The reason why the pH is weakly acidic is considered to be that it comes into contact with air during circulation and carbon dioxide in the air is dissolved in the washing water.
  • the temperature of the washing water is preferably more than 45 ° C. and 60 ° C. or less, more preferably 48 ° C. or more and 55 ° C. or less, and further preferably 50 ° C. or more and 54 ° C. or less.
  • Example 2 The RO membrane 2 was washed in the same manner as in Example 1 except that the time for circulating and washing with the washing water set at 54 ° C. was increased from 4 hours (Example 1) to 8 hours (Example 2).
  • A-value water permeability coefficient
  • B-value increase rate of the salt permeation coefficient
  • Example 3 Circulating washing for 8 hours was performed in the same manner as in Example 2 using washing water at 54 ° C. adjusted to pH 6, pH 5, and pH 4.
  • the wash water at pH 6 is the same 54 ° C. warm water as in Example 1.
  • Washing water having a pH of 5 was prepared by adding hydrochloric acid dropwise to warm water.
  • the pH 4 wash water was prepared by dropping ammonia into warm water containing 0.2 g / L (0.02 mass%) citric acid.
  • pH 5-6 was the same, and pH 4 showed a relatively low rate of increase in water permeability coefficient (A-value).
  • the pH of the wash water is preferably pH 3.5 to 5.5, and pH 4.0 to 5.5 is preferred. More preferably, pH 4.0 to 5.0 is even more preferable.
  • Example 4 Wash at 54 ° C. containing citric acid at a concentration of 0.02, 0.2, 0.5, 1.0, 2.0 (unit:% (mass basis)) and adjusted to pH 4 by dropwise addition of ammonia Circulating washing for 8 hours was performed in the same manner as in Example 2 using water.
  • the mass of the citric acid contained in each wash water is 0.2 g, 2.0 g, 5.0 g, 10 g, and 20 g, respectively, per 1 L of wash water.
  • 0.02 to 0.5% is equivalent, 1.0% is lower, and 2.0% shows a lower rate of increase in water permeability coefficient (A-value). It was.
  • the citric acid concentration is preferably 0.3 to 2.2% on a mass basis, and 0.5 to 2 0.0% is more preferable, and 0.7 to 1.5% is more preferable. That is, the mass of citric acid and citrate contained in the wash water per liter is preferably 3.0 to 22 g, more preferably 5.0 to 20 g, more preferably 7.0 to It can be said that 15 g is more preferable.
  • Example 5 Circulating washing for 3 hours using 50 ° C, 54 ° C, and 60 ° C washing water containing citric acid at a concentration of 2.0 (unit:% (mass basis) and adjusted to pH 4 by dropwise addition of ammonia was carried out in the same manner as in Example 2.
  • A-value rate of increase in water permeability coefficient
  • B-value salt permeability coefficient

Abstract

逆浸透膜を備えた膜モジュール(1)と、洗浄水を貯留する洗浄水タンク(11)と、洗浄水タンク(11)から逆浸透膜に供給される洗浄水を加熱する加熱部(13)と、該加熱部(13)により加熱される洗浄水が45℃超60℃以下となるように加熱部を制御する温度制御装置(17)と、を備える逆浸透膜洗浄装置(10)。

Description

逆浸透膜洗浄方法及び逆浸透膜洗浄装置
 本発明は、逆浸透膜洗浄方法及び逆浸透膜洗浄装置に関する。
 本願は、2015年4月21日に、日本に出願された特願2015-086714号に基づき優先権を主張し、その内容をここに援用する。
 逆浸透膜を備えた海水淡水化装置において、処理対象の海水は、先ず中空糸膜などが充填された前処理装置に通されて、固体物などの不純物が除去される。前処理装置で処理された海水は、高圧ポンプで昇圧されて逆浸透膜に接触され、逆浸透膜を通過する淡水と通過しない濃縮海水とに分離される。得られた淡水は、飲料水などの用途に利用されている。
 逆浸透膜の透過性能が低下する要因として、鉄、マンガン等の金属化合物、並びに、海水中に含まれる微生物及びその代謝産物を含む有機物を含むスケールが付着することによって、目詰まりすることが挙げられる。この目詰まりを洗浄する目的で、逆浸透膜を備えた海水淡水化装置には、一般的に化学洗浄ラインが設置されている。逆浸透膜又は中空糸膜の処理水量が低下した場合は、運転を停止して、薬剤を用いた化学洗浄が実施される。
 逆浸透膜、中空糸膜等の水処理膜に付着したスケールを除去する方法として、次亜塩素酸、クエン酸、過酸化水素等の薬剤を含む洗浄液で洗浄する方法が知られている。例えば、特許文献1には、クエン酸50~1500mg/リットルを含有し、pH1.0~3.0に調整された洗浄液を使用して膜モジュールを洗浄する方法が開示されている。
特開平11-9973号公報
 近年の地球温暖化に伴う異常気象によって、季節的に変動する海水温が例年よりも上昇する傾向がある。海水温の上昇により、海水淡水化プラントに備えられた逆浸透膜に付着する有機系スケールが異常に増加する場合があり、従来の洗浄方法では対応しきれずにファウリングが進行し、プラントの操業を停止せざるを得ない事態が発生している。
 本発明は、上記課題を解決するためになされたものであって、塩透過係数の増加率を指標とする膜劣化を抑制しつつ、水透過係数の増加を指標とする洗浄効果を向上させることができる逆浸透膜洗浄方法及び逆浸透膜洗浄装置を提供する。
 上記課題を解決するために、本発明は以下の手段を提供している。
 本発明の第一態様は、45℃超60℃以下の洗浄水で逆浸透膜を洗浄する逆浸透膜洗浄方法である。
 第一態様の逆浸透膜洗浄方法によれば、使用する45℃超の洗浄水の温度は従来よりも高温であるので、スケールを逆浸透膜から剥離させたり、溶出させたりする洗浄力が高い。また、洗浄水が60℃以下であることにより、洗浄効果を高めつつ、熱による逆浸透膜の劣化を抑制することができる。
 本発明の第二態様は、前記洗浄水を、フィルターを通過させながら前記逆浸透膜に循環させる上記第一態様に記載の逆浸透膜洗浄方法である。
 第二態様の逆浸透膜洗浄方法によれば、循環する洗浄水に溶解されたゴミやスケールをフィルターで除去できるので、洗浄水を再利用することが可能であり、洗浄水の廃棄処理に要するコストを低減することができる。
 本発明の第三態様は、前記洗浄水に有機酸が含まれている上記第一又は第二態様に記載の逆浸透膜洗浄方法である。
 第三態様の逆浸透膜洗浄方法によれば、45℃超60℃以下という高い温度域においても、逆浸透膜の劣化を抑えつつ、洗浄効果を高めることができる。
 本発明の第四態様は、前記有機酸としてのクエン酸及びクエン酸塩が、クエン酸濃度として2.0~22g/Lの範囲で含まれることを特徴とする上記第三態様に記載の逆浸透膜洗浄方法である。
 第四態様の逆浸透膜洗浄方法によれば、45℃超60℃以下という高い温度域においても、逆浸透膜の劣化を抑えつつ、洗浄効果を高めることができる。
 本発明の第五態様は、前記洗浄水のpHが3.5~5.5に調整されていることを特徴とする上記第一~第四態様の何れか一態様に記載の逆浸透膜洗浄方法である。
 第五態様の逆浸透膜洗浄方法によれば、45℃超60℃以下という高い温度域においても、逆浸透膜の劣化を抑えつつ、洗浄効果を高めることができる。
 本発明の第六態様は、前記洗浄水と前記逆浸透膜の接触する洗浄時間が、12時間以下であることを特徴とする上記第一~第五態様の何れか一態様に記載の逆浸透膜洗浄方法である。
 第六態様の逆浸透膜洗浄方法によれば、45℃超60℃以下という高い温度域においても、逆浸透膜の劣化を抑えつつ、洗浄効果を高めることができる。
 本発明の第七態様は、前記逆浸透膜がセルロース系高分子又はポリアミド系高分子によって構成されていることを特徴とする上記第一~第六態様の何れか一態様に記載の逆浸透膜洗浄方法である。
 第七態様の逆浸透膜洗浄方法によれば、45℃超60℃以下という高い温度域においても、逆浸透膜の劣化を抑えつつ、洗浄効果を高めることができる。
 本発明の第八態様は、逆浸透膜を備えた膜モジュールと、洗浄水を貯留する洗浄水タンクと、前記洗浄水タンクから前記逆浸透膜に供給される洗浄水を加熱する加熱部と、該加熱部により加熱される洗浄水が45℃超60℃以下となるように前記加熱部を制御する温度制御装置と、を備える逆浸透膜洗浄装置である。
 第八態様の逆浸透膜洗浄装置によれば、温度制御装置を備えているので、所定温度の洗浄水を安定して供給し、逆浸透膜を洗浄することができる。
 本発明の第九態様は、前記温度制御装置は、該加熱部により加熱される洗浄水が45℃超55℃以下となるように前記加熱部を制御する上記第八態様に記載の逆浸透膜洗浄装置である。
 第九態様の逆浸透膜洗浄装置によれば、温度制御装置を備えているので、所定温度の洗浄水を安定して供給し、逆浸透膜を洗浄することができる。
 本発明の第十態様は、前記洗浄水を前記膜モジュールと前記洗浄水タンクとの間で循環させる循環ポンプと、循環する前記洗浄水が通過するフィルターと、を備える上記第八態様又は第九態様に記載の逆浸透膜洗浄装置である。
 第十態様の逆浸透膜洗浄装置によれば、循環する洗浄水に溶解されたゴミやスケールをフィルターで除去できるので、洗浄水を再利用することが可能であり、洗浄水の廃棄処理に要するコストを低減することができる。
 本発明の第十一態様は、前記洗浄水に有機酸が含まれている上記第八~第十態様の何れか一態様に記載の逆浸透膜洗浄装置である。
 第十一態様の逆浸透膜洗浄装置によれば、45℃超60℃以下という高い温度域においても、逆浸透膜の劣化を抑えつつ、高い洗浄効果を得ることができる。
 本発明の第十二態様は、前記有機酸としてのクエン酸及びクエン酸塩が、クエン酸濃度として2.0~22g/Lの範囲で含まれることを特徴とする第十一態様に記載の逆浸透膜洗浄装置である。
 第十二態様の逆浸透膜洗浄装置によれば、45℃超60℃以下という高い温度域においても、逆浸透膜の劣化を抑えつつ、高い洗浄効果を得ることができる。
 本発明の第十三態様は、前記洗浄水のpHが3.5~5.5である第八~第十二態様の何れか一態様に記載の逆浸透膜洗浄装置である。
 第十三態様の逆浸透膜洗浄装置によれば、45℃超60℃以下という高い温度域においても、逆浸透膜の劣化を抑えつつ、高い洗浄効果を得ることができる。
 本発明の第十四態様は、前記循環ポンプの駆動後12時間以下で該循環ポンプの駆動を停止制御するポンプ制御装置を備える第八~第十三態様の何れか一態様に記載の逆浸透膜洗浄装置である。
 第十四態様の逆浸透膜洗浄装置によれば、ポンプ制御装置の制御下において、12時間以下の運転後に循環ポンプを停止し、洗浄処理を終えることにより、洗浄が不用意に長引いて逆浸透膜が劣化することを防止できる。このため、45℃超60℃以下という高い温度域において、逆浸透膜の劣化を抑えつつ、高い洗浄効果を得ることができる。
 本発明の第十五態様は、前記逆浸透膜がセルロース系高分子又はポリアミド系高分子によって構成されていることを特徴とする第八~第十四態様の何れか一態様に記載の逆浸透膜洗浄装置である。
 第十五態様の逆浸透膜洗浄装置によれば、45℃超60℃以下という高い温度域においても、逆浸透膜の劣化を抑えつつ、高い洗浄効果を得ることができる。
 本発明の逆浸透膜洗浄方法によれば、膜の劣化を抑制するとともに洗浄効果を向上させることができる。
 本発明の逆浸透膜洗浄装置によれば、所定温度に維持した洗浄水を逆浸透膜に供給し、高い洗浄効果を得ることができる。
逆浸透膜をベッセル内に備えた逆浸透膜モジュールの断面模式図である。 逆浸透膜モジュールに接続された逆浸透膜洗浄装置の構成を示す図である。 実施例1において、洗浄水の温度を段階的に変えた試験結果を示す棒グラフである。 実施例2において、洗浄時間を変えた試験結果を示す棒グラフである。 実施例3において、洗浄水のpHを段階的に変えた試験結果を示す棒グラフである。 実施例4において、洗浄水に含まれるクエン酸濃度を段階的に変えた試験結果を示す棒グラフである。 実施例5において、クエン酸を含む洗浄水の温度を段階的に変えた試験結果を示す棒グラフである。
 本発明の洗浄方法は公知の逆浸透膜(RO膜)に適用可能である。本発明の洗浄方法が適用可能なRO膜の種類及び形状は特に限定されず、例えば、平面ディスク状の膜であってもよいし、中空糸膜、スパイラル膜又はチューブラー膜であってもよい。RO膜は、おもて面と裏面の少なくとも二つの面、すなわち処理対象である未処理水が流入する一次面(おもて面)と、RO膜を透過した処理水が流出する二次面(裏面)とを有することが好ましい。RO膜が処理する未処理水の種類は特に制限されず、例えば、海水、河川水、上下水道、雨水、工業廃水等が挙げられる。
 本発明の洗浄方法は、大規模な水処理装置に設置されたRO膜を装置外に取り外さずにオンラインの状態で効率的に洗浄できることから、例えば、海水の淡水化処理プラントに設置されたRO膜の洗浄に好適である。
 本発明の洗浄方法を適用するRO膜の構成材料は特に限定されず、例えば、酢酸セルロース、三酢酸セルロース、硝酸セルロース、セルロース、ポリアミド、芳香族ポリアミド、ポリオレフィン、ポリスルホン、ポリアクリロニトリル、ポリエステル、ポリカーボネート、ポリ塩化ビニル、ポリビニルアルコール、ポリ塩化ビニリデン、ポリフッ化ビニル、ポリフッ化ビニリデン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、テトラフルオロエチレン、シリコーンポリマー等が挙げられる。
 本実施形態の洗浄水による膜の劣化を極力抑制する観点から、RO膜の構成材料は、酢酸セルロース、三酢酸セルロース、硝酸セルロース、セルロース等のセルロース系高分子、及び、ポリアミド、芳香族ポリアミド等のポリアミド系高分子から選択される材料であることが好ましい。
 本発明の洗浄方法が適用可能なRO膜を備えた水処理装置の一例として、図1に示すRO膜モジュール1が挙げられる。図1のRO膜モジュール1は、複数の中空糸状のRO膜2がU字状に折り返され、各中空糸の端部の開口状態を保持した状態で樹脂固定され、さらにベッセル(耐圧容器)6に収納されている。
 通常の海水淡水化処理において、供給配管3から海水SWがベッセル6内に供給され、中空糸状のRO膜2の外周を構成する一次面に接触して透過する。淡水化された透過水FWは中空糸状のRO膜2の内周を構成する二次面から各中空糸状のRO膜2の両端部へ集水されて、透過水出口配管4から回収される。各中空糸状のRO膜2の内部へ透過しなかった濃縮水はブライン出口配管5からベッセル6の外へ排出される。
 海水淡水化処理を行った後のRO膜2の少なくとも一次面には、海水に含まれる金属イオンを含む金属系スケールや有機物を含む有機系スケールが付着している。一次面だけでなく、RO膜2の内部及び二次面にも同様のスケールが付着している場合もある。一般的に、一次面に付着するスケールの量はRO膜2の内部及び二次面に付着するスケールよりも多い。
 以下、本発明の洗浄方法の実施形態について、図1のRO膜モジュール1に備えられたRO膜2を洗浄する場合を一例として説明する。
 従来、例えば15℃~25℃の海水温と同程度の温度の洗浄液が使用されている。
 一方、本発明の逆浸透膜洗浄方法の第一実施形態においては、45℃超60℃以下の洗浄水を使用してRO膜2を洗浄する。
 本実施形態の洗浄水は従来よりも高温であるので、スケールをRO膜2から剥離させたり、溶出させたりする洗浄力が高い。この高温の洗浄水をRO膜2に接触させることにより従来よりも優れた洗浄効果が得られる。
 従来の洗浄液には、洗浄力を高める目的で次亜塩素酸や過酸化水素などの酸化剤が含まれていることが一般的である。
 一方、本実施形態の洗浄水には、次亜塩素酸や過酸化水素等のラジカルを発生し易い酸化剤は含まれないことが望ましい。洗浄水が酸化剤を含み且つ高温であると、RO膜2の酸化劣化を著しく促進してしまうからである。
 ただし、極めて低濃度であれば、本実施形態の洗浄水に次亜塩素酸や過酸化水素等の酸化剤を含ませてもよい。具体的な含有濃度としては、例えば、好適には0.001~1.0質量%、より好適には0.01~0.1質量%である。ここで、酸化剤を含む洗浄水の全質量が100質量%である。
 前記酸化剤としては、例えば、過酸化水素、過炭酸塩、過硫酸塩、次亜塩素酸塩、過マンガン酸塩、二酸化塩素、オゾンが挙げられる。ここで、各塩を構成するカチオンは特に限定されず、例えば、ナトリウム、カリウム、リチウム、カルシウム、マグネシウム、ベリリウム、アンモニウムなどの無機カチオンが挙げられる。より具体的には、例えば、過炭酸ナトリウム、過硫酸ナトリウム、過硫酸アンモニウム、次亜塩素酸ナトリウム、過マンガン酸カリウムが酸化剤として好適な塩として挙げられる。前記洗浄水には、ここで例示した複数の酸化剤からなる群から選択される何れか1種以上の酸化剤が含まれていてもよい。
 本実施形態において、淡水又は海水を45℃超60℃以下の温度に加温した洗浄水を使用することにより、RO膜2の劣化を抑制しつつ充分な洗浄力を得ることができる。洗浄水の温度は、加温に要するエネルギーを節約する観点、RO膜の物性変化を予防する観点などから、45℃超55℃以下が好ましく、48℃以上55℃以下がより好ましく、50℃以上54℃以下がさらに好ましい。
 洗浄水が45℃超の範囲において高い温度である程、酸化剤を使用せずとも充分な洗浄力が得られる。一方、洗浄水が60℃以下の範囲であると、RO膜2の劣化を実用上受け入れられる程度に抑制することができる。
 45℃超60℃以下の温度に加温した洗浄水とRO膜2とを接触させる時間、すなわち洗浄時間は、長くなるほど洗浄効果が得られる一方、長くなるほど膜劣化が進行する傾向がある。このため、洗浄時間は2~12時間が好ましく、4~10時間がより好ましく、4~8時間がさらに好ましい。
 45℃超60℃以下の温度に加温した洗浄水のpHは、高くなるほど洗浄効果が得られる一方、高くなるほど膜劣化が進行する傾向がある。このため、洗浄水のpHは、pH3.5~5.5が好ましく、pH4.0~5.5がより好ましく、pH4.0~5.0がさらに好ましい。
 pHを調整する方法は特に限定されず、例えば、塩酸や硫酸等の無機酸、水酸化ナトリウムや水酸化マグネシウム等のアルカリ水溶液を添加する方法が挙げられる。
 45℃超60℃以下の温度に加温した洗浄水には、有機酸を含ませてもよい。有機酸は前述した酸化剤よりも膜劣化の原因になり難く、洗浄効果を高めることができる。
 好適な有機酸として、例えば、クエン酸、ホスホン酸、グリコール酸(ヒドロキシ酸)、エチレンジアミン四酢酸(EDTA)、ギ酸、シュウ酸等が挙げられる。本実施形態の洗浄水には、ここで例示した複数の有機酸からなる群から選択される1種以上の有機酸が含まれていてもよい。有機酸は、アンモニウム、ナトリウム、カルシウム、マグネシウム等のカウンターカチオンを有する有機酸塩として含まれていてもよい。なお、有機酸又は有機酸塩を含む洗浄水を洗浄液と呼ぶこともできる。
 有機酸がRO膜2に付着したスケールを溶出させるメカニズムの一つとして、スケールに含まれる金属イオンと有機酸とがキレート結合することにより洗浄水中に溶解することが考えられる。
 本実施形態の洗浄水に含まれる有機酸の濃度は特に限定されず、膜劣化をより充分に抑制できる範囲で、使用する有機酸の種類によって適宜設定できる。上記で例示した好適な有機酸の濃度範囲は、例えば、0.001~5.0質量%(0.01~50g/L)が好ましく、0.01~3.0質量%(0.1~30g/L)がより好ましく、0.02~2.0質量%(0.2~20g/L)がさらに好ましい。ここで、有機酸を含む洗浄水の全質量が100質量%である。
 上記範囲の下限値以上であると、有機酸による洗浄効果が十分に得られる。
 上記範囲の上限値以下であると、有機酸による膜劣化を充分に抑制することができる。
 本実施形態の洗浄水に含まれる有機酸は、洗浄効果を高め、膜劣化を充分に抑制する観点から、クエン酸であることが好ましい。クエン酸はカウンターカチオンと対になるクエン酸塩の形態で含まれていてもよい。カウンターカチオンは特に限定されず、例えば、アンモニウム、ナトリウム、カリウム、マグネシウム等のカチオンが挙げられる。
 一例として、洗浄水にクエン酸を所定量加えた後、アンモニアを滴下することにより、例えばpH3.0~5.5に調整したクエン酸及びクエン酸アンモニウム塩を含む洗浄水を得ることができる。
 本実施形態の洗浄水にクエン酸及びクエン酸塩の少なくとも一方が含まれる場合、クエン酸濃度として、2.0~22g/Lの範囲で含まれることが好ましい。
 クエン酸を含む洗浄水1L当たりのクエン酸及びクエン酸塩の含有量は、クエン酸の質量に換算して、3.0~22gが好ましく、5.0~20gがより好ましく、7.0~15gがさらに好ましい。この範囲を質量基準の%に変換すると、洗浄液100%に対して、クエン酸含有量は、0.3~2.2%が好ましく、0.5~2.0%がより好ましく、0.7~1.5%がさらに好ましい。
 上記範囲の下限値以上であると、クエン酸による洗浄効果がより充分に得られる。
 上記範囲の上限値以下であると、クエン酸による膜劣化をより充分に抑制することができる。
 上記のように調整された洗浄水をRO膜2の少なくとも一次面に接触させ、RO膜2に付着していたスケールを除去する。洗浄水はRO膜2の内部及び二次面にも接触することが好ましい。
<洗浄の手順>
(洗浄工程)
 本実施形態の洗浄方法の手順として、まず、ブライン出口配管5から濃縮水を排出し、供給配管3から洗浄水をベッセル6内に注入し、少なくとも一次面を洗浄水に浸漬した状態で保持する。順方向で洗浄水を透過させることにより、スケールの付着量が多い一次面に対して、スケールからの溶出物を含まないフレッシュな洗浄水を供給することができる。なお、洗浄水をベッセル6内に注入する場合は、RO膜2の一次面から二次面の順方向(ろ過方向へ)洗浄水を透過させてもよい。
 上記の順方向の洗浄に替えて、透過水出口配管4から洗浄水をベッセル6内に注入し、RO膜2の二次面から一次面の逆方向へ洗浄水を透過させる逆洗浄を行っても構わないが、有機酸が二次面側で消費されて又はRO膜2を透過できずに二次面にトラップされて、一次面に充分な量の有機酸が供給されず、順方向の場合と比べて洗浄効率が低下する可能性がある。逆方向で洗浄水を透過させる場合には、RO膜2を透過可能な有機酸を使用するか、或いは有機酸を含まない洗浄水を使用する。
 洗浄水を透過させた後、ベッセル6内のRO膜2の一次面側の空間に洗浄水が満たされた状態で保持することにより、少なくとも一次面を洗浄水に浸漬した状態で保持することができる。この状態において、少し加圧することにより、洗浄水の一部はRO膜2の内部を浸透して二次面に染みだす。この加圧により、RO膜2の内部及び二次面も一次面と同時に浸漬してもよい。或いは、透過水出口配管4から洗浄水をベッセル6内に注入して、集水側の膜内空間を満たすことによって、RO膜2の二次面を洗浄水に浸漬した状態で保持してもよい。
 RO膜2を洗浄水に浸漬した状態で保持する方法は特に限定されず、例えば、供給配管3から洗浄水を供給してベッセル6内のRO膜2の一次面側の空間を満たし、その後、洗浄水の供給を停止するともにベッセル6を密封して、洗浄水の流通を停止してもよい。
 或いは、ベッセル6内のRO膜2の一次面側の空間を洗浄水で満たした後も、洗浄水を供給し続けるとともに、供給量と同量の洗浄水をブライン出口配管5から排出することによって、洗浄水を流通させながら、RO膜2を洗浄水に浸漬した状態を保持してもよい。
 本実施形態の洗浄方法においては、洗浄水を流通させながら洗浄した方が、洗浄効果が高まるので好ましい。さらに、後述するように、洗浄水を循環させながら加温することにより、洗浄水の温度を所定温度に維持することが容易になり、洗浄効果を安定して得られるので好ましい。
 RO膜2の一次面及び二次面の少なくとも一方、好ましくは両方を流通する洗浄水に浸漬した(曝した)状態で保持することにより、一次面及び二次面に付着したスケールを充分に溶出させて、その除去効率をさらに向上させることができる。
 浸漬した状態で保持する時間は、前述した洗浄時間の範囲内であることが好ましい。
 また、洗浄後に排出された洗浄水の排液について、濁度、溶出されたスケールの濃度、TOC(Total Organic Carbon)、COD(Chemical Oxygen Demand)等を公知方法で計測することにより、洗浄終了の目安時間を設定してもよい。
 溶出されたスケールは洗浄水とともにベッセル6外へ排出される。洗浄水を排出する排出口は特に限定されず、RO膜2のファウリングを防止する観点から、ブライン出口配管5又は供給配管3から排出することが好ましい。
 1回目の洗浄後に許容されない程度のスケールが残留している場合には、上述の洗浄手順を2回以上繰り返して行うことにより、許容される程度まで洗浄してもよい。
 以上で説明した洗浄水には、必要に応じて、洗浄を促進する界面活性剤、pH調整剤等の公知の薬剤を添加してもよい。
(リンス工程)
 洗浄水が有機酸等の薬剤を含む場合、洗浄後のRO膜にこれらの薬剤が残留することを防ぐ目的で、洗浄工程の後で、薬剤を含まない海水又は淡水等のリンス液でRO膜2を濯ぐリンス工程を行うことが好ましい。
 RO膜2を濯ぐ方法は特に限定されず、例えば、供給配管3から海水を供給してRO膜2の一次面に接触させて、RO膜2を海水に浸漬した状態を保持するとともに、ブライン出口配管5から連続的に排出する方法、透過水出口配管4から淡水を逆方向に注入してRO膜2のフラッシング(逆洗浄)を行う方法等が挙げられる。
 排出されたリンス液に含まれる薬剤の量を公知方法により測定し、リンス工程の終了の可否を判断することができる。リンス工程完了後、通常の操業を開始できる。
<洗浄水の加温と循環>
 本実施形態においては、洗浄水を所定温度に予め加温した後で、当該洗浄水をベッセル6内へ注入する。加温した洗浄水を供給する方法は特に限定されず、例えば、ボイラーに接続された熱交換器によって洗浄水を加温してからベッセル6内へ供給する方法、電気ヒーターによって洗浄水を加温してからベッセル6内へ供給する方法が挙げられる。
 ベッセル6内を流通し、RO膜2を洗浄した後に排出される洗浄水を、フィルターを通過させながら前記逆浸透膜に循環させることが好ましい。
 RO膜2を洗浄した洗浄水に溶解されたゴミやスケールをフィルターで除去できるので、洗浄水を再利用することが可能であり、洗浄水の廃棄処理に要するコストを低減することができる。
 ベッセル6内を流通し、RO膜2を洗浄した後に排出される洗浄水は、まだ温かい状態にある。排出された洗浄水を回収し、別のフィルターで濾過して、洗浄水に溶出されたスケールを除去することにより、温かい状態の洗浄水を再生し、再び洗浄の目的でベッセル6内のRO膜2に供給することができる。
 したがって、本実施形態においては、上記の様に洗浄水を循環しながら加温することが好ましい。洗浄水を循環しながら加温することにより、加温に要するコストを低減することができる。また、洗浄水の調製に要するコスト及び洗浄水の廃棄処理に要するコストも低減することができる。さらに、所定温度の洗浄水をベッセル6内に安定に供給できるので、安定した洗浄効果が得られる。
 洗浄水を循環しながら加温する方法は特に限定されず、例えば、図2に例示する逆浸透膜洗浄装置10を使用する方法が挙げられる。以下に逆浸透膜洗浄装置10の構成について説明する。
<逆浸透膜洗浄装置10>
 図2に示す様に、本実施形態の逆浸透膜洗浄装置10は、RO膜モジュール1と、洗浄タンク11と、循環ポンプ12と、熱交換器(加熱部)13と、調節弁14と、温度センサ15と、フィルター16と、制御装置17と、を備える。
 洗浄タンク11は、RO膜モジュール1の排出口と循環ポンプ12の間に設けられ、逆浸透膜洗浄装置10の流路を循環する洗浄水を一時的に貯留する。
 循環ポンプ12は、洗浄タンク11と熱交換器13及び調節弁14との間に設けられ、洗浄タンク11に貯留された洗浄水を、熱交換器13又は調節弁14を介して、フィルター16及びRO膜モジュール1に供給し、RO膜モジュール1から排出された洗浄水を洗浄タンク11まで送液する。
 なお、循環ポンプ12は図示略のポンプ制御装置によってポンプ駆動の運転及び停止が制御されていてもよい。ポンプ制御装置の制御下において、所定時間(例えば12時間以下)の運転後に循環ポンプ12を停止し、洗浄処理を終えることにより、洗浄が不用意に長引いて逆浸透膜が劣化することを防止できる。
 熱交換器13は、加熱部の一例であり、循環ポンプ12とフィルター16の間に設けられ、洗浄水と別途準備された高温水との間で物理的な熱伝導を介した熱交換を行い、洗浄水を加温(加熱)する。
 なお、加熱部は熱交換器に限定されず、洗浄水を加熱可能な種々の機器が適用される。
 調節弁14は、循環ポンプ12とフィルター16の間に設けられている。調節弁14は、熱交換器13を通過して加温された後でフィルター16及びRO膜モジュール1へ供給される洗浄水の流量Aと、熱交換器13を迂回してフィルター16及びRO膜モジュール1へ供給される洗浄水の流量Bと、の分配割合を調節する。具体的には、調節弁14の弁開度が小さくなるように制御された場合は、上記流量Aが増加し、相対的に上記流量Bが減少する。一方、調節弁14の弁開度が大きくなるように制御された場合は、上記流量Aが減少し、相対的に上記流量Bが増加する。
 温度センサ15は、熱交換器13を通過した洗浄水と熱交換器13を迂回した洗浄水とが混合されて得られた、フィルター16及びRO膜モジュール1に供給される前、もしくは、RO膜モジュール1に供給される前の洗浄水の温度を検出する。温度センサ15は、検出した温度を制御部18に入力する。
 フィルター16は、熱交換器13及び調節弁14とRO膜モジュール1との間に設けられ、RO膜モジュール1に供給される直前の洗浄水に含まれるゴミやスケールを濾過により除去する。
 制御装置17は、制御部18を備える。制御装置17の処理により、制御部18は以下の制御を行う。
 制御部18は、RO膜モジュール1に供給される洗浄水の温度が所望の温度となるように逆浸透膜洗浄装置10の各機能部を制御する。例えば、制御部18は、調節弁14の弁開度を制御し、前記流量Aと流量Bの分配割合を調節することにより、循環する洗浄水の温度調整を行う。具体的には、制御部18は、温度センサ15が検出する洗浄水の温度が所望の温度よりも低い場合に、熱交換器13を通過して加温される洗浄水の流量Aの割合を増やす制御を行う。また、制御部18は、温度センサ15が検出する洗浄水の温度が所望の温度よりも高い場合に、熱交換器13を迂回する洗浄水の流量Bの割合を増やす制御を行う。
 前記流量Aの割合が増えると、熱交換器13から循環する洗浄水に供給される熱量が増加するので、循環する洗浄水の温度は徐々に上がる。
 前記流量Bの割合が増えると、循環する間に洗浄水から自然に熱が放熱されるので、循環する洗浄水の温度は自然に徐々に下がる。
 循環する洗浄水の温度変化は、温度センサ15によって検知され、制御部18へ入力される。
 上記のように制御しながら、循環ポンプ12により洗浄タンク11内の洗浄水を、熱交換器13を有する第一流路又は調節弁14を有する第二流路を介して、フィルター16及びRO膜モジュール1に供給し、RO膜モジュール1に備えられたRO膜2を洗浄した洗浄水を洗浄タンク11へ回収する。この結果、再利用される洗浄水を加温しながら循環させることができる。
 逆浸透膜洗浄装置10には、温水発生装置19と、温水ポンプ20と、三方弁21と、が任意の構成として備えられていてもよい。
 温水発生装置19は、熱交換器13に供給する高温水を発生する熱源機器であり、例えばボイラーや電気ヒーターが挙げられる。図2の矢印Gはボイラーから排気されるガスを表す。
 温水ポンプ20は、熱交換器13と温水発生装置19の間に設けられ、温水発生装置19で発生した高温水を三方弁21へ送液する。
 3つの弁を有する三方弁21は、温水発生装置19と熱交換器13及び温水ポンプ20との間に設けられている。3つの弁のうちの1つは、熱交換器13に接続されている。3つの弁のうちの別の1つは、温水発生装置19に接続されている。3つの弁のうちの別の1つは、温水ポンプ20に接続されている。
 逆浸透膜洗浄装置10において、制御部18は、RO膜モジュール1に供給される洗浄水の温度が所望の温度となるように、温水発生装置19、温水ポンプ20及び三方弁21のうち少なくとも何れか1つの機能部を制御してもよい。例えば、制御部18は、三方弁21の各弁の開閉を制御し、熱交換器13が多くの熱を必要とする場合には、熱交換器13に送液される高温水の流量を増やす。一方、熱交換器13が多くの熱を必要としない場合には、熱交換器13を迂回して温水ポンプ20に直接送液される高温水の流量を増やす。具体的には、制御部18は、温度センサ15が検出する洗浄水の温度が所望の温度よりも低い場合、熱交換器13に送液される高温水の流量を増やす制御を行う。また、制御部18は、温度センサ15が検出する洗浄水の温度が所望の温度よりも高い場合、熱交換器13を迂回して温水ポンプ20に送液される高温水の流量を増やす制御を行う。このように制御することにより、熱交換器13に供給される熱量を調節し、熱交換器13から洗浄水に供給される熱量を調節し、循環する洗浄水の温度調整を行う。
 なお、制御部18は、必要に応じて、温水発生装置19及び温水ポンプ20の運転と停止を制御してもよい。
 以上、本発明の逆浸透膜洗浄方法の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能であり、また上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能である。
 次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。
 海水淡水化処理プラントで使用され、35,000時間以上の運転履歴を経た、三酢酸セルロース製のRO膜を図1に示す試験用のRO膜モジュール1に設置して、以下の様に洗浄した。
 各実施例において使用した洗浄前後のRO膜2について、それぞれ水透過係数(A‐value)および塩透過係数(B‐value)を常法により測定した。
 水透過係数の増加率が高い程、洗浄効果が高いことを示す。一方、塩透過係数の増加率が高い程、RO膜2の劣化が進んだことを示す。
 水透過係数(A‐value)はA値とも呼ばれ、RO膜やNF膜における液体の透過性能を表す係数であり、一般に、溶液(体積)透過流速Jv=A値×(膜間差圧△P-浸透圧差△π)の関係式で表される。
 塩透過係数(B‐value)はB値とも呼ばれ、RO膜やNF膜における溶質の透過性を表す係数であり、一般に、溶質透過流束Js=B値×(膜面の溶質濃度Cm-透過水の溶質濃度Cp)の関係式で表される。
[実施例1]
 45℃、48℃、50℃、54℃の温水を洗浄水として使用し、RO膜2の一次面を洗浄した。この際、洗浄水を供給配管3からベッセル6内に連続的に供給し、RO膜2を洗浄した後の排液を連続的にブライン出口配管5から排出することにより、所定温度に保たれた洗浄水で循環洗浄を4時間行った。洗浄水のpHは約6であった。弱酸性のpH6である理由は、循環に伴って空気と接触し、空気中の二酸化炭素が洗浄水に溶け込んだためと考えられる。
 洗浄水による循環洗浄の結果、図3に示す様に、洗浄水の温度が高くなる程、水透過係数(A‐value)の増加率が向上し、洗浄効果が向上することが分かった。その一方で、洗浄水の温度が高くなる程、塩透過係数(B‐value)の増加率も増加し、RO膜の劣化が進むことが分かった。つまり、RO膜の劣化を抑えることと洗浄効果を高めることはトレードオフの関係にあることが分かった。
 上記結果から、トレードオフの関係を考慮して、洗浄水の温度は45℃超60℃以下が好ましく、48℃以上55℃以下がより好ましく、50℃以上54℃以下がさらに好ましい、といえる。
[実施例2]
 54℃に設定した洗浄水で循環洗浄した時間を4時間(実施例1)から8時間(実施例2)に増やした以外は、実施例1と同様にRO膜2を洗浄した。
 その結果、図4に示す様に、洗浄時間が長い程、水透過係数(A‐value)の増加率が向上し、洗浄効果が向上することが分かった。その一方で、洗浄時間が長くなる程、塩透過係数(B‐value)の増加率も増加し、RO膜の劣化が進むことが分かった。つまり、RO膜の劣化を抑えることと洗浄効果を高めることはトレードオフの関係にあることが分かった。
 上記結果から、トレードオフの関係を考慮して、洗浄水による洗浄時間は2~12時間が好ましく、4~10時間がより好ましく、4~8時間がさらに好ましい、といえる。
[実施例3]
 pH6、pH5、pH4に調整した54℃の洗浄水を使用して、8時間の循環洗浄を実施例2と同様に行った。
 pH6の洗浄水は実施例1と同じ54℃の温水である。pH5の洗浄水は、温水に塩酸を滴下して調製された。pH4の洗浄水は、0.2g/L(0.02質量%)のクエン酸を含む温水にアンモニアを滴下して調製された。
 その結果、図5に示す様に、pH5~6は同等で、pH4は比較的低い水透過係数(A‐value)の増加率を示した。一方、pHが低くなる程、塩透過係数(B‐value)の増加率は低下し、RO膜の劣化を抑制できることが分かった。本実施例においても、RO膜の劣化を抑えることと洗浄効果を高めることはトレードオフの関係にあることが分かった。
 上記結果から、トレードオフの関係を考慮して、洗浄水が45℃超60℃以下である場合、洗浄水のpHは、pH3.5~5.5が好ましく、pH4.0~5.5がより好ましく、pH4.0~5.0がさらに好ましい、といえる。
[実施例4]
 クエン酸を0.02、0.2、0.5、1.0、2.0(単位:%(質量基準))の濃度で含み、アンモニアを滴下してpH4に調整された54℃の洗浄水を使用して、8時間の循環洗浄を実施例2と同様に行った。ここで、各洗浄水に含まれるクエン酸の質量は、洗浄水1L当たりそれぞれ、0.2g、2.0g、5.0g、10g、20gである。
 その結果、図6に示す様に、0.02~0.5%は同等で、1.0%はより低く、2.0%はさらに低い水透過係数(A‐value)の増加率を示した。一方、0.5%以上のクエン酸濃度において、塩透過係数(B‐value)の増加率が低下し、RO膜の劣化を抑制できることが分かった。本実施例においても、RO膜の劣化を抑えることと洗浄効果を高めることは概ねトレードオフの関係にあることが分かったが、特にクエン酸濃度1.0%の場合において、洗浄効果を維持しつつ、膜劣化をより一層抑制できることが分かった。
 上記結果から、洗浄水が45℃超60℃以下で且つpH3.5~5.5である場合、クエン酸濃度は質量基準で、0.3~2.2%が好ましく、0.5~2.0%がより好ましく、0.7~1.5%がさらに好ましい、といえる。すなわち、1L当たりの洗浄水に含まれるクエン酸及びクエン酸塩の質量は、クエン酸の質量に換算して、3.0~22gが好ましく、5.0~20gがより好ましく、7.0~15gがさらに好ましい、といえる。
[実施例5]
 クエン酸を2.0(単位:%(質量基準))の濃度で含み、アンモニア滴下によりpH4に調整された50℃、54℃、60℃の各洗浄水を使用して、3時間の循環洗浄を実施例2と同様に行った。
 その結果、図7に示す様に、50℃、54℃、60℃の順に、水透過係数(A‐value)の増加率が高くなり、且つ、塩透過係数(B‐value)を増大させる作用も軽微であるという結果が得られた。
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、クレームの範囲によってのみ限定される。
1…RO膜モジュール、2…RO膜、3…供給配管、4…透過水出口配管、5…ブライン出口配管、6…ベッセル、10…逆浸透膜洗浄装置、11…洗浄水タンク、12…循環ポンプ、13…熱交換器(加熱部)、14…調節弁、15…温度センサ、16…フィルター、17…制御装置、18…制御部、19…温水発生装置、20…温水ポンプ、21…三方弁

Claims (15)

  1.  45℃超60℃以下の洗浄水で逆浸透膜を洗浄する逆浸透膜洗浄方法。
  2.  前記洗浄水を、フィルターを通過させながら前記逆浸透膜に循環させる請求項1に記載の逆浸透膜洗浄方法。
  3.  前記洗浄水に有機酸が含まれている請求項1又は2に記載の逆浸透膜洗浄方法。
  4.  前記有機酸としてのクエン酸及びクエン酸塩が、クエン酸濃度として2.0~22g/Lの範囲で含まれることを特徴とする請求項3に記載の逆浸透膜洗浄方法。
  5.  前記洗浄水のpHが3.5~5.5に調整されている請求項1~4の何れか一項に記載の逆浸透膜洗浄方法。
  6.  前記洗浄水と前記逆浸透膜の接触する洗浄時間が、12時間以下であることを特徴とする請求項1~5の何れか一項に記載の逆浸透膜洗浄方法。
  7.  前記逆浸透膜がセルロース系高分子又はポリアミド系高分子によって構成されていることを特徴とする請求項1~6の何れか一項に記載の逆浸透膜洗浄方法。
  8.  逆浸透膜を備えた膜モジュールと、
     洗浄水を貯留する洗浄水タンクと、
     前記洗浄水タンクから前記逆浸透膜に供給される洗浄水を加熱する加熱部と、
     該加熱部により加熱される洗浄水が45℃超60℃以下となるように前記加熱部を制御する温度制御装置と、
    を備える逆浸透膜洗浄装置。
  9.  前記温度制御装置は、該加熱部により加熱される洗浄水が45℃超55℃以下となるように前記加熱部を制御する請求項8に記載の逆浸透膜洗浄装置。
  10.  前記洗浄水を前記膜モジュールと前記洗浄水タンクとの間で循環させる循環ポンプと、
     循環する前記洗浄水が通過するフィルターと、を備える請求項8又は9に記載の逆浸透膜洗浄装置。
  11.  前記洗浄水に有機酸が含まれている請求項8~10の何れか一項に記載の逆浸透膜洗浄装置。
  12.  前記有機酸としてのクエン酸及びクエン酸塩が、クエン酸濃度として2.0~22g/Lの範囲で含まれることを特徴とする請求項11に記載の逆浸透膜洗浄装置。
  13.  前記洗浄水のpHが3.5~5.5である請求項8~12の何れか一項に記載の逆浸透膜洗浄装置。
  14.  前記循環ポンプの駆動後12時間以下で該循環ポンプの駆動を停止制御するポンプ制御装置を備える請求項8~13の何れか一項に記載の逆浸透膜洗浄装置。
  15.  前記逆浸透膜がセルロース系高分子又はポリアミド系高分子によって構成されていることを特徴とする請求項8~14の何れか一項に記載の逆浸透膜洗浄装置。
PCT/JP2016/062280 2015-04-21 2016-04-18 逆浸透膜洗浄方法及び逆浸透膜洗浄装置 WO2016171105A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/567,243 US20180104652A1 (en) 2015-04-21 2016-04-18 Reverse osmosis membrane cleaning method and reverse osmosis membrane cleaning apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015086714A JP6458302B2 (ja) 2015-04-21 2015-04-21 逆浸透膜洗浄方法及び逆浸透膜洗浄装置
JP2015-086714 2015-04-21

Publications (1)

Publication Number Publication Date
WO2016171105A1 true WO2016171105A1 (ja) 2016-10-27

Family

ID=57144031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062280 WO2016171105A1 (ja) 2015-04-21 2016-04-18 逆浸透膜洗浄方法及び逆浸透膜洗浄装置

Country Status (3)

Country Link
US (1) US20180104652A1 (ja)
JP (1) JP6458302B2 (ja)
WO (1) WO2016171105A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110975632A (zh) * 2019-12-20 2020-04-10 宜宾海丝特纤维有限责任公司 一种碱液脱盐装置清洗工艺
CN111888942A (zh) * 2020-06-10 2020-11-06 北京首钢朗泽新能源科技有限公司 一种膜清洗系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110237715B (zh) * 2019-06-27 2021-08-17 埃姆媞(无锡)分离技术有限公司 分离膜过滤pcb废水后的膜通量恢复方法
CN112337313B (zh) * 2020-11-16 2021-11-09 中芯膜(北京)科技有限公司 一种基于受复合污染的反渗透膜元件在线清洗方法
CN113385041B (zh) * 2021-06-18 2023-01-24 江西蓝星星火有机硅有限公司 一种反渗透膜化学清洗方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163375A (ja) * 1974-11-29 1976-06-01 Daicel Ltd
JPH0780260A (ja) * 1993-09-14 1995-03-28 Toray Ind Inc 逆浸透膜および逆浸透膜分離素子の処理方法
JP2002095936A (ja) * 2000-09-26 2002-04-02 Nippon Rensui Co Ltd 逆浸透膜の洗浄方法
JP2008289959A (ja) * 2007-05-22 2008-12-04 Toshiba Corp 膜ろ過システム
WO2012099074A1 (ja) * 2011-01-19 2012-07-26 東レ株式会社 塩水淡水化装置
WO2012111794A1 (ja) * 2011-02-18 2012-08-23 東レ株式会社 糖液の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192459A (en) * 1985-06-03 1993-03-09 Erika, Inc. Sterilant compositions
JPH0724827B2 (ja) * 1986-11-13 1995-03-22 荏原工業洗浄株式会社 化学洗浄廃液の処理方法
JPH03278820A (ja) * 1990-03-28 1991-12-10 Miura Co Ltd 逆浸透膜用洗浄剤
US6245234B1 (en) * 1999-06-03 2001-06-12 Saehan Industries Incorporation Composite polyamide reverse osmosis membrane and method of producing the same
JP4071173B2 (ja) * 2003-07-15 2008-04-02 Jfeエンジニアリング株式会社 ろ過膜モジュールの酸洗浄廃液の処理方法および処理設備
US7220358B2 (en) * 2004-02-23 2007-05-22 Ecolab Inc. Methods for treating membranes and separation facilities and membrane treatment composition
MY172925A (en) * 2012-08-10 2019-12-14 Toray Industries Method for producing sugar solution
MY180705A (en) * 2014-02-05 2020-12-07 Toray Industries Method for producing sugar solution

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163375A (ja) * 1974-11-29 1976-06-01 Daicel Ltd
JPH0780260A (ja) * 1993-09-14 1995-03-28 Toray Ind Inc 逆浸透膜および逆浸透膜分離素子の処理方法
JP2002095936A (ja) * 2000-09-26 2002-04-02 Nippon Rensui Co Ltd 逆浸透膜の洗浄方法
JP2008289959A (ja) * 2007-05-22 2008-12-04 Toshiba Corp 膜ろ過システム
WO2012099074A1 (ja) * 2011-01-19 2012-07-26 東レ株式会社 塩水淡水化装置
WO2012111794A1 (ja) * 2011-02-18 2012-08-23 東レ株式会社 糖液の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110975632A (zh) * 2019-12-20 2020-04-10 宜宾海丝特纤维有限责任公司 一种碱液脱盐装置清洗工艺
CN111888942A (zh) * 2020-06-10 2020-11-06 北京首钢朗泽新能源科技有限公司 一种膜清洗系统

Also Published As

Publication number Publication date
JP2016203081A (ja) 2016-12-08
JP6458302B2 (ja) 2019-01-30
US20180104652A1 (en) 2018-04-19

Similar Documents

Publication Publication Date Title
WO2016171105A1 (ja) 逆浸透膜洗浄方法及び逆浸透膜洗浄装置
JP6003646B2 (ja) 膜モジュールの洗浄方法
AU2012355018B2 (en) Reverse osmosis treatment device and method for cleaning reverse osmosis treatment device
JP2008100180A (ja) 水処理装置
JP6441808B2 (ja) 淡水化装置及び淡水化方法
WO2012098969A1 (ja) 膜モジュールの洗浄方法、造水方法および造水装置
JP2017113729A (ja) 膜洗浄剤、膜洗浄液及び膜の洗浄方法
JP2007029939A (ja) 透析用水製造装置およびその殺菌方法
JP4916828B2 (ja) 放射性物質含有排水の処理方法および装置
JP6087667B2 (ja) 淡水化方法及び淡水化装置
JP6648695B2 (ja) 半透膜分離装置の運転方法
JP5024158B2 (ja) 膜ろ過方法
JP6658510B2 (ja) 半透膜の阻止性能向上方法、半透膜、半透膜造水装置
JP6436483B2 (ja) 染色排水の処理方法
KR101649918B1 (ko) 막 세정 방법
RU2323036C2 (ru) Способ концентрирования водных растворов биологически активных веществ и установка для его реализации
Zebić Avdičević et al. Performance evaluation of different membrane types in the textile mercerization wastewater treatment
CA2796881C (en) Method for sanitizing an electrodeionization device
WO2016135901A1 (ja) 水処理膜の洗浄方法
JP5237164B2 (ja) ろ過膜の洗浄方法
WO2011108589A1 (ja) 多孔質膜モジュールの洗浄方法および造水装置
JP2007014829A (ja) オンライン洗浄方法
JP2020099870A (ja) 水処理システム及びその運転方法
JP5165932B2 (ja) 膜処理装置の運転方法
KR20140045812A (ko) 여과막의 세정방법 및 여과막의 바이오파울링 제거제

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783126

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15567243

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16783126

Country of ref document: EP

Kind code of ref document: A1