JP2011083656A - 膜モジュールの洗浄方法および膜ろ過装置 - Google Patents
膜モジュールの洗浄方法および膜ろ過装置 Download PDFInfo
- Publication number
- JP2011083656A JP2011083656A JP2009235961A JP2009235961A JP2011083656A JP 2011083656 A JP2011083656 A JP 2011083656A JP 2009235961 A JP2009235961 A JP 2009235961A JP 2009235961 A JP2009235961 A JP 2009235961A JP 2011083656 A JP2011083656 A JP 2011083656A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- membrane module
- cleaning
- filtration
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
【課題】原水の膜ろ過処理に使用される膜モジュールの洗浄を行う際、低コストかつ効果的に膜モジュールを洗浄する方法、および膜ろ過装置を提供する。
【解決手段】原水を膜モジュールで膜ろ過するろ過工程後に、少なくとも膜ろ過水を膜モジュールの2次側から1次側に流す逆圧洗浄を実施する膜モジュールの洗浄方法において、ろ過工程の途中から原水に酸化剤を添加して膜モジュールの1次側に供給し、膜モジュールの2次側まで酸化剤で満たされた後、ろ過工程を止め、少なくとも逆圧洗浄を実施する。
【選択図】図1
【解決手段】原水を膜モジュールで膜ろ過するろ過工程後に、少なくとも膜ろ過水を膜モジュールの2次側から1次側に流す逆圧洗浄を実施する膜モジュールの洗浄方法において、ろ過工程の途中から原水に酸化剤を添加して膜モジュールの1次側に供給し、膜モジュールの2次側まで酸化剤で満たされた後、ろ過工程を止め、少なくとも逆圧洗浄を実施する。
【選択図】図1
Description
本発明は、河川水、湖沼水、地下水、海水、下水、下水二次処理水、工場廃水等を原水として膜ろ過処理するのに使用される膜モジュールの洗浄方法および膜ろ過装置に関するものである。
近年、上下水道や廃水処理等の水処理用途において原水中の不純物を分離除去して清澄な水に変換する膜ろ過法の普及が進んでいる。膜の除去対象物質は、膜の種類によって異なるが、精密ろ過膜や限外ろ過膜の場合は、一般的に懸濁物質、細菌、原虫、コロイド物質等が挙げられる。
膜ろ過運転を行う場合、膜ろ過水量に伴って、膜表面や膜細孔内にフミン質や微生物由来のタンパク質等の付着量が増大していき、ろ過水量の低下あるいは膜差圧の上昇が問題となってくる。
そこで膜のろ過方法とは逆方向に膜ろ過水あるいは清澄水を圧力で押し込み、膜表面や膜細孔内に付着していたファウリング原因物質を排除する逆圧洗浄が実用化されている。洗浄効果を高めるため、例えば逆圧洗浄水に次亜塩素酸ナトリウムを添加したり、逆圧洗浄水にオゾン含有水を用いたりする方法が提案されている(特許文献1、2)。しかし、膜表面に付着した有機物を酸化分解させるには、膜モジュールの1次側を所定の酸化剤濃度に維持するために、膜モジュールろ過配管内および膜モジュール内の水を酸化剤含有水で置換する必要がある。結果として逆圧洗浄時間が長くなるので、多量の酸化剤含有水を逆圧洗浄することとなり、高い水回収率を達成できない。逆圧洗浄時間が短い場合は、膜モジュール内の酸化剤濃度が不十分であり、ファウリングの抑制が困難である。
一方、原水に次亜塩素酸ナトリウム、二酸化塩素、過酸化水素、オゾン等の酸化剤を添加して膜ろ過する方法が知られている。酸化剤は、膜表面や膜細孔内に付着したフミン質や微生物由来のタンパク質等の有機物を分解・除去する効果がある。
しかし、この運転方法は、ろ過運転中常時酸化物を添加する方法であるため、以下の問題点が生じることが知られている。原水中には通常微量の鉄イオンやマンガンイオンが含まれており、これらの金属イオンが前記酸化剤によって酸化することによって、金属酸化物として析出し、これらが膜表面に固着して、膜を閉塞させる。特にマンガンの酸化物である二酸化マンガンの結晶は、一度膜表面に付着すると、その自触媒作用によってマンガンの酸化を促進させ結晶の粗大化を招き、膜の閉塞を早める(特許文献3)。
また、この金属酸化物は、膜の原水側に気泡を導入し、膜を揺動させ、膜同士を触れ合わせることにより膜表面の付着物質を掻き落とす空気洗浄や、膜のろ過方法とは逆方向に膜ろ過水あるいは清澄水を圧力で押し込み、膜表面や膜細孔内に付着していた汚染物質を排除する逆圧洗浄等の物理洗浄では、膜ろ過性能の回復効果は薄い。
本発明は、原水の膜ろ過処理に使用される膜モジュールの洗浄を行う際、低コストかつ効果的に膜モジュールを洗浄する方法、および膜ろ過装置を提供することにある。
上記課題を解決するため、本発明の膜モジュールの洗浄方法、および膜ろ過装置は、次の特徴を有するものである。
(1)原水を膜モジュールで膜ろ過するろ過工程後に、少なくとも膜ろ過水を膜モジュールの2次側から1次側に流す逆圧洗浄を実施する膜モジュールの洗浄方法において、ろ過工程の途中から原水に酸化剤を添加して膜モジュールの1次側に供給し、膜モジュールの2次側まで酸化剤で満たされた後、ろ過工程を止め、少なくとも逆圧洗浄を実施する膜モジュールの洗浄方法。
(2)ろ過工程を止めると同時に酸化剤の添加も止める、(1)に記載の膜モジュールの洗浄方法。
(3)逆圧洗浄と同時に膜モジュールの下方から気体を導入する空気洗浄を実施する、(1)または(2)に記載の膜モジュールの洗浄方法。
(4)ろ過工程を止めた後、所定の保持時間を設け、その後少なくとも逆圧洗浄を実施する、(1)〜(3)のいずれかに記載の膜モジュールの洗浄方法。
(5)前記所定の保持時間の少なくとも一部に空気洗浄を実施する、(4)に記載の膜モジュールの洗浄方法。
(1)原水を膜モジュールで膜ろ過するろ過工程後に、少なくとも膜ろ過水を膜モジュールの2次側から1次側に流す逆圧洗浄を実施する膜モジュールの洗浄方法において、ろ過工程の途中から原水に酸化剤を添加して膜モジュールの1次側に供給し、膜モジュールの2次側まで酸化剤で満たされた後、ろ過工程を止め、少なくとも逆圧洗浄を実施する膜モジュールの洗浄方法。
(2)ろ過工程を止めると同時に酸化剤の添加も止める、(1)に記載の膜モジュールの洗浄方法。
(3)逆圧洗浄と同時に膜モジュールの下方から気体を導入する空気洗浄を実施する、(1)または(2)に記載の膜モジュールの洗浄方法。
(4)ろ過工程を止めた後、所定の保持時間を設け、その後少なくとも逆圧洗浄を実施する、(1)〜(3)のいずれかに記載の膜モジュールの洗浄方法。
(5)前記所定の保持時間の少なくとも一部に空気洗浄を実施する、(4)に記載の膜モジュールの洗浄方法。
(6)膜モジュールの2次側配管内の水を圧縮気体で押し出して逆圧洗浄する、(1)〜(5)のいずれかに記載の膜モジュールの洗浄方法。
(7)膜モジュールのろ過水が通過する2次側配管で酸化還元電位上昇を検知後、物理洗浄工程を開始する、(1)〜(6)のいずれかに記載の膜モジュールの洗浄方法。
(8)精密ろ過膜および/または限外ろ過膜を備えた膜モジュールと、該膜モジュールへの1次側原水供給ラインと、該原水供給ラインに酸化剤を供給する酸化剤供給手段と、前記膜モジュールの2次側膜ろ過水ラインと、膜ろ過水を前記膜モジュールの2次側から1次側に供給する逆圧洗浄手段と、前記膜モジュールの下方に気体を供給する空気供給手段とを備えている膜ろ過装置。
(9)前記逆圧洗浄手段と、前記空気供給手段とが、同一の気体圧縮機により実施される、(8)に記載の膜ろ過装置。
(10)前記膜モジュールの2次側膜ろ過水ラインに膜ろ過水の酸化還元電位の検知手段を備えている、(8)または(9)に記載の膜濾過装置。
(7)膜モジュールのろ過水が通過する2次側配管で酸化還元電位上昇を検知後、物理洗浄工程を開始する、(1)〜(6)のいずれかに記載の膜モジュールの洗浄方法。
(8)精密ろ過膜および/または限外ろ過膜を備えた膜モジュールと、該膜モジュールへの1次側原水供給ラインと、該原水供給ラインに酸化剤を供給する酸化剤供給手段と、前記膜モジュールの2次側膜ろ過水ラインと、膜ろ過水を前記膜モジュールの2次側から1次側に供給する逆圧洗浄手段と、前記膜モジュールの下方に気体を供給する空気供給手段とを備えている膜ろ過装置。
(9)前記逆圧洗浄手段と、前記空気供給手段とが、同一の気体圧縮機により実施される、(8)に記載の膜ろ過装置。
(10)前記膜モジュールの2次側膜ろ過水ラインに膜ろ過水の酸化還元電位の検知手段を備えている、(8)または(9)に記載の膜濾過装置。
本発明の膜モジュールの洗浄方法によれば、逆洗水量が少なくても膜目詰まりを防止できるので水回収率を高めることができる。また、ろ過配管内の水のみを逆圧洗浄に用い、逆圧洗浄の動力源として空気洗浄と共有の圧縮空気を用いるので、逆流洗浄用のタンクやポンプが不要であり、設備費や設置面積の削減が可能である。
以下、図面に示す実施態様に基づいて本発明をさらに詳細に説明する。なお、本発明は以下の実施態様に限定されるものではない。
本発明で対象となる造水装置は、例えば、図1に示すように、原水を貯留する原水貯留槽1と、原水供給時に開となる原水供給弁2と、酸化剤を貯留する酸化剤貯留槽3と、原水に酸化剤を供給する酸化剤供給ポンプ4と、原水を供給する原水供給ポンプ5と、原水をろ過する膜モジュール6と、逆圧洗浄や空気洗浄する場合などに開となるエア抜き弁8と、膜モジュール6の1次側の水を排出する場合に開となる排水弁9と、圧縮空気を膜モジュール6の下部に供給し空気洗浄する場合に開となる空洗弁10と、圧縮空気を供給源であるコンプレッサー11と、ろ過水を逆圧洗浄する場合に開となる逆洗弁12と、膜ろ過水の酸化還元電位を検知する酸化還元電位センサー13と、ろ過工程時に開となるろ過水弁14とが設けられている。
上述の膜ろ過装置において、通常のろ過工程では、原水供給弁1が開の状態で原水貯留槽1に貯留されている原水が原水供給ポンプ5によって膜モジュール6の1次側に供給され、ろ過水弁14を開にすることで膜モジュール6の加圧ろ過が行われる。ろ過時間は原水水質や膜透過流束に応じて適宜設定するのが好ましいが、所定の膜ろ過差圧に到達するまでろ過時間を継続させてもよい。
前記ろ過工程の途中から酸化剤供給ポンプ4を稼動させ、酸化剤貯留槽3内の酸化剤を原水に添加することで、酸化剤の入った原水が膜モジュール6の1次側に供給され、ろ過されると膜モジュールの2次側にも酸化剤が満たされるようになる。ここで、ろ過配管の途中に設置された酸化還元電位センサー13が通常ろ過時の酸化還元電位より高くなり、ろ過配管内の酸化剤を検知すると、原水供給ポンプ5が停止し、原水弁2とろ過水弁14が閉となり、酸化剤の添加とろ過工程が停止することで膜モジュール1次側と2次側が酸化剤で満たされた静止状態で保持されることになる。
ここで、酸化剤を添加する期間については、ろ過水の用途や膜の種類、膜のファウリング状態によって適宜設定することができるが、膜モジュール6内に所定濃度の酸化剤を満たすという観点から酸化還元電位センサー13の酸化還元電位が通常ろ過時より少なくとも100mV以上高くなるまでは原水供給ポンプ5を停止しないほうが好ましい。また、酸化剤の添加は必ずしも止める必要はないが、酸化剤消費量低減の観点から原水供給ポンプ5と同時に酸化剤供給ポンプ4を停止することが好ましい。なお、酸化還元電位センサー13は例えば横河電機(株)のOR8ERGのような配管ライン途中での取り付けが可能で水圧に耐えられるものを好ましく使用することができる。
なお、本発明においては、ろ過配管内の酸化剤の流入を酸化還元電位によって検知することが好ましいが、膜ろ過流量が一定の定流量運転を実施する場合は、完全押し出し流れモデルによって2次側に酸化剤が到達するまでの時間を予測することもできる。完全押し出し流れモデルによる予測は、一般的に次のように行う。すなわち、設計膜ろ過流量A(L/min)と膜モジュールの体積B(L)と酸化剤注入ポイントから膜モジュール入口までの1次側配管体積C(L)とを測定し、酸化剤注入開始から膜モジュールの2次側に酸化剤が到達するまでの時間t(min)を、t=(B+C)/Aの式により概算する。
本発明における酸化剤としては、次亜塩素酸ナトリウム、二酸化塩素、過酸化水素、オゾン等を少なくとも1つ以上含有した方が、膜面に付着したファウリング物質を分解し、洗浄効果が高くなるので好ましいが、膜が劣化しない程度の酸化剤濃度および保持時間を適宜設定する。
原水水質が悪化し、膜面に多量のファウリング物質が付着した場合には、エア抜き弁8と空洗弁10を開にしてコンプレッサー11の圧縮空気を膜モジュール下部に供給する空気洗浄を保持時間帯の少なくとも一部に適宜実施してもよい。
ろ過工程の停止後、エア抜き弁8および空洗弁10および逆洗弁12が開となることで膜モジュール6の逆圧洗浄および必要に応じて空気洗浄が行われて、膜面や膜細孔内に蓄積していたファウリング物質が剥離される。膜モジュール6の二次側から逆洗弁12までのろ過配管内の水がコンプレッサー11の圧縮空気によって膜モジュール6の1次側に押し出されて、逆圧洗浄に使用される。膜モジュール6の1次側に押し出された水や膜モジュール6の下部に供給された空気はエア抜き弁8を通って系外に排出される。この場合、圧縮空気の圧力は高いほうが膜の洗浄効果が高くなるので好ましいが、膜の擦過や亀裂等の損傷を起こさない範囲内に適宜設定する。
これまで従来法では膜モジュールの1次側を所定の酸化剤濃度に維持するために、膜モジュールろ過配管内および膜モジュール内の水を酸化剤含有水で置換する必要があったため、図3、図4のような逆洗水用貯留槽15や逆洗ポンプ16を用いて多量の酸化剤含有水を逆圧洗浄することとなり、高い水回収率を達成できなかったが、本発明の方法によれば、ろ過工程の途中から、酸化剤を添加することにより、少量の逆圧洗浄で膜目詰まりを防止できるので、高い水回収率の設計が可能である。なお、酸化剤添加後に所定の保持時間を設けることで、膜面洗浄の効果を高めることができるため好ましい。また、ろ過配管内の水のみを逆圧洗浄に用い、逆圧洗浄の動力源として空気洗浄と共有の圧縮空気を用いるので、逆圧洗浄用のタンクやポンプが不要であり、設備費や設置面積の削減が可能である。さらに、ろ過配管の途中に酸化還元電位センサー13を設置することにより、ろ過水への過剰な酸化剤添加を防止でき、酸化剤を逆洗で使用されるろ過配管内の水に確実に添加できる。
上述の逆圧洗浄および空気洗浄が終了した後、空洗弁10および逆洗弁12が閉となり、排水弁9が開になることで、膜面や膜細孔内から剥離して膜モジュール6内で浮遊しているファウリング物質が系外に排出される排水工程が行われる。排水工程終了後、排水弁9が閉、原水弁2が開となり、原水供給ポンプ5が稼動して給水工程が行われ、膜モジュール6の1次側が満水になった後、エア抜き弁8が閉、ろ過水弁14が開となることで、ろ過工程に戻り、上記工程を繰り返す。
本発明における膜モジュール6は、図1のような加圧型膜モジュールや図2のような原水の入った膜浸漬槽7内に浸漬させてポンプやサイフォン等で吸引ろ過する浸漬型膜モジュール等があるが、いずれでも構わない。加圧型膜モジュールの場合、外圧式でも内圧式であっても良いが、前処理の簡便さの点から外圧式である方が好ましい。
また、モジュールを構成する分離膜の孔径としては、多孔質であれば特に限定しないが、所望の処理水の水質や水量によって、MF膜(精密ろ過膜)を用いたり、UF膜(限外ろ過膜)を用いたり、あるいは両者を併用したりする。例えば、濁質成分、大腸菌、クリプトスポリジウム等を除去したい場合はMF膜でもUF膜のどちらを用いても構わないが、ウィルスや高分子有機物等も除去したい場合は、UF膜を用いるのが好ましい。分離膜の形状としては、中空糸膜、平膜、管状膜、モノリス膜等があるが、いずれでも構わない。分離膜の材質としても、特に限定しないが、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、ポリテトラフルオロエチレン、ポリビニルフルオライド、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体およびクロロトリフルオロエチレン−エチレン共重合体、ポリフッ化ビニリデン、ポリスルホン、酢酸セルロース、ポリビニルアルコールおよびポリエーテルスルホンやセラミック等の無機素材からなる群から選ばれる少なくとも1種類を含んでいると好ましく、さらに膜強度や耐薬品性の点からはポリフッ化ビニリデン(PVDF)がより好ましく、親水性が高く耐汚れ性が強いという点からはポリアクリロニトリルがより好ましい。
ろ過方式は、全量ろ過方式、クロスフローろ過方式のどちらでも良いが、エネルギー消費が少ないという点から全量ろ過モジュールである方が好ましい。
ろ過流束制御方法としては、定流束ろ過であっても定圧ろ過であってもよいが、一定の処理水量が得られ、また、全体の制御が容易であるという点から定流束ろ過である方が好ましい。
本発明の洗浄方法は一定時間のろ過終了後に毎回行っても構わないし、別の洗浄方法と組み合わせて時々行っても構わない。また、ろ過工程終了後の保持時間や逆圧洗浄と空気洗浄を同時に実施する時間は膜の酸化剤および擦過に対する耐久性に応じて任意に設定できる。
本発明の洗浄方法により、高い水回収率を維持しながら膜表面や膜細孔内に付着していた有機物を効果的に分解・除去できるので、定流量運転の場合、膜ろ過差圧が従来技術よりも長期間安定する。しかし、有機物は完全には分解・除去できず、また金属酸化物が膜面に徐々に析出するので、膜ろ過差圧が膜モジュール6の耐圧限界近くまで到達した場合、高濃度の薬液洗浄を実施する必要がある。ここで、洗浄に用いる薬液としては、膜が劣化しない程度の濃度および保持時間を適宜設定した上で選択することができるが、次亜塩素酸ナトリウム、二酸化塩素、過酸化水素、オゾン等を少なくとも1つ以上含有した方が、有機物に対して洗浄効果が高くなるので好ましく、また、シュウ酸、クエン酸、塩酸、硫酸、硝酸等を少なくとも1つ以上含有した方が、金属酸化物に対して洗浄効果が高くなるので好ましい。
(実施例1)
図2に示すように、鋼板製角型(寸法W200mm×D200mm×H1600mm)の浸漬槽7と分離離が分画分子量15万Daのポリフッ化ビニリデン製中空糸UF膜で膜面積が25m2の浸漬型膜モジュール6を用い、原水弁2とろ過水弁14を開いて、原水供給ポンプ5と吸引ろ過ポンプ15を稼動させて、平均濁度5度、平均酸化還元電位250mVの原水を膜透過流束1.5m/dで30min吸引ろ過した後、膜透過流束1.5m/dの吸引ろ過を継続した状態で原水塩素濃度が10mg/lになるよう、酸化剤供給ポンプ4を稼動させて原水に次亜塩素酸ナトリウムを供給した。酸化還元電位センサー13の数値が600mVに達した時点で原水弁2とろ過水弁14を閉じ、酸化剤供給ポンプ4と原水供給ポンプ5と吸引ろ過ポンプ15を停止すると同時に空洗弁10を開いて、膜モジュールの下方から50L/minの空気洗浄を1分間行った。次いで、逆洗弁12を開いて、膜透過流束2m/dの逆圧洗浄と50L/minの空気洗浄とを5秒間同時に行った。その後、空洗弁10と逆洗弁12を閉じて、排水弁9を開き、浸漬槽7内の水を槽外に全量排出した。その後、原水弁2を開き、原水供給ポンプ5を稼動して、原水を浸漬槽7内に供給後、ろ過水弁14を開き、吸引ろ過ポンプ15を稼動してろ過工程に戻り、上記工程を繰り返していった。その結果、浸漬型膜モジュール6のろ過差圧は運転開始直後15kPaに対し、2ヶ月後も28kPaと安定運転が行えており、薬液洗浄をすることはなかった。また、水回収率は93.7%であり、1日あたりの造水量は35.0m3/dであった。
(実施例2)
酸化還元電位センサー13の数値が600mVに達した時点で空洗弁10と逆洗弁12を開いて膜透過流束2m/dの逆圧洗浄と50L/minの空気洗浄とを5秒間同時に行った以外は、実施例1と全く同じにした。その結果、浸漬型膜モジュール6のろ過差圧は運転開始直後15kPaで対し、2ヶ月後も37kPaと安定運転が行えており、薬液洗浄をすることはなかった。また、水回収率は93.7%であり、1日あたりの造水量は36.1m3/dであった。
(比較例1)
図4で膜透過流束1.5m/dで30min吸引ろ過した後、原水弁2とろ過水弁14を閉じ、逆洗弁12と空洗弁10を開き、原水供給ポンプ5と吸引ろ過ポンプ15を停止し、酸化剤供給ポンプ4と逆洗ポンプ17を開いて、塩素濃度10mg/lで膜透過流束2m/dの逆圧洗浄と50L/minの空気洗浄とを1分間同時に行った以外は実施例1と全く同じにした。その結果、浸漬型膜モジュール6のろ過差圧は運転開始直後15kPaに対し、2ヶ月後も30kPaと安定運転が行えており、薬液洗浄をすることはなかった。ところが、水回収率は89.8%と低く、1日あたりの造水量は33.5m3/dであった。
(比較例2)
図4で膜透過流束1.5m/dで50min吸引ろ過した以外は比較例1と全く同じにした。その結果、水回収率は93.7%、1日あたりの造水量は35.0m3/dとなり、実施例1と同等であったが、浸漬型膜モジュール6のろ過差圧は運転開始直後15kPaに対し、3週間後には75kPaに達し、薬液洗浄せざるを得なかった。
(比較例3)
図4で塩素濃度10mg/lで膜透過流束2m/dの逆圧洗浄と50L/minの空気洗浄とを5秒間同時に行った以外は比較例1と全く同じにした。その結果、水回収率は93.7%、1日あたりの造水量は36.1m3/dとなり、実施例2と同等であったが、浸漬型膜モジュール6のろ過差圧は運転開始直後15kPaに対し、1週間後には75kPaに達し、薬液洗浄せざるを得なかった。
図2に示すように、鋼板製角型(寸法W200mm×D200mm×H1600mm)の浸漬槽7と分離離が分画分子量15万Daのポリフッ化ビニリデン製中空糸UF膜で膜面積が25m2の浸漬型膜モジュール6を用い、原水弁2とろ過水弁14を開いて、原水供給ポンプ5と吸引ろ過ポンプ15を稼動させて、平均濁度5度、平均酸化還元電位250mVの原水を膜透過流束1.5m/dで30min吸引ろ過した後、膜透過流束1.5m/dの吸引ろ過を継続した状態で原水塩素濃度が10mg/lになるよう、酸化剤供給ポンプ4を稼動させて原水に次亜塩素酸ナトリウムを供給した。酸化還元電位センサー13の数値が600mVに達した時点で原水弁2とろ過水弁14を閉じ、酸化剤供給ポンプ4と原水供給ポンプ5と吸引ろ過ポンプ15を停止すると同時に空洗弁10を開いて、膜モジュールの下方から50L/minの空気洗浄を1分間行った。次いで、逆洗弁12を開いて、膜透過流束2m/dの逆圧洗浄と50L/minの空気洗浄とを5秒間同時に行った。その後、空洗弁10と逆洗弁12を閉じて、排水弁9を開き、浸漬槽7内の水を槽外に全量排出した。その後、原水弁2を開き、原水供給ポンプ5を稼動して、原水を浸漬槽7内に供給後、ろ過水弁14を開き、吸引ろ過ポンプ15を稼動してろ過工程に戻り、上記工程を繰り返していった。その結果、浸漬型膜モジュール6のろ過差圧は運転開始直後15kPaに対し、2ヶ月後も28kPaと安定運転が行えており、薬液洗浄をすることはなかった。また、水回収率は93.7%であり、1日あたりの造水量は35.0m3/dであった。
(実施例2)
酸化還元電位センサー13の数値が600mVに達した時点で空洗弁10と逆洗弁12を開いて膜透過流束2m/dの逆圧洗浄と50L/minの空気洗浄とを5秒間同時に行った以外は、実施例1と全く同じにした。その結果、浸漬型膜モジュール6のろ過差圧は運転開始直後15kPaで対し、2ヶ月後も37kPaと安定運転が行えており、薬液洗浄をすることはなかった。また、水回収率は93.7%であり、1日あたりの造水量は36.1m3/dであった。
(比較例1)
図4で膜透過流束1.5m/dで30min吸引ろ過した後、原水弁2とろ過水弁14を閉じ、逆洗弁12と空洗弁10を開き、原水供給ポンプ5と吸引ろ過ポンプ15を停止し、酸化剤供給ポンプ4と逆洗ポンプ17を開いて、塩素濃度10mg/lで膜透過流束2m/dの逆圧洗浄と50L/minの空気洗浄とを1分間同時に行った以外は実施例1と全く同じにした。その結果、浸漬型膜モジュール6のろ過差圧は運転開始直後15kPaに対し、2ヶ月後も30kPaと安定運転が行えており、薬液洗浄をすることはなかった。ところが、水回収率は89.8%と低く、1日あたりの造水量は33.5m3/dであった。
(比較例2)
図4で膜透過流束1.5m/dで50min吸引ろ過した以外は比較例1と全く同じにした。その結果、水回収率は93.7%、1日あたりの造水量は35.0m3/dとなり、実施例1と同等であったが、浸漬型膜モジュール6のろ過差圧は運転開始直後15kPaに対し、3週間後には75kPaに達し、薬液洗浄せざるを得なかった。
(比較例3)
図4で塩素濃度10mg/lで膜透過流束2m/dの逆圧洗浄と50L/minの空気洗浄とを5秒間同時に行った以外は比較例1と全く同じにした。その結果、水回収率は93.7%、1日あたりの造水量は36.1m3/dとなり、実施例2と同等であったが、浸漬型膜モジュール6のろ過差圧は運転開始直後15kPaに対し、1週間後には75kPaに達し、薬液洗浄せざるを得なかった。
1:原水貯留槽
2:原水弁
3:酸化剤貯留槽
4:酸化剤供給ポンプ
5:原水供給ポンプ
6:膜モジュール
7:膜浸漬槽
8:エア抜き弁
9:排水弁
10:空洗弁
11:コンプレッサー
12:逆洗弁
13:酸化還元電位センサー
14:ろ過水弁
15:吸引ろ過ポンプ
16:逆洗水用貯留槽
17:逆洗ポンプ
2:原水弁
3:酸化剤貯留槽
4:酸化剤供給ポンプ
5:原水供給ポンプ
6:膜モジュール
7:膜浸漬槽
8:エア抜き弁
9:排水弁
10:空洗弁
11:コンプレッサー
12:逆洗弁
13:酸化還元電位センサー
14:ろ過水弁
15:吸引ろ過ポンプ
16:逆洗水用貯留槽
17:逆洗ポンプ
Claims (10)
- 原水を膜モジュールで膜ろ過するろ過工程後に、少なくとも膜ろ過水を膜モジュールの2次側から1次側に流す逆圧洗浄を実施する膜モジュールの洗浄方法において、ろ過工程の途中から原水に酸化剤を添加して膜モジュールの1次側に供給し、膜モジュールの2次側まで酸化剤で満たされた後、ろ過工程を止め、少なくとも逆圧洗浄を実施する膜モジュールの洗浄方法。
- ろ過工程を止めると同時に酸化剤の添加も止める、請求項1に記載の膜モジュールの洗浄方法。
- 逆圧洗浄と同時に膜モジュールの下方から気体を導入する空気洗浄を実施する、請求項1または2に記載の膜モジュールの洗浄方法。
- ろ過工程を止めた後、所定の保持時間を設け、その後少なくとも逆圧洗浄を実施する、請求項1〜3のいずれかに記載の膜モジュールの洗浄方法。
- 前記所定の保持時間の少なくとも一部に空気洗浄を実施する、請求項4に記載の膜モジュールの洗浄方法。
- 膜モジュールの2次側配管内の水を圧縮気体で押し出して逆圧洗浄する、請求項1〜5のいずれかに記載の膜モジュールの洗浄方法。
- 膜モジュールのろ過水が通過する2次側配管で酸化還元電位上昇を検知後、物理洗浄工程を開始する、請求項1〜6のいずれかに記載の膜モジュールの洗浄方法。
- 精密ろ過膜および/または限外ろ過膜を備えた膜モジュールと、該膜モジュールへの1次側原水供給ラインと、該原水供給ラインに酸化剤を供給する酸化剤供給手段と、前記膜モジュールの2次側膜ろ過水ラインと、膜ろ過水を前記膜モジュールの2次側から1次側に供給する逆圧洗浄手段と、前記膜モジュールの下方に気体を供給する空気供給手段とを備えている膜ろ過装置。
- 前記逆圧洗浄手段と、前記空気供給手段とが、同一の気体圧縮機により実施される、請求項8に記載の膜ろ過装置。
- 前記膜モジュールの2次側膜ろ過水ラインに膜ろ過水の酸化還元電位の検知手段を備えている、請求項8または9に記載の膜濾過装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009235961A JP2011083656A (ja) | 2009-10-13 | 2009-10-13 | 膜モジュールの洗浄方法および膜ろ過装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009235961A JP2011083656A (ja) | 2009-10-13 | 2009-10-13 | 膜モジュールの洗浄方法および膜ろ過装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011083656A true JP2011083656A (ja) | 2011-04-28 |
Family
ID=44077026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009235961A Pending JP2011083656A (ja) | 2009-10-13 | 2009-10-13 | 膜モジュールの洗浄方法および膜ろ過装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011083656A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116718065A (zh) * | 2023-08-09 | 2023-09-08 | 中国空气动力研究与发展中心高速空气动力研究所 | 用于大型连续式风洞气温均匀性控制的水冷管道安装方法 |
-
2009
- 2009-10-13 JP JP2009235961A patent/JP2011083656A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116718065A (zh) * | 2023-08-09 | 2023-09-08 | 中国空气动力研究与发展中心高速空气动力研究所 | 用于大型连续式风洞气温均匀性控制的水冷管道安装方法 |
CN116718065B (zh) * | 2023-08-09 | 2023-10-20 | 中国空气动力研究与发展中心高速空气动力研究所 | 用于大型连续式风洞气温均匀性控制的水冷管道安装方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4968413B2 (ja) | 分離膜モジュールの洗浄方法および造水方法 | |
JP6003646B2 (ja) | 膜モジュールの洗浄方法 | |
JP5954182B2 (ja) | 分離膜モジュールの洗浄方法 | |
JP5804228B1 (ja) | 水処理方法 | |
JP5453711B2 (ja) | 外圧式中空糸膜モジュールの洗浄方法 | |
Xiao et al. | Feasibility of using an innovative PVDF MF membrane prior to RO for reuse of a secondary municipal effluent | |
JP2012239948A (ja) | ろ過材の洗浄方法および水処理装置 | |
CN115121124A (zh) | 过滤膜的清洗方法及清洗装置、以及水处理系统 | |
JP2011125822A (ja) | 膜モジュールの洗浄方法および造水装置 | |
WO2013111826A1 (ja) | 造水方法および造水装置 | |
WO2013176145A1 (ja) | 分離膜モジュールの洗浄方法 | |
JP2012239947A (ja) | 水処理方法および水処理装置 | |
JP2010227836A (ja) | 膜モジュールの運転方法 | |
JP2009006209A (ja) | 中空糸膜モジュールの洗浄方法 | |
JP5181987B2 (ja) | 浸漬型膜モジュールの洗浄方法 | |
JP2013202481A (ja) | 分離膜モジュールの洗浄方法 | |
JP2012086120A (ja) | 浸漬型膜モジュールの薬品洗浄方法 | |
JP2012086182A (ja) | 水処理方法および水処理装置 | |
WO2013047466A1 (ja) | 膜モジュールの洗浄方法 | |
JP2011083656A (ja) | 膜モジュールの洗浄方法および膜ろ過装置 | |
WO2011108589A1 (ja) | 多孔質膜モジュールの洗浄方法および造水装置 | |
JP2009214062A (ja) | 浸漬型膜モジュールの運転方法 | |
WO2021200752A1 (ja) | 造水装置の洗浄トラブル判定方法および洗浄トラブル判定プログラム | |
WO2021162093A1 (ja) | ろ過特性予測による造水装置の制御方法、造水装置のトラブル判定方法、造水装置、造水装置の運転プログラム、造水装置のトラブル判定プログラム、および記録媒体 | |
JP6444606B2 (ja) | 水処理装置 |