WO2012147372A1 - 磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、磁気ディスク用ガラスブランク - Google Patents

磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、磁気ディスク用ガラスブランク Download PDF

Info

Publication number
WO2012147372A1
WO2012147372A1 PCT/JP2012/002941 JP2012002941W WO2012147372A1 WO 2012147372 A1 WO2012147372 A1 WO 2012147372A1 JP 2012002941 W JP2012002941 W JP 2012002941W WO 2012147372 A1 WO2012147372 A1 WO 2012147372A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass blank
magnetic disk
mold
blank
Prior art date
Application number
PCT/JP2012/002941
Other languages
English (en)
French (fr)
Inventor
磯野 英樹
秀和 谷野
村上 明
佐藤 崇
正宗 佐藤
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to SG2013065222A priority Critical patent/SG193897A1/en
Priority to US13/982,838 priority patent/US9409809B2/en
Priority to JP2013511951A priority patent/JP6000240B2/ja
Priority to CN201280020198.9A priority patent/CN103492328B/zh
Publication of WO2012147372A1 publication Critical patent/WO2012147372A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/088Flat discs
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/122Heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/125Cooling
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/05Press-mould die materials
    • C03B2215/07Ceramic or cermets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/70Horizontal or inclined press axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for manufacturing a magnetic disk glass blank and a method for manufacturing a magnetic disk glass substrate.
  • a personal computer or a DVD (Digital Versatile Disc) recording device has a built-in hard disk device (HDD: Hard Disk Drive) for data recording.
  • HDD Hard Disk Drive
  • a magnetic disk in which a magnetic layer is provided on a glass substrate is used, and the magnetic head slightly floats above the surface of the magnetic disk. (DFH (Dynamic Flying Height) head) records or reads magnetic recording information on the magnetic layer.
  • a glass substrate is preferably used because it has a property that it is less likely to be plastically deformed than a metal substrate (aluminum substrate) or the like.
  • the magnetic head is provided with a magnetoresistive element, for example, but may cause a thermal asperity failure as a failure inherent in such a magnetic head.
  • Thermal asperity failure means that when a magnetic head passes over the main surface of a minute uneven surface of a magnetic disk while flying, the magnetoresistive element is heated by adiabatic compression or contact of air, causing a read error. It is an obstacle. Therefore, in order to avoid the thermal asperity failure, the surface properties such as the surface roughness and flatness of the main surface of the glass substrate for magnetic disks are prepared at a good level.
  • a vertical direct press method is known as a conventional method for producing a sheet glass (glass blank).
  • This pressing method is a method of supplying a lump of molten glass on a lower mold and press-molding a lump of molten glass (molten glass lump) using the upper mold (Patent Document 1, FIG. 4 and the like).
  • the vertical direct press method requires a workpiece gripping device for gripping a glass blank obtained after pressing and taking it out of a mold.
  • the known vertical direct press method has a problem that the flatness (shape accuracy) of the glass blank to be produced is poor.
  • the reason for this is as follows.
  • the vertical direct pressing method immediately after the molten glass block is arranged on the lower mold, only the contact surface with the lower mold and the portion close to the contact surface of the molten glass block are rapidly cooled and solidified. Since the glass has low thermal conductivity, the upper part of the molten glass block (portion that will come into contact with the upper mold later) remains at a high temperature even while the molten glass block is in contact with the lower mold. Thereafter, the upper part comes into contact with the upper mold and is rapidly cooled and solidified.
  • the vertical direct press method in the process of forming the molten glass lump into the glass blank, there is a deviation in the timing of cooling and solidifying at the lower side and the upper side of the molten glass lump. It will warp in a concave shape, and the increase (deterioration) of the flatness of a glass blank will arise. The timing shift cannot be drastically suppressed in the press method of the vertical direct press method. Further, in the vertical direct press method, a mold release agent such as BN (boron nitride) is preliminarily molded in order to prevent the molten glass lump from being stuck to the lower mold and cannot be removed. However, the surface roughness cannot be reduced if such a release material remains attached to the glass blank.
  • BN boron nitride
  • the temperature of the upper mold and the lower mold be the same as much as possible.
  • the thermal conductivity of the lower mold is low. Since it worsens, it becomes difficult to cool both surfaces of a glass blank uniformly in a press molding process. Therefore, the glass blank produced by the vertical direct press method is required to have a removal process by polishing, grinding, etc. in the subsequent process in order to improve the flatness and remove the release material stuck into the surface of the glass blank. .
  • the vertical direct press method requires a workpiece gripping device for gripping the glass blank obtained after pressing and taking it out of the mold, but grips the glass blank on the mold after pressing.
  • the workpiece gripping device contacts the glass blank or the mold surface and the glass blank or the mold surface may be damaged.
  • the present invention provides a method for producing a glass blank for a magnetic disk, a method for producing a glass substrate for a magnetic disk, and a glass blank for a magnetic disk, in which a glass blank for a magnetic disk having good flatness is obtained by press molding.
  • Another object of the present invention is to obtain a glass blank for a magnetic disk with good flatness by press molding, and to prevent the glass blank or the mold from being damaged when the glass blank is taken out from the mold. It is providing the manufacturing method of the glass blank for magnetic discs, and the manufacturing method of the glass substrate for magnetic discs.
  • the present inventors conducted extensive research, and as a result, the inventors devised a new press molding method. That is, in the method for manufacturing a glass blank of the present embodiment, a pair of molds (press molds) in which a molten glass lump that is falling is arranged to face each other in a direction (horizontal direction) orthogonal to the dropping direction of the molten glass lump.
  • the horizontal direct press method is used. Unlike the conventional vertical direct press method, the molten glass lump is not temporarily brought into contact with or held by a member having a temperature lower than that of the molten glass lump until it is press-molded.
  • the viscosity distribution inside the molten glass lump becomes very wide at the time of press molding in the vertical direct press method, whereas in the horizontal direct press of this embodiment, the molten glass lump is very wide.
  • the viscosity distribution of is kept uniform. Therefore, compared with the vertical direct press method, in the horizontal direct press method, it is extremely easy to stretch the molten glass lump to be pressed uniformly and thinly. Therefore, as a result, compared with the case where a glass blank is manufactured using the vertical direct press method, the decrease in flatness is drastically suppressed when the glass blank is manufactured using the horizontal direct press method. It is very easy.
  • the flatness of the generated glass blank is reduced compared to the case where the difference is large. Can do. This is because when the temperature difference between the pair of molds is smaller, a thermal balance is easily realized when the hot molten glass lump comes into contact with the inner peripheral surface of the mold and rapidly cools, so that the cooling stage This is because it is possible to further suppress a decrease in the flatness of the glass blank that may be caused by a slight difference in the degree of thermal deformation between the pair of molds.
  • a first aspect of the present invention is a method for manufacturing a glass blank for a magnetic disk, which includes a molding step of press-molding a lump of molten glass using a pair of molds, and presses the molten glass.
  • a correlation between the temperature difference at the opposing position of a pair of molds during molding and the flatness of the glass blank obtained after press molding is obtained, and the glass blank is required based on the above correlation.
  • a temperature difference between the pair of molds capable of realizing flatness is obtained, and press molding is performed within a temperature difference between the pair of molds within the obtained temperature difference.
  • the flatness required for the glass blank is the flatness of a magnetic disk capable of preventing contact of a head when the magnetic disk is mounted on a hard disk device. It is characterized by being equal.
  • the temperature of the portion of the mold that contacts the molten glass is substantially the same between the pair of molds. It is characterized by molding.
  • the temperature of the pair of molds until the glass blank comes into contact with the mold and is separated from the glass transition point (Tg) of the molten glass In the method for producing a glass blank for a magnetic disk, the temperature of the pair of molds until the glass blank comes into contact with the mold and is separated from the glass transition point (Tg) of the molten glass.
  • press molding is performed without attaching a release material to the mold.
  • the glass blank obtained after molding has a thermal expansion coefficient of 100 ° C. to 300 ° C. within a range of 30 ⁇ 10 ⁇ 7 to 100 ⁇ 10 ⁇ 7 (K ⁇ 1 ). It is characterized by.
  • the molten glass is press-molded so that the flatness of the glass blank is 8 ⁇ m or less in the molding step.
  • a second aspect of the present invention is a method for producing a glass blank for a magnetic disk, which includes a molding step of press-molding a lump of molten glass using a pair of dies, wherein the pair of dies is used in the molding step.
  • the molten glass is press-molded so that the temperature difference at the opposite position is within 10 ° C.
  • the 3rd viewpoint of this invention is a manufacturing method of the glass blank for magnetic discs including the shaping
  • the method for producing a glass substrate for a magnetic disk according to the present invention comprises subjecting the glass blank produced by the method for producing a glass substrate blank for a magnetic disk according to the first to third aspects to a polishing process of 50 ⁇ m or less.
  • the magnetic disk glass substrate is manufactured.
  • the method for producing a glass substrate for a magnetic disk according to the present invention produces a glass substrate for a magnetic disk using the glass blank for a magnetic disk obtained by the method for producing a glass blank for a magnetic disk according to the first to third aspects. It is characterized by that.
  • the portion and the soaking material are brought into surface contact.
  • the following molten glass can be used even when a process causing a temperature difference between the molds is caused, such as a process for peeling the glass blank from the mold. Since the pair of molds can be isothermally formed in a short time at the time of press molding, a glass blank with good flatness is continuously formed when continuously pressing a molten glass (that is, in a mass production process). Obtainable.
  • the fourth aspect of the present invention is a molding for forming a plate-shaped glass blank by press-molding a molten glass that is falling from a direction orthogonal to the dropping direction using a pair of molds.
  • a method of manufacturing a glass blank for a magnetic disk including a step, wherein the molding step reduces a temperature difference between the pair of molds after opening a mold and press-molding a new molten glass. It has the temperature-uniforming process for this.
  • the soaking step is a step of bringing a soaking material into contact with at least one of the pair of molds.
  • the temperature of the portion of the mold that contacts the molten glass is substantially the same between the pair of molds. It is characterized by molding.
  • the temperature of the pair of molds until the glass blank comes into contact with the mold and is separated from the glass transition point (Tg) of the molten glass In the method for producing a glass blank for a magnetic disk, the temperature of the pair of molds until the glass blank comes into contact with the mold and is separated from the glass transition point (Tg) of the molten glass.
  • press molding is performed without attaching a release material to the mold.
  • the method for producing a glass substrate for a magnetic disk according to the present invention comprises subjecting the glass blank produced by the method for producing a glass substrate blank for a magnetic disk according to the fourth aspect to a polishing process with a machining allowance of 50 ⁇ m or less. A disk glass substrate is manufactured.
  • the manufacturing method of the glass substrate for magnetic disks of this invention manufactures the glass substrate for magnetic disks using the glass blank for magnetic disks obtained by the manufacturing method of the glass blank for magnetic disks which concerns on a 4th viewpoint.
  • the present inventors have devised a method that does not increase the temperature difference between the molds when peeling the glass blank from one of the pair of molds based on the above knowledge. Even if a glass blank is attached to one of a pair of molds after press molding, if the glass blank is peeled by a method that does not increase the temperature difference between the molds, the next molten glass is pressed. Since the temperature difference does not increase between the molds at the time of molding, a glass blank with good flatness can be obtained continuously when press molding molten glass continuously (that is, in a mass production process).
  • the fifth aspect of the present invention is a molding for forming a plate-shaped glass blank by press-molding a molten glass that is falling from a direction orthogonal to the dropping direction using a pair of molds.
  • a method for producing a glass blank for a magnetic disk including a step, wherein after the molding step, the glass blank attached to the die is peeled from the die so as not to generate a temperature difference between the die. After performing this, the said shaping
  • the peeling step cools at least a part of the outer peripheral portion of the glass blank in a state where both molds and the glass blank are in contact with each other.
  • the peeling step is characterized in that at least a part of the outer peripheral end of the glass blank is cooled by supplying gas to the glass blank.
  • the timing for supplying the gas is immediately before the opening of the pair of molds in the closed state or at the same time as the opening of the pair.
  • the temperature of the portion of the mold that contacts the molten glass is substantially the same between the pair of molds. It is characterized by molding.
  • the temperature of the pair of molds until the glass blank comes into contact with the mold and is separated from the glass transition point (Tg) of the molten glass In the method for producing a glass blank for a magnetic disk, the temperature of the pair of molds until the glass blank comes into contact with the mold and is separated from the glass transition point (Tg) of the molten glass.
  • press molding is performed without attaching a release material to the mold.
  • the surface roughness (Ra) of the mold may be 0.1 ⁇ m or less.
  • the 6th viewpoint of this invention includes the shaping
  • the glass blank produced by the method for producing a glass substrate blank for magnetic disk according to the fifth or sixth aspect is subjected to polishing with a machining allowance of 50 ⁇ m or less.
  • the magnetic disk glass substrate is manufactured.
  • the manufacturing method of the glass substrate for magnetic disks of this invention manufactures the glass substrate for magnetic disks using the glass blank for magnetic disks obtained by the manufacturing method of the glass blank for magnetic disks which concerns on the 5th or 6th viewpoint. It is characterized by that.
  • a glass blank for magnetic disk and a glass substrate for magnetic disk having good flatness can be produced by press molding.
  • a glass blank for magnetic disk having good flatness is obtained by press molding, and the glass blank or the mold is damaged when the glass blank is taken out from the mold. I will not let you.
  • die in the press molding of 2nd Embodiment The figure which illustrates the temperature change of each press molding surface of a pair of metal mold
  • the glass substrate 1 for magnetic disks in this embodiment is an annular thin glass substrate.
  • the size of the glass substrate for magnetic disks is not ask
  • the outer diameter is 65 mm
  • the diameter of the center hole 2 is 20 mm
  • the plate thickness T is 0.6 to 1.0 mm.
  • the flatness of the main surface of the glass substrate for magnetic disk of the embodiment is, for example, 4 ⁇ m or less, and the surface roughness (arithmetic average roughness Ra) of the main surface is, for example, 0.2 nm or less.
  • the flatness required for the magnetic disk substrate as the final product is, for example, 4 ⁇ m or less.
  • amorphous aluminosilicate glass soda lime glass, borosilicate glass, or the like can be used.
  • amorphous aluminosilicate glass can be suitably used in that it can be chemically strengthened and a glass substrate for a magnetic disk excellent in the flatness of the main surface and the strength of the substrate can be produced.
  • These glass materials are preferably amorphous glass because the surface roughness can be extremely reduced. Therefore, an amorphous aluminosilicate glass is preferable from the viewpoint of both strength and surface roughness reduction.
  • the composition of the glass substrate for a magnetic disk of this embodiment is not limited, the glass substrate of this embodiment is preferably converted to an oxide standard and expressed in mol%, SiO 2 is 50 to 75%, Al 2 to O 3 to 1 to 15%, at least one component selected from Li 2 O, Na 2 O and K 2 O in total 5 to 35%, selected from MgO, CaO, SrO, BaO and ZnO 0-20% in total of at least one component, and at least one selected from ZrO 2 , TiO 2 , La 2 O 3 , Y 2 O 3 , Ta 2 O 5 , Nb 2 O 5 and HfO 2 An amorphous aluminosilicate glass having a composition having a total of 0 to 10% of components.
  • the glass substrate of this embodiment may be an amorphous aluminosilicate glass having the following composition.
  • mol% display 56 to 75% of SiO 2 Al 2 O 3 1-11%, Li 2 O exceeds 0% and 4% or less, Na 2 O 1% or more and less than 15%, K 2 O of 0% or more and less than 3%, Containing and substantially free of BaO,
  • the total content of alkali metal oxides selected from the group consisting of Li 2 O, Na 2 O and K 2 O is in the range of 6 to 15%;
  • the molar ratio of Li 2 O content to Na 2 O content (Li 2 O / Na 2 O) is less than 0.50,
  • the molar ratio ⁇ K 2 O / (Li 2 O + Na 2 O + K 2 O) ⁇ of the K 2 O content to the total content of the alkali metal oxides is 0.13 or less,
  • the total content of alkaline earth metal oxides selected from the group consisting of MgO, CaO and SrO
  • the total content of oxides selected from the group consisting of ZrO 2 , TiO 2 , Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , Nb 2 O 5 and Ta 2 O 5 is more than 0% and not more than 10%.
  • Molar ratio of the total content of the oxides to the Al 2 O 3 content ⁇ (ZrO 2 + TiO 2 + Y 2 O 3 + La 2 O 3 + Gd 2 O 3 + Nb 2 O 5 + Ta 2 O 5 ) / Al 2 O 3 ⁇ Is 0.40 or more.
  • the glass substrate of this embodiment may be an amorphous aluminosilicate glass having the following composition.
  • mol% display 50 to 75% of SiO 2 Al 2 O 3 0-5%, Li 2 O 0-3%, ZnO 0-5%, 3-15% in total of Na 2 O and K 2 O, 14 to 35% in total of MgO, CaO, SrO and BaO, Containing 2 to 9% in total of ZrO 2 , TiO 2 , La 2 O 3 , Y 2 O 3 , Yb 2 O 3 , Ta 2 O 5 , Nb 2 O 5 and HfO 2 , Glass with a molar ratio [(MgO + CaO) / (MgO + CaO + SrO + BaO)] in the range of 0.8 to 1 and a molar ratio [Al 2 O 3 / (MgO + CaO)] in the range of 0 to 0.30.
  • FIG. 2 is a diagram showing a flow of an embodiment of a method for manufacturing a glass substrate for magnetic disk.
  • the glass blank on a disc is produced by press molding (step S10).
  • the formed glass blank is scribed to produce an annular glass substrate (step S20).
  • shape processing is performed on the scribed glass substrate (step S30).
  • the glass substrate is ground with fixed abrasive grains (step S40).
  • step S50 the end surface of the glass substrate is polished.
  • step S60 1st grinding
  • polishing is performed to the main surface of a glass substrate.
  • step S70 chemical strengthening is performed on the glass substrate after the first polishing.
  • step S80 the second polishing is performed on the chemically strengthened glass substrate.
  • FIG. 3 is a plan view of an apparatus used in press molding.
  • the apparatus 101 includes four sets of press units 120, 130, 140, 150, a cutting unit 160, and a cutting blade 165 (not shown in FIG. 2).
  • the cutting unit 160 is provided on the path of the molten glass flowing out from the molten glass outlet 111.
  • the apparatus 101 drops a lump of molten glass (hereinafter also referred to as a gob) cut by the cutting unit 160, and then sandwiches the lump between a pair of mold surfaces facing each other from both sides of the lump dropping path.
  • a glass blank is formed by pressing.
  • the apparatus 101 is provided with four sets of press units 120, 130, 140, and 150 every 90 degrees with a molten glass outlet 111 as a center.
  • Each of the press units 120, 130, 140, and 150 is driven by a moving mechanism (not shown) and can advance and retreat with respect to the molten glass outlet 111. That is, a catch position (a position where the press unit 140 is drawn with a solid line in FIG. 3) located immediately below the molten glass outlet 111 and a retreat position (the press unit 120 in FIG. 3) away from the molten glass outlet 111.
  • a catch position a position where the press unit 140 is drawn with a solid line in FIG. 3 located immediately below the molten glass outlet 111
  • a retreat position the press unit 120 in FIG. 3
  • the cutting unit 160 is provided on the molten glass path between the catch position (gob capture position by the press unit) and the molten glass outlet 111, and cuts out an appropriate amount of molten glass flowing out of the molten glass outlet 111. To form a lump of molten glass.
  • the cutting unit 160 has a pair of cutting blades 161 and 162. The cutting blades 161 and 162 are driven to intersect on the molten glass path at a fixed timing, and when the cutting blades 161 and 162 intersect, the molten glass is cut out to obtain gob. The obtained gob falls toward the catch position.
  • the press unit 120 includes a first die 121, a second die 122, a first drive unit 123, and a second drive unit 124.
  • Each of the first mold 121 and the second mold 122 is a plate-like member having a surface for press-molding the gob. The normal direction of the two surfaces is a substantially horizontal direction, and the two surfaces are arranged to face each other in parallel.
  • the first drive unit 123 moves the first mold 121 forward and backward with respect to the second mold 122.
  • the second drive unit 124 moves the second mold 122 forward and backward with respect to the first mold 121.
  • the first drive unit 123 and the second drive unit 124 are mechanisms that rapidly bring the surface of the first drive unit 123 and the surface of the second drive unit 124 into proximity, such as a mechanism that combines an air cylinder, a solenoid, and a coil spring, for example. Have. Note that the structure of the press units 130, 140, and 150 is the same as that of the press unit 120, and a description thereof will be omitted.
  • a first conveyor 171, a second conveyor 172, a third conveyor 173, and a fourth conveyor 174 are provided below the retreat position of the press units 120, 130, 140, and 150.
  • Each of the first to fourth conveyors 171 to 174 receives the glass blank G falling from the corresponding press unit and conveys the glass blank G to the next process apparatus (not shown).
  • the press units 120, 130, 140, and 150 are configured to sequentially move to the catch position, sandwich the gob, and move to the retreat position, so that the glass blank G is cooled in each press unit.
  • the glass blank G can be continuously formed without waiting.
  • FIG. 4 (a) to 4 (c) illustrate the press molding using the apparatus 101 more specifically.
  • 4A is a diagram showing a state before the gob is made
  • FIG. 4B is a diagram showing a state where the gob is made by the cutting unit 160
  • FIG. It is a figure which shows the state by which the glass blank G was shape
  • the molten glass material L G is continuously flowing out.
  • the cutting unit 160 by driving the cutting unit 160 at predetermined timing, cutting the molten glass material L G by the cutting blades 161 and 162 ( Figure 4 (b)).
  • disconnected molten glass becomes a substantially spherical gob GG with the surface tension.
  • Adjustment of the drive interval of the molten glass material L outflow and cutting unit 160 hourly G, the size of the glass blank G to be targeted, may be performed appropriately in accordance with the volume determined from a thickness.
  • Made gob G G falls down to the first die 121 of the pressing unit 120 toward the gap between the second die 122.
  • the first driving unit 123 and the second The drive unit 124 (see FIG. 4) is driven.
  • the gob GG is captured (caught) between the first mold 121 and the second mold 122.
  • the inner peripheral surface 121a of the first mold 121 and the inner peripheral surface 122a of the second mold 122 are in close proximity with each other at a minute interval, and the inner peripheral surface 121a of the first mold 121 and the second gob G G sandwiched between the inner circumferential surface 122a of the die 122 is formed into a thin plate.
  • the inner peripheral surface 121a of the first mold 121 and the second mold 122 A protrusion 121b and a protrusion 122b are provided on the inner peripheral surface 122a, respectively.
  • press molding is performed using the pair of molds 121 and 122.
  • the outer shape of the glass blank is not restricted by the shape of the mold. That is, as shown in FIG. 4C, the gob stretched by the closed mold does not reach the mold projections 121b and 122b.
  • the first die 121 and second die 122, the temperature adjusting mechanism (not shown) is provided with the temperature of the first die 121 and second die 122, the glass transition temperature of the molten glass L G (Tg ) Is kept at a temperature sufficiently lower than. Further, it is not necessary to attach a release material to the first mold 121 and the second mold 122 in the press molding process.
  • the temperature difference in the inner peripheral surface 121a and the position facing the inner circumferential surface 122a of the second die 122 of the first die 121 at the time of press-molding the gob G G, the plane of the glass blank obtained after press molding There is a correlation between. That is, the flatness of the glass blank obtained after press molding becomes better as the temperature difference between the inner peripheral surface 121a of the first mold 121 and the inner peripheral surface 122a of the second mold 122 is smaller.
  • the pair of molds (the inner peripheral surface 121a of the first mold 121 and the second mold 122) for realizing the flatness required for the glass substrate for a magnetic disk.
  • the maximum value of the temperature difference (absolute value) between the inner peripheral surfaces 122a is known.
  • the flatness required for the magnetic disk glass substrate can be realized. For example, if the flatness required for the glass substrate for magnetic disks is 4 ⁇ m, press molding is performed in a state where the temperature difference between the pair of dies is within 10 ° C. The temperature difference between the molds is a point moved from the respective surfaces of the inner peripheral surface 121a of the first mold 121 and the inner peripheral surface 122a of the second mold 122 to the inside of the mold by the inner peripheral surface 121a.
  • thermocouple at a point on the inner peripheral surface 122a facing each other (for example, a point corresponding to the center position of the glass blank or the center point of the inner peripheral surface 121a and the inner peripheral surface 122a). It is.
  • the timing for measuring the temperature difference between the molds is when the gob comes into contact with the first mold 121 and the second mold 122.
  • the temperature difference may be determined as appropriate from the correlation, depending on the flatness required for the glass substrate for a magnetic disk, but may be determined from the following viewpoints.
  • the glass substrate for a magnetic disk of the present embodiment is incorporated as a final product magnetic disk by being supported by a metal spindle having a high thermal expansion coefficient in a hard disk device. Is preferably as high as the spindle. For this reason, the composition of the glass substrate for magnetic disks is determined so that the thermal expansion coefficient of the glass substrate for magnetic disks becomes high.
  • the thermal expansion coefficient of the glass substrate for magnetic disk is, for example, in the range of 30 ⁇ 10 ⁇ 7 to 100 ⁇ 10 ⁇ 7 (K ⁇ 1 ), and preferably 50 ⁇ 10 ⁇ 7 to 100 ⁇ 10 ⁇ 7 ( K -1 ). More preferably, it is 80 ⁇ 10 ⁇ 7 (K ⁇ 1 ) or more.
  • the thermal expansion coefficient is a value calculated using the linear expansion coefficient at a temperature of 100 ° C. and a temperature of 300 ° C. of the magnetic disk glass substrate. When the thermal expansion coefficient is, for example, less than 30 ⁇ 10 ⁇ 7 (K ⁇ 1 ) or greater than 100 ⁇ 10 ⁇ 7 , the difference from the thermal expansion coefficient of the spindle is not preferable.
  • the temperature conditions around the main surface of the glass blank are made uniform in the press molding step.
  • the temperature difference is preferably 5 degrees or less.
  • the temperature difference is more preferably 3 degrees or less, and particularly preferably 1 degree or less.
  • a horizontal press since a horizontal press is used, it is possible to press-mold a glass having a wide range of viscosity, but it is particularly suitable for a glass having a high viscosity.
  • a glass having a relatively high viscosity has a better roundness because it is pressed while falling in the vertical direction.
  • it is preferably 500 poise or more.
  • it becomes 2000 poise or more since thinning becomes difficult, it is not preferable.
  • the first die 121 and second die 122 is gob G
  • the time until G is completely confined is as short as about 0.1 seconds (about 0.06 seconds). Therefore, the gob G G is formed into a substantially circular shape extends along the inner circumferential surface 122a of the first inner peripheral surface 121a of the die 121 and second die 122 within a very short time, further, rapidly It cools and solidifies as amorphous glass. Thereby, the glass blank G is produced.
  • the size of the glass blank G formed in the present embodiment is, for example, about 20 to 200 mm in diameter, although it depends on the size of the target magnetic disk glass substrate.
  • the glass blank G is formed in a form in which the inner peripheral surface 121a of the first die 121 and the inner peripheral surface 122a of the second die 122 are shape-transferred.
  • the flatness and smoothness of the inner peripheral surface of the mold are preferably set to be equivalent to those of the intended glass substrate for magnetic disk.
  • the surface processing step for the glass blank G that is, the grinding and polishing step can be omitted. That is, the glass blank G molded in the press molding method of the present embodiment may have the same thickness as the target thickness of the finally obtained magnetic disk glass substrate.
  • the glass blank G is a circular plate having a thickness of 0.2 to 1.1 mm.
  • the surface roughness of the inner peripheral surface 121a and the inner peripheral surface 122a is substantially the same in the surface, and the arithmetic average roughness Ra of the glass blank G is preferably 0.0005 to 0.05 ⁇ m, more preferably. Is adjusted to be 0.001 to 0.1 ⁇ m.
  • the surface roughness of the glass blank G is the same surface roughness within the surface since the surface properties of the inner peripheral surface 121a and the inner peripheral surface 122a are transferred.
  • a polishing process can be implemented without passing through the grinding process mentioned later by making surface roughness Ra of the glass blank obtained by press molding become 0.2 micrometer or less.
  • polishing is performed because polishing allowance increases when polishing until the surface roughness finally reaches a sufficiently small level (for example, Ra is 0.2 nm or less). The time becomes too long, resulting in a decrease in productivity and a problem such as deterioration of the end shape.
  • the press unit 120 quickly moves to the retracted position, and instead, the other press unit 130 moves to the catch position. press of the gob G G is performed.
  • the first mold 121 and the second mold 122 are in a closed state until the glass blank G is sufficiently cooled (at least until the temperature becomes lower than the bending point). I'm particular. Thereafter, the first driving unit 123 and the second driving unit 124 are driven to separate the first mold 121 and the second mold 122, and the glass blank G falls off the press unit 120 and is at the lower part. It is received by the conveyor 171 (see FIG. 3).
  • the first mold 121 and the second mold 122 are closed in a very short time within 0.1 seconds (about 0.06 seconds).
  • the molten glass comes into contact with the entire peripheral surface 121a and the entire inner peripheral surface 122a of the second mold 122 almost simultaneously.
  • the inner peripheral surface 121a of the first mold 121 and the inner peripheral surface 122a of the second mold 122 are not locally heated, and the inner peripheral surface 121a and the inner peripheral surface 122a are hardly distorted.
  • the molten glass is formed into a circular shape before heat is transferred from the molten glass to the first mold 121 and the second mold 122, the temperature distribution of the molded molten glass is substantially uniform. Become.
  • the flatness of the main surface of the produced glass blank G is improved as compared with a glass blank produced by conventional upper and lower die press molding.
  • the gob G G substantially spherical is formed by cutting the outflowing molten glass L G.
  • the viscosity of the molten glass material L G, smaller with respect to the volume of the gob G G to be Kiridaso is glass is only to cut the molten glass L G is cut not become nearly spherical, gob Cannot be made. In such a case, a gob forming form for making a gob is used.
  • FIGS. 5A to 5C are diagrams for explaining a modification of the embodiment shown in FIG. In this modification, a gob forming shape is used.
  • 5A is a diagram showing a state before the gob is made
  • FIG. 5B is a diagram showing a state where the gob GG is made by the cutting unit 160 and the gob forming shape 180.
  • 5 (c) is a diagram showing a state where the glass blank G was made by press-forming the gob G G. As shown in FIG.
  • FIGS. 6A to 6D are diagrams for explaining a modification using the gob forming shape 180.
  • FIG. FIG. FIG 6 (a), (b) is a diagram showing a state before the gob G G is made
  • FIG. 6 (c) a diagram showing a state in which the gob G G were made by the gob forming the shape 180 There, FIG.
  • FIG. 6 (d) is a diagram showing a state where the glass blank G was made by press-forming the gob G G.
  • receiving the molten glass L G of the recess 180C produced by block 181 and 182 flows out from the molten glass outflow port 111, as shown in FIG. 6 (b), a block at a predetermined timing 181, 182 quickly so moved to the downstream side of the flow of the molten glass L G a.
  • the molten glass L G is cut.
  • the blocks 181 and 182 are separated at a predetermined timing as shown in FIG.
  • the molten glass L G held in block 181 and 182 will fall at a time, the gob G G becomes spherical due to the surface tension of the molten glass L G.
  • FIG. 7A is a diagram showing a state before the heated optical glass lump is formed
  • FIG. 7B is a diagram showing a state in which the optical glass lump is dropped
  • FIG. ) Is a diagram showing a state in which a glass blank G is made by press-molding a lump of optical glass. As shown in FIG.
  • the apparatus 201 conveys the optical glass block CP to a position above the press unit 220 by the glass material gripping mechanism 212, and at this position, as shown in FIG. 7 (b). to, by the glass material gripping mechanism 212 to open the gripping of the mass C P of the optical glass, dropping the lump C P of the optical glass.
  • Mass C P of the optical glass, falling midway, as shown in FIG. 7 (c) circular glass blank G is formed sandwiched between the first mold 221 and second mold 222.
  • the first mold 221 and the second mold 222 have the same configuration and function as the first mold 121 and the second mold 122 shown in FIG.
  • FIG. 8A the first die 121 and the second die 122 shown in FIGS. 4A to 4C are flat press-molded surfaces.
  • Heat sinks 121d and 122d are provided on the outer peripheral edges of the outer peripheral surfaces 121c and 122c opposite to the peripheral surface 121a and the inner peripheral surface 122a so as to surround the outer periphery of the disk-shaped glass blank.
  • the glass blank G after press molding is a concave-shaped glass blank in which plate
  • the flatness of the glass blank G can be set to a target flatness given to the magnetic disk glass substrate, for example, 4 ⁇ m or less.
  • the outer peripheral edge portion where the glass blank is thick is likely to be the starting point for grinding with a fixed abrasive such as a diamond sheet.
  • the machining allowance in grinding can be suppressed to about half compared with a glass blank having a uniform thickness.
  • corrugation with a long period compared with flatness can also be improved.
  • the plate thickness of the glass blank G having a concave cross section as shown in FIG. 8C the difference between the maximum thickness and the minimum thickness is, for example, 8 ⁇ m or less.
  • board thickness of the glass blank G can be measured with a micrometer, for example.
  • step S20 Scribe process
  • the scribe means two concentric circles (an inner concentric circle and an outer concentric circle) by a scriber made of super steel alloy or diamond particles on the surface of the glass blank G in order to make the formed glass blank G into a ring shape of a predetermined size.
  • -Shaped cutting line linear scratch.
  • the glass blank G scribed in the shape of two concentric circles is partially heated, and due to the difference in thermal expansion of the glass blank G, the outer portion of the outer concentric circle and the inner portion of the inner concentric circle are removed. Thereby, an annular glass substrate is obtained.
  • An annular glass substrate can also be obtained by forming a circular hole in the glass blank using a core drill or the like.
  • the shape processing step includes chamfering processing (chamfering processing of the outer peripheral end portion and the inner peripheral end portion) on the end portion of the glass substrate after the scribe step.
  • a chamfering process is a shape process which chamfers with a diamond grindstone between the main surface and a side wall part perpendicular
  • the chamfer angle is, for example, 40 to 50 degrees with respect to the main surface.
  • step S40 Grinding process with fixed abrasive
  • grinding machining
  • the machining allowance by grinding is, for example, about several ⁇ m to 100 ⁇ m.
  • the double-sided grinding apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and a glass substrate is sandwiched between the upper surface plate and the lower surface plate. And, by moving either the upper surface plate or the lower surface plate, or both, the glass substrate and each surface plate are moved relatively to grind both main surfaces of the glass substrate. Can do.
  • step S50 End face polishing process
  • end face polishing is performed on the glass substrate after the grinding step.
  • the inner peripheral end surface and the outer peripheral end surface of the glass substrate are mirror-finished by brush polishing.
  • a slurry containing fine particles such as cerium oxide as free abrasive grains is used.
  • step S60 Next, 1st grinding
  • the machining allowance by the first polishing is, for example, about several ⁇ m to 50 ⁇ m.
  • the purpose of the first polishing is to remove scratches and distortions remaining on the main surface by grinding with fixed abrasive grains, and to adjust fine surface irregularities (microwaveness, roughness).
  • polishing is performed using a double-side polishing apparatus having the same structure as that used in the grinding step while supplying a polishing liquid.
  • the polishing agent contained in the polishing liquid is, for example, cerium oxide abrasive grains or zirconia abrasive grains.
  • the main surface of the glass substrate is polished so that the surface roughness (Ra) is 0.5 nm or less and the micro waveness (MW-Rq) is 0.5 nm or less.
  • the micro waveness can be expressed by an RMS (Rq) value calculated as a roughness of a wavelength band of 100 to 500 ⁇ m in an area having a radius of 14.0 to 31.5 mm on the entire main surface. Measurement can be performed using Model-4224.
  • the surface roughness is represented by an arithmetic average roughness Ra specified by JIS B0601: 2001.
  • the surface roughness is 0.006 ⁇ m or more and 200 ⁇ m or less, for example, the surface roughness is measured by a Mitutoyo Corporation roughness measuring machine SV-3100. : Can be calculated by the method defined in 2001. As a result, when the roughness is 0.03 ⁇ m or less, for example, it is measured with a scanning probe microscope (atomic force microscope; AFM) nanoscope manufactured by Japan Veeco, and calculated by the method defined in JIS R1683: 2007. It can. In the present application, the arithmetic average roughness Ra when measured at a resolution of 512 ⁇ 512 pixels in a 1 ⁇ m ⁇ 1 ⁇ m square measurement area can be used.
  • step S70 Chemical strengthening process
  • a chemical strengthening process is performed with respect to the glass substrate after a 1st grinding
  • the chemical strengthening solution for example, a mixed solution of potassium nitrate (60% by weight) and sodium sulfate (40% by weight) can be used.
  • the chemical strengthening solution is heated to, for example, 300 ° C. to 400 ° C., and the cleaned glass substrate is preheated to, for example, 200 ° C. to 300 ° C., and then the glass substrate is immersed in the chemical strengthening solution for, for example, 3 hours to 4 hours. To do.
  • the lithium ions and sodium ions on the surface layer of the glass substrate are respectively replaced with sodium ions and potassium ions having a relatively large ionic radius in the chemical strengthening solution.
  • a compressive stress layer is formed on the glass substrate and the glass substrate is strengthened. Note that the chemically strengthened glass substrate is cleaned. For example, after washing with sulfuric acid, it is washed with pure water or the like.
  • step S80 Next, 2nd grinding
  • the machining allowance by the second polishing is preferably, for example, about 1 ⁇ m, specifically within the range of 0.5 to 2 ⁇ m. If the machining allowance is smaller than this range, the surface roughness may not be sufficiently reduced. If it is larger than this range, the end shape may be deteriorated (sagging, etc.).
  • the second polishing is intended for mirror polishing of the main surface. In the second polishing, for example, the polishing apparatus used in the first polishing is used. At this time, the difference from the first polishing is that the type and particle size of the free abrasive grains are different and the hardness of the resin polisher is different.
  • the free abrasive grains used in the second polishing for example, fine particles (particle size: diameter of about 10 to 50 nm) such as colloidal silica made turbid in the slurry are used.
  • the polished glass substrate is washed with a neutral detergent, pure water, IPA or the like to obtain a glass substrate for a magnetic disk.
  • a neutral detergent, pure water, IPA or the like it is preferred that the second polishing step is carried out in that the level of surface irregularities on the main surface of the glass substrate can be further improved.
  • the roughness (Ra) of the main surface is 0.15 nm or less, more preferably 0.1 nm or less, and the micro waveness (MW-Rq) of the main surface is 0.3 nm or less, More preferably, it can be 0.1 nm or less.
  • the method for manufacturing a glass substrate for a magnetic disk according to the present embodiment includes a press molding step of press molding a lump of molten glass using a pair of molds. Therefore, if the surface roughness of the inner peripheral surfaces of the pair of molds is set to a good level (for example, the surface roughness required for a glass substrate for magnetic disks), the surface roughness can be obtained by press molding. Since the shape is transferred as the surface roughness of the glass blank, the surface roughness of the glass blank can be set to a good level.
  • the magnetic disk is based on the correlation between the temperature difference between the opposed positions of the pair of molds when the molten glass is press-molded and the flatness of the glass blank obtained after press molding.
  • a magnetic disk has a configuration in which, for example, at least an adhesion layer, an underlayer, a magnetic layer (magnetic recording layer), a protective layer, and a lubricating layer are laminated on the main surface of a glass substrate in order from the side closer to the main surface.
  • the substrate is introduced into a film forming apparatus that has been evacuated, and a film is sequentially formed from an adhesion layer to a magnetic layer on the main surface of the substrate in an Ar atmosphere by a DC magnetron sputtering method.
  • a CoPt alloy can be used as the adhesion layer
  • CrRu can be used as the underlayer.
  • a CoPt alloy can be used. It is also possible to form a CoPt-based alloy and FePt based alloy L 10 regular structure and magnetic layer for heat-assisted magnetic recording.
  • a magnetic recording medium can be formed by forming a protective layer using, for example, C 2 H 4 by a CVD method and subsequently performing nitriding treatment for introducing nitrogen into the surface. Thereafter, for example, PFPE (perfluoropolyether) is applied on the protective layer by a dip coating method, whereby a lubricating layer can be formed.
  • PFPE perfluoropolyether
  • Glass composition 1 Converted to oxide basis, expressed in mol%, SiO 2 is 50 to 75%, Al 2 O 3 is 1 to 15%, at least one component selected from Li 2 O, Na 2 O and K 2 O 5 to 35% in total, 0 to 20% in total of at least one component selected from MgO, CaO, SrO, BaO and ZnO, and ZrO 2 , TiO 2 , La 2 O 3 , Y 2 O 3 , Amorphous aluminosilicate glass having a composition having a total of 0 to 10% of at least one component selected from Ta 2 O 5 , Nb 2 O 5 and HfO 2
  • the above-mentioned molten glass was prepared, and a glass blank having a diameter of 75 mm and a thickness of 0.9 mm was prepared using the press molding method of the present invention (method using the apparatus of FIGS. 3 and 4).
  • Melting temperature of the molten glass material L G discharged from the glass outlet 111 is 1300 ° C.
  • the viscosity of the molten glass material L G at this time is 700 poise.
  • the surface roughness (arithmetic mean roughness Ra) of the inner peripheral surfaces of the first mold and the second mold was set to 0.01 ⁇ m to 0.1 ⁇ m.
  • the gob G G having a diameter of about 20mm is formed.
  • the gob G G a load 3000kgf by press unit, its temperature until it becomes lower than the glass transition temperature of the molten glass material (Tg) (about 10 seconds) is cooled while pressed, the glass blank with a diameter of 75mm was formed .
  • the target flatness (flatness required for the glass blank) of the glass blank formed by the press forming step was set to 8 ⁇ m or less.
  • the target flatness of the glass blank is set to 8 ⁇ m or less because the target flatness of the magnetic disk is set to 4 ⁇ m in order to prevent contact of the head when the final magnetic disk is mounted on the hard disk device. This is because it is assumed. Since the flatness does not change before and after film formation on the magnetic disk glass substrate, if the flatness of the magnetic disk glass substrate is 4 ⁇ m or less, the flatness of the magnetic disk can be reduced to 4 ⁇ m or less. If the flatness of the glass blank formed in the process exceeds 8 ⁇ m, it becomes difficult to set the flatness of the glass substrate after the grinding process to 4 ⁇ m or less even when the subsequent grinding process is performed. Therefore, the target flatness of the glass blank was set to 8 ⁇ m or less.
  • the flatness of the glass blank formed in the press forming step is 4 ⁇ m or less
  • the flatness of the magnetic disk can be 4 ⁇ m or less even if the subsequent grinding step is omitted.
  • the temperature of the first mold is kept constant at 470 ° C.
  • the temperature of the second mold is set at 450 to 490 ° C.
  • the flatness of the resulting glass blank was measured.
  • the reason why the minimum temperature of the mold is set to 450 ° C. is that if the temperature is lower than 450 ° C., the glass may be broken at the time of pressing.
  • the flatness and the surface roughness were measured for the glass blank having a diameter of 75 mm produced in the example.
  • the flatness can be defined as the difference in height between the lowest position and the highest position in the normal axis direction on the main surface of the disk-shaped glass blank.
  • a flatness tester FT-900 manufactured by Nidec is used. Measured.
  • the evaluation criteria for flatness shown in Table 1 are as follows. In the following criteria, if the flatness of the glass blank is 8.0 ⁇ m or less, the flatness can be improved to a level of 4 ⁇ m or less, which is the target flatness of the glass substrate for magnetic disks, in the grinding process.
  • the target flatness of the magnetic disk glass substrate can be achieved even if the grinding step is omitted.
  • Flatness is greater than 2.0 ⁇ m and 4.0 ⁇ m or less
  • Flatness is greater than 4.0 ⁇ m and 8.0 ⁇ m or less
  • Flatness is greater than 8.0 ⁇ m
  • the surface roughness is expressed by an arithmetic average roughness Ra defined by JIS B0601: 2001.
  • the surface roughness is 0.006 ⁇ m or more and 200 ⁇ m or less, for example, the surface roughness is measured by a Mitutoyo Corporation roughness measuring machine SV-3100, and JIS B0633. : Can be calculated by the method defined in 2001.
  • the roughness is 0.03 ⁇ m or less, for example, it can be measured with a scanning probe microscope (atomic force microscope; AFM) nanoscope manufactured by Japan Veeco and calculated by a method defined in JIS R1683: 2007. .
  • the arithmetic average roughness Ra when measured at a resolution of 256 ⁇ 256 pixels in a measurement area of 10 ⁇ m ⁇ 10 ⁇ m square was used.
  • the surface roughness of the glass blank was 0.05 ⁇ m or less in all examples. This is because the inner peripheral surfaces of the first mold and the second mold are transferred onto the glass blank regardless of the mold temperature, so that the surface roughness of the glass blank is the first mold and the second mold. It is because it becomes equivalent to the surface roughness of the inner peripheral surface.
  • the surface property of the target glass substrate for magnetic discs can be obtained by performing a grinding
  • the press molding method of the present embodiment unlike the conventional direct press method, the molding is completed in a very short time after the molten glass starts to contact the mold, so the surface roughness can be reduced. The glass gob does not stick to the mold. Therefore, the press molding method of this embodiment is preferable in that the surface roughness of the mold can be reduced in order to obtain a glass blank having a desired surface roughness.
  • the temperature difference between the first mold and the second mold is a value obtained by subtracting the temperature of the first mold (here, 470 ° C.) from the temperature of the second mold.
  • the temperature difference between the first mold and the second mold should be about 10 ° C. or less. I know it ’s good.
  • the flatness of the glass blank may be 4 ⁇ m or less, but in order to obtain this flatness, the first mold and the second mold It can be seen that the temperature difference should be about 5 ° C. or less.
  • the glass composition of other compositions were measured for the temperature difference and flatness between the first mold and the second mold.
  • the temperature of the first mold was set to 30 ° C. lower than the Tg of each glass, and the temperature difference between the first mold and the second mold was set in the same manner as in Table 1.
  • the same degree of correlation was obtained between the temperature difference and flatness of the mold.
  • Glass composition 2 Amorphous aluminosilicate glass having the following composition (Tg: 630 ° C., average linear expansion coefficient at 100 to 300 ° C. is 80 ⁇ 10 ⁇ 7 / ° C.).
  • Li 2 O exceeds 0% and 4% or less, Na 2 O 1% or more and less than 15%, K 2 O of 0% or more and less than 3%, Containing and substantially free of BaO
  • the total content of alkali metal oxides selected from the group consisting of Li 2 O, Na 2 O and K 2 O is in the range of 6 to 15%;
  • the molar ratio of Li 2 O content to Na 2 O content (Li 2 O / Na 2 O) is less than 0.50,
  • the molar ratio ⁇ K 2 O / (Li 2 O + Na 2 O + K 2 O) ⁇ of the K 2 O content to the total content of the alkali metal oxides is 0.13 or less
  • the total content of alkaline earth metal oxides selected from the group consisting of MgO, CaO and SrO is in the range of 10-30%;
  • the total content of MgO and CaO is in the range of 10-30%,
  • the total content of oxides selected from the group consisting of ZrO 2 , TiO 2 , Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , Nb 2 O 5 and Ta 2 O 5 is more than 0% and not more than 10%.
  • Molar ratio of the total content of the oxides to the Al 2 O 3 content ⁇ (ZrO 2 + TiO 2 + Y 2 O 3 + La 2 O 3 + Gd 2 O 3 + Nb 2 O 5 + Ta 2 O 5 ) / Al 2 O 3 ⁇ Is 0.40 or more.
  • [Glass composition 3] Amorphous aluminosilicate glass having the following composition (Tg: 680 ° C., average linear expansion coefficient at 100 to 300 ° C. is 80 ⁇ 10 ⁇ 7 / ° C.).
  • Tg 680 ° C., average linear expansion coefficient at 100 to 300 ° C. is 80 ⁇ 10 ⁇ 7 / ° C.).
  • a recording layer was formed on a magnetic disk glass substrate produced from the glass blanks of Sample 2, Sample 4, Sample 6, and Sample 7 to produce magnetic disks (sample 2A and sample, respectively, in order). 4A, sample 6A, sample 7A).
  • the recording layer was formed on the magnetic disk glass substrate as follows. First, an adhesion layer / soft magnetic layer / pre-underlayer / main layer / main recording layer / auxiliary recording layer / protection on a substrate in a Ar atmosphere by a DC magnetron sputtering method using a vacuum-deposited film forming apparatus A layer / lubricating layer was sequentially formed. Unless otherwise noted, the Ar gas pressure during film formation was 0.6 Pa.
  • Cr-50Ti was formed to a thickness of 10 nm.
  • soft magnetic layer 92 Co-3Ta-5Zr was formed to a thickness of 20 nm with a 0.7 nm Ru layer interposed therebetween.
  • Ni-5W was deposited to 8 nm.
  • Ru was formed to a thickness of 10 nm at 0.6 Pa, and then Ru was deposited to a thickness of 10 nm at 5 Pa.
  • 90 (72Co-10Cr-18Pt) -5 (SiO2) -5 (TiO2) was formed to a thickness of 15 nm at 3 Pa.
  • auxiliary recording layer 62Co-18Cr-15Pt-5B was formed to a thickness of 6 nm.
  • protective layer a film of 4 nm was formed using C2H4 by a CVD method, and the surface layer was nitrided.
  • the lubricating layer was formed to 1 nm using PFPE by dip coating.
  • the head flying height is 2 nm.
  • Other conditions were set as follows. ⁇ Evaluation radius: 22mm ⁇ Rotation speed of magnetic disk: 5400 rpm ⁇ Temperature: 25 °C ⁇ Humidity: 60%
  • the protrusion amounts of Samples 6A and 7A were 7 nm or more, and the protrusion amounts of Samples 2A and 4A were less than 7 nm.
  • the glass blank of Sample 7 as a base has a flatness of 4.0 ⁇ m or less, which is the target flatness of the glass substrate for magnetic disk as shown in Table 1. Therefore, Sample 7A, which is a magnetic disk produced without going through the grinding process based on the glass blank of Sample 7, also has a flatness of 4.0 ⁇ m or less.
  • the protrusion amount of the DFH head could be sufficiently increased even if the grinding step was omitted.
  • a glass substrate for a magnetic disk can be manufactured that has good flatness and surface roughness, and can obtain a good DFH touchdown test result when converted to a medium. did it.
  • This embodiment is the same as the first embodiment except for the press molding step of the method for manufacturing the magnetic disk glass blank, and a duplicate description is omitted.
  • This embodiment is different from the first embodiment in that the mold is soaked in the press molding step in the method of manufacturing the magnetic disk glass blank.
  • the press molding process of the present embodiment when to drop the gob G G cut the molten glass material L G continuously producing a glass blank G, the press molding of a gob G G The next gob G At the timing during G press forming, the mold is soaked (soaking process). The soaking process of the mold will be described with reference to FIGS.
  • FIG. 10 is a view for explaining the soaking process of the mold in the press molding of the present embodiment.
  • FIG. 11 and FIG. 12 are diagrams exemplifying temperature changes of the press molding surfaces of the pair of dies before and after the soaking process of the dies.
  • FIG. 10 (a) ⁇ (d) is a processing from the press molding of the gob G G shown in FIG. 4 to press forming of the next gob G G shown in sequence.
  • FIG. 10 (a) is the same as FIG. 4 (c).
  • the gob is pressed to open the glass blank G after it is formed, and the formed glass blank G falls vertically downward (not shown in FIG. 10).
  • the soaking material H set at a predetermined temperature is introduced between the first mold 121 and the second mold 122 from below. Further, as shown in FIG.
  • the mold is closed with the heat equalizing material H introduced into the mold, whereby both surfaces of the heat equalizing material H are connected to the inner peripheral surface 121a of the first mold 121 and the first.
  • Surface contact is made with the inner peripheral surface 122 a of the second mold 122.
  • the surface contact may be performed on the entire inner peripheral surface (press-formed surface) of the mold as shown in FIG. 10C, but is performed at least on the inner peripheral surface in contact with the gob. That's fine By this surface contact, the inner peripheral surfaces of the pair of molds are both equal to or close to the temperature of the soaking material H.
  • This surface contact is continued until the molten glass is cut and a new gob is dropped for press molding as shown in FIG.
  • the contact time between the mold and the soaking material H is, for example, 1 second or longer.
  • the mold is opened again, and the soaking material H is retracted downward.
  • the heat equalizing material has a first mold 121 and a second mold 122 between the press molding of one gob and the press molding of the next gob. It is used for the purpose of reducing the temperature difference between the two, more preferably zero.
  • the soaking material is preferably formed of a material having high thermal conductivity such as copper, copper alloy, aluminum or aluminum alloy, and the inner peripheral surface 121a of the first mold 121 and the second mold.
  • the outer shape of the inner peripheral surface 122a of 122 is such that it can be brought into surface contact with equal pressure. If the soaking material is formed of a material having a high thermal conductivity, the temperature of the soaking material as a whole can be easily set to a uniform temperature, so that the temperature between the first die 121 and the second die 122 can be easily adjusted.
  • the temperature of the soaking material is preferably between the upper limit value and the lower limit value of the temperature of the part in contact with the gob when the soaking material is press-molded without contacting the mold.
  • FIG. 11 shows a change in the temperature of the press forming surfaces of a pair of dies when the temperature of the soaking material is higher than the temperature of the die at the start of contact between the die and the soaking material. Temperature change due to treatment).
  • time t ⁇ b> 0 indicates a point in time when the gob press is started when the Nth glass blank is manufactured.
  • it is assumed that the temperature of the first mold 121 and the second mold 122 is the same at time t0. In the period A from the time t0 to the time t1, since the high heat gob comes into contact with both molds and heat is uniformly transferred from the gob to both molds, the temperatures of both molds rise with the same gradient.
  • the glass blank is taken out of the mold before and after time t1.
  • the temperature at the time t2 is a peak, and the press molding surface of the die is gradually cooled by the outside air, and the temperature is lowered.
  • the temperature decrease gradient may be different.
  • the glass blank is still attached to one of the molds.
  • the air is discharged from the inside of the mold toward the press molding surface and the glass blank is peeled off from the mold by the discharge force, the air is discharged to both molds.
  • the temperature decreasing gradient of each mold in the period B is different.
  • the soaking material is introduced into the mold, and the soaking material is brought into surface contact with the pair of molds during the period C from the time t2 to the time t3.
  • mold 122 rises to the same temperature as a soaking material.
  • gob dropping and pressing are started to produce the next N + 1th glass blank. Since the temperature between the molds is zero at time t3, the flatness of the (N + 1) th glass blank is good.
  • FIG. 12 shows a change in the temperature of the press molding surfaces of the pair of dies when the temperature of the soaking material is lower than the temperature of the die at the start of contact between the die and the soaking material. Temperature change due to treatment).
  • the temperature of the first mold 121 and the second mold 122 drops to the same temperature as that of the soaking material. Since the temperature difference between the molds may be reduced or zeroed until the next gob press-molding, as shown in FIGS. 11 and 12, even if the temperature of the pair of molds is increased by the soaking material, It may be lowered.
  • the difference between the temperature difference between the opposed positions of the pair of molds when the molten glass is press-molded and the flatness of the glass blank obtained after press molding can be reduced or made zero by performing the soaking process of the dies. Therefore, the flatness of the glass blank can always be kept good when continuously producing the glass blank.
  • This embodiment is the same as the first embodiment except for the press molding step of the method for manufacturing the magnetic disk glass blank, and a duplicate description is omitted.
  • This embodiment is different from the first embodiment in that a peeling step is provided in the press forming step in the method for manufacturing a magnetic disk glass blank.
  • FIG. 13 is a diagram exemplifying a case where a method of supplying a gas to a space formed by closing a mold is used as a process in the peeling process.
  • the peeling process at least a part of the outer peripheral portion of the glass blank G is locally cooled in a state where both molds (the first mold 121 and the second mold 122) and the glass blank G are in contact with each other. Make it easy to peel off from the mold. This is because the outer peripheral edge of the glass blank G is cooled and contracted, and is slightly twisted from the inner peripheral surface of the mold, so that the glass blank G and the inner peripheral surface of the mold are opened when the mold is opened. It is considered that air easily enters and is easily peeled off.
  • a gas for example, there is a method of supplying air. That is, the glass blank G is cooled immediately before the opening of the first mold 121 and the second mold 122 in the closed state (for example, the closed mold state shown in FIG. 4C) or at the same time as opening. Therefore, gas (for example, air) is supplied to the space S formed by the closing of the mold.
  • gas for example, air
  • the temperature of the supplied gas should just be the temperature which cools the glass blank G at the time of press molding locally, for example, is normal temperature.
  • FIG. 13 shows two modes (a) and (b) as gas supply modes.
  • gas is introduced (supplied) into the space S in parallel with the inner peripheral surfaces 121a and 122a of the mold.
  • the glass blank G is locally cooled and thermally contracted, and immediately after or simultaneously, the mold opens, so that the glass blank G is the inner peripheral surface 121a of the first mold 121 and the inner peripheral surface of the second mold 122. It drops in the vertical direction without sticking to any of 122a.
  • Fig.13 (a) shows an example in which gas is introduced into the space S from two places in each mold through a passage provided in each mold
  • the present invention is not limited to this. Since the space S is formed in a donut shape along the circumference of the glass blank S, gas can be introduced into the space S from any location on the circumference of the mold. Further, as described above, the timing at which the gas is introduced into the space S is immediately before the mold in the closed state starts to open or at the same time as the timing at which the mold starts to open. This is a timing about 10 to 1,000 ms before the opening starts. On the other hand, in the embodiment shown in FIG.
  • gas is introduced from a position that is symmetrical with respect to each of the pair of molds, and the introduced gas has the same amount and pressure between the pair of molds.
  • route, path diameter, etc.) of the gas supply path provided in each of the pair of molds is symmetrical between the molds.
  • the surface roughness of the glass blank G obtained in the molding process is good by setting the surface roughness (Ra) of the inner peripheral surface 121a and the inner peripheral surface 122a of the mold to 0.1 ⁇ m or less. Level.
  • the glass blank G was easy to adhere to the inner peripheral surface of the mold after molding.
  • the mold can be dropped without sticking to the inner peripheral surface of any mold. That is, according to the said peeling process, the point which reduces the surface roughness of the glass blank G, and the point which prevents a glass blank from sticking to a metal mold
  • the difference between the temperature difference between the opposed positions of the pair of molds when the molten glass is press-molded and the flatness of the glass blank obtained after press molding As described in the first embodiment, in the press molding process, the difference between the temperature difference between the opposed positions of the pair of molds when the molten glass is press-molded and the flatness of the glass blank obtained after press molding.
  • the execution of the peeling process reliably prevents the glass blank from sticking to any mold after the press molding, and the mold by the peeling process. Therefore, the flatness of the glass blank is prevented from deteriorating when continuously producing the glass blank.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

プレス成形によって平面度が良好な磁気ディスク用ガラスブランクが得られる磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、磁気ディスク用ガラスブランクを提供する。溶融ガラスの塊を一対の金型を用いてプレス成形する成形工程を含む磁気ディスク用ガラスブランクの製造方法であって、落下中の上記溶融ガラスの塊を上記一対の金型を用いてプレス成形する。

Description

磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、磁気ディスク用ガラスブランク
 本発明は、磁気ディスク用ガラスブランクの製造方法および磁気ディスク用ガラス基板の製造方法に関する。
 今日、パーソナルコンピュータ、あるいはDVD(Digital Versatile Disc)記録装置等には、データ記録のためにハードディスク装置(HDD:Hard Disk Drive)が内蔵されている。特に、ノート型パーソナルコンピュータ等の可搬性を前提とした機器に用いられるハードディスク装置では、ガラス基板に磁性層が設けられた磁気ディスクが用いられ、磁気ディスクの面上を僅かに浮上させた磁気ヘッド(DFH(Dynamic Flying Height)ヘッド)で磁性層に磁気記録情報が記録され、あるいは読み取られる。この磁気ディスクの基板として、金属基板(アルミニウム基板)等に比べて塑性変形し難い性質を持つことから、ガラス基板が好適に用いられる。
 磁気ヘッドは例えば磁気抵抗効果型素子を備えているが、このような磁気ヘッドに固有の障害としてサーマルアスペリティ障害を引き起こす場合がある。サーマルアスペリティ障害とは、磁気ディスクの微小な凹凸形状の主表面上を磁気ヘッドが浮上飛行しながら通過するときに、空気の断熱圧縮または接触により磁気抵抗効果型素子が加熱され、読み出しエラーを生じる障害である。そのため、サーマルアスペリティ障害を回避するため、磁気ディスク用ガラス基板の主表面の表面粗さ、平面度などの表面性状は良好なレベルとなるように作製されている。
 従来の板状ガラス(ガラスブランク)の製造方法としては、垂直ダイレクトプレス法が知られている。このプレス法は、下型上に溶融ガラスの塊を供給し、上型を使用して溶融ガラスの塊(溶融ガラス塊)をプレス成形する方法である(特許文献1、図4等)。垂直ダイレクトプレス法では、プレス後に得られたガラスブランクを把持して金型から取り出すためのワーク把持装置を必要とする。
特開2009-269762号公報
 しかしながら、公知の垂直ダイレクトプレス法は、作製されるガラスブランクの平面度(形状精度)が悪いという問題がある。この理由は以下のとおりである。
 垂直ダイレクトプレス法では、下型上に溶融ガラス塊を配置した直後から溶融ガラス塊のうち下型との接触面および接触面に近い部分のみが急激には冷却されて固化することになる。ガラスは熱伝導率が低いため、溶融ガラス塊が下型と接触している間においても溶融ガラス塊の上方の部分(後で上型と接触する部分)は高温のままである。その後、その上方の部分が上型と接触して急激に冷却されて固化することになる。したがって、垂直ダイレクトプレス法の場合、溶融ガラス塊がガラスブランクに成形される過程では、溶融ガラス塊の下側と上側とで冷却されて固化するタイミングにずれが生じており、その結果、上側で凹形状に反ってしまい、ガラスブランクの平面度の増加(悪化)が生じてしまう。上記タイミングのずれは、垂直ダイレクトプレス法のプレス方式上、抜本的に抑制することができない。
 さらに、垂直ダイレクトプレス法では、溶融ガラス塊を下型に貼り付いて除去できなくなることを防止するために、例えばBN(ボロンナイトライド)等の離型材((mold)release agent)を予め金型に付着させておく必要があるが、このような離型材がガラスブランクに付着したままでは表面粗さを小さくすることができない。また、平面度が良好なガラスブランクを作製するには、上型と下型の温度を極力同じにすることが好ましいが、離型材が下型に付着していると下型の熱伝導率が悪化するため、プレス成形過程においてガラスブランクの両面を均一に冷却することが困難となる。したがって、垂直ダイレクトプレス法で作製されたガラスブランクは、その平面度を改善し、かつガラスブランクの表面に突き刺さった離型材を除去するため、後工程で研磨・研削等による除去工程が必須である。
 さらに、垂直ダイレクトプレス法では、上述したように、プレス後に得られたガラスブランクを把持して金型から取り出すためのワーク把持装置が必要となるが、プレス後に金型上のガラスブランクを把持するときに、ガラスブランクあるいは金型表面にワーク把持装置が接触してガラスブランクあるいは金型表面が損傷してしまう場合があった。
 本発明は、プレス成形によって平面度が良好な磁気ディスク用ガラスブランクが得られるようにした磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、磁気ディスク用ガラスブランクを提供することを目的とする。
 本発明の他の目的は、プレス成形によって平面度が良好な磁気ディスク用ガラスブランクが得られ、かつ、ガラスブランクを金型から取り出すときにガラスブランクあるいは金型を損傷させることがないようにした、磁気ディスク用ガラスブランクの製造方法および磁気ディスク用ガラス基板の製造方法を提供することである。
 上記課題に直面して本発明者らが鋭意研究を重ねた結果、発明者らは新たなプレス成形方法を考案した。すなわち、本実施形態のガラスブランクの製造方法では、落下中の溶融ガラス塊を、溶融ガラス塊の落下方向に対して直交する方向(水平方向)に対向配置された一対の金型(プレス成形型)によりプレス成形する水平ダイレクトプレス法を採用している。この水平ダイレクトプレス法において溶融ガラス塊は、プレス成形されるまでの間、従来の垂直ダイレクトプレス法とは異なり、溶融ガラス塊よりも温度の低い部材に一時的に接触・保持されない。このため、プレス成形の開始直前の時点において、垂直ダイレクトプレス法では溶融ガラス塊の内部の粘度分布がプレス成形時に非常に広くなるのに対して、本実施形態の水平ダイレクトプレスでは、溶融ガラス塊の粘度分布は均一に保たれる。よって、垂直ダイレクトプレス法と比べて、水平ダイレクトプレス法では、プレス成形される溶融ガラス塊を均一に薄く延伸させることが極めて容易である。したがって、結果的に、垂直ダイレクトプレス法を利用してガラスブランクを作製した場合と比べて、水平ダイレクトプレス法を利用してガラスブランクを作製した場合では、平面度の低下を抜本的に抑制することが極めて容易である。
 また、溶融ガラス塊をプレス成形する際の一対の金型の対向位置における温度の差が小さい場合には、その差が大きい場合と比較して、生成されるガラスブランクの平面度を低下させることができる。これは、一対の金型間の温度差がより小さい場合には、高温の溶融ガラス塊が型の内周面に接触して急激に冷却するときの熱的均衡が実現されやすいため、冷却段階での一対の金型間での微小な熱変形度合いの差に起因して生じうるガラスブランクの平面度の低下をより抑制することができるためである。つまり、溶融ガラス塊をプレス成形する際の一対の金型の対向位置における温度差と、プレス成形後に得られたガラスブランクの平面度との間には相関関係が存在する。この相関関係を既知とすると、磁気ディスク用ガラス基板に要求される平面度を実現するための一対の金型間の温度差(絶対値)の最大値が分かる。そこで、一対の金型間の温度差をその最大値以下となるように制御することで、磁気ディスク用ガラス基板に要求される平面度を実現することができる。
 上述した観点から、本発明の第1の観点は、溶融ガラスの塊を一対の金型を用いてプレス成形する成形工程を含む磁気ディスク用ガラスブランクの製造方法であって、上記溶融ガラスをプレス成形する際の一対の金型の対向位置における温度差と、プレス成形後に得られたガラスブランクの平面度との間の相関関係を得て、上記相関関係に基づいて、ガラスブランクに要求される平面度を実現できる上記一対の金型の温度差を求め、一対の金型の温度が上記求められた温度差以内でプレス成形を行うことを特徴とする。
 上記磁気ディスク用ガラスブランクの製造方法において、好ましくは、上記ガラスブランクに要求される平面度は、上記磁気ディスクがハードディスク装置に搭載されたときにヘッドの接触を防止しうる磁気ディスクの平面度に等しいことを特徴とする。
 上記磁気ディスク用ガラスブランクの製造方法において、好ましくは、成形工程では、上記金型の溶融ガラスと接触する部分の温度が、上記一対の金型間で実質的に同一の温度となるようにプレス成形することを特徴とする。
 上記磁気ディスク用ガラスブランクの製造方法において、ガラスブランクが金型に接触してから離れるまでの上記一対の金型の温度を、上記溶融ガラスのガラス転移点(Tg)未満の温度とすることを特徴とする。
 上記磁気ディスク用ガラスブランクの製造方法において、上記金型に離型材を付着させることなくプレス成形することを特徴とする。
 上記磁気ディスク用ガラスブランクの製造方法において、成形後に得られるガラスブランクの100℃~300℃の熱膨張係数が30×10-7~100×10-7(K-1)の範囲内であることを特徴とする。
 上記磁気ディスク用ガラスブランクの製造方法において、前記成形工程では、ガラスブランクの平面度が8μm以下となるように上記溶融ガラスをプレス成形することを特徴とする。
 本発明の第2の観点は、溶融ガラスの塊を一対の金型を用いてプレス成形する成形工程を含む磁気ディスク用ガラスブランクの製造方法であって、前記成形工程では、上記一対の金型の対向位置における温度差が10℃以内となるようにして上記溶融ガラスをプレス成形することを特徴とする。
 本発明の第3の観点は、溶融ガラスの塊を一対の金型を用いてプレス成形する成形工程を含む磁気ディスク用ガラスブランクの製造方法であって、前記成形工程では、ガラスブランクの平面度が8μm以下となるように上記溶融ガラスをプレス成形することを特徴とする。
 本発明の磁気ディスク用ガラス基板の製造方法は、第1~第3の観点に係る磁気ディスク用ガラス基板ブランクの製造方法により製造されたガラスブランクに対して、取り代50μm以下の研磨加工を施して上記磁気ディスク用ガラス基板を製造することを特徴とする。
 本発明の磁気ディスク用ガラス基板の製造方法は、第1~第3の観点に係る磁気ディスク用ガラスブランクの製造方法によって得られた磁気ディスク用ガラスブランクを用いて磁気ディスク用ガラス基板を製造することを特徴とする。
 ところで、上記水平ダイレクトプレス法では、溶融ガラス塊の落下方向に対して直交する方向に対向配置された一対の金型によりプレス成形するため、型を開いた後は、多くの場合、プレス成形されたガラスブランクは自重により鉛直下方に落下する。そのため、金型からガラスブランクを取り出すためのワーク把持装置を必要とせず、それゆえ、垂直ダイレクトプレス法とは異なり、ガラスブランクを金型から取り出すときにガラスブランクあるいは金型を損傷させることがない。
 しかし、発明者らが上記考案した水平ダイレクトプレス法によって多くのプレス成形を行った結果、型を開いた後においても、水平方向に配置された一対の金型のうちの一方の金型にガラスブランクが貼り付いている場合が生ずる事実が判明した。金型に対するガラスブランクの貼りつき力は大きくないため、型を開いた後に型の内部からプレス成形面に向けて(つまり、水平方向に)空気を吐出させ、その吐出力によってガラスブランクを型から剥離させる方法が検討された。この方法ではガラスブランクを型から剥離させることは可能であったものの、ガラスブランクを量産するときにガラスブランクの平面度が低下してしまうという問題が生じた。これは、以下の理由による。つまり、ガラスブランクが一対の型のいずれの型に貼り付いているかについては、型を開けてみないと分からない。そのため、空気の水平方向の吐出を双方の金型に対して行わざるを得ないが、そうすると、ガラスブランクが貼り付いた型とそうでない型との間で空気の吐出による金型の冷却度合いが異なるため、金型間で温度差が大きくなった状態で次の溶融ガラス塊をプレスすることになる。金型間で温度差が大きい状態でプレス成形を行うと、成形されるガラスブランクの一方の面と他方の面とで冷却過程が異なることとなって歪みが生じ、その結果、平面度が低下する。
 上述したように、ある溶融ガラスのプレス成形と次の溶融ガラスのプレス成形の間に、金型間の温度差が大きくなる要因が存在する場合には、次の溶融ガラスを基に成形されたガラスブランクの平面度が低下する。本発明者らは、上記知見を基に、ある溶融ガラスのプレス成形と次の溶融ガラスのプレス成形の間に、金型間の温度差が大きくなる要因が存在する場合であっても、ガラスブランクの平面度を悪化させない方法を考案した。この方法は、開型後に一方の金型に貼り付いたガラスブランクを金型から取り出した後から、新たな溶融ガラスをプレス成形のために落下させるまでの間に、上記一対の金型の各々の溶融ガラスと接触する部分の温度差を低減すべく、上記部分と均熱材を面接触させることを含む。この方法によれば、例えば上述したようにガラスブランクを型から剥離させるための処理等、金型間の温度差が大きくなる要因を生じさせる処理を行った場合であっても、次の溶融ガラスをプレス成形する時点では、一対の金型の等温化が短時間で図れるため、連続的に溶融ガラスをプレス成形するときに(つまり、量産工程において)平面度が良好なガラスブランクを連続的に得ることができる。
 上述した観点から、本発明の第4の観点は、落下中の溶融ガラスを、落下方向と直交する方向から一対の金型を用いてプレス成形することにより、板状のガラスブランクを成形する成形工程を含む磁気ディスク用ガラスブランクの製造方法であって、上記成形工程は、開型してから新たな溶融ガラスをプレス成形するまでの間に、上記一対の金型間の温度差を低減するための均熱化工程を有することを特徴とする。
 上記磁気ディスク用ガラスブランクの製造方法において、上記均熱化工程は、上記一対の金型の少なくとも一方に均熱材を接触させる工程であることを特徴とする。
 上記磁気ディスク用ガラスブランクの製造方法において、好ましくは、成形工程では、上記金型の溶融ガラスと接触する部分の温度が、上記一対の金型間で実質的に同一の温度となるようにプレス成形することを特徴とする。
 上記磁気ディスク用ガラスブランクの製造方法において、ガラスブランクが金型に接触してから離れるまでの上記一対の金型の温度を、上記溶融ガラスのガラス転移点(Tg)未満の温度とすることを特徴とする。
 上記磁気ディスク用ガラスブランクの製造方法において、上記金型に離型材を付着させることなくプレス成形することを特徴とする。
 本発明の磁気ディスク用ガラス基板の製造方法は、第4の観点に係る磁気ディスク用ガラス基板ブランクの製造方法により製造されたガラスブランクに対して、取り代50μm以下の研磨加工を施して上記磁気ディスク用ガラス基板を製造することを特徴とする。
 本発明の磁気ディスク用ガラス基板の製造方法は、第4の観点に係る磁気ディスク用ガラスブランクの製造方法によって得られた磁気ディスク用ガラスブランクを用いて磁気ディスク用ガラス基板を製造することを特徴とする。
 さらに、本発明者らは、上記知見を基に、一対の金型のうちいずれかの金型からガラスブランクを剥離させるときに、金型間の温度差を大きくさせない方法を考案した。プレス成形後に一対の金型のうちのいずれかにガラスブランクが貼り付いた場合でも、そのガラスブランクを、金型間の温度差を大きくさせない方法で剥離させれば、その次の溶融ガラスをプレス成形する時点で金型間に温度差が大きくならないため、連続的に溶融ガラスをプレス成形するときに(つまり、量産工程において)平面度が良好なガラスブランクを連続的に得ることができる。
 上述した観点から、本発明の第5の観点は、落下中の溶融ガラスを、落下方向と直交する方向から一対の金型を用いてプレス成形することにより、板状のガラスブランクを成形する成形工程を含む磁気ディスク用ガラスブランクの製造方法であって、上記成形工程の後、上記金型に貼り付いたガラスブランクを上記金型間の温度差を発生させないように金型から剥離する剥離工程を行った後で、次の溶融ガラスに対して上記成形工程を行うことを特徴とする。
 上記磁気ディスク用ガラスブランクの製造方法の一形態において、上記剥離工程は、両金型とガラスブランクが接触した状態で、上記ガラスブランクの外周部の少なくとも一部を冷却することを特徴とする
 上記磁気ディスク用ガラスブランクの製造方法の一形態において、上記剥離工程は、ガラスブランクに対して気体を供給することで上記ガラスブランクの外周端部の少なくとも一部を冷却することを特徴とする。
 上記磁気ディスク用ガラスブランクの製造方法の一形態において、上記気体を供給するタイミングは、閉じた状態の上記一対の金型が開き始める直前に、または開き始めるタイミングと同時であることを特徴とする
 上記磁気ディスク用ガラスブランクの製造方法において、好ましくは、成形工程では、上記金型の溶融ガラスと接触する部分の温度が、上記一対の金型間で実質的に同一の温度となるようにプレス成形することを特徴とする。
 上記磁気ディスク用ガラスブランクの製造方法において、ガラスブランクが金型に接触してから離れるまでの上記一対の金型の温度を、上記溶融ガラスのガラス転移点(Tg)未満の温度とすることを特徴とする。
 上記磁気ディスク用ガラスブランクの製造方法において、上記金型に離型材を付着させることなくプレス成形することを特徴とする。
 上記磁気ディスク用ガラスブランクの製造方法において、金型の表面粗さ(Ra)が0.1μm以下であってよい。
 また、本発明の第6の観点は、落下中の溶融ガラスを、落下方向と直交する方向から一対の金型を用いてプレス成形することにより、板状のガラスブランクを成形する成形工程を含む磁気ディスク用ガラスブランクの製造方法であって、上記一対の金型の各々は、金型の閉型によって形成される空間に気体を導入するための通路を備え、上記成形工程では、金型の閉型時において各々の金型の上記通路を通して上記空間に気体を供給することを特徴とする。
 本発明の磁気ディスク用ガラス基板の製造方法は、第5又は第6の観点に係る磁気ディスク用ガラス基板ブランクの製造方法により製造されたガラスブランクに対して、取り代50μm以下の研磨加工を施して上記磁気ディスク用ガラス基板を製造することを特徴とする。
 本発明の磁気ディスク用ガラス基板の製造方法は、第5又は第6の観点に係る磁気ディスク用ガラスブランクの製造方法によって得られた磁気ディスク用ガラスブランクを用いて磁気ディスク用ガラス基板を製造することを特徴とする。
 本発明の磁気ディスク用ガラスブランクの製造方法によれば、プレス成形によって平面度が良好な磁気ディスク用ガラスブランクおよび磁気ディスク用ガラス基板を製造することができる。
 本発明の磁気ディスク用ガラスブランクの製造方法によれば、プレス成形によって平面度が良好な磁気ディスク用ガラスブランクが得られ、かつ、ガラスブランクを金型から取り出すときにガラスブランクあるいは金型を損傷させることがない。
実施形態の磁気ディスク用ガラス基板の外観形状を示す斜視図。 実施形態の磁気ディスク用ガラス基板の製造方法の一実施形態のフローを示す図。 実施形態のプレス成形において用いられる装置の平面図。 実施形態のプレス成形を示す図。 ゴブ形成形を用いた実施形態のプレス成形の変形例を示す図。 切断ユニットを用いないようにした、実施形態のプレス成形の変形例を示す図。 軟化炉で加熱した光学ガラスを用いた実施形態のプレス成形の変形例を示す図。 実施形態のプレス成形の別の変形例を示す図。 一対の金型間の温度差とガラスブランクの平面度との間の実施例における相関関係を示す図。 第2の実施形態のプレス成形における金型の均熱化処理を説明するための図。 第2の実施形態の金型の均熱化処理の前後における一対の金型の各々のプレス成形面の温度変化を例示する図。 第2の実施形態の金型の均熱化処理の前後における一対の金型の各々のプレス成形面の温度変化を例示する図。 第3の実施形態のプレス成形において、金型の閉型によって形成される空間に気体を供給する方法を例示する図。
 <第1の実施形態>
 以下、本実施形態の磁気ディスク用ガラスブランクの製造方法および磁気ディスク用ガラス基板の製造方法について詳細に説明する。
 [磁気ディスク用ガラス基板]
 図1に示すように、本実施形態における磁気ディスク用ガラス基板1は、円環状の薄板のガラス基板である。磁気ディスク用ガラス基板のサイズは問わないが、例えば、公称直径2.5インチの磁気ディスク用ガラス基板として好適である。公称直径2.5インチの磁気ディスク用ガラス基板の場合、例えば、外径が65mm、中心穴2の径が20mm、板厚Tが0.6~1.0mmである。実施形態の磁気ディスク用ガラス基板の主表面の平面度は例えば4μm以下であり、主表面の表面粗さ(算術平均粗さRa)は例えば0.2nm以下である。なお、最終製品である磁気ディスク用基板に求められる平面度は、例えば4μm以下である。
 本実施形態における磁気ディスク用ガラス基板の材料として、アモルファスのアルミノシリケートガラス、ソーダライムガラス、ボロシリケートガラスなどを用いることができる。特に、化学強化を施すことができ、また主表面の平面度及び基板の強度において優れた磁気ディスク用ガラス基板を作製することができるという点で、アモルファスのアルミノシリケートガラスを好適に用いることができる。また、これらガラス材料はアモルファスガラスとすると表面粗さを極めて小さくできるため好ましい。したがって、アモルファスのアルミノシリケートガラスとすると、強度と表面粗さ低減の両方の観点で好ましい。
 本実施形態の磁気ディスク用ガラス基板の組成を限定するものではないが、本実施形態のガラス基板は好ましくは、酸化物基準に換算し、モル%表示で、SiOを50~75%、Alを1~15%、LiO、NaO及びKOから選択される少なくとも1種の成分を合計で5~35%、MgO、CaO、SrO、BaO及びZnOから選択される少なくとも1種の成分を合計で0~20%、ならびにZrO、TiO、La、Y、Ta、Nb及びHfOから選択される少なくとも1種の成分を合計で0~10%、有する組成からなるアモルファスのアルミノシリケートガラスである。
 本実施形態のガラス基板は以下の組成からなるアモルファスのアルミノシリケートガラスでもよい。
 モル%表示にて、
 SiOを56~75%、
 Alを1~11%、
 LiOを0%超かつ4%以下、
 NaOを1%以上かつ15%未満、
 KOを0%以上かつ3%未満、
 含み、かつBaOを実質的に含まず、
 LiO、NaOおよびKOからなる群から選ばれるアルカリ金属酸化物の合計含有量が6~15%の範囲であり、
 NaO含有量に対するLiO含有量のモル比(LiO/NaO)が0.50未満であり、
 上記アルカリ金属酸化物の合計含有量に対するKO含有量のモル比{KO/(LiO+NaO+KO)}が0.13以下であり、
 MgO、CaOおよびSrOからなる群から選ばれるアルカリ土類金属酸化物の合計含有量が10~30%の範囲であり、
 MgOおよびCaOの合計含有量が10~30%の範囲であり、
 上記アルカリ土類金属酸化物の合計含有量に対するMgOおよびCaOの合計含有量のモル比{(MgO+CaO)/(MgO+CaO+SrO)}が0.86以上であり、
 上記アルカリ金属酸化物およびアルカリ土類金属酸化物の合計含有量が20~40%の範囲であり、
 上記アルカリ金属酸化物およびアルカリ土類金属酸化物の合計含有量に対するMgO、CaOおよびLiOの合計含有量のモル比{(MgO+CaO+LiO)/(LiO+NaO+KO+MgO+CaO+SrO)が0.50以上であり、
 ZrO、TiO、Y、La、Gd、NbおよびTaからなる群から選ばれる酸化物の合計含有量が0%超かつ10%以下であり、
 Al含有量に対する上記酸化物の合計含有量のモル比{(ZrO+TiO+Y+La+Gd+Nb+Ta)/Al}が0.40以上。
 本実施形態のガラス基板は以下の組成からなるアモルファスのアルミノシリケートガラスでもよい。
 モル%表示にて、
 SiOを50~75%、
 Alを0~5%、
 LiOを0~3%、
 ZnOを0~5%、
 NaOおよびKOを合計で3~15%、
 MgO、CaO、SrOおよびBaOを合計で14~35%、
 ZrO、TiO、La、Y、Yb、Ta、NbおよびHfOを合計で2~9%含み、
 モル比[(MgO+CaO)/(MgO+CaO+SrO+BaO)]が0.8~1の範囲であり、かつ
 モル比[Al/(MgO+CaO)]が0~0.30の範囲内であるガラス。
 [実施形態の磁気ディスク用ガラス基板の製造方法]
 次に、図2を参照して、磁気ディスク用ガラス基板の製造方法のフローを説明する。図2は、磁気ディスク用ガラス基板の製造方法の一実施形態のフローを示す図である。
 図2に示すように、本実施形態の磁気ディスク用ガラス基板の製造方法では先ず、円板上のガラスブランクをプレス成形により作製する(ステップS10)。次に、成形されたガラスブランクをスクライブして、円環状のガラス基板を作製する(ステップS20)。次に、スクライブされたガラス基板に対して形状加工(チャンファリング加工)を行う(ステップS30)。次に、ガラス基板に対して固定砥粒による研削を施す(ステップS40)。次に、ガラス基板の端面研磨を行う(ステップS50)。次に、ガラス基板の主表面に第1研磨を施す(ステップS60)。次に、第1研磨後のガラス基板に対して化学強化を施す(ステップS70)。次に、化学強化されたガラス基板に対して第2研磨を施す(ステップS80)。以上の工程を経て、磁気ディスク用ガラス基板が得られる。
 以下、各工程について、詳細に説明する。
 (a)プレス成形工程(ステップS10)
 先ず図3を参照して、プレス成形工程について説明する。図3は、プレス成形において用いられる装置の平面図である。図3に示されるように、装置101は、4組のプレスユニット120,130,140,150と、切断ユニット160と、切断刃165(図2には不図示)を備える。切断ユニット160は、溶融ガラス流出口111から流出する溶融ガラスの経路上に設けられる。装置101は、切断ユニット160によって切断されてできる溶融ガラスの塊(以降、ゴブともいう)を落下させ、そのとき、塊の落下経路の両側から、互いに対向する一対の型の面で塊を挟み込みプレスすることにより、ガラスブランクを成形する。
 具体的には、図4に示されるように、装置101は、溶融ガラス流出口111を中心として、4組のプレスユニット120,130,140及び150が90度おきに設けられている。
 プレスユニット120,130,140及び150の各々は、図示しない移動機構によって駆動されて、溶融ガラス流出口111に対して進退可能となっている。すなわち、溶融ガラス流出口111の真下に位置するキャッチ位置(図3においてプレスユニット140が実線で描画されている位置)と、溶融ガラス流出口111から離れた退避位置(図3において、プレスユニット120,130及び150が実線で描画されている位置及び、プレスユニット140が破線で描画されている位置)との間で移動可能となっている。
 切断ユニット160は、キャッチ位置(プレスユニットによるゴブの捕獲位置)と溶融ガラス流出口111との間の溶融ガラスの経路上に設けられ、溶融ガラス流出口111から流出される溶融ガラスを適量に切り出して溶融ガラスの塊を形成する。切断ユニット160は、一対の切断刃161及び162を有する。切断刃161及び162は、一定のタイミングで溶融ガラスの経路上で交差するよう駆動され、切断刃161及び162が交差したとき、溶融ガラスが切り出されてゴブが得られる。得られたゴブは、キャッチ位置に向かって落下する。
 プレスユニット120は、第1の型121、第2の型122、第1駆動部123及び第2駆動部124を有する。第1の型121と第2の型122の各々は、ゴブをプレス成形するための面を有するプレート状の部材である。この2つの面の法線方向が略水平方向となり、この2つの面が互いに平行に対向するよう配置されている。第1駆動部123は、第1の型121を第2の型122に対して進退させる。一方、第2駆動部124は、第2の型122を第1の型121に対して進退させる。第1駆動部123及び第2駆動部124は、例えばエアシリンダやソレノイドとコイルばねを組み合わせた機構など、第1駆動部123の面と第2駆動部124の面とを急速に近接させる機構を有する。
 なお、プレスユニット130,140及び150の構造は、プレスユニット120と同様であるため、説明は省略する。
 プレスユニットの各々は、キャッチ位置に移動した後、第1駆動部と第2駆動部の駆動により、落下するゴブを第1の型と第2の型の問で挟み込んで所定の厚さに成形すると共に急速冷却し、円形状のガラスブランクGを作製する。つぎに、プレスユニットは退避位置に移動した後、第1の型と第2の型を引き離し、成形されたガラスブランクGを落下させる。プレスユニット120,130,140及び150の退避位置の下には、第1コンベア171、第2コンベア172、第3コンベア173及び第4コンベア174が設けられている。第1~第4コンベア171~174の各々は、対応する各プレスユニットから落下するガラスブランクGを受け止めて図示しない次工程の装置にガラスブランクGを搬送する。
 装置101では、プレスユニット120,130,140及び150が、順番にキャッチ位置に移動して、ゴブを挟み込んで退避位置に移動するよう構成されているため、各プレスユニットでのガラスブランクGの冷却を待たずに、連続的にガラスブランクGの成形を行うことができる。
 図4(a)~(c)は、装置101を用いたプレス成形をより具体的に説明している。図4(a)は、ゴブを作る以前の状態を示す図であり、図4(b)は、切断ユニット160によってゴブが作られた状態を示す図であり、図4(c)は、ゴブをプレスすることによりガラスブランクGが成形された状態を示す図である。
 図4(a)に示されるように、溶融ガラス流出口111から、溶融ガラス材料LGが連続的に流出される。このとき、所定のタイミングで切断ユニット160を駆動し、切断刃161及び162によって溶融ガラス材料LGを切断する(図4(b))。これにより、切断された溶融ガラスは、その表面張力によって、概略球状のゴブGGとなる。溶融ガラス材料LGの時間当たりの流出量及び切断ユニット160の駆動間隔の調整は、目標とするガラスブランクGの大きさ、板厚から定まる体積に応じて適宜行われてよい。
 作られたゴブGG は、プレスユニット120の第1の型121と第2の型122の隙間に向かって落下する。このとき、ゴブGG が第1の型121と第2の型122の隙間に入るタイミングで、第1の型121と第2の型122が互いに近づくように、第1駆動部123及び第2駆動部124(図4参照)が駆動される。これにより、図4(c)に示されるように、第1の型121と第2の型122の間にゴブGG が捕獲(キャッチ)される。さらに、第1の型121の内周面121aと第2の型122の内周面122aとが、微小な間隔にて近接した状態になり、第1の型121の内周面121aと第2の型122の内周面122aの間に挟み込まれたゴブGG が、薄板状に成形される。なお、第1の型121の内周面121aと第2の型122の内周面122aの間隔を一定に維持するために、第1の型121の内周面121aおよび第2の型122の内周面122aにはそれぞれ、突起121bおよび突起122bが設けられる。すなわち、突起121bおよび突起122bが当接することによって、第1の型121の内周面121aと第2の型122の内周面122aの間隔は一定に維持されて、板状の空間が作られる。
 このプレス成形工程で一対の金型121,122を用いてプレス成形するが、本実施形態におけるプレス成形では、ガラスブランクの外形は金型の形状によって規制されない。すなわち、図4(c)に示すように、閉型により引き伸ばされたゴブが型の突起121b,122bまで到達することはない。
 第1の型121及び第2の型122には、図示しない温度調節機構が設けられており、第1の型121及び第2の型122の温度は、溶融ガラスLGのガラス転移温度(Tg)よりも十分に低い温度に保持されている。また、プレス成形工程において、第1の型121及び第2の型122に離型材を付着させる必要はない。
 なお、ゴブGGをプレス成形する際の第1の型121の内周面121aと第2の型122の内周面122aの対向位置における温度差と、プレス成形後に得られるガラスブランクの平面度との間には相関関係が存在する。つまり、第1の型121の内周面121aと第2の型122の内周面122aの対向位置における温度差が小さいほど、プレス成形後に得られるガラスブランクの平面度は良好なものとなる。これは、一対の型の間の温度がより近い場合には、高温のゴブGGが型の内周面に接触して急激に冷却するときに熱的均衡が実現されるため、冷却段階での一対の金型間での微小な熱変形度合いの差に起因して生じうるガラスブランクの平面度の低下を、より抑制することができるためである。
 そこで、この相関関係を既知としたならば、磁気ディスク用ガラス基板に要求される平面度を実現するための一対の金型間(第1の型121の内周面121aと第2の型122の内周面122aの間)の温度差(絶対値)の最大値が分かる。そこで、一対の金型間の温度差をその最大値以下となるように制御することで、磁気ディスク用ガラス基板に要求される平面度を実現することができる。例えば、磁気ディスク用ガラス基板に要求される平面度を4μmとしたならば、一対の金型間の上記温度差を10℃以内とした状態でプレス成形を行うようにする。
 金型間の温度差は、第1の型121の内周面121aおよび第2の型122の内周面122aのそれぞれの表面から型の内部に1mm移動した地点であって、内周面121aおよび内周面122aの互いに対向する地点(例えば、ガラスブランクの中心位置に対応する地点や内周面121aおよび内周面122aの中心点)で、熱電対を用いて計測するときの温度の差分である。金型間の温度差を測定するタイミングは、ゴブが第1の型121及び第2の型122に接触する時点である。
 磁気ディスク用ガラス基板に要求される平面度に応じて上記温度差は、上記相関関係から適宜決定してよいが、以下の観点から決定してもよい。
 本実施形態の磁気ディスク用ガラス基板は、最終製品である磁気ディスクとして、ハードディスク装置内で熱膨張係数の高い金属製のスピンドルに軸支されて組み込まれるため、磁気ディスク用ガラス基板の熱膨張係数もスピンドルと同程度に高いことが好ましい。このため、磁気ディスク用ガラス基板の熱膨張係数が高くなるように磁気ディスク用ガラス基板の組成は定められている。磁気ディスク用ガラス基板の熱膨張係数は、例えば、30×10-7~100×10-7(K-1)の範囲内であり、好ましくは、50×10-7~100×10-7(K-1)の範囲内である。80×10-7(K-1)以上であるとより好ましい。上記熱膨張係数は、磁気ディスク用ガラス基板の温度100度と温度300度における線膨張率を用いて算出される値である。熱膨張係数は、例えば30×10-7(K-1)未満または100×10-7より大きい場合、スピンドルの熱膨張係数との差が大きくなり好ましくない。この点から、熱膨張係数が高い磁気ディスク用ガラス基板を作製する際、上記プレス成形工程においてガラスブランクの主表面周りの温度条件を揃える。一例として、第1の型121の内周面121aと第2の型122の内周面122aの温度が実質的に同一になるように温度管理をすることが好ましい。実質的に温度が同一となるように温度管理される場合、例えば、温度差は5度以下であることが好ましい。上記温度差は、より好ましくは3度以下であり、特に好ましくは1度以下である。
 なお、本実施形態では水平プレスを用いるため幅広い範囲の粘度のガラスをプレス成形することが可能であるが、特に高い粘度のガラスに好適である。これは、鉛直方向に落下する途中でプレスするため、粘度が比較的高いガラスの方が真円度が良好となるためである。具体的には、500ポアズ以上であることが好ましい。なお、2000ポアズ以上になると薄板化が困難となるため好ましくない。
 装置101では、ゴブGG が第1の型121の内周面121a又は第2の型122の内周面122aに接触してから、第1の型121と第2の型122とがゴブGGを完全に閉じ込める状態になるまでの時間は約0.1秒以内(約0.06秒)と極めて短い。このため、ゴブGG は極めて短時間の内に第1の型121の内周面121a及び第2の型122の内周面122aに沿って広がって略円形状に成形され、さらに、急激に冷却されて非晶質のガラスとして固化する。これによって、ガラスブランクGが作製される。なお、本実施形態において成形されるガラスブランクGの大きさは、目的とする磁気ディスク用ガラス基板の大きさにもよるが、例えば、直径20~200mm程度である。
 また、本実施形態のプレス成形方法では、第1の型121の内周面121a及び第2の型122の内周面122aが形状転写された形でガラスブランクGが形成されるため、一対の型の内周面の平面度および平滑性は、目的とする磁気ディスク用ガラス基板のそれと同等なものとしておくことが好ましい。この場合、プレス成形後に、ガラスブランクGに対する表面加工工程、すなわち研削および研磨工程は不要とすることができる。すなわち、本実施形態のプレス成形方法において成形されるガラスブランクGは、最終的に得られる磁気ディスク用ガラス基板の目標板厚と同一の板厚であってよい。例えば、ガラスブランクGは、厚さ0.2~1.1mmの円形状の板である。内周面121a及び内周面122aの表面粗さは面内で実質的に同一であり、ガラスブランクGの算術平均粗さRaが好ましくは0.0005~0.05μmとなるように、より好ましくは0.001~0.1μmとなるように、調整される。ガラスブランクGの表面粗さは、内周面121a及び内周面122aの表面性状が形状転写されるため、面内で同一の表面粗さとなる。
 なお、プレス成形により得られるガラスブランクの表面粗さRaが0.2μm以下となるようにすることで、後述する研削工程を経ずに研磨工程を実施できる。表面粗さRaが0.2μmより大きいと、表面粗さを最終的に十分に小さいレベル(例えば、Raで0.2nm以下)となるまで研磨する際に、研磨取り代が多くなることで研磨時間が長くなり過ぎて生産性が低下し、さらには端部形状が悪化する等の問題が生ずる。
 第1の型121と第2の型122が閉じられた後、プレスユニット120は速やかに退避位置に移動し、代わりに、他のプレスユニット130がキャッチ位置に移動し、このプレスユニット130によって、ゴブGG のプレスが行われる。
 プレスユニット120が退避位置に移動した後、ガラスブランクGが十分に冷却されるまで(少なくとも屈服点よりも低い温度となるまで)、第1の型121と第2の型122は閉じた状態を維特する。この後、第1駆動部123及び第2駆動部124が駆動されて第1の型121と第2の型122が離間し、ガラスブランクGは、プレスユニット120を離れて落下し、下部にあるコンベア171に受け止められる(図3参照)。
 装置101では、上記のように、0.1秒以内(約0.06秒)という極めて短時間の問に第1の型121と第2の型122が閉じられ、第1の型121の内周面121aと第2の型122の内周面122aの全体に、略同時に溶融ガラスが接触することになる。このため、第1の型121の内周面121aと第2の型122の内周面122aが局所的に加熱されることは無く、内周面121aと内周面122aに歪みは殆ど生じない。また、溶融ガラスから第1の型121及び第2の型122に熱が移動する前に、溶融ガラスが円形状に成形されるため、成形される溶融ガラスの温度分布は略一様なものとなる。このため、溶融ガラスの冷却時、ガラス材料の収縮量の分布は小さく、ガラスブランクGの歪みが大きく発生することはない。したがって、作製されたガラスブランクGの主表面の平面度は、従来の上下型のプレス成形により作製されるガラスブランクに比べて向上する。
 なお、図4に示す例では、切断刃161及び162を用いて、流出する溶融ガラスLGを切断することによって略球状のゴブGGが形成される。しかしながら、溶融ガラス材料LG の粘度が、切り出そうとするゴブGGの体積に対して小さい場合は、溶融ガラスLGを切断するのみでは切断されたガラスが略球状とはならず、ゴブが作れない。このような場合は、ゴブを作るためのゴブ形成形を用いる。
 図5(a)~(c)は、図4に示す実施形態の変形例を説明する図である。この変形例ではゴブ形成形を用いる。図5(a)は、ゴブを作る前の状態を示す図であり、図5(b)は、切断ユニット160及びゴブ形成形180によってゴブGGが作られた状態を示す図であり、図5(c)は、ゴブGGをプレス成形してガラスブランクGが作られた状態を示す図である。
 図5(a)に示すように、プレスユニット120は、ブロック181,182を溶融ガラスLGの経路上で閉じることにより溶融ガラスLGの経路が塞がれ、ブロック181,182で作られる凹部180Cで、切断ユニット160で切断された溶融ガラスLGの塊が受け止められる。この後、図5(b)に示すように、ブロック181,182が開かれることにより、凹部180Cにおいて球状となった溶融ガラスLGが一度にプレスユニット120に向けて落下する。この落下時、ゴブGGは、溶融ガラスLGの表面張力により球状になる。球状のゴブGGは、落下途中、図5(c)に示すように、第1の型121と第2の型122とに挟まれてプレス成形されることにより、円形状のガラスブランクGが作製される。
 あるいは、図6(a)~(d)に示すように、装置101は、図5(a)~(c)に示す切断ユニット160を用いずに、ゴブ形成形180を、溶融ガラスLGの経路に沿って上流側方向あるいは下流側方向に移動させる移動機構を用いてもよい。図6(a)~(d)は、ゴブ形成形180を使用する変形例を説明する図である。図6(a),(b)は、ゴブGGが作られる前の状態を示す図であり、図6(c)は、ゴブ形成形180によってゴブGGが作られた状態を示す図であり、図6(d)は、ゴブGGをプレス成形してガラスブランクGが作られた状態を示す図である。
 図6(a)に示すように、ブロック181,182によって作られる凹部180Cが溶融ガラス流出口111から流出する溶融ガラスLGを受け止め、図6(b)に示すように、所定のタイミングでブロック181,182を溶融ガラスLGの流れの下流側に素早く移動させる。これにより、溶融ガラスLGが切断される。この後、所定のタイミングで、図6(c)に示すように、ブロック181,182が離間する。これにより、ブロック181,182で保持されている溶融ガラスLGは一度に落下し、ゴブGGは、溶融ガラスLGの表面張力により球状になる。球状のゴブGGは、落下途中、図6(d)に示すように、第1の型121と第2の型122とに挟まれてプレス成形されることにより、円形状のガラスブランクGが作製される。
 図7(a)~(c)は、ゴブGGとの代わりに図示されない軟化炉で加熱した光学ガラスの塊CPを落下させ、落下途中の両側から型221,222で挟んでプレス成形する変形例を説明する図である。図7(a)は、加熱した光学ガラスの塊を成形する前の状態を示す図であり、図7(b)は、光学ガラスの塊を落下する状態を示す図であり、図7(c)は、光学ガラスの塊をプレス成形してガラスブランクGが作られた状態を示す図である。
 図7(a)に示すように、装置201は、光学ガラスの塊CPをガラス材把持機構212でプレスユニット220の上部の位置に搬送し、この位置で、図7(b)に示すように、ガラス材把持機構212による光学ガラスの塊CPの把持を開放して、光学ガラスの塊CPを落下させる。光学ガラスの塊CPは、落下途中、図7(c)に示すように、第1の型221と第2の型222とに挟まれて円形状のガラスブランクGが成形される。第1の型221及び第2の型222は、図5に示す第1の型121及び第2の型122と同じ構成及び作用をするので、その説明は省略する。
 [プレス成形方法の変形例]
 上記プレス成形方法の変形例を図8を参照して説明する。
 この変形例では、図8(a)に示されるように、図4(a)~(c)に示される第1の型121及び第2の型122において、平面状のプレス成形面である内周面121aおよび内周面122aのそれぞれに対して反対側の外周面121cおよび122cの外周縁に、円板状のガラスブランクの外周を取り巻くようにヒートシンク121d,122dが設けられる。第1の型121および第2の型122にヒートシンク121d,122dが設けられることにより、プラス成形中の第1の型121および第2の型122には、図8(b)に示すような熱の流れが生じ、プレス成形中のガラスブランクの外周側の部分と中心部側では冷却に差が生じる。これにより、プレス成形後のガラスブランクGは、図8(c)に示すように、成形されたガラスブランクGの断面形状が外周側から中心側に向かうに従って板厚が減少する凹形状のガラスブランクが成形される。この場合においても、ガラスブランクGの平面度は、磁気ディスク用ガラス基板に与えられる目標平面度、例えば4μm以下にすることができる。これは、ガラスブランクGをプレス成形する際、金型のプレスの開始からプレスされたガラスブランクGの温度が歪点に下がるまでの期間、金型の両側の内周面121aおよび内周面122aのガラスブランクと接触する部分の温度が、内周面121aおよび内周面122a間で実質同一になるからである。
 また、凹形状のガラスブランクを意図的に成形するのは、後工程の固定砥粒による研削を効率よく行うためである。つまり、ガラスブランクの表面の平坦度が良好過ぎる場合にはダイヤモンドシートなどの固定砥粒がガラスブランクの表面上を滑ってしまい、研削が実質的に行われない場合が生ずるが、表面を凹形状とすることで、研削の際、ガラスブランクの板厚が厚い外周エッジ部が、ダイヤモンドシートなどの固定砥粒による研削加工の起点となり易くなる。また、研削における取り代を、厚さが均一なガラスブランクに比べて約半分に抑えることができる。さらに、平面度に比べて周期の長い表面凹凸であるガラスブランクの反りも改善することができる。
 図8(c)に示すような凹形状の断面を有するガラスブランクGの板厚は、最大厚さと最小厚さの差が、例えば8μm以下である。ガラスブランクGの板厚は、例えばマイクロメーターで測定することができる。
 (b)スクライブ工程(ステップS20)
 次に、スクライブ工程について説明する。プレス成形工程の後、スクライブ工程では、成形されたガラスブランクGに対してスクライブが行われる。
 ここでスクライブとは、成形されたガラスブランクGを所定のサイズのリング形状とするために、ガラスブランクGの表面に超鋼合金製あるいはダイヤモンド粒子からなるスクライバにより2つの同心円(内側同心円および外側同心円)状の切断線(線状のキズ)を設けることをいう。2つの同心円の形状にスクライブされたガラスブランクGは、部分的に加熱され、ガラスブランクGの熱膨張の差異により、外側同心円の外側部分および内側同心円の内側部分が除去される。これにより、円環状のガラス基板が得られる。
 なお、ガラスブランクに対してコアドリル等を用いて円孔を形成することにより円環状のガラス基板を得ることもできる。
 (c)形状加工工程(ステップS30)
 次に、形状加工工程について説明する。形状加工工程では、スクライブ工程後のガラス基板の端部に対するチャンファリング加工(外周端部および内周端部の面取り加工)を含む。チャンファリング加工は、スクライブ工程後のガラス基板の外周端部および内周端部において、主表面と、主表面と垂直な側壁部との間で、ダイヤモンド砥石により面取りを施す形状加工である。面取り角度は、主表面に対して例えば40~50度である。
 (d)固定砥粒による研削工程(ステップS40)
 固定砥粒による研削工程では、遊星歯車機構を備えた両面研削装置を用いて、形状加工工程後のガラス基板の主表面に対して研削加工(機械加工)を行う。研削による取り代は、例えば数μm~100μm程度である。両面研削装置は、上下一対の定盤(上定盤および下定盤)を有しており、上定盤および下定盤の間にガラス基板が狭持される。そして、上定盤または下定盤のいずれか一方、または、双方を移動操作させることで、ガラス基板と各定盤とを相対的に移動させることにより、このガラス基板の両主表面を研削することができる。
 なお、本実施形態のプレス成形工程では、極めて平面度の高いガラスブランクを作製できるため、この研削工程を行わなくてもよい。また、研削工程の前に、研削工程で用いた装置と同様の両面研削装置およびアルミナ系遊離砥粒を用いたラッピング工程を行ってもよい。
 (e)端面研磨工程(ステップS50)
 次に、研削工程後のガラス基板に対して端面研磨が行われる。
 端面研磨では、ガラス基板の内周端面及び外周端面をブラシ研磨により鏡面仕上げを行う。このとき、酸化セリウム等の微粒子を遊離砥粒として含むスラリーが用いられる。端面研磨を行うことにより、ガラス基板の端面での塵等が付着した汚染、ダメージあるいはキズ等の損傷の除去を行うことにより、サーマルアスペリティの発生の防止や、ナトリウムやカリウム等のコロージョンの原因となるイオン析出の発生を防止することができる。
 (f)第1研磨工程(ステップS60)
 次に、端面研磨工程後のガラス基板の主表面に第1研磨が施される。第1研磨による取り代は、例えば数μm~50μm程度である。第1研磨は、固定砥粒による研削により主表面に残留したキズ、歪みの除去、微小な表面凹凸(マイクロウェービネス、粗さ)の調整を目的とする。第1研磨工程では、研削工程で用いたものと同様の構造の両面研磨装置を用いて、研磨液を与えながら研磨する。研磨液に含有させる研磨剤は、例えば、酸化セリウム砥粒、あるいはジルコニア砥粒である。
 なお、第1研磨工程では、ガラス基板の主表面について、表面粗さ(Ra)を0.5nm以下とし、かつマイクロウェービネス(MW-Rq)を0.5nm以下とするように研磨を行う。ここで、マイクロウェービネスは、主表面全面の半径14.0~31.5mmの領域における波長帯域100~500μmの粗さとして算出されるRMS(Rq)値で表すことができ、例えば、ポリテック社製のModel-4224を用いて計測できる。
 表面粗さは、JIS B0601:2001により規定される算術平均粗さRaで表され、0.006μm以上200μm以下の場合は、例えば、ミツトヨ社製粗さ測定機SV-3100で測定し、JIS B0633:2001で規定される方法で算出できる。その結果、粗さが0.03μm以下であった場合は、例えば、日本Veeco社製走査型プローブ顕微鏡(原子間力顕微鏡;AFM)ナノスコープで計測しJIS R1683:2007で規定される方法で算出できる。本願においては、1μm×1μm角の測定エリアにおいて、512×512ピクセルの解像度で測定したときの算術平均粗さRaを用いることができる。
 (g)化学強化工程(ステップS70)
 次に、第1研磨工程後のガラス基板に対して化学強化処理が行われる。
 化学強化液として、例えば硝酸カリウム(60重量%)と硫酸ナトリウム(40重量%)の混合液等を用いることができる。化学強化工程では、化学強化液を例えば300℃~400℃に加熱し、洗浄したガラス基板を例えば200℃~300℃に予熱した後、ガラス基板を化学強化液中に例えば3時間~4時間浸漬する。
 ガラス基板を化学強化液に浸漬することによって、ガラス基板の表層のリチウムイオン及びナトリウムイオンが、化学強化液中のイオン半径が相対的に大きいナトリウムイオン及びカリウムイオンにそれぞれ置換されることで表層部分に圧縮応力層が形成され、ガラス基板が強化される。なお、化学強化処理されたガラス基板は洗浄される。例えば、硫酸で洗浄された後に、純水等で洗浄される。
 (h)第2研磨工程(ステップS80)
 次に、化学強化工程後のガラス基板に第2研磨が施される。第2研磨による取り代は、例えば1μm程度、具体的には、0.5~2μmの範囲内とすることが好ましい。取り代がこの範囲より小さいと、表面粗さを十分に低減できない場合がある。また、この範囲より大きいと、端部形状の悪化(ダレ等)を招く場合がある。第2研磨は、主表面の鏡面研磨を目的とする。第2研磨では例えば、第1研磨で用いた研磨装置を用いる。このとき、第1研磨と異なる点は、遊離砥粒の種類及び粒子サイズが異なることと、樹脂ポリッシャの硬度が異なることである。
 第2研磨に用いる遊離砥粒として、例えば、スラリーに混濁させたコロイダルシリカ等の微粒子(粒子サイズ:直径10~50nm程度)が用いられる。
 研磨されたガラス基板を中性洗剤、純水、IPA等を用いて洗浄することで、磁気ディスク用ガラス基板が得られる。
 第2研磨工程を実施することは必ずしも必須ではないが、ガラス基板の主表面の表面凹凸のレベルをさらに良好なものとすることができる点で実施することが好ましい。第2研磨工程を実施することで、主表面の粗さ(Ra)を0.15nm以下、より好ましくは0.1nm以下かつ上記主表面のマイクロウェービネス(MW-Rq)を0.3nm以下、より好ましくは0.1nm以下とすることができる。
 以上説明したように、本実施形態の磁気ディスク用ガラス基板の製造方法によれば、溶融ガラスの塊を一対の金型を用いてプレス成形するプレス成形工程を含む。そのため、一対の金型の内周面の表面粗さを良好なレベル(例えば磁気ディスク用ガラス基板に求められる表面粗さ)に設定しておけば、その表面粗さが、プレス成形によって得られるガラスブランクの表面粗さとして形状転写されるため、ガラスブランクの表面粗さを良好なレベルとすることができる。また、プレス成形工程では、溶融ガラスをプレス成形する際の一対の金型の対向位置における温度差と、プレス成形後に得られたガラスブランクの平面度との間の相関関係に基づいて、磁気ディスク用ガラス基板に要求される平面度を実現できる一対の金型の温度差を求め、一対の金型の温度を上記求められた温度差以内になるように一対の金型温度を制御しながら、プレス成形を行ってよい。したがって、本実施形態のプレス成形工程で得られるガラスブランクは、その主表面の表面粗さおよび平面度を磁気ディスク用ガラス基板に求められるレベルとすることができるため、後工程で主表面の加工工程を要しない。このガラスブランクを基に所定の形状に形状加工されたガラス基板に対して化学強化が施されるが、本実施形態では化学強化によってガラス基板の平面度に対して悪化させることはない。そのため、最終的に得られる磁気ディスク用ガラス基板は薄型で高い機械的強度を備え、かつ従来よりも平面度が高いものとなる。
 [磁気ディスク]
 以上の各工程を経て、磁気ディスク用ガラス基板が作製される。この磁気ディスク用ガラス基板を用いて、磁気ディスクは以下のようにして得られる。
 磁気ディスクは、例えばガラス基板の主表面上に、主表面に近いほうから順に、少なくとも付着層、下地層、磁性層(磁気記録層)、保護層、潤滑層が積層された構成になっている。
 例えば基板を真空引きを行った成膜装置内に導入し、DCマグネトロンスパッタリング法にてAr雰囲気中で、基板主表面上に付着層から磁性層まで順次成膜する。付着層としては例えばCrTi、下地層としては例えばCrRuを用いることができる。磁性層としては、例えばCoPt系合金を用いることができる。また、L10規則構造のCoPt系合金やFePt系合金を形成して熱アシスト磁気記録用の磁性層とすることもできる。上記成膜後、例えばCVD法によりCを用いて保護層を成膜し、続いて表面に窒素を導入する窒化処理を行うことにより、磁気記録媒体を形成することができる。その後、例えばPFPE(パーフルオロポリエーテル)をディップコート法により保護層上に塗布することにより、潤滑層を形成することができる。
 以下に、本発明を実施例によりさらに説明する。但し、本発明は実施例に示す態様に限定されるものではない。
 (1)溶融ガラスの作製
 以下の組成のガラスが得られるように原料を秤量し、混合して調合原料とした。この原料を熔融容器に投入して加熱、熔融し、清澄、攪拌して泡、未熔解物を含まない均質な熔融ガラスを作製した。得られたガラス中には泡や未熔解物、結晶の析出、熔融容器を構成する耐火物や白金の混入物は認められなかった。
 [ガラスの組成1]
 酸化物基準に換算し、モル%表示で、SiOを50~75%、Alを1~15%、LiO、NaO及びKOから選択される少なくとも1種の成分を合計で5~35%、MgO、CaO、SrO、BaO及びZnOから選択される少なくとも1種の成分を合計で0~20%、ならびにZrO、TiO、La、Y、Ta、Nb及びHfOから選択される少なくとも1種の成分を合計で0~10%、有する組成からなるアモルファスのアルミノシリケートガラス
 上記溶融ガラスを準備し、本発明のプレス成形方法(図3、図4の装置を用いた方法)を用いて、直径75mm、厚さ0.9mmのガラスブランクを作製した。溶融ガラス流出口111から吐出される溶融ガラス材料LGの温度は1300℃であり、この時の溶融ガラス材料LGの粘度は700ポアズである。また、第1の型及び第2の型の内周面の表面粗さ(算術平均粗さRa)は、0.01μm~0.1μmとした。
 溶融ガラス流出口111から吐出される溶融ガラス材料LGは、切断ユニット160によって切断され、直径約20mmのゴブGGが形成される。ゴブGGとは、プレスユニットによって荷重3000kgfで、その温度が溶融ガラス材料のガラス転移温度(Tg)以下となるまで(約10秒)プレスしつつ冷却され、直径75mmのガラスブランクが形成された。
 この実施例では、一例として、プレス成形工程によって成形されるガラスブランクの目標平面度(ガラスブランクに要求される平面度)を8μm以下とした。ここで、ガラスブランクの目標平面度を8μm以下としたのは、最終製品である磁気ディスクがハードディスク装置に搭載されたときにヘッドの接触を防止するために磁気ディスクの目標平面度を4μmとすることを想定しているためである。磁気ディスク用ガラス基板上の成膜の前後で平面度は変わらないため、磁気ディスク用ガラス基板の平面度を4μm以下とすれば磁気ディスクの平面度を4μm以下とすることができるが、プレス成形工程で成形されるガラスブランクの平面度が8μmを超えてしまうと、後工程の研削工程を行った場合でも研削工程後のガラス基板の平面度を4μm以下とすることが困難となる。そこで、ガラスブランクの目標平面度を8μm以下とした。なお、プレス成形工程で成形されるガラスブランクの平面度を4μm以下とすれば、後工程の研削工程を省略しても磁気ディスクの平面度を4μm以下とすることができるため、さらに好ましい。
 本実施例では、上記ガラスブランクの目標平面度を満足する一対の型の温度差の条件を見出すため、第1の型の温度を470℃一定とし、第2の型の温度を450~490℃と変化させて、得られるガラスブランクの平面度を測定した。なお、型の最低温度を450℃としたのは、450℃未満とするとプレス時にガラスが割れてしまう可能性があるためである。
 [実施例のガラスブランクの測定]
 実施例で作製された直径75mmのガラスブランクについて、平面度および表面粗さ(算術平均粗さRa)を測定した。
 平面度は、円板状のガラスブランクの主表面において、法線軸方向における最も低い位置と最も高い位置の高さの差として定義することができ、例えばNidek社製フラットネステスターFT-900を用いて測定した。表1に示す平面度の評価基準は、以下のとおりである。以下の基準において、ガラスブランクの平面度が8.0μm以下であれば研削工程にて平面度を磁気ディスク用ガラス基板の目標平面度である4μm以下のレベルまで改善できる点でよい。また、ガラスブランクの平面度が4.0μm以下であれば、研削工程を省略しても磁気ディスク用ガラス基板の目標平面度を達成できることになるためコスト低減になってさらに良い。
 ○○○:平面度が2.0μm以下
 ○○:平面度が2.0μmより大きく4.0μm以下
 ○:平面度が4.0μmより大きく8.0μm以下
 ×:平面度が8.0μmより大きい
 表面粗さは、JIS B0601:2001により規定される算術平均粗さRaで表され、0.006μm以上200μm以下の場合は、例えば、ミツトヨ社製粗さ測定機SV-3100で測定し、JIS B0633:2001で規定される方法で算出できる。その結果粗さが0.03μm以下であった場合は、例えば、日本Veeco社製走査型プローブ顕微鏡(原子間力顕微鏡;AFM)ナノスコープで計測しJIS R1683:2007で規定される方法で算出できる。本願においては、10μm×10μm角の測定エリアにおいて、256×256ピクセルの解像度で測定したときの算術平均粗さRaを用いた。その結果、ガラスブランクの表面粗さについてはすべての例において0.05μm以下であった。これは、型の温度とは無関係に、第1の型及び第2の型の内周面がガラスブランクに形状転写されるため、ガラスブランクの表面粗さが第1の型及び第2の型の内周面の表面粗さと同等となるためである。なお、算術平均粗さRaが0.1μm以下であれば、主表面に対する研削工程を省略して直接研磨工程を行うことで、目標とする磁気ディスク用ガラス基板の表面性状を得ることができる。
 なお、本実施形態のプレス成形方法では、従来のダイレクトプレス法とは異なり、溶融ガラスが金型に接触を開始してから極めて短期間に成形が完了するため、表面粗さを低下させても金型へのガラスゴブの焼き付きが生じない。そのため、本実施形態のプレス成形方法は、所望の表面粗さのガラスブランクを得るために金型の表面粗さを低減することができる点で好ましい。
Figure JPOXMLDOC01-appb-T000001
 (※)第1の型と第2の型の温度差は、第2の型の温度から第1の型の温度(ここでは、470℃)を引いた値とする。
 
 表1から、各サンプルのガラスブランクをプレス成形したときの一対の金型間の温度差と、各サンプルのガラスブランクの平面度との間には、相関関係が存在することが分かる。表1の各サンプルの温度差と平面度の関係をプロットすると、図9に示すように、ほぼ比例関係となっている。つまり、横軸の温度差をX[℃]、縦軸の平面度をY[μm]とすると、概ねY=0.8Xの関係が成立している。また、表1および図9から分かるように、特に温度差を1℃以下にした場合に最も高い平面度が得られた。
 また、図9を参照すると、ガラスブランクの目標平面度(本実施例では、8μm以下)を満足させるためには、第1の型と第2の型の温度差を約10℃以下とすればよいことが分かる。また、上述したように、プレス成形後の研削工程を省くためにはガラスブランクの平面度を4μm以下とすればよいが、この平面度を得るためには第1の型と第2の型の温度差を約5℃以下とすればよいことが分かる。
 また、他の組成のガラス組成(以下のガラスの組成2、ガラスの組成3)についても同様に、第1の型と第2の型の温度差と平面度とを測定した。なお、第1の型の温度を、それぞれのガラスのTgよりも30℃低い温度とし、第1の型と第2の型の温度差を表1と同様に設定した。その結果、型の温度差と平面度は、同程度の相関関係が得られた。
 [ガラスの組成2]
 以下の組成からなるアモルファスのアルミノシリケートガラス(Tg:630℃、100~300℃における平均線膨張係数が80×10-7/℃)。
 モル%表示にて、
 SiOを56~75%、
 Alを1~11%、
 LiOを0%超かつ4%以下、
 NaOを1%以上かつ15%未満、
 KOを0%以上かつ3%未満、
 含み、かつBaOを実質的に含まず、
 LiO、NaOおよびKOからなる群から選ばれるアルカリ金属酸化物の合計含有量が6~15%の範囲であり、
 NaO含有量に対するLiO含有量のモル比(LiO/NaO)が0.50未満であり、
 上記アルカリ金属酸化物の合計含有量に対するKO含有量のモル比{KO/(LiO+NaO+KO)}が0.13以下であり、
 MgO、CaOおよびSrOからなる群から選ばれるアルカリ土類金属酸化物の合計含有量が10~30%の範囲であり、
 MgOおよびCaOの合計含有量が10~30%の範囲であり、
 上記アルカリ土類金属酸化物の合計含有量に対するMgOおよびCaOの合計含有量のモル比{(MgO+CaO)/(MgO+CaO+SrO)}が0.86以上であり、
 上記アルカリ金属酸化物およびアルカリ土類金属酸化物の合計含有量が20~40%の範囲であり、
 上記アルカリ金属酸化物およびアルカリ土類金属酸化物の合計含有量に対するMgO、CaOおよびLiOの合計含有量のモル比{(MgO+CaO+LiO)/(LiO+NaO+KO+MgO+CaO+SrO)が0.50以上であり、
 ZrO、TiO、Y、La、Gd、NbおよびTaからなる群から選ばれる酸化物の合計含有量が0%超かつ10%以下であり、
 Al含有量に対する上記酸化物の合計含有量のモル比{(ZrO+TiO+Y+La+Gd+Nb+Ta)/Al}が0.40以上。
 [ガラスの組成3]
 以下の組成からなるアモルファスのアルミノシリケートガラス(Tg:680℃、100~300℃における平均線膨張係数が80×10-7/℃)。
 モル%表示にて、
 SiOを50~75%、
 Alを0~5%、
 LiOを0~3%、
 ZnOを0~5%、
 NaOおよびKOを合計で3~15%、
 MgO、CaO、SrOおよびBaOを合計で14~35%、
 ZrO、TiO、La、Y、Yb、Ta、NbおよびHfOを合計で2~9%含み、
 モル比[(MgO+CaO)/(MgO+CaO+SrO+BaO)]が0.8~1の範囲であり、かつ
 モル比[Al/(MgO+CaO)]が0~0.30の範囲内であるガラス。
 [実施例の磁気ディスク用ガラス基板の作製]
 上記サンプル2、サンプル4、サンプル6、サンプル7のガラスブランクを用い、図2に示したステップS40の工程のみ行わずにそれぞれ磁気ディスク用ガラス基板を作製した。つまり、平面度を向上させるための主表面の研削工程を行わずに磁気ディスク用ガラス基板を作製した。作製した磁気ディスク用ガラス基板は公称2.5インチサイズ(内径20mm、外径65mm、板厚0.8mm)である。
 なお、上記磁気ディスク用ガラス基板の作製に当たっては、第1研磨、第2研磨の各工程は、以下の条件で行った。
 ・第1研磨工程:酸化セリウム(平均粒子サイズ;直径1~2μm)、硬質ウレタンパッドを使用して研磨した。取り代10μm。
 ・第2研磨工程:コロイダルシリカ(平均粒子サイズ;直径0.03μm)、軟質ポリウレタンパッドを使用して研磨した。取り代1μm。
 次に、サンプル2、サンプル4、サンプル6、サンプル7のガラスブランクを元にして作製された磁気ディスク用ガラス基板に記録層を成膜して磁気ディスクを作製した(それぞれ順に、サンプル2A、サンプル4A、サンプル6A、サンプル7A)。
 なお、磁気ディスク用ガラス基板に対する記録層の成膜は以下の通り行った。まず、真空引きを行った成膜装置を用い、DCマグネトロンスパッタリング法にてAr雰囲気中で、基板上に付着層/軟磁性層/前下地層/下地層/主記録層/補助記録層/保護層/潤滑層を順次成膜した。なお、断らない限り成膜時のArガス圧は0.6Paで行った。付着層としては、Cr-50Tiを10nm成膜した。軟磁性層としては、0.7nmのRu層を挟んで、92Co-3Ta-5Zrをそれぞれ20nm成膜した。前下地層としては、Ni-5Wを8nm成膜した。下地層としては、0.6PaでRuを10nm成膜した上に5PaでRuを10nm成膜した。主記録層としては、3Paで90(72Co-10Cr-18Pt)-5(SiO2)-5(TiO2)を15nm成膜した。補助記録層としては、62Co-18Cr-15Pt-5Bを6nm成膜した。保護層としては、CVD法によりC2H4を用いて4nm成膜し、表層を窒化処理した。潤滑層としては、ディップコート法によりPFPEを用いて1nm形成した。
 [実施例の磁気ディスクの評価]
 サンプル2A、サンプル4A、サンプル6A、サンプル7Aの磁気ディスクを対象として、クボタコンプス社製HDFテスター(Head/Disk Flyability Tester)を用いて、DFH(Dynamic Fly height)ヘッド素子部のタッチダウン試験(DFHタッチダウン試験)を行った。この試験は、DFH機構によって素子部を徐々に突き出していき、AE(Acoustic Emission)センサによって磁気ディスク表面との接触を検知することによって、ヘッド素子部が磁気ディスク表面と接触するときの突き出し量を評価するものである。ヘッドは320GB/P磁気ディスク(2.5インチサイズ)向けのDFHヘッドを用いた。素子部の突き出しがない時の浮上量は10nmである。すなわち、例えば突き出し量が8nmのとき、ヘッド浮上量は2nmとなる。また、その他の条件は以下の通り設定した。
 ・評価半径:22mm
 ・磁気ディスクの回転数:5400rpm
 ・温度:25℃
 ・湿度:60%
 DFHタッチダウン試験の結果を表2に示す。なお、表2において、ヘッド素子部の突き出し量に応じて以下の通り評価した。
 ○:突き出し量≧8nm
 ×:突き出し量<8nm
Figure JPOXMLDOC01-appb-T000002
 
 なお、サンプル6A、7Aの突き出し量は7nm以上であり、サンプル2A、4Aの突き出し量は7nm未満であった。
 サンプル7Aについては、元になるサンプル7のガラスブランクが、表1に示したとおり磁気ディスク用ガラス基板の目標平面度である4.0μm以下の平面度である。そのため、サンプル7のガラスブランクを元に研削工程を経ずに作製された磁気ディスクであるサンプル7Aもまた、4.0μm以下の平面度となっている。その結果、サンプル7Aについては、研削工程を省略してもDFHヘッドの突き出し量を十分大きくすることができた。すなわち、サンプル7Aについては、研削工程を省略しても平面度、表面粗さともに良好で、かつ媒体化した際に良好なDFHタッチダウン試験結果が得られる磁気ディスク用ガラス基板が製造できることが確認できた。
 <第2の実施形態>
 本実施形態では、磁気ディスク用ガラスブランクの製造方法のプレス成形工程以外については、第1の実施形態と同一であり、重複説明を省略する。本実施形態では、磁気ディスク用ガラスブランクの製造方法におけるプレス成形工程において金型の均熱化処理が行われる点で第1の実施形態と相違する。
 [金型の均熱化処理]
 本実施形態のプレス成形工程では、連続して溶融ガラス材料LGを切断してゴブGGを落下させてガラスブランクGを作製するときに、あるゴブGGのプレス成形とその次のゴブGGのプレス成形の間のタイミングで、金型の均熱化処理(均熱化工程)を行う。この金型の均熱化処理について、図10~12を参照して説明する。図10は、本実施形態のプレス成形における金型の均熱化処理を説明するための図である。図11および図12はそれぞれ、金型の均熱化処理の前後における一対の金型の各々のプレス成形面の温度変化を例示する図である。
 図10の(a)~(d)は、図4に示したゴブGGのプレス成形からその次のゴブGGのプレス成形までの処理を順に示している。図10(a)は、図4(c)と同じである。図10(a)においてゴブをプレスすることによりガラスブランクGが成形された後に開型して、成形されたガラスブランクGが鉛直下方に落下する(図10には不図示)。その後、図10(b)に示すように、例えば下方から第1の型121および第2の型122の間に、所定の温度に設定された均熱材Hを導入する。さらに、図10(c)に示すように、均熱材Hを型内に導入した状態で型を閉じ、それによって、均熱材Hの両面が第1の型121の内周面121aおよび第2の型122の内周面122aと面接触させる。なお、この面接触は、図10(c)に示すように型の内周面(プレス形成面)の全面で行われてもよいが、少なくとも内周面のうちゴブと接触する部分で行われればよい。この面接触によって、一対の型の内周面は共に、均熱材Hの温度と同じか、あるいは均熱材Hの温度に近くなる。この面接触は、図10(d)に示すように溶融ガラスを切断して新たなゴブをプレス成形のために落下させるまで続けられる。金型と均熱材Hとの接触時間は、例えば1秒以上である。図10(d)の時点では、再び開型されて均熱材Hが下方に退避させられている。
 上述したように、均熱材は、ゴブを連続的にプレス成形していく場合、あるゴブのプレス成形からその次のゴブのプレス成形までの間に第1の型121および第2の型122の間の温度差を低減する、より好ましくは温度差をゼロにする目的で使用される。均熱材は、例えば銅、銅合金、アルミニウム又はアルミニウム合金等の高い熱伝導率を有する材料で形成されていることが好ましく、また、第1の型121の内周面121aおよび第2の型122の内周面122aと均等な圧力で面接触可能な外形を有している。均熱材を高い熱伝導率の材料で形成すると、均熱材全体を一様な温度に設定しやすいため、第1の型121および第2の型122の間の温度を揃えやすくなる。
 均熱材の温度は、好ましくは、仮に均熱材を金型に接触させずにプレス成形する場合におけるゴブと接触する部分の温度の上限値と下限値の間とする。均熱材をこの範囲の温度とすることで、型と均熱材の接触開始時点の温度差が小さい状態となるため、より短時間で第1の型121および第2の型122の間の温度差をゼロに近付けることができるようになる。
 図11は、型と均熱材の接触開始時点において型の温度よりも均熱材の温度の方が高い場合における一対の金型の各々のプレス成形面の温度変化(金型の均熱化処理による温度変化)を示している。
 図11において、時刻t0は、N個目のガラスブランクを作製するときに、ゴブのプレスを開始した時点を示している。なお、図11では時刻t0において、第1の型121と第2の型122の温度が同一である場合を想定している。時刻t0~t1の期間Aでは、高熱のゴブが双方の型に接触し、ゴブから双方の型に均等に熱が伝わるため、双方の型の温度が同じ勾配で上昇する。そして、時刻t1の前後でガラスブランクが型から取り出される。
 時刻t1~t2の期間Bでは、時刻t2のときの温度をピークとして、型のプレス成形面が外気によって徐々に冷却されて温度が低下していく。このとき、例えば、一対の型は、時刻t2において同じピーク温度であったとしても、温度の低下勾配が異なる場合がある。例えば、ガラスブランクを成形後に開型してもなおガラスブランクが一方の型に貼り付いている場合である。このとき、型の内部からプレス成形面に向けて空気を吐出させ、その吐出力によってガラスブランクを型から剥離させるようにした場合には、この空気の吐出を双方の金型に対して行うと、ガラスブランクが貼り付いた型とそうでない型との間で空気の吐出による金型の冷却度合いが異なるため、期間Bにおける各々の型の温度の低下勾配が異なってくる。
 本実施形態では、例えば時刻t2において均熱材を型内に導入し、時刻t2~t3の期間Cの間、均熱材を一対の型に面接触させる。これにより、時刻t3では、第1の型121と第2の型122の温度が均熱材と同一の温度まで上昇する。そして、時刻t3において、次のN+1個目のガラスブランクの作製のために、ゴブの落下およびプレスが開始される。時刻t3では金型間の温度がゼロとなっているので、N+1個目のガラスブランクの平面度が良好なものとなる。
 図12は、型と均熱材の接触開始時点において型の温度よりも均熱材の温度の方が低い場合における一対の金型の各々のプレス成形面の温度変化(金型の均熱化処理による温度変化)を示している。図12において、図11とは異なり、時刻t3では、第1の型121と第2の型122の温度が均熱材と同一の温度まで下降する。次のゴブのプレス成形までに金型間の温度差を低減、あるいはゼロにすればよいので、図11および図12に示したように、均熱材によって一対の型の温度を上昇させても下降させてもよい。
 第1の実施形態で述べたように、プレス成形工程では、溶融ガラスをプレス成形する際の一対の金型の対向位置における温度差と、プレス成形後に得られたガラスブランクの平面度との間に相関関係が存在するが、本実施形態では、上記金型の均熱化処理の実行によって、連続して行われるプレス成形の初期における金型間の温度差を低下、もしくはゼロにすることができるため、連続してガラスブランクを作製するときにガラスブランクの平面度を常に良好に保つことができる。
 <第3の実施形態>
 本実施形態では、磁気ディスク用ガラスブランクの製造方法のプレス成形工程以外については、第1の実施形態と同一であり、重複説明を省略する。本実施形態では、磁気ディスク用ガラスブランクの製造方法におけるプレス成形工程において剥離工程が設けられる点で第1の実施形態と相違する。
 剥離工程では、プレス成形後に第1の型121の内周面121aと第2の型122の内周面122aのいずれかにガラスブランクGが貼り付かずに確実に下方に落下させるための処理を行う。この剥離工程の処理について、図13を参照して説明する。図13は、剥離工程の処理として、金型の閉型によって形成される空間に気体を供給する方法を利用する場合を例示する図である。
 剥離工程では、両金型(第1の型121および第2の型122)とガラスブランクGが接触した状態でガラスブランクGの外周部の少なくとも一部を局所的に冷却し、ガラスブランクGを金型から剥がれ易くする。これは、ガラスブランクGの外周端部が冷却されて収縮し、金型の内周面から僅かに捲れることによって、金型が開いたときにガラスブランクGと金型の内周面の間に空気が入りやすくなり、剥がれ易くなると考えられる。
 両金型とガラスブランクGが接触した状態でガラスブランクGの外周部の少なくとも一部を冷却するための具体的な方法の例としては、金型の閉型によって形成される空間Sに気体(例えば空気(air))を供給する方法が挙げられる。つまり、閉じた状態の第1の型121及び第2の型122(例えば、図4(c)に示す閉型状態)が開き始める直前に、または開き始めるタイミングと同時に、ガラスブランクGを冷却させるべく、金型の閉型によって形成される空間Sに気体(例えば空気(air))を供給する。供給される気体の温度は、プレス成形時のガラスブランクGを局部的に冷却させる温度であればよく、例えば常温である。図13には、気体の供給態様として(a)及び(b)の2態様が図示されている。図13(a)に示す態様では、型の内周面121a,122aに平行に気体が空間Sに導入(供給)される。これにより、ガラスブランクGが局所的に冷却されて熱収縮し、その直後あるいは同時に型が開くため、ガラスブランクGが第1の型121の内周面121aと第2の型122の内周面122aのいずれかに貼り付くことなく、鉛直方向に落下する。
 なお、図13(a)では、各々の型で2箇所から気体が各々の金型に設けられた通路を介して空間Sに導入される一例を示しているが、これに限られない。空間Sは、ガラスブランクSの周上に沿ってドーナツ形状で形成されているため、型の周上の任意の場所から気体を空間Sに導入することができる。
 また、気体が空間Sへ導入されるタイミングは、上述したように、閉じた状態の型が開き始める直前に、または開き始めるタイミングと同時であるが、ここで「直前」とは例えば、型が開き始めるタイミングよりも10~1000ms程度前のタイミングをいう。
 一方、図13(b)に示す態様では、各々の金型に設けられた通路を介して、型の内周面121a,122aに垂直に(つまり、プレス方向に)気体が空間Sに導入される。このような導入態様であっても、対向して導入された気体が空間Sの内部で対流が発生し、ガラスブランクGへ向かう気体の流れが生ずるため、ガラスブランクGが局所的に冷却されて熱収縮する。したがって、図13(a)と同様、開型とともに、ガラスブランクGが第1の型121の内周面121aと第2の型122の内周面122aのいずれかに貼り付くことなく鉛直方向に落下する。
 図13に示した剥離工程の処理では、一対の金型の各々に対して対称となる位置から気体を導入し、導入される気体が一対の金型間で同一の量及び圧力であることが好ましい。また、一対の金型の各々に設けられる気体供給用の通路の構造(経路、通路径等)は、金型間で対称であることが好ましい。これによって、ガラスブランクGが形成されてから型が開くまでに、気体の導入による金型間の温度差への影響がないようにすることができる。そのため、上記剥離工程の実行に伴って、金型間の温度差が大きくなることによってガラスブランクGの平面度が悪化することを回避することができる。
 また、前述したように、金型の内周面121a及び内周面122aの表面粗さ(Ra)を0.1μm以下とすることで、成形工程で得られるガラスブランクGの表面粗さが良好なレベルとなる。従来、このような小さい表面粗さの内周面を備えた金型で成形すると、成形後にガラスブランクGが金型の内周面に貼り付き易かったが、本実施形態では、上記剥離工程によって、いずれかの金型の内周面に貼り付くことなく金型を落下させることができる。つまり、上記剥離工程によれば、ガラスブランクGの表面粗さを低下させる点と、成形後にガラスブランクが金型に貼り付かないようにする点とを両立させることができる。つまり、特に小さい表面粗さが求められるガラスブランクの製造において、上記剥離工程を好適に用いることができる。
 第1の実施形態で述べたように、プレス成形工程では、溶融ガラスをプレス成形する際の一対の金型の対向位置における温度差と、プレス成形後に得られたガラスブランクの平面度との間に相関関係が存在するが、本実施形態では、剥離工程の処理の実行によって、プレス成形後にいずれかの型にガラスブランクが貼り付くことを確実に防止するとともに、この剥離工程の処理によって金型間の温度差が大きくならないため、連続してガラスブランクを作製するときにガラスブランクの平面度が悪化することが避けられる。
 以上、本発明の実施形態について詳細に説明したが、本発明の磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、磁気ディスク用ガラスブランクは上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのは勿論である。
 1…磁気ディスク用ガラス基板
 2…中心穴

Claims (37)

  1.  溶融ガラスの塊を一対の金型を用いてプレス成形する成形工程を含む磁気ディスク用ガラスブランクの製造方法であって、
     上記溶融ガラスをプレス成形する際の一対の金型の対向位置における温度差と、プレス成形後に得られたガラスブランクの平面度との間の相関関係を得て、
     上記相関関係に基づいて、ガラスブランクに要求される平面度を実現できる上記一対の金型の温度差を求め、
     一対の金型の温度が上記求められた温度差以内でプレス成形を行うことを特徴とする磁気ディスク用ガラスブランクの製造方法。
  2.  上記ガラスブランクに要求される平面度は、磁気ディスクがハードディスク装置に搭載されたときにヘッドの接触を防止しうる磁気ディスクの平面度に等しいことを特徴とする、請求項1に記載された磁気ディスク用ガラスブランクの製造方法。
  3.  上記成形工程では、落下中の上記溶融ガラスの塊を、その落下方向と直交する方向から上記一対の金型を用いてプレス成形することを特徴とする、請求項1または2に記載された磁気ディスク用ガラスブランクの製造方法。
  4.  上記成形工程では、上記金型の溶融ガラスと接触する部分の温度が、上記一対の金型間で実質的に同一の温度となるようにプレス成形することを特徴とする、請求項1~3のいずれかに記載された磁気ディスク用ガラスブランクの製造方法。
  5.  ガラスブランクが金型に接触してから離れるまでの上記一対の金型の温度を、上記溶融ガラスのガラス転移点(Tg)未満の温度とすることを特徴とする請求項1~4のいずれかに記載の磁気ディスク用ガラスブランクの製造方法。
  6.  上記成形工程では、上記金型に離型材を付着させることなくプレス成形することを特徴とする、請求項1~5のいずれかに記載された磁気ディスク用ガラスブランクの製造方法。
  7.  プレス成形後に得られるガラスブランクの100℃~300℃の熱膨張係数が30×10-7~100×10-7(K-1)の範囲内であることを特徴とする、請求項1~6のいずれかに記載された磁気ディスク用ガラスブランクの製造方法。
  8.  前記成形工程では、ガラスブランクの平面度が8μm以下となるように上記溶融ガラスをプレス成形することを特徴とする、請求項1~7のいずれかに記載された磁気ディスク用ガラスブランクの製造方法。
  9.  溶融ガラスの塊を一対の金型を用いてプレス成形する成形工程を含む磁気ディスク用ガラスブランクの製造方法であって、
     前記成形工程では、上記一対の金型の対向位置における温度差が10℃以内となるようにして上記溶融ガラスをプレス成形することを特徴とする磁気ディスク用ガラスブランクの製造方法。
  10.  溶融ガラスの塊を一対の金型を用いてプレス成形する成形工程を含む磁気ディスク用ガラスブランクの製造方法であって、
     前記成形工程では、ガラスブランクの平面度が8μm以下となるように上記溶融ガラスをプレス成形することを特徴とする磁気ディスク用ガラスブランクの製造方法。
  11.  請求項1~10のいずれかに記載された磁気ディスク用ガラスブランクの製造方法により製造されたガラスブランクに対して、取り代50μm以下の研磨加工を施して磁気ディスク用ガラス基板を製造することを特徴とする、磁気ディスク用ガラス基板の製造方法。
  12.  請求項1~10のいずれか1項に記載の磁気ディスク用ガラスブランクの製造方法によって得られた磁気ディスク用ガラスブランクを用いて磁気ディスク用ガラス基板を製造することを特徴とする、磁気ディスク用ガラス基板の製造方法。
  13.  磁気ディスクがハードディスク装置に搭載されたときにヘッドの接触を防止しうる磁気ディスクに要求される平面度、と実質的に同一の平面度を有することを特徴とする、磁気ディスク用ガラスブランク。
  14.  プレス成形で作製されたことを特徴とする、請求項13に記載された磁気ディスク用ガラスブランク。
  15.  前記平面度は、ガラスブランクの主表面上で直径65mmの領域を選択して測定したときの値が4μm以下であることを特徴とする、請求項13または14に記載された磁気ディスク用ガラスブランク。
  16.  一対の主表面の表面粗さ(Ra)が0.1μm以下であることを特徴とする、請求項13~15のいずれかに記載された磁気ディスク用ガラスブランク。
  17.  一対の主表面のガラス組成が実質的に同一であることを特徴とする、請求項13~16のいずれかに記載された磁気ディスク用ガラスブランク。
  18.  ガラスブランクの主表面上で直径65mmの領域を選択して測定したときの板厚の最大値と最小値の差が8μm以下であることを特徴とする、請求項13~17のいずれかに記載された磁気ディスク用ガラスブランク。
  19.  ガラスブランクの断面形状が外周側から中心側に向かうに従って板厚が減少することを特徴とする、請求項13~18のいずれかに記載された磁気ディスク用ガラスブランク。
  20.  落下中の溶融ガラスを、落下方向と直交する方向から一対の金型を用いてプレス成形することにより、板状のガラスブランクを成形する成形工程を含む磁気ディスク用ガラスブランクの製造方法であって、
     上記成形工程は、開型してから新たな溶融ガラスをプレス成形するまでの間に、上記一対の金型間の温度差を低減するための均熱化工程を有することを特徴とする磁気ディスク用ガラスブランクの製造方法。
  21.  上記均熱化工程は、上記一対の金型の少なくとも一方に均熱材を接触させる工程であることを特徴とする、請求項20に記載された磁気ディスク用ガラスブランクの製造方法。
  22.  上記成形工程では、上記金型の溶融ガラスと接触する部分の温度が、上記一対の金型間で実質的に同一の温度となるようにプレス成形することを特徴とする、請求項20または21に記載された磁気ディスク用ガラスブランクの製造方法。
  23.  ガラスブランクが金型に接触してから離れるまでの上記一対の金型の温度を、上記溶融ガラスのガラス転移点(Tg)未満の温度とすることを特徴とする請求項20~22のいずれかに記載の磁気ディスク用ガラスブランクの製造方法。
  24.  上記成形工程では、上記金型に離型材を付着させることなくプレス成形することを特徴とする、請求項20~23のいずれかに記載された磁気ディスク用ガラスブランクの製造方法。
  25.  請求項20~24のいずれかに記載された磁気ディスク用ガラスブランクの製造方法により製造されたガラスブランクに対して、取り代50μm以下の研磨加工を施して磁気ディスク用ガラス基板を製造することを特徴とする、磁気ディスク用ガラス基板の製造方法。
  26.  請求項20~24のいずれか1項に記載の磁気ディスク用ガラスブランクの製造方法によって得られた磁気ディスク用ガラスブランクを用いて磁気ディスク用ガラス基板を製造することを特徴とする、磁気ディスク用ガラス基板の製造方法。
  27.  落下中の溶融ガラスを、落下方向と直交する方向から一対の金型を用いてプレス成形することにより、板状のガラスブランクを成形する成形工程を含む磁気ディスク用ガラスブランクの製造方法であって、
     上記成形工程の後、上記金型に貼り付いたガラスブランクを上記金型間の温度差を発生させないように金型から剥離する剥離工程を行った後で、次の溶融ガラスに対して上記成形工程を行うことを特徴とする磁気ディスク用ガラスブランクの製造方法。
  28.  上記剥離工程は、両金型とガラスブランクが接触した状態で、上記ガラスブランクの外周部の少なくとも一部を冷却することを特徴とする請求項27に記載された磁気ディスク用ガラスブランクの製造方法。
  29.  上記剥離工程は、ガラスブランクに対して気体を供給することで上記ガラスブランクの外周端部の少なくとも一部を冷却することを特徴とする請求項28に記載された磁気ディスク用ガラスブランクの製造方法。
  30.  上記気体を供給するタイミングは、閉じた状態の上記一対の金型が開き始める直前に、または開き始めるタイミングと同時であることを特徴とする、請求項29に記載された磁気ディスク用ガラスブランクの製造方法。
  31.  上記成形工程では、上記金型の溶融ガラスと接触する部分の温度が、上記一対の金型間で実質的に同一の温度となるようにプレス成形することを特徴とする、請求項27~30のいずれかに記載された磁気ディスク用ガラスブランクの製造方法。
  32.  ガラスブランクが金型に接触してから離れるまでの上記一対の金型の温度を、上記溶融ガラスのガラス転移点(Tg)未満の温度とすることを特徴とする請求項27~31のいずれかに記載の磁気ディスク用ガラスブランクの製造方法。
  33.  上記成形工程では、上記金型に離型材を付着させることなくプレス成形することを特徴とする、請求項27~32のいずれかに記載された磁気ディスク用ガラスブランクの製造方法。
  34.  上記金型の表面粗さ(Ra)が0.1μm以下であることを特徴とする請求項27~33のいずれかに記載の磁気ディスク用ガラスブランクの製造方法。
  35.  落下中の溶融ガラスを、落下方向と直交する方向から一対の金型を用いてプレス成形することにより、板状のガラスブランクを成形する成形工程を含む磁気ディスク用ガラスブランクの製造方法であって、
     上記一対の金型の各々は、金型の閉型によって形成される空間に気体を導入するための通路を備え、上記成形工程では、金型の閉型時において各々の金型の上記通路を通して上記空間に気体を供給することを特徴とする、磁気ディスク用ガラスブランクの製造方法。
  36.  請求項27~35のいずれかに記載された磁気ディスク用ガラスブランクの製造方法により製造されたガラスブランクに対して、取り代50μm以下の研磨加工を施して磁気ディスク用ガラス基板を製造することを特徴とする、磁気ディスク用ガラス基板の製造方法。
  37.  請求項27~35のいずれか1項に記載の磁気ディスク用ガラスブランクの製造方法によって得られた磁気ディスク用ガラスブランクを用いて磁気ディスク用ガラス基板を製造することを特徴とする、磁気ディスク用ガラス基板の製造方法。
     
PCT/JP2012/002941 2011-04-27 2012-04-27 磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、磁気ディスク用ガラスブランク WO2012147372A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG2013065222A SG193897A1 (en) 2011-04-27 2012-04-27 Method for producing glass blank for magnetic disc, method for producing glass substrate for magnetic disc, and glass blank for magnetic disc
US13/982,838 US9409809B2 (en) 2011-04-27 2012-04-27 Method for manufacturing glass blank for magnetic disk, method for manufacturing glass substrate for magnetic disk, glass blank for magnetic disk
JP2013511951A JP6000240B2 (ja) 2011-04-27 2012-04-27 磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、磁気ディスク用ガラスブランク
CN201280020198.9A CN103492328B (zh) 2011-04-27 2012-04-27 磁盘用玻璃毛坯的制造方法、磁盘用玻璃基板的制造方法、磁盘用玻璃毛坯

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-100211 2011-04-27
JP2011100211 2011-04-27
JP2011114454 2011-05-23
JP2011-114454 2011-05-23
JP2011127751 2011-06-07
JP2011-127751 2011-06-07

Publications (1)

Publication Number Publication Date
WO2012147372A1 true WO2012147372A1 (ja) 2012-11-01

Family

ID=47071902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002941 WO2012147372A1 (ja) 2011-04-27 2012-04-27 磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、磁気ディスク用ガラスブランク

Country Status (6)

Country Link
US (1) US9409809B2 (ja)
JP (2) JP6000240B2 (ja)
CN (1) CN103492328B (ja)
MY (1) MY166836A (ja)
SG (1) SG193897A1 (ja)
WO (1) WO2012147372A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214081A (ja) * 2013-04-30 2014-11-17 Hoya株式会社 磁気ディスク用ガラスブランクの製造方法及び磁気ディスク用ガラス基板の製造方法
US9187365B2 (en) 2013-02-25 2015-11-17 Corning Incorporated Methods for measuring the asymmetry of a glass-sheet manufacturing process

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG193896A1 (en) * 2011-04-21 2013-11-29 Hoya Corp Method for manufacturing glass blank for magnetic disk, method for manufacturing glass substrate for magnetic disk, glass blank for magnetic disk, glass substrate for magnetic disk, and magnetic disk
CN103562997A (zh) * 2011-06-30 2014-02-05 Hoya株式会社 磁盘用玻璃基板及其制造方法
WO2017171052A1 (ja) * 2016-03-31 2017-10-05 Hoya株式会社 キャリアおよび当該キャリアを用いた基板の製造方法
JP6991783B2 (ja) * 2017-08-23 2022-01-13 キヤノン株式会社 物品の搬送方法、物品の搬送装置、光学素子の製造方法、光学素子の製造装置、プログラム、記録媒体
CN109939915B (zh) * 2017-12-20 2020-10-23 深圳先进技术研究院 一种拼接式超声换能器及其制作方法
CN108911482A (zh) * 2018-08-08 2018-11-30 东旭科技集团有限公司 3d玻璃成型设备及成型方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172029A (ja) * 1999-12-15 2001-06-26 Asahi Techno Glass Corp 肉薄板状ガラス、肉薄板状ガラスの製造方法および肉薄板状ガラス用成形型
JP2004196651A (ja) * 2002-12-04 2004-07-15 Fuji Electric Device Technology Co Ltd 記憶媒体用ガラス基板の製造方法および装置、記憶媒体用ガラス基板及び記憶媒体
JP2005263574A (ja) * 2004-03-19 2005-09-29 Konica Minolta Opto Inc 情報記録媒体用ガラス基板の製造方法
JP2008174402A (ja) * 2007-01-16 2008-07-31 Konica Minolta Opto Inc ガラス基板成形用金型、ガラス基板の製造方法、情報記録媒体用ガラス基板の製造方法及び情報記録媒体の製造方法
JP2010105874A (ja) * 2008-10-31 2010-05-13 Ohara Inc 薄板状ガラス成形体の製造方法及びディスク状磁気記録媒体の製造方法
JP2011040122A (ja) * 2009-08-07 2011-02-24 Asahi Glass Co Ltd 情報記録媒体基板用ガラス、情報記録媒体用ガラス基板および磁気ディスク

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4372774A (en) * 1978-08-17 1983-02-08 Pilkington Brothers Limited Thermal treatment of glass
JPH01133948A (ja) * 1987-11-18 1989-05-26 Canon Inc 光学素子の製造方法
JPH11228153A (ja) * 1998-02-20 1999-08-24 Ngk Insulators Ltd ガラス成形用プレス型
US20020009602A1 (en) * 2000-03-13 2002-01-24 Hoya Corporation Method and apparatus of fabricating glass molded article, method of fabricating glass substrate, and information recording medium
TWI250135B (en) 2001-10-15 2006-03-01 Hoya Corp Optical glass, glass material for press molding, optical element, and method of manufacturing same
US20030164004A1 (en) * 2002-02-07 2003-09-04 Hoya Corporation Method of manufacturing glass optical elements and method of determining glass composition of glass material
CN1293004C (zh) 2003-09-19 2007-01-03 Hoya株式会社 玻璃成型体、坯料、基板及光学元件的制造方法
EP1604959A1 (en) * 2004-06-02 2005-12-14 Kabushiki Kaisha Ohara An optical glass
JP4424675B2 (ja) 2005-03-28 2010-03-03 Hoya株式会社 磁気ディスク用ガラス基板の製造方法、並びに、磁気ディスクの製造方法
JP2009269762A (ja) 2008-04-30 2009-11-19 Fuji Electric Device Technology Co Ltd ガラス素材およびその成形用金型ならびに磁気ディスク用ガラス基板の製造方法
SG177345A1 (en) * 2009-12-29 2012-02-28 Hoya Corp Glass substrate for magnetic disk and manufacturing method thereof
US8973404B2 (en) * 2010-03-31 2015-03-10 Hoya Corporation Manufacturing method of glass substrate for magnetic disk, manufacturing method of glass blank, glass substrate for magnetic disk, and glass blank
US8806895B2 (en) * 2010-12-09 2014-08-19 Hoya Corporation Manufacturing method for a glass substrate for magnetic disk
US8567216B2 (en) * 2011-01-31 2013-10-29 Hoya Corporation Manufacturing method of a sheet glass material for magnetic disk, manufacturing method of a glass substrate for magnetic disk
US8806893B2 (en) * 2011-02-18 2014-08-19 Hoya Corporation Manufacturing method of a glass blank for magnetic disk and manufacturing method of a glass substrate for magnetic disk
JP6009194B2 (ja) * 2011-03-31 2016-10-19 Hoya株式会社 磁気ディスク用板状ガラス素材の製造方法、磁気ディスク用ガラス基板の製造方法
US8844320B2 (en) * 2011-03-31 2014-09-30 Hoya Corporation Manufacturing method of a sheet glass material for magnetic disk and manufacturing method of a glass substrate for magnetic disk
SG193896A1 (en) * 2011-04-21 2013-11-29 Hoya Corp Method for manufacturing glass blank for magnetic disk, method for manufacturing glass substrate for magnetic disk, glass blank for magnetic disk, glass substrate for magnetic disk, and magnetic disk
SG193895A1 (en) * 2011-04-27 2013-11-29 Hoya Corp Method for producing glass blank for magnetic disc, and method for producing glass substrate for magnetic disc
US9153269B2 (en) * 2011-05-23 2015-10-06 Hoya Corporation Method for manufacturing glass substrate for magnetic disk
CN103562997A (zh) * 2011-06-30 2014-02-05 Hoya株式会社 磁盘用玻璃基板及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172029A (ja) * 1999-12-15 2001-06-26 Asahi Techno Glass Corp 肉薄板状ガラス、肉薄板状ガラスの製造方法および肉薄板状ガラス用成形型
JP2004196651A (ja) * 2002-12-04 2004-07-15 Fuji Electric Device Technology Co Ltd 記憶媒体用ガラス基板の製造方法および装置、記憶媒体用ガラス基板及び記憶媒体
JP2005263574A (ja) * 2004-03-19 2005-09-29 Konica Minolta Opto Inc 情報記録媒体用ガラス基板の製造方法
JP2008174402A (ja) * 2007-01-16 2008-07-31 Konica Minolta Opto Inc ガラス基板成形用金型、ガラス基板の製造方法、情報記録媒体用ガラス基板の製造方法及び情報記録媒体の製造方法
JP2010105874A (ja) * 2008-10-31 2010-05-13 Ohara Inc 薄板状ガラス成形体の製造方法及びディスク状磁気記録媒体の製造方法
JP2011040122A (ja) * 2009-08-07 2011-02-24 Asahi Glass Co Ltd 情報記録媒体基板用ガラス、情報記録媒体用ガラス基板および磁気ディスク

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9187365B2 (en) 2013-02-25 2015-11-17 Corning Incorporated Methods for measuring the asymmetry of a glass-sheet manufacturing process
JP2014214081A (ja) * 2013-04-30 2014-11-17 Hoya株式会社 磁気ディスク用ガラスブランクの製造方法及び磁気ディスク用ガラス基板の製造方法

Also Published As

Publication number Publication date
CN103492328B (zh) 2016-01-27
US20140065446A1 (en) 2014-03-06
JP6148388B2 (ja) 2017-06-14
JPWO2012147372A1 (ja) 2014-07-28
SG193897A1 (en) 2013-11-29
JP2016204259A (ja) 2016-12-08
MY166836A (en) 2018-07-24
US9409809B2 (en) 2016-08-09
JP6000240B2 (ja) 2016-09-28
CN103492328A (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
JP6148388B2 (ja) 磁気ディスク用ガラスブランクの製造方法
JP6259022B2 (ja) ガラスブランク
JP5209807B2 (ja) 磁気ディスク用ガラス基板の製造方法
WO2013001841A1 (ja) 磁気ディスク用ガラス基板及びその製造方法
JP6234522B2 (ja) 磁気ディスク用ガラス基板の製造方法
JP6138042B2 (ja) 磁気ディスク用ガラス基板の製造方法
JP2012230748A (ja) 磁気ディスク用ガラス基板の製造方法
WO2011122054A1 (ja) 磁気ディスク用ガラス基板及びガラスブランクの製造方法、および、磁気ディスク用ガラス基板及びガラスブランク
JP5739552B2 (ja) 磁気ディスク用ガラスブランクの製造方法および磁気ディスク用ガラス基板の製造方法
WO2013147149A1 (ja) 磁気ディスク用ガラスブランクの製造方法および磁気ディスク用ガラス基板の製造方法
JP2013077366A (ja) 磁気ディスク用ガラス基板の製造方法
JP2013209262A (ja) 磁気ディスク用ガラスブランクの製造方法および磁気ディスク用ガラス基板の製造方法
JP2012158513A (ja) 磁気ディスク用ガラス基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013511951

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13982838

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12776322

Country of ref document: EP

Kind code of ref document: A1