WO2012141559A1 - 콘형 크러셔 - Google Patents

콘형 크러셔 Download PDF

Info

Publication number
WO2012141559A1
WO2012141559A1 PCT/KR2012/002880 KR2012002880W WO2012141559A1 WO 2012141559 A1 WO2012141559 A1 WO 2012141559A1 KR 2012002880 W KR2012002880 W KR 2012002880W WO 2012141559 A1 WO2012141559 A1 WO 2012141559A1
Authority
WO
WIPO (PCT)
Prior art keywords
eccentric
eccentric shaft
shaft
bearing
cone
Prior art date
Application number
PCT/KR2012/002880
Other languages
English (en)
French (fr)
Inventor
하용간
Original Assignee
Ha Yong-Gan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ha Yong-Gan filed Critical Ha Yong-Gan
Priority to EP12771922.7A priority Critical patent/EP2698206B1/en
Priority to US14/009,109 priority patent/US9050600B2/en
Priority to CN201280018457.4A priority patent/CN103476502B/zh
Priority to JP2014505091A priority patent/JP2014511764A/ja
Publication of WO2012141559A1 publication Critical patent/WO2012141559A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2/00Crushing or disintegrating by gyratory or cone crushers
    • B02C2/02Crushing or disintegrating by gyratory or cone crushers eccentrically moved
    • B02C2/04Crushing or disintegrating by gyratory or cone crushers eccentrically moved with vertical axis
    • B02C2/06Crushing or disintegrating by gyratory or cone crushers eccentrically moved with vertical axis and with top bearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2/00Crushing or disintegrating by gyratory or cone crushers
    • B02C2/02Crushing or disintegrating by gyratory or cone crushers eccentrically moved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2/00Crushing or disintegrating by gyratory or cone crushers
    • B02C2/02Crushing or disintegrating by gyratory or cone crushers eccentrically moved
    • B02C2/04Crushing or disintegrating by gyratory or cone crushers eccentrically moved with vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2/00Crushing or disintegrating by gyratory or cone crushers

Definitions

  • the present invention relates to a cone crusher, and more particularly to a cone crusher having an eccentric drive for agitating the main shaft.
  • Cone crusher is a very important crusher in the aggregate industry and mineral processing industry. Its use is extensive and its structure and type have been variously developed.
  • Korean Patent No. 10-0809900 discloses a cone-type crusher having an eccentric drive unit for agitating the main shaft.
  • the cone crusher has a frame having a cavity, a main shaft disposed therein, and an eccentric drive portion connected to the lower end portion of the main shaft, and the lower end portion of the main shaft is inserted into an opening formed at an upper portion of the eccentric drive portion.
  • Near the lower end of the main shaft there are three bearings: an upper bearing, a middle bearing, and a lower bearing.
  • the main shaft is fitted to the middle bearing.
  • the opening in the upper portion of the eccentric drive is formed larger than the outer diameter of the interruption bearing.
  • the upper bearing is fitted to the upper end of the eccentric driving part after forming a separate mount to be eccentric with the opening.
  • the inner diameter of the upper bearing is larger than the outer diameter of the suspension bearing, and the size of the upper bearing is very large.
  • the present invention has been conceived to solve the above-described problems, and an object of the present invention is to provide a conical crusher having a miniaturized bearing fitted to an upper end of an eccentric drive unit for inciteting a main shaft.
  • Another object of the present invention is to provide a cone type crusher with reduced production cost and maintenance cost.
  • Still another object of the present invention is to provide a cone-type crusher capable of increasing the production speed of crushed products by improving the kinetic speed of the main shaft.
  • Cone crusher according to a preferred embodiment of the present invention to achieve the above object is: a frame having a cavity, the main shaft eccentrically disposed in the cavity and the lower end of the main shaft is eccentric from the center axis of the frame
  • An eccentric drive unit for inclining the main shaft wherein the eccentric drive unit has an upper eccentric shaft, a lower eccentric shaft, and an eccentric bearing, and the upper eccentric shaft has a center of rotation of the upper eccentric shaft itself at its center portion;
  • the eccentric bearing is connected with the upper eccentric shaft while receiving the lower end of the main shaft. It is arranged in the space partitioned by the lower eccentric shaft.
  • the upper eccentric shaft has a small diameter portion to which the upper bearing is coupled to its upper end.
  • the lower eccentric shaft an eccentric bearing mount is formed inside the upper end is the eccentric bearing is installed; And a small diameter portion having a lower bearing coupled to the lower end portion.
  • a counterweight is provided on the upper eccentric shaft or the lower eccentric shaft to offset the vibration caused by the agitating motion of the main shaft.
  • key grooves are formed on the inner surface of the lower end of the main shaft and the inner ring of the eccentric bearing, respectively, which are received inside the eccentric bearing, and the key is fitted into the key groove.
  • the opening formed in the upper eccentric shaft is tapered to make the inner diameter smaller from the top end to the predetermined depth downward.
  • the cone-shaped crusher further includes a plurality of lubricant jet holes located above the upper eccentric shaft, some of the lubricant jet holes supply lubricant to the main shaft, and some of the lubricant jet holes are The angle is set so that the lubricant can be supplied toward the upper bearing fitted to the upper end of the upper eccentric shaft.
  • the eccentric bearing mount has a diameter on which the eccentric bearing can be mounted, which diameter is larger than the minimum diameter of the opening of the upper eccentric shaft.
  • the lower eccentric shaft has a lubricating oil outlet connecting the eccentric bearing mount and the lower eccentric shaft outside.
  • the outer circumferential surface of the upper end of the lower eccentric shaft and the inner circumferential surface of the lower end of the upper eccentric shaft are formed to be tapered so as to decrease in diameter from downward to upward, and the outer circumferential surface of the upper end of the lower eccentric shaft fits with the inner circumferential surface of the lower eccentric shaft.
  • the lower eccentric shafts are fastened to each other in a state where the lower eccentric shafts are fitted to the upper eccentric shafts.
  • the eccentric driving unit further comprises an eccentric shaft coupling nut
  • the upper eccentric shaft has a male thread formed on the outer peripheral surface of the lower end, a stepped portion is formed around the lower coupling portion of the lower eccentric shaft, the eccentric shaft coupling nut,
  • a female screw having a flange capable of pressing the stepped portion of the lower eccentric shaft and an inner circumferential surface of the pipe portion extending upward from the flange is coupled to the male screw.
  • the eccentric drive unit is driven by a bevel gear coupled to the upper eccentric shaft or the lower eccentric shaft and another bevel gear that meshes with the bevel gear.
  • the eccentric drive unit is driven by a pulley directly coupled to the lower end of the lower eccentric shaft.
  • the cone-shaped crusher further includes a belt protection cover installed in parallel with two sides of the exposed belt to protect the belt connecting the pulley.
  • the cone-shaped crusher further comprises an eccentric driving unit outer wall surrounding the outer side of the upper eccentric shaft and the lower eccentric shaft, wherein the eccentric driving unit outer wall is fixed to the frame by connecting legs, among the connecting legs At least two are installed side by side with two sides of the belt.
  • the cone crusher according to the present invention has the following effects.
  • the bearing fitted to the upper end of the eccentric drive unit for inciteting the main shaft can provide a miniature cone-shaped crusher.
  • FIG. 1 is a schematic cross-sectional view of a cone crusher according to the present invention.
  • FIG. 2 is a perspective view of a portion of the piston used in the cone crusher shown in FIG. 1;
  • FIG. 3 is a partially enlarged view of the upper end of the main shaft used in the cone-shaped crusher in FIG.
  • FIG. 4 is an enlarged partial view of the upper end of the main shaft, and shows an embodiment in which a suspension bearing of a different type from that of FIG. 3 is applied.
  • FIG. 5 is an enlarged partial view of the lower end of the main shaft, and shows an embodiment in which a driving means of a different type from that of FIG.
  • Figure 6 is a bottom view of the extract of the cone-shaped crusher according to the present invention.
  • cone-shaped crusher used in the present invention is used to collectively refer to not only a typical cone-shaped crusher but also a gyretori crusher.
  • FIG. 1 is a schematic cross-sectional view of a cone crusher according to the present invention.
  • the main frame 10 is formed with a cavity therein;
  • a top frame 20 mounted on the main frame 10 and having a cavity formed therein, and having one or more layers;
  • a concave 30 having a funnel shape in which an inner diameter increases from an upper side to a lower side, and mounted on a lower inner circumferential surface of the top frame 2;
  • a mantle core assembly 300 disposed slidably up and down along the longitudinal direction of the main shaft 200;
  • a piston 420 installed in the middle of the main shaft 200 to allow hydraulic force to act on the mantle core assembly 300;
  • Shredding interval adjusting means for moving the mantle core assembly 300 to the concave 30 side for the shredding interval control;
  • An eccentric driving unit 260 for agitating the main shaft 200;
  • main shaft driving means 40 for rotating the eccentric driving part 260 to drive the main
  • the mantle core assembly 300 has a cylindrical upper sleeve 310 disposed spaced apart from the bottom of the concave 30 and slidably fitted to the main shaft 200, and a truncated cone having a larger diameter from the upper side to the lower side.
  • a mantle core 320 formed in a shape and accommodating the upper sleeve 310 and a mantle 321 mounted on an outer circumferential surface of the mantle core are provided.
  • the mantle core assembly 300 has a relatively large diameter cylindrical cavity formed at the center lower portion thereof, and a relatively small diameter cylindrical cavity formed at the central portion thereof continuously and stepped.
  • the upper sleeve 310 has a portion of the upper end exposed to the upper portion of the mantle core 320 and a screw 314 is formed on the outer peripheral surface thereof, the screw 314 to mount the mantle 321 to the mantle core 320 Fixing nut 330 is fastened to.
  • a flange 312 is formed at a lower end of the upper sleeve 310, and a settling portion 322 having a shape corresponding to the flange 312 is formed on the inner circumferential surface of the mantle core 320 so that the flange 312 may be inserted. do.
  • the flange 312 is installed to prevent the upper sleeve 310 from being pulled up even if the fixing nut 330 is tightened to fix the mantle 321 on the mantle core 320.
  • the upper sleeve 310 may be designed in a tapered shape with a wider lower portion without the flange 312.
  • the surface of the main shaft 200 on which the upper sleeve 310 is slid is subjected to high frequency heat treatment, or the heat treated protective sleeve 202 is not interfered with the upper sleeve 310.
  • the shaft 200 may be fitted to a portion of the section.
  • the protective sleeve 202 is mounted. More preferably, the liner 316 of a material such as brass or soft bronze may be sandwiched on the inner circumferential surface of the upper sleeve 310, soldered with brass, or coated with a polymer lubricating material.
  • an upper portion of the upper sleeve 310 may be provided with an annular dust seal 318.
  • Grease may be intermittently injected through a grease nipple (not shown) in the gap between the liner 316 and the main shaft 200 positioned below the dust seal 318, and retain grease on the inner surface of the liner 316.
  • a spiral groove is formed.
  • the lower inner wall where the mantle core 320 is coupled to the piston 420 is inserted with a sleeve made of brass, soft bronze or other polymer lubricating material, coated or soldered, and has an O-ring seal to prevent leakage of hydraulic oil. do.
  • the mantle core assembly 300 formed as described above is slid along the main shaft 200 by hydraulic oil coming in through the main shaft 200 from the outside.
  • FIG. 2 is a perspective view of a portion of the piston used in the cone crusher shown in FIG. 1;
  • the mantle core 320 serves as a cylinder
  • the piston 420 firmly coupled to the main shaft 200 serves as a piston.
  • the piston 420 and the main shaft 200 not only move in a vertical direction but also move in a vertical direction, whereas the mantle core assembly 300 corresponding to the cylinder moves up and down to change the fracture interval.
  • Rotary joint 250 is a device for smoothly connecting the main shaft 200 and the fixed hydraulic conduit introduced from the outside at the same time while rotating the rotational motion at a low speed while the vertical pipe 252 and It is attached to the main shaft is composed of a rotary joint housing 254 for agitating and rotating movement.
  • the upper end of the rotary joint housing 254 has a flange portion for firm coupling with the main shaft 200, the flange portion is coupled to the upper end of the main shaft 200 by bolts, by the O-ring inserted into the O-ring groove formed at the lower end Hydraulic oil leakage is prevented.
  • the seal is inserted into the annular groove formed on the inner side just above the lower end of the rotary joint housing 254, and the vertical pipe 252 extends to the seal to prevent leakage of the hydraulic oil.
  • the place where the seal is located corresponds to the focal point where the main shaft 200 is agitated, and the relative movement between the fixed vertical pipe 252 and the main shaft 200 that is agitated is least. Since this is the case, the deformation of the seal according to the movement of the main shaft 200 is the smallest.
  • the rotary joint may take various structures in addition to the above-described embodiments.
  • the hydraulic oil descends to the central portion of the piston 420 along the first flow path 432 formed at the center of the main shaft 200 through the rotary joint 250 and then passes through the second flow path 434 formed in the horizontal direction. 420 passes through the annular third flow passage 436 formed on the inner circumferential surface.
  • the annular third flow passage 436 is connected to several fourth flow passages 438 extending to the upper end of the piston 420, and the hydraulic oil is finally injected through the fourth flow passage 438 to the upper end of the piston.
  • the shredding interval adjusting means 400 further includes a hydraulic pressure supply part 440 disposed outside the cone-shaped crusher 100 according to the present invention.
  • the hydraulic pressure supply unit 440 includes a connection pipe 442 connected to the first flow path 432, a hydraulic tank 444 in which hydraulic oil is stored, and a hydraulic pressure connecting the hydraulic tank 444 and the connection pipe 442.
  • a supply pipe 446 is provided.
  • a hydraulic pump 448 is disposed in the hydraulic supply pipe 446 adjacent to the hydraulic tank 444, and a check valve prevents hydraulic flow back to the hydraulic pump 448 in the hydraulic supply pipe 446 adjacent to the connection pipe 442. 45 is mounted.
  • the hydraulic supply unit 440 and the hydraulic supply pipe 446 to protect the cone-shaped crusher 100 in the case of the foreign matter such as the crushed pit that is not broken between the concave 30 and the mantle 321.
  • a conventional hydraulic accumulator 454 is disposed in the hydraulic discharge pipe 452, and a check valve 458 and a bypass valve 459 are disposed in front of the hydraulic accumulator 454, and the hydraulic accumulator 454 and the hydraulic tank ( A relief valve 456 is disposed between the 444.
  • a suspension portion 210 supporting the main shaft 200 is disposed above the main shaft 200, and an eccentric for agitating the main shaft 200 below the main shaft 200.
  • the driver 260 is disposed.
  • the suspension part 210 is disposed inside the top frame 20, and the eccentric driving part 260 is disposed inside the main frame 10.
  • FIG. 3 is a partially enlarged view of the upper end of the main shaft used in the cone-shaped crusher in FIG.
  • the suspension unit 210 is disposed in the suspension bearing chamber 212 and the suspension bearing chamber 212 into which the upper portion of the main shaft 200 is inserted and inserted into the suspension bearing chamber 212.
  • Suspension bearings 222 for supporting the upper portion of the main shaft 200, and a fixing member 230 for fixing the suspension bearings 222 to the main shaft 200.
  • the suspension bearing room 212 is comprised from the suspension bearing room outer cylinder 216 connected to the upper part of the top frame by the support arm 220, and the removable cover 214.
  • Suspension bearing chamber outer cylinder 216 has an upper portion having a vertical cylindrical shape and a lower portion of an inclined funnel shape, there is a small step between the vertical portion and the inclined portion.
  • Suspension bearing 222 is fitted to the fixed wheel 224, the outer circumferential surface is in close contact with the inner circumferential surface of the suspension bearing chamber outer cylinder 216, and the main shaft 200 is inserted into the suspension bearing chamber 212 and the fixed wheel ( It is provided on the inner circumferential surface of the 224 has a rotary wheel 226 for agitating motion along the inner circumferential surface of the fixed wheel 224.
  • the fixed wheel 224 and the rotating wheel 226 has a funnel shape extending narrower from the upper side to the lower side.
  • An annular stepped portion 228 is formed in the main shaft 200, and a lower portion of the rotary wheel 226 spans the stepped portion 228.
  • the angle ⁇ 1 formed by the outer circumferential surface of the rotating wheel 226 is formed to have an angle smaller than the angle ⁇ 2 formed by the inner circumferential surface of the fixed wheel 224.
  • the difference between the two angles ⁇ 2- ⁇ 1 is an eccentric angle of the main shaft 200, that is, an angle corresponding to twice the angle formed by the center line of the main shaft 200 with the center line of the crusher frame.
  • the rotary wheel 226 is always in line contact with the inner circumferential surface of the fixed wheel 224.
  • the fixing member 230, the disassembly sleeve 232 is fitted to the main shaft 200 so that the outer peripheral surface is in close contact with the inner peripheral surface of the rotary wheel 226, and exposed to the upper portion of the disassembly sleeve 232, the external thread
  • the fixing nut 234 is fastened on the outer circumferential surface of the upper end of the formed main shaft 200.
  • the fixing member 230 of the present invention firmly fixes the rotation wheel 226 to the main shaft 200, the wear of the shaft is hardly generated.
  • the outer circumferential surface angle of the rotating wheel 226 and the inner circumferential surface angle of the fixed wheel 224 can be arbitrarily adjusted according to the angle formed by the mantle 321.
  • the fixed wheel 224 is preferably made of a lubricating material or coating the inner circumferential surface with a lubricating material, and the rotating wheel 226 is preferably manufactured by hardening the heat treatment.
  • Lubricating oil or grease is injected into the suspension bearing chamber 212 to reduce friction between the rotating wheel 226 and the fixed wheel 224, and the seal 238 is formed of an elastic material such as rubber to suspend the bearing chamber. (212) to prevent leakage of lubricants and the like.
  • the eccentric driving part 260 for agitating the main shaft 200 includes an eccentric driving part outer wall 265 fixed to the center lower part of the main frame 10 by the connecting legs 269. And an upper eccentric shaft 262, a lower eccentric shaft 266, an eccentric bearing 268, and an eccentric shaft coupling nut 272, and the upper eccentric shaft 262 and the lower eccentric shaft 266 are eccentric. It is coupled by the shaft coupling nut 272.
  • the counterweight 276 is installed on the upper eccentric shaft 262 or the lower eccentric shaft 266 in order to cancel the vibration generated by the manifold movement of the mantle core assembly 300 and the main shaft 200.
  • the counterweight 276 is installed on the opposite side of the eccentric direction of the lower end of the main shaft 200.
  • the upper and lower bearing housings 282 and 284 are firmly coupled to the upper and lower portions of the eccentric driving outer wall 285, and the upper and lower eccentric shafts 262 and the lower eccentric shaft 266 are upper and lower bearing housings 282 and 284, It is surrounded by the eccentric driving unit outer wall 265.
  • the upper bearing 281 is interposed between the upper bearing housing 282 and the upper eccentric shaft 262 so that the upper eccentric shaft 262 and the lower eccentric shaft 266 smoothly move, and the lower bearing housing is interposed therebetween.
  • a lower bearing 283 is interposed between the 284 and the lower eccentric shaft 266.
  • the upper eccentric shaft 262 has an opening through which the lower end of the main shaft 200 is eccentric with the center of rotation of the upper eccentric shaft 262 itself, and the lower eccentric shaft ( 266) has an upper engagement portion.
  • the opening is tapered so that the inner diameter decreases from the top end to the predetermined depth downward.
  • the upper eccentric shaft 262 has a small diameter portion 262a to which the upper bearing 281 is coupled to the upper end thereof.
  • the lower eccentric shaft 266 is positioned below the upper eccentric shaft 262 and has a lower coupling portion fastened to the upper eccentric shaft 262.
  • an eccentric bearing mount 266b in which an eccentric bearing 268 is installed is formed inside the upper end of the lower eccentric shaft 266, and a small diameter part in which the lower bearing 283 is coupled to the lower end of the lower eccentric shaft 266 ( 266a).
  • the eccentric bearing mount 266b has a diameter on which the eccentric bearing 268 can be mounted, which diameter is larger than the minimum diameter of the opening of the upper eccentric shaft 262.
  • the lower eccentric shaft 266 has a lubricating oil outlet 267 connecting the eccentric bearing mount 266b and the lower eccentric shaft 266 outside.
  • the eccentric bearing 268 accommodates the lower end of the main shaft 200 and is partitioned by the upper eccentric shaft 262 and the lower eccentric shaft 266 in a state of being fixed to the eccentric bearing mount 266b. Disposed within.
  • the upper eccentric shaft 262 has a tapered process such that the inner circumferential surface of the lower end portion is reduced in diameter from downward to upward, and male threads are formed on the outer circumferential surface.
  • the lower eccentric shaft 266 is tapered so that the outer circumferential surface of the upper end portion becomes smaller in diameter from downward to upward, and a stepped portion is formed around the lower periphery of the tapered lower coupling portion.
  • the eccentric shaft coupling nut 272 has a flange for pressing the stepped portion of the lower eccentric shaft 266, the inner circumferential surface of the pipe portion extending upward from the flange formed on the upper eccentric shaft 262 A female screw is formed to join the male screw.
  • the lower eccentric shaft 266 is inserted into the upper eccentric shaft 262 so that the outer circumferential surface of the upper end of the lower eccentric shaft 266 is in contact with the inner circumferential surface of the lower eccentric shaft 262.
  • the upper eccentric shaft 262 and the lower eccentric shaft 266 may be fastened by twisting the eccentric shaft coupling nut 272 toward the upper eccentric shaft 262 from below. Then, it is preferable to rotate the eccentric shaft coupling nut 272 until the flange of the eccentric shaft coupling nut 272 strongly presses the stepped portion of the lower eccentric shaft 266.
  • the lower end of the main shaft 200 can be easily inserted into the inner ring of the eccentric bearing 268, and can be easily separated from the eccentric bearing 268 by lifting the main shaft 200 upward.
  • the eccentric bearing 268, the cavities formed in the lower eccentric shaft 266 for accommodating the eccentric bearing 268, and the cavities formed inside the upper eccentric shaft 262 are all center lines 270 of the main shaft 200.
  • the center line is shifted by a small angle (see the bottom of the main shaft of FIG. 1) to each other, and the main frame (at the center point of the seal 258 of the rotary joint 250 located below the suspension bearing 222). 10) the point C where the center line of the back meets the center line of the main shaft 200 is located (see FIG. 3).
  • a key groove 278 is formed at the lower end of the main shaft 200 accommodated in the eccentric bearing 268, and similarly, another key groove corresponding to the key groove 278 is also formed in the inner ring of the eccentric bearing 268.
  • the lower end of the main shaft 200 is tapered and is tapered to have a somewhat larger diameter than the center of the upper eccentric shaft 262 to which the lower end of the main shaft 200 is fitted. Therefore, a gap is formed between the main shaft 200 and the upper eccentric shaft 262 to allow lubricant to flow down the main shaft 200.
  • Lubricating oil is applied from an external circuit (not shown) to a lubricating oil jet hole formed in the upper end of the upper bearing housing 282 through a conduit 282a formed in the upper bearing housing 282.
  • a plurality of lubricant oil ejection holes may be provided, and at least some of the lubricant oil ejection holes are ejected toward the main shaft 200, and the remaining oil ejection holes are partially angled to eject the lubricant toward the upper bearing 281. It is.
  • the lubricating oil supplied to the upper bearing 281 is horizontal from the lower end of the upper bearing 281 by the centrifugal force. It is discharged into a gap between the flat portion and the lower surface of the upper bearing housing 282 and falls on the upper surface of the lower bearing housing 284. Since the main shaft 200 rotates at an extremely low speed while performing the agitating motion, the lubricating oil ejected to the main shaft 200 is relatively less affected by the centrifugal force and flows down the main shaft 200 by gravity.
  • the eccentric bearing 268 is lubricated.
  • the inner ring of the eccentric bearing 268 does not rotate, but the rollers, the outer ring, and the lower eccentric shaft 266 rotate at a high speed, so that the lubricated lubricant is discharged through the lower eccentric shaft lubricant outlet 267 by centrifugal force. .
  • a portion of the lubricating oil flowing down from the top and lowered on the upper surface of the lower bearing housing 284 goes to the lubricating oil discharge pipe 500 through the lower bearing 283 and a part of the lubricating oil discharge pipe 500 directly from the upper surface of the lower bearing housing 284. Exit to a lubricating oil tank (not shown).
  • the lower eccentric shaft (266) and the lower bearing housing (284) are provided with two types of seals to prevent the leakage of lubricant and labyrinth seals to prevent dust from entering the seals, but the conventional techniques in the art Therefore, detailed description will be omitted.
  • the hole in the upper part of the eccentric shaft had to be larger than the outer diameter of the eccentric bearing, and the upper bearing mount was formed on the outside of the hole so as to be eccentric with the hole. . Therefore, the inner diameter of the upper bearing is considerably larger than the outer diameter of the eccentric bearing so that the size of the upper bearing is at least 1.5 times higher than that of the present invention, so that the unit cost of the cone-type crusher increases, and the large bearings have a low rated rotation speed, so that the shreddings per hour There is also a problem that the production speed of the slow.
  • the eccentric shaft is divided into upper and lower parts so as to be separated, thereby greatly reducing the size of the upper bearing 281, thereby reducing the unit cost of the cone-shaped crusher and the production rate of the crushed products per hour. Has a rising effect.
  • FIG. 6 is a bottom view of an extract of a cone crusher according to the present invention.
  • the connecting legs 269 are composed of four, two of which are different from the other two, and the arrangement angle or shape is different from each other.
  • the two legs of the connecting legs 269 which are narrowed toward the main frame outer wall 16, have a belt 46 connecting the pulley 44 and the pulley 48 connected to the driving motor (not shown). It is preferable that it is formed to have an angle and shape that can protect).
  • the belt protective cover 441 is parallel to two sides of the belt 46 exposed between the two pulleys 44 and 48. Can be installed.
  • the pulley 44 is coupled to the small diameter portion 266a at the lower end of the lower eccentric shaft, and the pulley 44 is connected to the driving motor (not shown) by the belt 46 to drive.
  • the belt 46 to drive.
  • a part constituting the dust seal 600 is installed in the mantle core assembly 300, and the part constituting the dust seal 600 when the mantle core assembly 300 moves up and down. They also move up and down. Therefore, the spherical curvature before these parts move up and down and the geometric spherical curvature at the newly moved position are different. As a result, the spherical curvature of the components constituting the dust seal 600 and the newly moved position are different.
  • the dust seals can be structurally stabilized after the parts wear out rapidly until their geometric spherical curvatures are equal to each other.
  • the dust seal 600 according to the present invention is fixed to a certain height is fixed to a certain height does not move up and down to stay in one place only to agitate movement. Therefore, wear does not occur due to the change of curvature and long life is guaranteed.
  • the dust seal 600 of the present invention includes a movable part 610 and a fixed part 620.
  • the movable portion 610 includes a lower cover plate 614 that is bolted to the lower plane of the piston 400, and a pipe-shaped mantle core guide portion 618 that rises vertically upward from the outer periphery of the lower cover plate 614. And it is composed of a washer-shaped upper cover plate 612 formed outside the mantle core guide portion 618, the movable spherical plate 616 is connected to the bolt under the upper cover plate 612 and the spherical surface is formed on the upper surface.
  • the fixing part 620 has a large hole in the center and a lower spherical ring 624 formed in a spherical shape, and a flange-shaped bottom is firmly coupled to the upper surface of the upper bearing housing 282, and an inner hole of the fixing spherical ring 624 is formed. It consists of a fixed spherical ring guide 622 having a short pipe-type vertical guide portion to fit. The spherical ring 624 can freely move up and down along the outer surface of the spherical ring guide 622, the lower surface of the spherical ring 624 is always in close contact with the upper surface of the movable spherical plate 616 by gravity. .
  • the movable portion 610 of the dust seal is also agitated as well but does not move in the up and down direction and can always stay in place.
  • the dust seal movable part 610 does only an incitement movement without a shandong.
  • the outer circumferential surface of the mantle core lower portion 414 slides on the inner surface of the mantle core guide portion 618.
  • the present invention employs a method of blowing compressed air into the fixed spherical ring guide 622 in order to more completely block the dust flow into the cone-shaped crusher.
  • FIG. 4 is an enlarged partial view of the upper end of the main shaft, and shows an embodiment in which a suspension bearing of a different type from that of FIG. 3 is applied.
  • the spherical suspension bearing consists of a female suspension bearing 224a and a male suspension bearing 226a, and the male suspension bearing 226a is firmly attached to the main shaft 200 by a fixing nut 234a through a dismantling sleeve 232a.
  • the center point C ′ of the agitating motion where the center line of the main shaft 200 and the center line of the main frame 10 meet is moved upward to coincide with the center point of the spherical suspension bearing.
  • the seal 238a for preventing the outflow of lubricant such as grease supplied to the spherical suspension bearing is made of a material having higher elasticity than that shown in FIG.
  • FIG. 5 is an enlarged partial view of the lower end of the main shaft, and shows an embodiment in which a driving means of a different type from that of FIG.
  • the power for driving the eccentric drive unit 260a to incite the main shaft 200 is supplied by a pair of bevel gears.
  • a gear drive type power supply is widely used in the conventional cone type crusher and is well applied to the present invention.
  • the large bevel gear 48a is firmly installed on the mount 49 formed on the upper eccentric shaft 262 via fasteners such as keys.
  • the pinion gear 66a engaged therewith is firmly coupled to one end of the count shaft 42a, and a pulley 44a is formed at the other end of the count shaft 42a to receive power from a drive motor (not shown).
  • a counterweight 256a is provided on the upper surface of the large bevel gear 48a to counteract the vibration force generated by the eccentric arrangement of the mantle core assembly 300.
  • Other elements such as bearings and bearing housings that rotatably support the count shaft 42a will be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Grinding (AREA)

Abstract

본 발명은 프레임과, 상기 프레임에 편심되어 배치된 메인샤프트와, 상기 메인샤프트를 선동운동시키는 편심구동부를 구비한 콘형 크러셔에 관한 것으로서, 상기 편심구동부는 상부편심축과, 하부편심축과, 편심베어링을 구비하며; 상기 상부편심축은, 그 중앙부위에 상기 메인샤프트의 하단부가 통과할 수 있는 개구부를 가지며, 하부에는 상기 하부편심축과 결합되는 상부 결합부를 가지고; 상기 하부편심축은 상기 상부편심축에 체결되는 하부 결합부를 가지고; 상기 편심베어링은 상기 메인샤프트의 하단부를 수용하면서 상기 상부편심축과 상기 하부편심축에 의하여 구획된 공간 내에 배치된다.

Description

콘형 크러셔
본 발명은 콘형 크러셔에 관한 것으로서, 더욱 상세하게는 메인샤프트를 선동운동시키는 편심구동부를 구비한 콘형 크러셔에 관한 것이다.
본 출원은 2011년 4월 14일에 출원된 한국특허출원 제10-2011-0034523호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
콘형 크러셔는 골재산업이나 광물 가공산업에 있어서 매우 중요한 파쇄기로서, 쓰임새가 광범위하고 구조 및 종류도 다양하게 발전되어 왔다.
한국등록특허 제10-0809900호는 메인샤프트를 선동운동시키는 편심구동부를 구비한 콘형 크러셔를 개시하고 있다. 이 콘형 크러셔는, 공동을 갖는 프레임과, 그 내부에 배치된 메인샤프트와, 메인샤프트의 하단부에 연결된 편심구동부를 구비하며, 메인샤프트의 하단부는 편심구동부의 상부에 형성된 개구부에 삽입된다. 메인샤프트의 하단부 근처에는 상단 베어링, 중단 베어링, 하단 베어링, 이렇게 3개의 베어링이 구비되어 있고, 메인샤프트는 그 중 중단 베어링에 끼워진다. 여기서, 중단 베어링을 편심구동부에 안착시키기 위하여, 편심구동부 상부의 개구부는 중단 베어링의 외경보다 크게 형성되어 있다. 상단 베어링은 상기 개구부와 편심되도록 별도의 마운트를 형성한 후에 편심구동부의 상단에 끼워지게 된다. 결국, 상단 베어링의 내경은 중단 베어링의 외경보다도 크게 되며, 상단 베어링의 사이즈는 매우 커질 수 밖에 없다.
통상적으로 콘형 크러셔는 대형 기계로서, 상단 베어링으로 사용되어야 하는 베어링은 일반적으로 널리 사용되는 규격보다 훨씬 커야만 하고, 시중에서 쉽게 구입할 수 없다. 따라서, 별도로 주문생산을 해야만 한다. 그러나, 베어링은 사이즈가 커질수록 가격이 급격하게 상승하므로, 상단 베어링을 교체하기 위하여 막대한 비용이 발생한다는 문제가 있다. 이러한, 가격상의 문제뿐만 아니라, 베어링의 사이즈가 커지면 정격회전속도(rating rotating velocity)가 점점 느려지게 되고, 이로 인해 콘형 크러셔의 가동 속도가 제한된다. 이는 결국, 시간당 파쇄물의 생산량을 일정수준 이상 늘릴 수 없다는 것을 말하며, 효율이 낮은 콘형 크러셔를 제조할 수 밖에 없다는 것을 의미한다.
본 발명은 상술한 문제점을 해결하기 위해 착상된 것으로서, 메인샤프트를 선동운동시키는 편심구동부의 상단에 끼워지는 베어링이 소형화된 콘형 크러셔를 제공하는 것을 목적으로 한다.
본 발명의 다른 목적은, 생산단가와 유지비용이 절감된 콘형 크러셔를 제공하는 것에 있다.
본 발명의 또 다른 목적은, 메인샤프트의 선동운동속도가 향상되어 시간당 파쇄물의 생산량을 늘릴 수 있는 콘형 크러셔를 제공하는 것에 있다.
상기와 같은 목적을 달성하기 위하여 본 발명의 바람직한 실시예에 따른 콘형 크러셔는: 공동을 갖는 프레임과, 상기 프레임의 중심축으로부터 편심되어 상기 공동에 배치된 메인샤프트와, 상기 메인샤프트 하단부와 결합되어 상기 메인샤프트를 선동운동시키는 편심구동부를 구비하며, 상기 편심구동부는 상부편심축과, 하부편심축과, 편심베어링을 구비하며, 상기 상부편심축은, 그 중앙부위에 상부편심축 자체의 회전중심과는 편심되어 상기 메인샤프트의 하단부가 통과할 수 있는 개구부를 가지며, 하부에는 상기 하부편심축과 결합되는 상부 결합부를 가지고, 상기 하부편심축은 상기 상부편심축의 하방에 위치하여 상부편심축에 체결되는 하부 결합부를 가지고, 상기 편심베어링은 상기 메인샤프트의 하단부를 수용하면서 상기 상부편심축과 상기 하부편심축에 의하여 구획된 공간 내에 배치된다.
바람직하게, 상기 상부편심축은, 그 상단부에 상부베어링이 결합되는 소경부를 갖는다.
바람직하게, 상기 하부편심축은: 상단부 내측에 형성되어 상기 편심베어링이 설치되는 편심베어링 마운트; 및 하단부에 하부베어링이 결합되는 소경부;를 갖는다.
바람직하게, 상부편심축 또는 하부편심축에 메인샤프트의 선동운동에 의한 진동을 상쇄하는 균형추가 설치된다.
바람직하게, 메인샤프트와 편심베어링 내륜의 슬립을 방지하기 위하여, 편심베어링 내부에 수납되는 메인샤프트 하단부와 편심베어링 내륜 내면에 각각 키홈을 형성하고, 상기 키홈에 키가 끼워져 결합된다.
바람직하게, 상기 상부편심축에 형성된 상기 개구부는 최상단에서 소정 깊이까지는 하방으로 갈수록 내경이 작아지도록 테이퍼지게 가공된다.
바람직하게, 상기 콘형 크러셔는, 상부편심축의 상방에 위치하는 복수 개의 윤활유 분출공들을 더 구비하며, 상기 윤활유 분출공들 중 일부는 상기 메인샤프트로 윤활유를 공급하고, 나머지 일부의 윤활유 분출공들은 상기 상부편심축의 상단에 끼워지는 상부베어링을 향하여 윤활유를 공급할 수 있도록 각도가 설정된다.
바람직하게, 상기 편심베어링 마운트는 상기 편심베어링이 장착될 수 있는 직경을 갖되, 이 직경은 상기 상부편심축의 개구부의 최소 직경보다 크다.
바람직하게, 상기 하부편심축은 상기 편심베어링 마운트와 하부편심축 외부를 연결하는 윤활유 배출구를 갖는다.
바람직하게, 상기 하부편심축 상단부의 외주면과 상기 상부편심축 하단부의 내주면은 하방에서 상방으로 갈수록 직경이 작아지도록 테이퍼지게 형성되고, 상기 하부편심축 상단부의 외주면이 상기 상부편심축 하단부의 내주면과 맞닿을 수 있도록 상기 하부편심축이 상기 상부편심축에 끼워진 상태에서 서로 체결된다.
바람직하게, 상기 편심구동부는 편심축 결합너트를 더 구비하고, 상기 상부편심축은 하단부 외주면에 형성된 수나사를 갖고, 상기 하부편심축의 하부 결합부의 하부 둘레에는 계단부가 형성되며, 상기 편심축 결합너트는, 상기 하부편심축의 계단부를 가압할 수 있는 플랜지를 갖고, 상기 플랜지로부터 상방을 향해 연장되는 파이프부의 내주면에는 상기 수나사와 결합하는 암나사가 형성된다.
바람직하게, 상기 편심구동부는 상부편심축 또는 하부편심축에 결합된 베벨형기어 및 상기 베벨형기어에 맞물리는 다른 베벨형기어에 의하여 구동된다.
바람직하게, 상기 편심구동부는 상기 하부편심축의 하단부에 직접 결합된 풀리에 의하여 구동된다.
바람직하게, 상기 콘형 크러셔는, 상기 풀리를 연결하는 벨트를 보호하기 위하여, 노출된 벨트가 이루는 두 변과 나란하게 설치된 벨트 보호커버를 더 구비한다.
바람직하게, 상기 콘형 크러셔는, 상기 상부편심축과 상기 하부편심축의 외측을 둘러싸는 편심구동부 외벽을 더 구비하고, 상기 편심구동부 외벽은 연결다리들에 의하여 상기 프레임에 고정되며, 상기 연결다리들 중 적어도 2개는 상기 벨트가 이루는 두 변과 나란하게 설치된다.
본 발명에 따른 콘형 크러셔는 다음과 같은 효과를 갖는다.
첫째, 메인샤프트를 선동운동시키는 편심구동부의 상단에 끼워지는 베어링이 소형화된 콘형 크러셔를 제공할 수 있다.
둘째, 생산단가와 유지비용이 절감된 콘형 크러셔를 제공할 수 있다.
셋째, 메인샤프트의 선동운동속도가 향상되어 시간당 파쇄물의 생산량을 늘릴 수 있는 콘형 크러셔를 제공할 수 있다.
도 1은 본 발명에 따른 콘형 크러셔를 개략적으로 나타낸 단면도이다.
도 2는 도 1에 도시된 콘형 크러셔에 사용되는 피스톤의 일부를 절개한 사시도이다.
도 3은 도 1에 콘형 크러셔에 사용되는 메인샤프트 상단의 부분확대도이다.
도 4는 메인샤프트 상단의 부분확대도로서, 도 3과는 다른 타입의 현수베어링이 적용된 실시예를 나타낸다.
도 5는 메인샤프트 하단의 부분확대도로서, 편심구동부를 선동운동시키기 위하여 도 1과는 다른 타입의 구동수단이 적용된 실시예를 나타낸다.
도 6은 본 발명에 따른 콘형 크러셔의 발췌 저면도이다.
본 발명에서 사용하는 콘형 크러셔라는 용어는 전형적인 콘형 크러셔뿐만 아니라 자이레토리 크러셔 등을 통칭하는 것으로 사용된다.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 콘형 크러셔에 대해 설명하기로 한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과하고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도면에서 각 구성요소 또는 그 구성요소를 이루는 특정 부분의 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 따라서, 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다. 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그러한 설명은 생략하도록 한다.
도 1은 본 발명에 따른 콘형 크러셔를 개략적으로 나타낸 단면도이다.
도 1을 참조하면, 본 발명에 따른 콘형 크러셔(100)는, 내부에 공동이 형성된 메인 프레임(10); 메인 프레임(10) 상부에 안착 설치되며 내부에 공동이 형성되어 있고 한 개 층 또는 여러 층으로 이루어진 탑 프레임(20); 상부에서 하부측으로 갈수록 내경이 커지는 깔때기 형상이며 탑 프레임(2)의 하부 내주면에 장착되는 콘케이브(30); 하단은 메인 프레임(10) 내부에 수용되고 상단은 콘케이브(30)를 관통해 탑 프레임(20) 내부에 수용되어 선동운동을 하는 메인샤프트(200); 메인샤프트(200)의 길이방향을 따라 상하로 슬라이딩 가능하게 배치되는 맨틀코어 조립체(300); 메인샤프트(200) 중간에 설치되어 유압력이 맨틀코어 조립체(300)에 작용할 수 있게 하는 피스톤(420); 파쇄간격조절을 위해 맨틀코어 조립체(300)를 콘케이브(30) 측으로 이동시키는 파쇄간격조절수단(400); 메인샤프트(200)를 선동운동시키는 편심구동부(260); 및 상기 편심구동부(260)를 회전시켜서 상기 메인샤프트(200)를 선동운동하도록 구동하는 메인샤프트 구동수단(40);을 구비한다.
맨틀코어 조립체(300)는, 콘케이브(30)의 하부로부터 이격되어 배치되며 메인샤프트(200)에 슬라이딩 가능하게 끼워지는 원통 형상의 상부 슬리브(310)와, 상부에서 하부 측으로 갈수록 직경이 커지는 원뿔대 형상으로 형성되며 상부 슬리브(310)를 수납하는 맨틀코어(320)와, 상기 맨틀코어의 외주면 상에 장착되는 맨틀(321)을 구비한다.
상기 맨틀코어 조립체(300)는, 그 중앙 하부에는 상대적으로 큰 직경의 원기둥형 공동이 형성되고, 그 중앙 상부에는 상대적으로 작은 직경의 원기둥형 공동이 연속하여 계단형으로 형성된다.
상기 상부 슬리브(310)는 상단부 일부가 맨틀코어(320)의 상부로 노출되고 그 외주면에는 나사(314)가 형성되며, 맨틀(321)을 맨틀코어(320)에 장착시키기 위하여 이 나사(314)에 고정너트(330)가 체결된다. 상부 슬리브(310)의 하단부에는 플랜지(312)가 형성되고, 맨틀코어(320)의 내주면 상에는 플랜지(312)가 삽입될 수 있도록 플랜지(312)에 대응되는 형상을 갖는 침강부(322)가 형성된다. 상기 플랜지(312)는 맨틀(321)을 맨틀코어(320) 상에 고정시키기 위하여 고정너트(330)가 강하게 조여지더라도 상부 슬리브(310)가 위로 뽑혀 올라오는 것을 방지하기 위하여 설치된다. 도 1에 도시된 것과는 달리, 상부 슬리브(310)는 플랜지(312)없이 하부가 더 넓은 테이퍼 형상으로 설계하여도 무방하다.
메인샤프트(200)의 마모 방지를 위해서, 상기 상부 슬리브(310)가 슬라이딩되는 메인샤프트(200)의 표면을 고주파 열처리하거나, 열처리된 보호 슬리브(202)를 상부 슬리브(310)에 간섭되지 않게 메인샤프트(200) 일부 구간에 끼울 수도 있다. 도 1에서는 보호 슬리브(202)가 장착된 상태가 도시되어 있다. 더욱 바람직하게는, 상부 슬리브(310)의 내주면 상에 황동 또는 연청동 등의 재질의 라이너(316)를 끼워 사용하거나, 황동 등으로 납땜하거나, 또는 고분자 윤활성 물질을 코팅하여 사용할 수도 있다. 또한, 메인샤프트(200)의 외주면을 따라 먼지가 유입되는 것을 방지하기 위하여, 상부 슬리브(310)의 상부에는 환형의 더스트 씰(318, dust seal)을 장착할 수도 있다. 더스트 씰(318) 하방에 위치한 라이너(316)와 메인샤프트(200) 사이의 틈에는 그리스 니플(미도시)을 통하여 그리스가 간헐적으로 주입될 수 있으며, 라이너(316)의 내면에는 그리스를 보유하기 위한 나선형 홈이 형성되어 있다. 맨틀코어(320)가 피스톤(420)과 결합되는 하부 내측 벽에도 황동이나 연청동 기타 고분자 윤활성 물질로 된 슬리브가 삽입되거나, 코팅 또는 납땜되어 있고, 유압유가 누설되는 것을 막기 위한 오링 등 씰이 부착된다.
이와 같이 형성된 맨틀코어 조립체(300)는 외부에서 메인샤프트(200)을 통하여 들어오는 유압유에 의해서 메인샤프트(200)를 따라 슬라이딩 운동을 하게 된다.
도 2는 도 1에 도시된 콘형 크러셔에 사용되는 피스톤의 일부를 절개한 사시도이다.
도 1 및 도 2를 참조하여, 본 발명의 파쇄간격조절방법과 기구를 설명한다. 일반적인 실린더 기구와 비교했을 때, 맨틀코어(320)는 실린더의 역할을 수행하고, 메인샤프트(200)에 견고하게 결합된 피스톤(420)은 피스톤의 역할을 수행한다. 그러나 본 발명에서는 피스톤(420)과 메인샤프트(200)는 선동운동을 할 뿐 수직방향으로는 움직이지 않고 반대로 실린더에 해당하는 맨틀코어 조립체(300)가 상하로 움직여서 파쇄간격을 변화시키게 된다.
먼저 유압유의 유동을 살펴보면, 외부회로에서 유출입되는 유압유는 도관을 통하여 현수베어링실(212)의 덮개(214)에 견고히 부착되어 있는 로타리조인트(250)의 수직관(252)에 도입된다. 로타리조인트(250)는, 선동운동을 하면서 동시에 저속으로 회전운동도 하는 메인샤프트(200)와, 외부에서 도입되는 고정된 유압도관을 원활하게 연결하기 위한 장치인데 움직이지 않는 수직관(252)과 메인샤프트에 부착되어 선동운동과 회전운동을 하는 로타리조인트하우징(254)으로 구성된다. 로타리조인트하우징(254)의 상단부에는 메인샤프트(200)와의 견고한 결합을 위한 플랜지부가 있고, 이 플랜지부가 볼트에 의하여 메인샤프트(200) 상단부에 결합되며, 하단부에 형성된 오링 홈에 삽입된 오링에 의하여 유압유의 누설이 방지된다. 로타리조인트하우징(254) 하단부 바로 위의 내측면에 형성된 환형 홈에는 씨일이 삽입되어 있고, 수직관(252)이 여기까지 연장되어 씨일과 결합하여 유압유의 누설이 방지된다. 기하학적으로 볼 때 씨일이 있는 곳은 메인샤프트(200)가 선동운동을 하는 초점에 해당되는 곳이며, 고정된 수직관(252)과 선동운동을 하는 메인샤프트(200) 사이의 상대적인 움직임이 가장 적은 곳에 해당되므로 메인샤프트(200)의 운동에 따른 씨일의 변형이 가장 작다. 로타리조인트는 상술한 실시예 외에도 다양한 구조를 취할 수 있다.
유압유는 상기 로타리조인트(250)를 통하여 메인샤프트(200) 중심부에 형성된 제1 유로(432)를 따라서 피스톤(420)의 중앙부위까지 내려온 후 수평방향으로 형성된 제2 유로(434)를 통하여 피스톤(420) 내주면 상에 형성된 환형의 제3 유로(436)를 통과한다. 상기 환형의 제3 유로(436)는 피스톤(420) 상단까지 연장된 수개의 제4 유로(438)와 연결되어 있으며, 유압유는 결국 제4 유로(438)를 통하여 피스톤 상단부까지 주입된다. 이렇게 주입된 유압유에 의하여 피스톤(420)을 하방으로 미는 힘과 맨틀코어 조립체(300)를 상방으로 미는 힘이 동시에 발생하는데, 메인샤프트(200)는 상단에 결합된 현수베어링(222)에 의하여 메인샤프트(200) 및 피스톤(420)는 하방으로 이동하지 않고, 맨틀코어 조립체(300)가 상방으로 이동한다. 한편 파쇄간격조절수단(400)은 본 발명에 따른 콘형 크러셔(100)의 외부에 배치되는 유압공급부(440)를 더 구비한다.
상기 유압공급부(440)는, 제1 유로(432)와 연결되는 연결관(442)과, 유압유가 저장되는 유압탱크(444)와, 유압탱크(444)와 연결관(442)을 연결하는 유압공급관(446)을 구비한다. 유압탱크(444)에 인접한 유압공급관(446)에는 유압펌프(448)가 배치되며, 연결관(442)에 인접한 유압공급관(446)에는 유압이 유압펌프(448) 측으로 역류되는 것을 방지하는 체크밸브(45)가 장착된다. 또한, 콘케이브(30)과 맨틀(321) 사이에 파쇄되지 않는 쇳덩이 등의 이물질이 투입될 경우에 콘형 크러셔(100)를 보호할 수 있도록, 유압공급부(440)에는 유압공급관(446)과는 별도로 유압탱크(444)와 연결관(442)을 연결하는 유압배출관(452)을 더 구비된다. 유압배출관(452)에는 통상의 유압어큐뮬레이터(454)가 배치되고, 유압어큐뮬레이터(454) 앞 쪽에는 체크밸브(458)와 바이패스밸브(459)가 배치되고, 유압어큐뮬레이터(454)와 유압탱크(444) 사이에는 릴리프밸브(456)가 배치된다.
콘케이브(30)과 맨틀(321) 사이에 크지 않은 쇳덩이 등이 투입되면, 맨틀코어 조립체(300)가 하강하면서 콘형 크러셔로부터 나온 유압유는 체크밸브(458)를 통하여 어큐뮬레이터(454)로 들어가서 일시적으로 저장된다. 또한 이물질이 크러셔로부터 배출되고 나면 어큐뮬레이터(454)에 저장되었던 고압의 유압유가 바이패스밸브(459)을 통하여 콘형 크러셔로 서서히 다시 흘러들어가면서 콘형 크러셔의 파쇄간격은 이물질 투입 전으로 회복된다.
그러나, 콘케이브(30)와 맨틀(321) 사이에 큰 이물질이 투입되면, 이물질이 배출될 때까지 맨틀코어 조립체(300)가 하강해야 할 거리가 길기 때문에 크러셔로부터 빠져나온 유압유가 어큐뮬레이터(454)에 전부 저장될 수는 없다. 따라서, 이 경우에, 어큐뮬레이터(454) 내의 압력이 위험수위까지 올라가는 것을 방지하기 위하여, 유압유는 릴리프밸브(456)를 통하여 유압탱크(444)로 빠져나가게 된다. 그러나 이렇게 큰 이물질이 투입된 후 배출되고 나면 수동으로 유압펌프(448)를 가동시켜 크러셔의 파쇄간격을 다시 조절할 필요가 있다.
다시 도 1을 참조하면, 메인샤프트(200)의 상부에는 메인샤프트(200)를 지지하는 현수부(210)가 배치되고, 메인샤프트(200)의 하부에는 메인샤프트(200)를 선동운동시키는 편심구동부(260)가 배치된다. 현수부(210)는 탑 프레임(20)의 내측에 배치되고, 편심구동부(260)는 메인 프레임(10)의 내측에 배치된다.
도 3은 도 1에 콘형 크러셔에 사용되는 메인샤프트 상단의 부분확대도이다.
도 3을 참조하면, 현수부(210)는 메인샤프트(200)의 상부가 삽입되는 현수베어링실(212)과, 현수베어링실(212) 내부에 배치되며 현수베어링실(212) 내부로 삽입된 메인샤프트(200)의 상부를 지지하는 현수베어링(222), 및 현수베어링(222)을 메인샤프트(200)에 고정시키는 고정부재(230)를 구비한다.
현수베어링실(212)은, 탑 프레임의 상부에 지지아암(220)에 의해서 연결된 현수베어링실 외통(216)과, 탈착 가능한 덮개(214)로 구성되어 있다. 현수베어링실 외통(216)은 수직한 원통 형상을 가지는 상부와 경사진 깔때기 형상의 하부로 되어 있는데 내측에는 수직 부분과 경사진 부분 사이에 작은 단턱이 있다.
현수베어링(222)은, 현수베어링실 외통(216)의 내주면 상에 외주면이 밀착되는 고정륜(224)과, 현수베어링실(212) 내부로 삽입되는 메인샤프트(200)에 끼워지며 고정륜(224)의 내주면 상에 배치되어 고정륜(224)의 내주면을 따라 선동운동을 하는 회전륜(226)을 구비한다. 고정륜(224)과 회전륜(226)은 상부에서 하부 측으로 갈수록 좁아지게 연장되는 깔때기 형상을 가진다. 메인샤프트(200)에는 환형의 단턱부(228)가 형성되며, 상기 회전륜(226)의 하부는 이 단턱부(228)에 걸쳐진다. 그리고, 회전륜(226)의 외주면이 이루는 각(θ1)은 고정륜(224)의 내주면이 이루는 각(θ2)보다 작은 각을 가지도록 형성된다. 이러한 두 각의 차이(θ2- θ1)는 메인샤프트(200)의 편심각 즉, 메인샤프트(200)의 중심선이 크러셔 프레임의 중심선과 이루는 각의 2배에 해당하는 각이다. 기하학적으로 회전륜(226)은 항상 고정륜(224)의 내주면에 선접촉된다.
한편, 고정부재(230)는, 그 외주면이 회전륜(226)의 내주면 상에 밀착되도록 메인샤프트(200)에 끼워지는 해체슬리브(232)와, 해체슬리브(232)의 상부로 노출되고 수나사가 형성된 메인샤프트(200) 상단의 외주면 상에 체결되는 고정너트(234)를 구비한다. 종래의 콘형 크러셔에서는 베어링과 메인샤프트를 헐겁게 조립하는 것이 불가피하였으며, 이로 인해 베어링이나 축의 마모가 발생하였다. 그러나, 본 발명의 상기 고정부재(230)는 회전륜(226)을 메인샤프트(200)에 단단히 고정시키기 때문에 축의 마모가 거의 발생하지 않는다. 상기 회전륜(226)의 외주면 각도와 고정륜(224)의 내주면 각도는 맨틀(321)이 이루는 각도에 맞추어서 임의로 조정 가능하다. 고정륜(224)은 윤활성이 있는 재질로 제작하거나 내주면을 윤활성 재질로 코팅하는 것이 바람직하며, 회전륜(226)은 열처리하여 경질로 제작하는 것이 바람직하다. 회전륜(226)과 고정륜(224)의 마찰을 줄이기 위하여 현수베어링실(212) 내부에는 윤활유나 그리스 등이 주입되어 윤활되며, 씨일(238)은 고무 등의 탄성체 재질로 형성되어 현수베어링실(212) 내 윤활유 등의 누설을 방지한다.
다시 도 1을 참조하면, 메인샤프트(200)를 선동운동하게 하는 편심구동부(260)는, 연결다리들(269)에 의하여 메인 프레임(10)의 중앙하부에 고정되는 편심구동부외벽(265)과, 상부편심축(262)과, 하부편심축(266)과, 편심베어링(268)과, 편심축 결합너트(272)를 구비하며, 상부편심축(262)과 하부편심축(266)은 편심축 결합너트(272)에 의하여 결합된다. 바람직하게는, 맨틀코어 조립체(300) 및 메인샤프트(200)의 선동운동에 의하여 발생하는 진동을 상쇄시키기 위하여, 상부편심축(262) 또는 하부편심축(266)에는 균형추(276)가 설치되며, 더욱 상세하게 설명하면, 균형추(276)는 메인샤프트(200)의 하단부가 편심된 방향의 반대편에 설치된다.
상부ㆍ하부베어링하우징(282,284)은 상기 편심구동부외벽(285)의 상부와 하부에 견고하게 결합되며, 상부편심축(262)과 하부편심축(266)은 상부ㆍ하부베어링하우징(282,284)과, 편심구동부외벽(265)에 의하여 둘러싸이게 된다. 여기서, 상부편심축(262)와 하부편심축(266)이 원활하게 가동할 수 있도록, 상부베어링하우징(282)과 상부편심축(262) 사이에는 상부베어링(281)이 개재되고, 하부베어링하우징(284)과 하부편심축(266)의 사이에는 하부베어링(283)이 개재된다.
상부편심축(262)은, 그 중앙부위에 상부편심축(262) 자체의 회전중심과는 편심되어 상기 메인샤프트(200)의 하단부가 통과할 수 있는 개구부를 가지며, 하부에는 상기 하부편심축(266)과 결합되는 상부 결합부를 가진다. 여기서, 개구부는 최상단에서 소정 깊이까지는 하방으로 갈수록 내경이 작아지도록 테이퍼지게 가공된다. 그리고, 상부편심축(262)은 그 상단부에 상부베어링(281)이 결합되는 소경부(262a)를 갖는다.
하부편심축(266)은 상기 상부편심축(262)의 하방에 위치하여 상부편심축(262)에 체결되는 하부 결합부를 가진다. 그리고, 하부편심축(266)의 상단부 내측에는 편심베어링(268)이 설치되는 편심베어링 마운트(266b)가 형성되고, 하부편심축(266)의 하단부에는 하부베어링(283)이 결합되는 소경부(266a)가 형성된다. 여기서, 편심베어링 마운트(266b)는 편심베어링(268)이 장착될 수 있는 직경을 갖되, 이 직경은 상부편심축(262)의 개구부의 최소 직경보다는 크게 형성된다. 또한, 하부편심축(266)은 편심베어링 마운트(266b)와 하부편심축(266) 외부를 연결하는 윤활유 배출구(267)를 갖는다.
편심베어링(268)은 상기 메인샤프트(200)의 하단부를 수용하고, 상기 편심베어링 마운트(266b)에 고정된 상태에서 상기 상부편심축(262)과 상기 하부편심축(266)에 의하여 구획된 공간 내에 배치된다.
상부편심축(262)은 하단부의 내주면은 하방에서 상방으로 갈수록 직경이 작아지도록 테이퍼지게 가공되어 있고 외주면에는 수나사가 형성되어 있다. 그리고, 하부편심축(266)은 상단부의 외주면이 하방에서 상방으로 갈수록 직경이 작아지도록 테이퍼지게 가공되어 있으며, 테이퍼진 하부 결합부의 하부 둘레에는 계단부가 형성되어 있다. 한편, 상기 편심축 결합너트(272)는, 하부편심축(266)의 계단부를 가압할 수 있는 플랜지를 갖고, 상기 플랜지로부터 상방을 향해 연장되는 파이프부의 내주면에는 상기 상부편심축(262)에 형성된 수나사와 결합하는 암나사가 형성된다. 여기서, 하부편심축(266) 상단부의 외주면이 상부편심축(262) 하단부의 내주면과 맞닿을 수 있도록 하부편심축(266)을 상기 상부편심축(262)에 끼우고, 하부편심축(266)의 하방에서부터 상부편심축(262)을 향하여 편심축 결합너트(272)를 트위스트 체결하는 것에 의하여 상부편심축(262)과 하부편심축(266)이 체결될 수 있다. 그리고, 편심축 결합너트(272)의 플랜지가 상기 하부편심축(266)의 계단부를 강하게 가압할 때까지 편심축 결합너트(272)를 회전시키는 것이 바람직하다.
또한, 메인샤프트(200)의 하단부는 편심베어링(268)의 내륜에 쉽게 삽입할 수 있고, 메인샤프트(200)를 위로 들어올리는 것에 의하여 편심베어링(268)으로부터 쉽게 분리할 수 있다.
상부편심축(262)에 형성된 소경부(262a), 하부편심축(266)에 형성된 소경부(266a), 상부베어링(281), 하부베어링(283), 그리고, 상부ㆍ하부베어링하우징(282,284)은 모두 동심이며 메인 프레임(10)과 탑 프레임(20)의 중심선과 이들의 중심선은 일치한다. 또한 편심베어링(268)과, 편심베어링(268)을 수납하는 하부편심축(266)에 형성된 공동부와, 상부편심축(262) 내부에 형성된 공동부들은 모두 메인샤프트(200)의 중심선(270)과 일치하는 중심선을 가지며 두 중심선은 서로 작은 각도(도 1의 메인샤프트 하단부 참조)로 어긋나 있으며, 현수베어링(222) 아래쪽에 위치한 로타리조인트(250)의 씨일(258)의 중심점에 메인 프레임(10) 등의 중심선과 메인샤프트(200)의 중심선이 만나는 점(C)이 위치한다(도 3 참조).
한편, 편심베어링(268) 내부에 수납되는 메인샤프트(200)의 하단부에는 키홈(278)이 형성되고, 이와 마찬가지로 편심베어링(268)의 내륜에도 상기 키홈(278)에 대응되는 다른 키홈이 형성되며, 이 키홈들에 키를 삽입하여, 메인샤프트(200)의 하단부와 편심베어링(268)의 내륜이 사이의 슬립이 방지된다.
메인샤프트(200) 하단부는 테이퍼지게 가공되며, 메인샤프트(200) 하단부가 끼워지는 상부편심축(262)의 중앙부위의 이보다 다소 큰 직경을 갖도록 테이퍼지게 가공되어 있다. 따라서, 메인샤프트(200)와 상부편심축(262) 사이에는 윤활유가 메인샤프트(200)를 타고 흘러내릴 수 있는 틈이 형성되어 있다. 윤활유는 외부 회로(미도시)로부터 상부베어링하우징(282) 내에 형성된 도관(282a)을 통하여 상부베어링하우징(282)의 상단부에 형성된 윤활유 분출공까지 인가된다. 윤활유 분출공은 복수 개 구비될 수 있으며 적어도 일부의 윤활유 분출공은 메인샤프트(200)를 향하여 분출되고, 나머지 일부의 윤활유 분출공은 상부베어링(281)을 향하여 윤활유를 분출할 수 있도록 각도가 설정되어 있다.
상부베어링(281)과 상부편심축(262)이 고속으로 회전운동을 하기 때문에, 상부베어링(281)에 공급된 윤활유는 원심력에 의하여 상부베어링(281)의 하단부로부터 상부편심축(262)의 수평평탄부와 상부베어링하우징(282) 하단면 사이의 틈으로 배출되어 하부베어링하우징(284) 상면에 떨어진다. 메인샤프트(200)는 선동운동을 하면서 극히 저속으로 회전운동을 하므로 메인샤프트(200)에 분출된 윤활유는 원심력의 영향은 상대적으로 적게 받고 중력에 의하여 메인샤프트(200)를 타고 아래로 흘러내려 가서 편심베어링(268)을 윤활하게 된다. 편심베어링(268)의 내륜은 회전하지 않지만 로울러와 외륜, 그리고 하부편심축(266) 등은 고속으로 회전운동을 하므로 윤활을 마친 윤활유는 원심력에 의하여 하부편심축 윤활유 배출구(267)를 통하여 배출된다. 위로부터 흘러내려와서 하부베어링하우징(284) 상면에 떨어진 윤활유의 일부는 하부베어링(283)을 통하여 윤활유배출파이프(500)로 나가고 일부는 하부베어링하우징(284) 상면으로부터 바로 윤활유배출파이프(500)로 나가서 윤활유 탱크(미도시)로 흘러간다.
또한 하부편심축(266)과 하부베어링하우징(284)에는 윤활유의 누출을 막기 위한 두 종류의 씨일과 이들 씨일로 먼지가 침입하는 것을 막기 위한 라비린스 씨일 등이 설치되어 있으나, 당업계의 통상적인 기술이므로 상세한 설명은 생략하기로 한다.
종래에는 편심축 전체를 일체로 구성하였기 때문에 편심베어링을 편심축으로 삽입하려면 편심축 상단부의 구멍이 편심베어링의 외경보다 커야 했고 상기 구멍의 외측에 이 구멍과는 편심되도록 상부베어링 마운트를 형성해야 했다. 따라서 상부베어링의 내경이 편심베어링의 외경보다 상당히 크게 되어 상부베어링의 사이즈가 본 발명의 경우보다 최소한 1.5배 이상 되어서 콘형 크러셔의 단가가 상승할 뿐만 아니라, 큰 베어링은 정격회전속도가 느리기 때문에 시간당 파쇄물의 생산속도도 느려지는 문제가 있다. 이에 반해, 본 발명에서는 편심축을 상ㆍ하부로 나누어서 분리할 수 있게 구성하였는데 이렇게 함으로서 상부베어링(281)의 크기를 대폭적으로 줄일 수 있고, 이로 인해, 콘형 크러셔의 단가 하락, 및 시간당 파쇄물의 생산속도가 상승하는 효과가 있다.
도 6은 본 발명에 따른 콘형 크러셔의 발췌 저면도이다
도 6을 참조하면, 연결다리들(269)은 4개로 구성되어 있는데 이 중에서 2개는 다른 2개와 배치각도나 모양이 서로 다르다는 것을 알 수 있다. 이 연결다리들(269) 중 메인 프레임 외벽(16)을 향하여 갈수록 좁아지는 형태를 취하고 있는 두 다리들은, 풀리(44)와 구동모터(미도시)에 연결된 풀리(48)를 연결하는 벨트(46)를 보호할 수 있는 각도와 형상을 갖도록 형성되는 것이 바람직하다. 또한, 양 풀리(44, 48)를 연결하는 벨트(46)를 보호하기 위하여, 양 풀리(44, 48) 사이에 노출된 벨트(46)가 이루는 두 변과 나란하게 벨트 보호커버(441)가 설치될 수 있다. 도 1을 참조하면 풀리(44)는 하부편심축의 하단부의 소경부(266a)에 결합되어 있는 것을 알 수 있으며, 풀리(44)는 벨트(46)에 의하여 구동모터(미도시)에 연결되어 구동될 수 있다. 연결다리들(269) 중 메인 프레임 외벽(16)을 향하여 갈수록 좁아지는 형태를 취하고 있는 두 다리들과, 벨트(46)와, 벨트 보호커버(441)가 동일선상에 위치하고 있으므로, 콘형 크러셔의 구동에 의하여 제조된 파쇄물이 연결다리들(269)을 통과하면서 보호커버(441)와 벨트(46)를 타격하지 않으며, 파쇄물이 막히지 않고 메인 프레임(10)의 하방으로 원활하게 빠져 나갈 수 있다.
이하에서는 본 발명의 더스트씨일에 대해서 도 1을 참조하면서 설명하도록 한다. 종래의 콘형 크러셔에 따르면, 맨틀코어 조립체(300) 내에 더스트씨일(600)을 구성하는 부품이 설치되어 있으며, 맨틀코어 조립체(300)가 상하로 이동하면 더스트씨일(600)을 구성하는 부품들도 상하로 이동한다. 따라서, 이 부품들이 상하로 이동하기 전의 구면곡률과 새로 이동한 위치에서의 기하학적인 구면곡률이 서로 다르게 되며, 그 결과, 더스트씨일(600)을 구성하는 부품들의 구면곡률과 새로 이동한 위치에서의 기하학적 구면곡률이 서로 동일하게 될 때까지 급속도로 부품들이 마모된 이후에 더스트씨일이 구조적으로 안정화될 수 있다. 또한, 이러한 마모는 맨틀코어 조립체(300)를 이동할 때마다 발생하게 되어, 종래의 더스트씨일(600)의 수명은 짧을 수밖에 없다. 그러나, 본 발명에 따른 더스트씨일(600)은 이를 구성하는 부품들이 일정한 높이에 고정되어 상하로는 움직이지 않고 한자리에 머물러서 선동운동만을 한다. 따라서 곡률변경에 따른 마모는 일어나지 않고 긴수명이 보장된다.
도 1을 참조하면 본 발명의 더스트씨일(600)은 가동부(610)와 고정부(620)로 이루어진다. 가동부(610)는, 피스톤(400)의 하부평면에 볼트로 고정되는 하부덮개판(614)과, 하부덮개판(614)의 외주연부로부터 수직상방으로 올라온 파이프 모양의 맨틀코어 가이드부(618), 그리고 맨틀코어 가이드부(618) 바깥으로 형성된 와셔모양의 상부덮개판(612), 상부덮개판(612) 아래쪽에서 볼트로 연결되고 윗면에 구면이 형성된 가동구면판(616)으로 구성되어 있다. 고정부(620)는, 가운데에 큰 구멍이 있고 아래쪽 면은 구면으로 형성된 고정구면링(624)과, 플랜지형 밑면이 상부베어링하우징(282) 상면에 견고히 결합되고 고정구면링(624) 내부구멍에 꼭 맞는 짧은 파이프형 수직가이드부를 가진 고정구면링가이드(622)로 구성되어 있다. 고정구면링(624)은 고정구면링가이드(622)의 외면을 따라 상하로 자유로이 승강할 수 있고, 고정구면링(624) 하면이 가동구면판(616)의 상면에 중력에 의해서 항상 밀착되어 있다. 따라서 메인샤프트(200)가 선동운동을 하면 더스트씨일의 가동부(610)도 같이 선동운동을 하지만 상하방향으로는 움직이지 않고 항상 제자리에 머무를 수 있다. 상술한 바와 같이 맨틀코어 조립체(300)가 파쇄간격조절을 위하여 상하방향으로 이동을 하더라도, 더스트씨일 가동부(610)는 상하이동이 없이 선동운동만을 하게 된다. 또한 맨틀코어 하단부(414)의 외주면은 맨틀코어 가이드부(618)의 내면을 타고 슬라이딩을 하게 된다. 본 발명에서는 먼지가 콘형 크러셔 내부로 유입되는 것을 보다 완벽히 차단하기 위해서, 압축공기를 고정구면링가이드(622) 내부로 불어넣는 방법을 채용하고 있다. 도관을 통하여 고정구면링가이드(622) 내부로 들어온 압축공기는 슬라이딩이 일어나는 모든 부분 즉, 가동구면판(616)과 고정구면링(624)의 접촉면, 고정구면링(624)과 고정구면링가이드(622)의 접촉면, 그리고 맨틀코어 가이드(618)의 내주면과 맨틀코어 하단(414)의 외주면과의 접촉면 사이의 틈새로 유출되면서 먼지를 불어내게 된다.
이제 본 발명의 다른 실시예를 설명하고자 한다.
도 4는 메인샤프트 상단의 부분확대도로서, 도 3과는 다른 타입의 현수베어링이 적용된 실시예를 나타낸다.
구면형 현수베어링은 암 현수베어링(224a)과 수 현수베어링(226a)로 이루어져 있고 수 현수베어링(226a)은 해체슬리브(232a)를 개재하여 고정너트(234a)에 의하여 메인샤프트(200)에 견고히 결합되어 있다. 이 경우에는 메인샤프트(200)의 중심선과 메인 프레임(10)의 중심선이 만나는 선동운동의 중심점(C′)이 구면형 현수베어링의 중심점과 일치하도록 위쪽으로 이동해 있다. 구면형 현수베어링에 공급된 그리스 등의 윤활제의 유출을 방지하기 위한 씨일(238a)은 도 1의 경우보다 신축성이 높은 재질이 채용된다.
도 5는 메인샤프트 하단의 부분확대도로서, 편심구동부를 선동운동시키기 위하여 도 1과는 다른 타입의 구동수단이 적용된 실시예를 나타낸다.
이 실시예에서는 메인샤프트(200)을 선동운동시키는 편심구동부(260a)를 구동하는 동력이 한 쌍의 베벨기어에 의하여 공급되는 것을 보여주고 있다. 이러한 기어 구동형 동력공급장치는 종래의 콘형 크러셔에서 널리 사용되고 있는 것으로 본 발명에서도 잘 적용된다. 큰 베벨기어(48a)는 상부편심축(262)에 형성된 마운트(49)에 키 등의 고정구를 개재하여 견고하게 설치된다. 이와 맞물리는 피니언 기어(66a)는 카운트샤프트(42a)의 일단에 견고하게 결합되어 있고, 카운트샤프트(42a)의 타단에는 풀리(44a)가 형성되어 구동모터(미도시)로부터 동력을 공급받는다. 큰 베벨기어(48a)의 윗면에는 맨틀코어 조립체(300)의 편심 배치에 의하여 발생하는 진동력을 상쇄시키기 위하여 평형추(256a)가 설치되어 있다. 카운트샤프트(42a)를 회전 가능하게 지지하는 베어링과 베어링하우징 등 기타 다른 요소에 대해서는 설명을 생략하기로 한다.
상기와 같이 본 발명의 몇가지 실시예를 통해 본 발명에 대해 설명하였다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (15)

  1. 공동을 갖는 프레임과, 상기 프레임의 중심축으로부터 편심되어 상기 공동에 배치된 메인샤프트와, 상기 메인샤프트 하단부와 결합되어 상기 메인샤프트를 선동운동시키는 편심구동부를 구비한 콘형 크러셔에 있어서,
    상기 편심구동부는 상부편심축과, 하부편심축과, 편심베어링을 구비하며,
    상기 상부편심축은, 그 중앙부위에 상부편심축 자체의 회전중심과는 편심되어 상기 메인샤프트의 하단부가 통과할 수 있는 개구부를 가지며, 하부에는 상기 하부편심축과 결합되는 상부 결합부를 가지고,
    상기 하부편심축은 상기 상부편심축의 하방에 위치하여 상부편심축에 체결되는 하부 결합부를 가지고,
    상기 편심베어링은 상기 메인샤프트의 하단부를 수용하면서 상기 상부편심축과 상기 하부편심축에 의하여 구획된 공간 내에 배치된 것을 특징으로 하는 콘형 크러셔.
  2. 제1항에 있어서,
    상기 상부편심축은, 그 상단부에 상부베어링이 결합되는 소경부를 갖는 것을 특징으로 하는 콘형 크러셔.
  3. 제1항에 있어서,
    상기 하부편심축은:
    상단부 내측에 형성되어 상기 편심베어링이 설치되는 편심베어링 마운트; 및
    하단부에 하부베어링이 결합되는 소경부;를 갖는 것을 특징으로 하는 콘형 크러셔.
  4. 제1항에 있어서,
    상부편심축 또는 하부편심축에 메인샤프트의 선동운동에 의한 진동을 상쇄하는 균형추가 설치된 것을 특징으로하는 콘형 크러셔.
  5. 제1항에 있어서,
    메인샤프트와 편심베어링 내륜의 슬립을 방지하기 위하여, 편심베어링 내부에 수납되는 메인샤프트 하단부와 편심베어링 내륜 내면에 각각 키홈을 형성하고, 상기 키홈에 키가 끼워져 결합되는 것을 특징으로 하는 콘형 크러셔.
  6. 제1항에 있어서,
    상기 상부편심축에 형성된 상기 개구부는 최상단에서 소정 깊이까지는 하방으로 갈수록 내경이 작아지도록 테이퍼지게 가공된 것을 특징으로 하는 콘형 크러셔.
  7. 제1항에 있어서,
    상부편심축의 상방에 위치하는 복수 개의 윤활유 분출공들을 더 구비하며,
    상기 윤활유 분출공들 중 일부는 상기 메인샤프트로 윤활유를 공급하고, 나머지 일부의 윤활유 분출공들은 상기 상부편심축의 상단에 끼워지는 상부베어링을 향하여 윤활유를 공급할 수 있도록 각도가 설정된 것을 특징으로 하는 콘형 크러셔.
  8. 제3항에 있어서,
    상기 편심베어링 마운트는 상기 편심베어링이 장착될 수 있는 직경을 갖되, 이 직경은 상기 상부편심축의 개구부의 최소 직경보다 큰 것을 특징으로 하는 콘형 크러셔.
  9. 제3항에 있어서,
    상기 하부편심축은 상기 편심베어링 마운트와 하부편심축 외부를 연결하는 윤활유 배출구를 갖는 것을 특징으로 하는 콘형 크러셔.
  10. 제1항에 있어서,
    상기 하부편심축 상단부의 외주면과 상기 상부편심축 하단부의 내주면은 하방에서 상방으로 갈수록 직경이 작아지도록 테이퍼지게 형성되고,
    상기 하부편심축 상단부의 외주면이 상기 상부편심축 하단부의 내주면과 맞닿을 수 있도록 상기 하부편심축이 상기 상부편심축에 끼워진 상태에서 서로 체결되는 것을 특징으로 하는 콘형 크러셔.
  11. 제10항에 있어서,
    상기 편심구동부는 편심축 결합너트를 더 구비하고,
    상기 상부편심축은 하단부 외주면에 형성된 수나사를 갖고,
    상기 하부편심축의 하부 결합부의 하부 둘레에는 계단부가 형성되며,
    상기 편심축 결합너트는, 상기 하부편심축의 계단부를 가압할 수 있는 플랜지를 갖고, 상기 플랜지로부터 상방을 향해 연장되는 파이프부의 내주면에는 상기 수나사와 결합하는 암나사가 형성된 것을 특징으로 하는 콘형 크러셔.
  12. 제1항에 있어서,
    상기 편심구동부는 상부편심축 또는 하부편심축에 결합된 베벨형기어 및 상기 베벨형기어에 맞물리는 다른 베벨형기어에 의하여 구동되는 것을 특징으로 하는 콘형 크러셔.
  13. 제1항에 있어서,
    상기 편심구동부는 상기 하부편심축의 하단부에 직접 결합된 풀리에 의하여 구동되는 것을 특징으로 하는 콘형 크러셔.
  14. 제13항에 있어서,
    상기 풀리를 연결하는 벨트를 보호하기 위하여, 노출된 벨트가 이루는 두 변과 나란하게 설치된 벨트 보호커버를 더 구비한 것을 특징으로 하는 콘형 크러셔.
  15. 제14항에 있어서,
    상기 상부편심축과 상기 하부편심축의 외측을 둘러싸는 편심구동부 외벽을 더 구비하고,
    상기 편심구동부 외벽은 연결다리들에 의하여 상기 프레임에 고정되며,
    상기 연결다리들 중 적어도 2개는 상기 벨트가 이루는 두 변과 나란하게 설치된 것을 특징으로 하는 콘형 크러셔.
PCT/KR2012/002880 2011-04-14 2012-04-16 콘형 크러셔 WO2012141559A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12771922.7A EP2698206B1 (en) 2011-04-14 2012-04-16 Cone-shaped crusher
US14/009,109 US9050600B2 (en) 2011-04-14 2012-04-16 Cone-shaped crusher
CN201280018457.4A CN103476502B (zh) 2011-04-14 2012-04-16 圆锥形破碎机
JP2014505091A JP2014511764A (ja) 2011-04-14 2012-04-16 コーン型クラッシャー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0034523 2011-04-14
KR1020110034523A KR101191267B1 (ko) 2011-04-14 2011-04-14 콘형 크러셔

Publications (1)

Publication Number Publication Date
WO2012141559A1 true WO2012141559A1 (ko) 2012-10-18

Family

ID=47009550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002880 WO2012141559A1 (ko) 2011-04-14 2012-04-16 콘형 크러셔

Country Status (6)

Country Link
US (1) US9050600B2 (ko)
EP (1) EP2698206B1 (ko)
JP (2) JP2014511764A (ko)
KR (1) KR101191267B1 (ko)
CN (1) CN103476502B (ko)
WO (1) WO2012141559A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105073265A (zh) * 2013-03-08 2015-11-18 河龙干 圆锥形破碎机

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2505265B1 (en) * 2011-03-29 2013-09-18 Sandvik Intellectual Property AB Cone crusher, bearing plate, and kit of bearing plates
KR101289976B1 (ko) 2012-03-13 2013-07-26 하용간 콘형 크러셔
DE102012110267A1 (de) * 2012-10-26 2014-04-30 Thyssenkrupp Resource Technologies Gmbh Kreiselbrecher zur Zerkleinerung von Brechgut
US20150174581A1 (en) * 2013-12-19 2015-06-25 Metso Minerals Industries, Inc. Split mainframe including tramp release cylinders
US9427741B2 (en) * 2014-06-06 2016-08-30 Metso Minerals Industries, Inc. Two oil chamber counterweight
CN104588156A (zh) * 2015-01-28 2015-05-06 浙江浙矿重工股份有限公司 一种滚动轴承圆锥破碎机
CN105855009B (zh) * 2016-04-09 2018-03-20 陈永林 一种电动块茎饲料粉碎装置
CN108246397B (zh) * 2016-12-29 2024-07-16 浙江双金机械集团股份有限公司 单缸液压圆锥破碎机偏心轴套
CN108786987B (zh) * 2018-07-27 2024-07-19 河南黎明重工科技股份有限公司 一种圆锥破碎机润滑油油路系统
WO2022019317A1 (ja) * 2020-07-20 2022-01-27 株式会社アーステクニカ 旋動式破砕機並びにその故障予兆診断装置及び方法
CN112718061B (zh) * 2020-11-23 2022-03-11 南昌矿山机械有限公司 基于偏心块无级调节的单缸圆锥破碎机减振调节方法
CN112275366B (zh) * 2020-12-03 2023-07-07 禹州明旭铸业科技有限公司 一种圆锥破碎机新型拼合式支撑套及其使用方法
CN114602589A (zh) * 2022-01-27 2022-06-10 阳新娲石矿投新材料有限公司 一种用于骨料生产的压碎装置
CN115875962A (zh) * 2022-11-08 2023-03-31 江苏利晟安装工程有限公司 一种医药工程用原料烘干装置
CN118162230B (zh) * 2024-05-15 2024-07-23 河南方越建筑工程有限公司 一种交通工程路桥施工用破碎筛分装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266918A (ja) * 1995-03-30 1996-10-15 Rasa Ind Ltd 慣性円錐クラッシャ
JPH10504234A (ja) * 1994-08-12 1998-04-28 ウエスコーン クラッシャーズ プロプライエタリー リミテッド ジャイレトリクラッシャ用支持アセンブリ
JP2001162186A (ja) * 1999-12-09 2001-06-19 Rasa Ind Ltd 慣性円錐破砕機の上部球面軸受装置
KR200433276Y1 (ko) * 2006-09-19 2006-12-08 오삼수 콘 크러셔
KR100809900B1 (ko) 2006-09-19 2008-03-06 남양기업(주) 콘 크러셔의 간극 조절장치
WO2009065995A1 (en) * 2007-11-20 2009-05-28 Metso Minerals Inc. Crusher

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB530126A (en) * 1939-06-15 1940-12-05 Griffith Annesley Improvements in gyratory crushers
DE1216074B (de) * 1962-02-16 1966-05-05 Schuechtermann & Kremer Kegelbrecher
GB973045A (en) * 1962-04-06 1964-10-21 Sheepbridge Equipment Ltd Improvements in or relating to gyratory crushers
US4037800A (en) * 1976-06-08 1977-07-26 Allis-Chalmers Corporation Gyratory crusher having antispin device for head
JPS54101554A (en) * 1978-01-27 1979-08-10 Kobe Steel Ltd Vibration preventing method for turning crusher
JPS56111353U (ko) * 1980-01-29 1981-08-28
JPS56126454A (en) * 1980-03-10 1981-10-03 Daburiyuu Jiyonson Ruuisu Cone type rock drill
US4410143A (en) * 1980-09-26 1983-10-18 Allis-Chalmers Corporation Main shaft assembly for a gyratory crusher
JP2571451Y2 (ja) * 1993-06-17 1998-05-18 株式会社栗本鐵工所 コーンクラッシャのフレーム締結装置
AUPM985594A0 (en) * 1994-12-02 1995-01-05 Ledger Engineering Pty Ltd Improved gyratory crusher
JPH09242954A (ja) * 1996-03-04 1997-09-16 Masaru Kogyo Kk 管継手
US6000648A (en) * 1998-10-14 1999-12-14 Ani Mineral Processing, Inc. Cone crusher having integral socket and main frame
US6036129A (en) * 1998-10-14 2000-03-14 Ani Mineral Processing, Inc. Eccentric cone crusher having multiple counterweights
JP2001006827A (ja) * 1999-06-17 2001-01-12 Japan Aviation Electronics Industry Ltd 防水型同軸コネクタ
JP2001039300A (ja) * 1999-07-29 2001-02-13 East Japan Railway Co 脱線復旧用ジヤッキ装置
JP2002011363A (ja) * 2000-06-30 2002-01-15 Komatsu Ltd コーンクラッシャの潤滑装置
FI109722B (fi) * 2001-03-23 2002-09-30 Metso Minerals Tampere Oy Menetelmä murskaimen laakeroinnin kunnon valvomiseksi sekä murskain
US8181895B2 (en) * 2008-02-14 2012-05-22 Metso Minerals Inc. Wobble stroke adjustment of a cone crusher
JP2009236287A (ja) * 2008-03-28 2009-10-15 Jtekt Corp 車輪用転がり軸受装置
SE533271C2 (sv) * 2008-12-17 2010-08-03 Sandvik Intellectual Property Centrumaxel med anordning för begränsning av spinning, samt gyratorisk kross innefattande sådan centrumaxel
EP2382047B1 (en) * 2009-01-29 2015-01-28 Metso Minerals, Inc. A fastening device, a cone crusher and a method for fastening a mantel to a head of a cone crusher
JP2010274219A (ja) * 2009-05-29 2010-12-09 Kurimoto Mec Ltd 旋動式破砕機
CN103534031B (zh) * 2011-04-13 2015-08-05 美特索矿物公司 锥式破碎机和用于矿物材料的处理设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10504234A (ja) * 1994-08-12 1998-04-28 ウエスコーン クラッシャーズ プロプライエタリー リミテッド ジャイレトリクラッシャ用支持アセンブリ
JPH08266918A (ja) * 1995-03-30 1996-10-15 Rasa Ind Ltd 慣性円錐クラッシャ
JP2001162186A (ja) * 1999-12-09 2001-06-19 Rasa Ind Ltd 慣性円錐破砕機の上部球面軸受装置
KR200433276Y1 (ko) * 2006-09-19 2006-12-08 오삼수 콘 크러셔
KR100809900B1 (ko) 2006-09-19 2008-03-06 남양기업(주) 콘 크러셔의 간극 조절장치
WO2009065995A1 (en) * 2007-11-20 2009-05-28 Metso Minerals Inc. Crusher

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105073265A (zh) * 2013-03-08 2015-11-18 河龙干 圆锥形破碎机
EP2965818A4 (en) * 2013-03-08 2016-05-18 Yong Gan Ha CONE BREAKER
US9901930B2 (en) 2013-03-08 2018-02-27 Yong-Gan Ha Cone shaped crusher

Also Published As

Publication number Publication date
CN103476502B (zh) 2016-03-02
US9050600B2 (en) 2015-06-09
EP2698206A4 (en) 2014-11-05
JP2014511764A (ja) 2014-05-19
JP2016153120A (ja) 2016-08-25
US20140224909A1 (en) 2014-08-14
JP6238027B2 (ja) 2017-11-29
KR101191267B1 (ko) 2012-10-16
EP2698206B1 (en) 2017-12-20
EP2698206A1 (en) 2014-02-19
CN103476502A (zh) 2013-12-25

Similar Documents

Publication Publication Date Title
WO2012141559A1 (ko) 콘형 크러셔
CN206008809U (zh) 一种多缸液压圆锥破碎机
WO2012141558A1 (ko) 콘형 크러셔
EP2468491A1 (en) Biomass extrusion molding machine with horizontally-placed annular die
CN102430445B (zh) 液压式圆锥破碎机
KR101198584B1 (ko) 콘형 크러셔
CN202277857U (zh) 组合式锥磨机
CN114392922B (zh) 一种新型皮带传动煤粉分离器及其使用方法
CN202700671U (zh) 一种新型可调式旋转分离器
CN103252194B (zh) 一种圆盘成球机
CN217094439U (zh) 一种新型皮带传动煤粉分离器
CN201366347Y (zh) 用于圆锥破碎机的防尘系统
KR101198484B1 (ko) 콘형 크러셔
CN215444397U (zh) 大颗粒物料输送泵
KR20010031887A (ko) 샤프트 퍼니스 로딩 장치 냉각 방법
CN108435871A (zh) 内螺纹铜管米克重连续调节装置
CN102892512A (zh) 离心分离器
CN114602600B (zh) 一种高分子晶体塑粉超细研磨设备及研磨方法
CN214075093U (zh) 一种多楔皮带增速型高速离心雾化器
WO2012050357A2 (ko) 떡 제조장치
CN205084801U (zh) 一种具有侧面螺旋进料装置的立磨选粉机
EP3954461B1 (en) Conical inertial crusher having a sliding supporting bearing
CN104549635A (zh) 圆锥式破碎机
CN204448113U (zh) 一种多缸圆锥破碎机机架
CN216605375U (zh) 一种自定心防自转圆锥破碎机配重总成

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771922

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14009109

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012771922

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014505091

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE