WO2022019317A1 - 旋動式破砕機並びにその故障予兆診断装置及び方法 - Google Patents
旋動式破砕機並びにその故障予兆診断装置及び方法 Download PDFInfo
- Publication number
- WO2022019317A1 WO2022019317A1 PCT/JP2021/027233 JP2021027233W WO2022019317A1 WO 2022019317 A1 WO2022019317 A1 WO 2022019317A1 JP 2021027233 W JP2021027233 W JP 2021027233W WO 2022019317 A1 WO2022019317 A1 WO 2022019317A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- failure
- sign
- vibration acceleration
- meshing
- eccentric sleeve
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 18
- 230000001133 acceleration Effects 0.000 claims abstract description 72
- 230000005540 biological transmission Effects 0.000 claims abstract description 10
- 230000007246 mechanism Effects 0.000 claims abstract description 9
- 238000003745 diagnosis Methods 0.000 claims description 41
- 238000001228 spectrum Methods 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 15
- 238000012423 maintenance Methods 0.000 description 13
- 238000005070 sampling Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000012544 monitoring process Methods 0.000 description 8
- 230000002093 peripheral effect Effects 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 230000005856 abnormality Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000010720 hydraulic oil Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 241000239290 Araneae Species 0.000 description 1
- 208000033748 Device issues Diseases 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C2/00—Crushing or disintegrating by gyratory or cone crushers
- B02C2/02—Crushing or disintegrating by gyratory or cone crushers eccentrically moved
- B02C2/04—Crushing or disintegrating by gyratory or cone crushers eccentrically moved with vertical axis
- B02C2/06—Crushing or disintegrating by gyratory or cone crushers eccentrically moved with vertical axis and with top bearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C25/00—Control arrangements specially adapted for crushing or disintegrating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H17/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M99/00—Subject matter not provided for in other groups of this subclass
Definitions
- the present invention relates to a rotary crusher, a failure sign diagnosis device for a rotary crusher, and a failure sign diagnosis method for a rotary crusher.
- a concave that forms a crushing chamber and a mantle fixed to the main shaft are provided, and the main shaft is eccentrically swiveled with the upper suspension as a fulcrum to bite the crushed material between the concave and the mantle and crush it.
- a rotary crusher is known. Such a rotary crusher may be used for crushing rocks and ores in mines. At the mine, in order to cope with the shortage of skilled workers, labor saving operations are being considered by centralized monitoring in remote areas. Therefore, there is a demand for a rotary crusher that is automated and has high maintainability. The high maintainability of the rotary crusher includes low maintenance frequency and short downtime.
- Patent Document 1 discloses a remote monitoring system for a crusher.
- the automatic operation control panel and the central monitoring panel at a remote location are connected by wire or wirelessly, and the central monitoring panel monitors the information of the automatic operation control panel and remotely controls the automatic operation control panel.
- the crushing force of the crusher changes depending on the size of the outlet set of the crushing liner (concave and mantle) and the amount of the input raw material, and this change appears as a change in the crushing pressure and the motor load. Therefore, the automatic operation control panel detects the change in the outlet set and the change in the motor load based on the outlet set detection signal and the load detection signal.
- the automatic operation control panel raises an alarm and automatically expands the outlet set so that the machine body is not damaged, thereby stabilizing the motor load.
- a monitoring screen showing the operating status of the crusher in real time is displayed.
- the value of the current outlet set and the motor load factor are displayed as operation data, and if there is an abnormality in the operation status, the red lamp lights up until the abnormality disappears in each item of the abnormality status.
- the rotary crusher is conventionally equipped with a safety device called an interlock circuit.
- This safety device mainly acquires process data such as oil temperature, oil amount, current amount, and oil level of hydraulic oil from auxiliary equipment (for example, lubricating hydraulic device and electric panel), and these process data are set.
- the crusher is allowed to operate only if it is within the above range.
- the safety device issues an abnormality alarm when these process data are out of the set range.
- the central monitoring panel of Patent Document 1 and the safety device described above inform the operator of the state in which an abnormality has occurred in the crusher. Upon receiving an abnormality, the operator immediately stops the operation, starts maintenance, and orders replacement parts.
- many of the replacement parts of the crusher are dedicated parts, and it takes time from ordering to obtaining them, which may prolong downtime and significantly reduce productivity.
- the present disclosure describes a crusher that diagnoses a sign of failure by analyzing information detected by the crusher in operation and a method for diagnosing the sign of failure. The purpose is to make a proposal.
- the rotary crusher is With the main axis The mantle fixed to the spindle and A concave that is arranged to face the mantle and forms a crushing chamber with the mantle.
- An eccentric sleeve that supports the lower part of the spindle via a lower bearing, A drive motor that rotates and drives the eccentric sleeve, A horizontal axis that is rotationally driven by the drive motor, a bevel pinion provided on the horizontal axis, and a bevel gear provided on the eccentric sleeve that meshes with the bevel pinion, and outputs the output of the drive motor to the eccentric sleeve.
- the power transmission mechanism to transmit and A meshing vibration detector that detects the meshing vibration acceleration generated by the meshing of the bevel pinion and the bevel gear, and It is equipped with a failure sign diagnosis device.
- the failure sign diagnostic device of the rotary crusher is The meshing vibration acceleration waveform obtained by acquiring the meshing vibration acceleration generated by the meshing of the bevel pinion and the bevel gear and arranging the meshing vibration acceleration detected during the crush-free load period in which the crushed material is not supplied to the crushing chamber in chronological order. Based on the analysis result of the meshing vibration acceleration waveform, the presence or absence of a sign of failure is diagnosed.
- the meshing vibration acceleration generated by the meshing of the bevel pinion and the bevel gear is acquired.
- the meshing vibration acceleration waveform obtained by arranging the meshing vibration accelerations detected during the crush-free load period in which the crushed material is not supplied to the crushing chamber in chronological order was obtained. Based on the analysis result of the meshing vibration acceleration waveform, the presence or absence of a sign of failure is diagnosed.
- a crusher for diagnosing a sign of failure by using information detected by the crusher in operation and a method for diagnosing the sign of failure. This can contribute to shortening the downtime from the failure of the crusher to the recovery.
- FIG. 1 is a diagram showing a schematic configuration of a rotary crusher according to an embodiment of the present disclosure.
- FIG. 2 is a block diagram showing a configuration of a control system of a crusher.
- FIG. 3 is a block diagram showing a configuration related to failure sign diagnosis.
- FIG. 4 is a diagram showing a processing flow of the failure sign diagnosis device.
- FIG. 5 is an example of the frequency analysis result of the meshing vibration acceleration waveform during the crush-free load period.
- FIG. 6 is an example of the frequency analysis result of the meshing vibration acceleration waveform during the crushing load period.
- FIG. 1 is a diagram showing a schematic configuration of a rotary crusher 100 according to an embodiment of the present disclosure.
- the rotary crusher 100 shown in FIG. 1 is a gyre crusher or a cone crusher, and the configuration of the crusher 100 itself excluding the failure sign diagnosis device 40 and the control device 50 is known.
- the rotary crusher 100 includes a frame 30 including an upper frame 31 and a lower frame 32 connected to the upper frame 31. At the center of the internal space of the frame 30, the airframe center axis A extending in the vertical direction is defined. A hopper 3 is continuously provided on the upper part of the frame 30. The crushed material is supplied to the hopper 3 from the conveyor which is the supply device 9.
- the spindle 5 is arranged at the substantially central portion of the frame 30.
- the central axis of the main axis 5 is inclined with respect to the airframe central axis A.
- the upper end of the spindle 5 is supported by the upper frame 31 via the upper bearing 17.
- the upper bearing 17 is provided on the spider 18 protruding inward from the upper end portion of the upper frame 31.
- the lower end of the spindle 5 is supported by the ram 61 of the bearing cylinder 6 via the spindle thrust bearing 2.
- the bearing cylinder 6 is a hydraulic cylinder including a cylinder tube 62 and a ram 61 sliding in the cylinder tube 62.
- the lower part of the spindle 5 is rotatably inserted into the eccentric sleeve 4.
- the eccentric sleeve 4 is rotatably inserted into the boss 7 formed on the lower frame 32.
- the lower part of the eccentric sleeve 4 is supported by the lower frame 32 via the thrust slide bearing 23.
- a mantle 12 is fixed to the upper part of the main shaft 5.
- the outer surface of the mantle 12 is a conical surface.
- a mantle 13 is attached to the outer surface of the mantle 12.
- the outer surface of the mantle 13 is a conical surface.
- the outer surface of the mantle 13 faces the inner surface of the concave 14 provided on the inner surface of the upper frame 31.
- the inner surface of the concave 14 and the outer surface of the mantle 13 form a crushing chamber 16 having a wedge-shaped vertical cross section. The crushed material supplied to the hopper 3 flows into the crushing chamber 16 by its own weight.
- a cylindrical partition plate 24 is provided above the boss 7.
- the partition plate 24 forms a hydraulic chamber 27 above the eccentric sleeve 4 and the boss 7 and below the mantle 12.
- Lubricant is supplied from the hydraulic chamber 27 between the outer peripheral surface of the main shaft 5 and the inner peripheral surface of the eccentric sleeve 4, and between the outer peripheral surface of the eccentric sleeve 4 and the inner peripheral surface of the boss 7.
- a journal plain bearing formed between the outer peripheral surface of the spindle 5 and the inner peripheral surface of the eccentric sleeve 4 is called a "spindle bearing 10" and is formed between the outer peripheral surface of the eccentric sleeve 4 and the inner peripheral surface of the boss 7.
- the journal sliding bearing is referred to as a "sleeve bearing 11".
- the multiple bearing formed by the spindle bearing 10 and the sleeve bearing 11 is referred to as a "lower bearing 15".
- a drive motor 8 is provided outside the frame 30. Power is transmitted from the output shaft 8a of the drive motor 8 to the eccentric sleeve 4 via the power transmission mechanism 20.
- the power transmission mechanism 20 is provided on the pulley 22a provided on the output shaft 8a, the horizontal shaft 21, the pulley 22b provided on the horizontal shaft 21, the power transmission belt 22c wound around the pulleys 22a, 22b, and the horizontal shaft 21.
- the bevel pinion 19a and the bevel gear 19b provided on the eccentric sleeve 4 are included.
- the horizontal shaft 21 is supported by the lower frame 32 via the horizontal shaft bearing 25.
- the spindle 5 When the eccentric sleeve 4 rotates, the spindle 5 performs a turning motion eccentric with respect to the machine body center axis A, that is, a so-called precession motion. As a result, the distance between the outer surface of the mantle 13 and the inner surface of the concave 14 changes according to the turning position of the spindle 5. The crushed material that has fallen into the crushing chamber 16 is crushed between the concave 14 and the mantle 13, and is collected as a crushed product from below the lower frame 32.
- the crusher 100 having the above configuration includes a failure sign diagnosis device 40 and a control device 50.
- the control device 50 controls the operation of the crusher 100.
- the failure sign diagnosis device 40 diagnoses the presence or absence of a failure sign of the crusher 100 based on the information detected by the crusher 100 during operation or start-up operation.
- FIG. 2 is a block diagram showing a configuration of a control system of the crusher 100.
- a display device 58, a setting device 59, a failure sign diagnosis device 40, various instruments 52, 55, 56, and control targets 8, 9, and 6 are connected to the control device 50. ..
- the functions of the failure sign diagnostic device 40 and the control device 50 disclosed herein include general-purpose processors, dedicated processors, integrated circuits, ASICs (Application Specific Integrated Circuits), ASICs (Application Specific Integrated Circuits), conventionally configured or programmed to perform the disclosed functions. Circuits or processing circuits that include circuits and / or combinations thereof.
- a processor is considered a processing circuit or circuit because it includes transistors and other circuits.
- a circuit, unit, or means is hardware that performs the listed functions or is programmed to perform the listed functions.
- the hardware may be the hardware disclosed herein, or it may be other known hardware that is programmed or configured to perform the listed functions. If the hardware is a processor considered to be a type of circuit, the circuit, means, or unit is a combination of hardware and software, and the software is used to configure the hardware and / or processor.
- the control device 50 controls the supply amount of the crushed material.
- the control device 50 is wirelessly or wiredly connected to the drive motor 9a of the supply device 9.
- the control device 50 transmits a command signal corresponding to the target supply amount to the drive motor 9a of the supply device 9.
- the drive motor 9a operates in response to the command signal from the control device 50, the crushed material in the target supply amount is supplied from the supply device 9 to the hopper 3.
- the control device 50 controls the value of the exit set.
- the exit set (closed set) is defined as the narrowest gap between the two crushed surfaces of the concave 14 and the mantle 13.
- the bearing cylinder 6 functions as a set adjusting device.
- a hydraulic chamber 63 whose capacity changes due to the displacement of the ram 61 is formed in the cylinder tube 62 of the bearing cylinder 6, and the hydraulic circuit 90 is connected to the hydraulic chamber 63.
- the hydraulic oil is supplied to the hydraulic chamber 63 through the hydraulic circuit 90, so that the ram 61 rises. Further, the hydraulic oil in the hydraulic chamber 63 is discharged to the oil tank 71 through the hydraulic circuit 90, so that the ram 61 is lowered.
- the control device 50 is wirelessly or wiredly connected to the set sensor 52 that detects the value of the exit set.
- the control device 50 acquires the information detected by the set sensor 52, and raises and lowers the ram 61 so that the value of the outlet set detected by the set sensor 52 becomes the target exit set value.
- the control device 50 operates a pump motor and a solenoid valve (both not shown) provided in the hydraulic circuit 90 to apply cylinder hydraulic pressure so that a desired position of the ram 61 can be obtained. generate.
- the control device 50 controls the rotation speed of the eccentric sleeve 4.
- the rotation speed of the eccentric sleeve 4 corresponds to the rotation speed of the horizontal shaft 21 and the rotation speed of the spindle 5 driven by the drive motor 8.
- the control device 50 is connected to the drive motor 8 wirelessly or by wire.
- the control device 50 transmits a command signal corresponding to the target rotation speed to the drive motor 8.
- the drive motor 8 operates in response to a command signal from the control device 50, so that the rotation speed of the eccentric sleeve 4 becomes the target rotation speed.
- FIG. 3 is a block diagram showing a configuration related to failure sign diagnosis.
- the failure sign diagnostic device 40 is connected to the meshing vibration detector 43, the bearing vibration detector 44, and the load detector 56.
- the meshing vibration detector 43 detects the vibration acceleration of the meshing portion between the bevel pinion 19a and the bevel gear 19b.
- the meshing vibration detector 43 is provided on the main body of the crusher 100 (for example, the lower frame 32, the sleeve of the horizontal shaft 21, etc.).
- the meshing vibration detector 43 may be provided in the vicinity of the meshing portion between the bevel pinion 19a and the bevel gear 19b in the lower frame 32.
- the bearing vibration detector 44 detects the vibration acceleration of the horizontal shaft bearing 25.
- the bearing vibration detector 44 is provided on the horizontal shaft bearing 25.
- the load detector 56 indirectly detects the crushing load by detecting the motor load of the drive motor 8.
- the load detector 56 uses the motor current as an index of the motor load and detects the current value (motor current) supplied to the drive motor 8.
- the meshing vibration acceleration waveform of the bevel pinion 19a and the bevel gear 19b is measured and arranged in chronological order to obtain the meshing vibration acceleration waveform.
- FIG. 6 is an example of the frequency analysis result of the meshing vibration acceleration waveform during the crushing load period.
- the power spectrum obtained by analyzing the meshing vibration acceleration waveform during crushing includes vibrations caused by crushing in addition to vibrations caused by meshing. Therefore, it is difficult to extract only the characteristic frequency component that is a sign of failure from the meshing vibration acceleration waveform during crushing. Therefore, the failure sign diagnosis device 40 diagnoses the presence or absence of a failure sign by using the meshing vibration acceleration detected during the crush-free load period in which the crushed material is not supplied to the crushing chamber 16.
- the crush-free load period may occur during the steady operation as well as during the start-up operation of the crusher 100.
- the crusher 100 detects the crush-free load period during the start-up operation and the steady operation, and samples the meshing vibration acceleration during the crush-free load period.
- FIG. 4 is a diagram showing a processing flow of the failure sign diagnosis device 40.
- the failure sign diagnosis device 40 acquires the value of the crushing load detected by the load detector 56 during the start-up operation and the steady operation of the crusher 100 (step S1).
- the failure sign diagnosis device 40 compares the acquired value of the crushing load with a predetermined load threshold value (step S2).
- This load threshold value is a value of a crushing load that can be regarded as not being crushed because there is no crushed material in the crushing chamber 16.
- the load threshold value obtained by experiment or simulation is set in advance in the failure sign diagnosis device 40.
- step S2 If the crushing load is equal to or greater than the load threshold value (NO in step S2), the process returns to step S1 and steps S1 and S2 are repeated. On the other hand, when the crushing load is smaller than the load threshold value (YES in step S2), the failure sign diagnosis device 40 starts sampling the meshing vibration acceleration detected by the meshing vibration detector 43.
- the failure sign diagnosis device 40 acquires and monitors the value of the crushing load even during sampling of the meshing vibration acceleration (step S4). If the crushing load is smaller than the load threshold value (YES in step S5), sampling is continued until a predetermined sampling time elapses from the start of sampling (NO in step S6).
- the sampling time can be set arbitrarily, and a sufficient time is set for analyzing the meshing vibration acceleration waveform.
- the failure sign diagnosis device 40 accelerates the meshing vibration. Sampling is completed (step S7).
- the failure sign diagnosis device 40 diagnoses a failure sign using the sampled meshing vibration acceleration (step S8).
- FIG. 5 is an example of the frequency analysis result of the meshing vibration acceleration waveform during the crush-free load period.
- peaks due to meshing appear prominently at the meshing frequency, and peaks of some sideband waves appear at other frequencies of the meshing frequency.
- the failure sign diagnosis device 40 obtains a meshing vibration acceleration waveform in which the meshing vibration acceleration detected by the meshing vibration detector 43 is arranged in time series during the crush-free load period, and fails based on the analysis result of the meshing vibration acceleration waveform. Diagnose the presence or absence of signs of.
- the characteristic frequency component that is a sign of failure is extracted from the meshing vibration acceleration waveform, and the extracted characteristic frequency component is quantified according to a predetermined rule.
- the failure sign diagnosis device 40 diagnoses the presence or absence of a failure sign based on the degree of the failure sign quantified in this way.
- the failure sign diagnosis device 40 performs FFT spectrum processing on the meshing vibration acceleration waveform, obtains the total value (overall value) of the spectra of the entire analysis frequency band, and fails when the total value exceeds a predetermined diagnostic threshold. It is determined that a sign of failure has been found, and if the total value is equal to or less than a predetermined diagnostic threshold, it is determined that no sign of failure has been found. Further, for example, the failure sign diagnosis device 40 performs FFT spectrum processing on the meshing vibration acceleration waveform to obtain the total value (partial overall value) of the spectra of a specific frequency band, and the total value is a predetermined diagnostic threshold value. When the above value is exceeded, it is determined that a sign of failure has been found, and when the total value is equal to or less than a predetermined diagnostic threshold, it is determined that no sign of failure has been found.
- the failure sign diagnosis device 40 When a failure sign is found, the failure sign diagnosis device 40 notifies the failure sign. Notification of a sign of failure is performed, for example, through a display device 58. The operator is notified of the sign of failure and starts preparing for maintenance. In preparation for maintenance, spare parts and related materials are secured, and a maintenance system is constructed. Building a maintenance system includes reviewing operation plans, formulating parts replacement schedules, and securing workers. During the maintenance preparation period, the crusher 100 continues to operate until a failure actually occurs or the possibility of failure increases. That is, it is possible to gain time for preparation for maintenance without stopping the operation of the crusher 100. In this way, the downtime can be shortened as compared with the case where the preparation for maintenance is started after the failure is discovered.
- the rotary crusher 100 is Main shaft 5 and The mantle 13 fixed to the spindle 5 and A concave 14 arranged to face the mantle 13 and forming a crushing chamber 16 with the mantle 13.
- a supply device 9 that supplies the crushed material to the crushing chamber 16 and
- An eccentric sleeve 4 that supports the lower part of the spindle 5 via a lower bearing 15 and
- a drive motor 8 that rotationally drives the eccentric sleeve 4 and
- the output of the drive motor 8 is eccentric, including a horizontal axis 21 rotationally driven by the drive motor 8, a bevel pinion 19a arranged on the horizontal axis 21, and a bevel gear 19b arranged on the eccentric sleeve 4 and meshing with the bevel pinion 19a.
- the power transmission mechanism 20 that transmits to the sleeve 4 and
- the meshing vibration detector 43 that detects the meshing vibration acceleration generated by the meshing of the bevel pinion 19a and the bevel gear 19b, and It is equipped with a failure sign diagnosis device 40.
- the predictive diagnostic device 40 of the rotary crusher 100 acquires the meshing vibration acceleration generated by the meshing of the bevel pinion 19a and the bevel gear 19b, and the crush-free load in which the crushed material is not supplied to the crushing chamber 16.
- the meshing vibration acceleration waveform detected during the period is arranged in chronological order, and the presence or absence of a sign of failure is diagnosed based on the analysis result of the meshing vibration acceleration waveform.
- the above-mentioned failure sign diagnostic device 40 performs FFT spectrum processing on the meshing vibration acceleration waveform, obtains the total value of the spectra of the entire analysis frequency band, and finds a failure sign when the total value exceeds a predetermined diagnostic threshold. If the total value is equal to or less than the diagnostic threshold, it may be determined that no sign of failure has been found. Alternatively, the above-mentioned failure sign diagnostic device 40 performs FFT spectrum processing on the meshing vibration acceleration waveform, obtains the total value of the spectra of a specific frequency band, and fails when the total value exceeds a predetermined diagnostic threshold. It may be determined that a sign of failure has been found, and if the total value is equal to or less than a predetermined diagnostic threshold, it may be determined that no sign of failure has been found.
- the method for diagnosing a failure sign of the rotary crusher 100 is The meshing vibration acceleration generated by the meshing of the bevel pinion 19a and the bevel gear 19b is acquired.
- FFT spectrum processing is performed on the meshed vibration acceleration waveform to obtain the total value of the spectra of the entire analysis frequency band, and when the total value exceeds a predetermined diagnostic threshold. It may include determining that a sign of failure has been found and determining that no sign of failure has been found when the total value is equal to or less than the diagnostic threshold.
- diagnosing the presence or absence of a sign of failure is performed by performing FFT spectrum processing on the meshed vibration acceleration waveform to obtain the total value of the spectra of a specific frequency band, and the total value is a predetermined diagnostic threshold. It may include determining that a sign of failure has been found when the value exceeds, and determining that no sign of failure has been found when the total value is equal to or less than a predetermined diagnostic threshold.
- the crusher 100, the failure sign diagnostic device 40 and the method of the crusher 100 having the above configuration the bevel pinion 19a and the bevel gear 19b are loaded by crushing, but the meshing vibration acceleration waveform used for diagnosis is caused by the load by crushing. The effect of vibration can be ignored. Therefore, it is possible to extract the characteristic frequency component that is a sign of failure from the meshing vibration acceleration waveforms of the bevel pinion 19a and the bevel gear 19b. Then, since it is possible to diagnose the presence or absence of a sign of failure of the crusher 100 (particularly, failure of the bevel pinion 19a and bevel gear 19b), preparations for maintenance can be started when a sign of failure is found. That is, it is possible to gain time for preparation for maintenance without stopping the operation of the crusher 100. In this way, the downtime can be shortened as compared with the case where the preparation for maintenance is started after the failure is discovered.
- the failure sign diagnosis device 40 of the crusher 100 acquires the crushing load of the crusher 100, and considers the period in which the crushing load is lower than the predetermined load threshold value as the non-crushing load period.
- the meshing vibration acceleration is sampled during the crushing load period.
- a crushing load is detected, a period in which the crushing load falls below a predetermined load threshold value is regarded as a crush-free load period, and the crush-free load period is set. Sampling the meshing vibration acceleration.
- the meshing vibration acceleration is automatically sampled during the crush-free load period generated during the operation of the crusher 100, so that the crusher 100 is used. It is possible to automatically diagnose the sign of failure without stopping the operation of.
- the above-mentioned crusher 100 is a hydraulic crusher 100 whose outlet set is adjusted by the cylinder pressure of the bearing cylinder 6, but the crusher 100 may be a mechanical crusher 100.
- the mechanical rotary crusher 100 includes an elevating device (for example, a hydraulic cylinder) that raises and lowers the concave 14 with respect to the mantle 13.
- the failure sign diagnosis device 40 may be remotely arranged with respect to the crusher 100.
- the information detected by the meshing vibration detector 43 and the bearing vibration detector 44 is transmitted to the failure sign diagnosis device 40 through the communication network, and the failure sign diagnosis device 40 crushes the diagnosis result of the failure sign through the communication network. It is transmitted to the control device 50 arranged near the 100.
- the control device 50 may be remotely arranged with respect to the crusher 100.
- the failure sign diagnosis device 40 may be provided by a cloud service.
- the cloud server accessed from a specific computer functions as a failure sign diagnosis device 40 by executing a predetermined program, and the failure sign diagnosis result calculated based on the provided meshing vibration acceleration information is obtained. You may return it to your computer.
- the calculated failure sign diagnosis result may be stored in the cloud server so as to be accessible from a specific computer.
- the control device 50 may be provided by a cloud service.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Mechanical Engineering (AREA)
- Crushing And Grinding (AREA)
- Disintegrating Or Milling (AREA)
Abstract
Description
主軸と、
前記主軸に固定されたマントルと、
前記マントルと対峙するように配置され、前記マントルとの間に破砕室を形成するコンケーブと、
前記主軸の下部を下部軸受を介して支持する偏心スリーブと、
前記偏心スリーブを回転駆動する駆動モータと、
前記駆動モータにより回転駆動される横軸、前記横軸に設けられたベベルピニオン、及び、前記ベベルピニオンと噛合する前記偏心スリーブに設けられたベベルギヤを含み、前記駆動モータの出力を前記偏心スリーブへ伝達する動力伝達機構と、
前記ベベルピニオン及び前記ベベルギヤの噛み合いにより生じる噛合振動加速度を検出する噛合振動検出器と、
故障予兆診断装置と、を備える。
前記ベベルピニオン及び前記ベベルギヤの噛み合いにより生じる噛合振動加速度を取得し、前記破砕室に被破砕物が供給されない無破砕負荷期間に検出された前記噛合振動加速度を時系列に並べた噛合振動加速度波形を求め、前記噛合振動加速度波形の解析結果に基づいて故障の予兆の有無を診断する。
前記ベベルピニオン及び前記ベベルギヤの噛み合いにより生じる噛合振動加速度を取得し、
前記破砕室に被破砕物が供給されない無破砕負荷期間に検出された前記噛合振動加速度を時系列に並べた噛合振動加速度波形を求め、
前記噛合振動加速度波形の解析結果に基づいて故障の予兆の有無を診断する。
図2は、破砕機100の制御系統の構成を示すブロック図である。図2に示すように、制御装置50には、表示装置58、設定装置59、故障予兆診断装置40、各種の計器52,55,56、及び、制御対象8,9,6が接続されている。本明細書で開示する故障予兆診断装置40及び制御装置50の機能は、開示された機能を実行するよう構成またはプログラムされた汎用プロセッサ、専用プロセッサ、集積回路、ASIC(Application Specific Integrated Circuits)、従来の回路、及び/又は、それらの組み合わせ、を含む回路又は処理回路を使用して実行できる。プロセッサは、トランジスタやその他の回路を含むため、処理回路または回路と見做される。本開示において、回路、ユニット、又は手段は、列挙された機能を実行するハードウェアであるか、又は、列挙された機能を実行するようにプログラムされたハードウェアである。ハードウェアは、本明細書に開示されているハードウェアであってもよいし、或いは、列挙された機能を実行するようにプログラム又は構成されているその他の既知のハードウェアであってもよい。ハードウェアが回路の一種と考えられるプロセッサである場合、回路、手段、又はユニットはハードウェアとソフトウェアの組み合わせであり、ソフトウェアはハードウェア及び/又はプロセッサの構成に使用される。
図3は、故障予兆診断に関する構成を示すブロック図である。図3に示すように、故障予兆診断装置40には噛合振動検出器43、軸受振動検出器44、及び負荷検出器56が接続されている。噛合振動検出器43は、ベベルピニオン19aとベベルギヤ19bの噛合部の振動加速度を検出する。噛合振動検出器43は、破砕機100の本体(例えば、下部フレーム32や横軸21のスリーブなど)に設けられる。噛合振動検出器43は、下部フレーム32においてベベルピニオン19aとベベルギヤ19bとの噛合部の近傍に設けられていてよい。軸受振動検出器44は、横軸軸受25の振動加速度を検出する。軸受振動検出器44は横軸軸受25に設けられている。負荷検出器56は、駆動モータ8のモータ負荷を検出することにより、破砕負荷を間接的に検出する。負荷検出器56は、モータ電流をモータ負荷の指標とし、駆動モータ8へ供給される電流値(モータ電流)を検出する。
主軸5と、
主軸5に固定されたマントル13と、
マントル13と対峙するように配置され、マントル13との間に破砕室16を形成するコンケーブ14と、
破砕室16へ被破砕物を供給する供給装置9と、
主軸5の下部を下部軸受15を介して支持する偏心スリーブ4と、
偏心スリーブ4を回転駆動する駆動モータ8と、
駆動モータ8により回転駆動される横軸21、横軸21に配置されたベベルピニオン19a、及び、偏心スリーブ4に配置されてベベルピニオン19aと噛合するベベルギヤ19bを含み、駆動モータ8の出力を偏心スリーブ4へ伝達する動力伝達機構20と、
ベベルピニオン19a及びベベルギヤ19bの噛み合いにより生じる噛合振動加速度を検出する噛合振動検出器43と、
故障予兆診断装置40とを備える。
ベベルピニオン19a及びベベルギヤ19bの噛み合いにより生じる噛合振動加速度を取得し、
破砕室16に被破砕物が供給されない無破砕負荷期間に検出された噛合振動加速度を時系列に並べた噛合振動加速度波形を求め、
噛合振動加速度波形の解析結果に基づいて故障の予兆の有無を診断する。
5 :主軸
6 :軸受シリンダ
8 :駆動モータ
9 :供給装置
10 :主軸軸受
11 :スリーブ軸受
13 :マントル
14 :コンケーブ
15 :下部軸受
16 :破砕室
17 :上部軸受
19a :ベベルピニオン
19b :ベベルギヤ
20 :動力伝達機構
21 :横軸
25 :横軸軸受
30 :フレーム
31 :上部フレーム
32 :下部フレーム
40 :故障予兆診断装置
43 :噛合振動検出器
44 :軸受振動検出器
50 :制御装置
100 :旋動式破砕機
Claims (9)
- 主軸と、前記主軸に固定されたマントルと、前記マントルと対峙するように配置され、前記マントルとの間に破砕室を形成するコンケーブと、前記主軸の下部を下部軸受を介して支持する偏心スリーブと、前記偏心スリーブを回転駆動する駆動モータと、前記駆動モータにより回転駆動される横軸、前記横軸に配置されたベベルピニオン、及び、前記偏心スリーブに配置されて前記ベベルピニオンと噛合するベベルギヤを含み、前記駆動モータの出力を前記偏心スリーブへ伝達する動力伝達機構と、を備える旋動式破砕機の故障予兆診断装置であって、
前記ベベルピニオン及び前記ベベルギヤの噛み合いにより生じる噛合振動加速度を取得し、前記破砕室に被破砕物が供給されない無破砕負荷期間に検出された前記噛合振動加速度を時系列に並べた噛合振動加速度波形を求め、前記噛合振動加速度波形の解析結果に基づいて故障の予兆の有無を診断する、
旋動式破砕機の故障予兆診断装置。 - 前記旋動式破砕機の破砕負荷を取得し、前記破砕負荷が所定の負荷閾値を下回る期間を前記無破砕負荷期間と見做し、当該無破砕負荷期間に前記噛合振動加速度のサンプリングを行う、
請求項1に記載の旋動式破砕機の故障予兆診断装置。 - 前記噛合振動加速度波形に対してFFTスペクトル処理を行い、分析周波数帯全体のスペクトルの合算値を求め、前記合算値が所定の診断閾値を超える場合に故障の予兆が見つかったと判断し、前記合算値が前記診断閾値以下である場合に故障の予兆が見つからなかったと判断する、
請求項1又は2に記載の旋動式破砕機の故障予兆診断装置。 - 前記噛合振動加速度波形に対してFFTスペクトル処理を行い、或る特定の周波数帯のスペクトルの合算値を求め、前記合算値が所定の診断閾値を超える場合に故障の予兆が見つかったと判断し、前記合算値が所定の診断閾値以下である場合に故障の予兆が見つからなかったと判断する、
請求項1又は2に記載の旋動式破砕機の故障予兆診断装置。 - 主軸と、前記主軸に固定されたマントルと、前記マントルと対峙するように配置され、前記マントルとの間に破砕室を形成するコンケーブと、前記主軸の下部を下部軸受を介して支持する偏心スリーブと、前記偏心スリーブを回転駆動する駆動モータと、前記駆動モータにより回転駆動される横軸、前記横軸に配置されたベベルピニオン、及び、前記偏心スリーブに配置されて前記ベベルピニオンと噛合するベベルギヤを含み、前記駆動モータの出力を前記偏心スリーブへ伝達する動力伝達機構とを備える旋動式破砕機の故障予兆診断方法であって、
前記ベベルピニオン及び前記ベベルギヤの噛み合いにより生じる噛合振動加速度を取得し、
前記破砕室に被破砕物が供給されない無破砕負荷期間に検出された前記噛合振動加速度を時系列に並べた噛合振動加速度波形を求め、
前記噛合振動加速度波形の解析結果に基づいて故障の予兆の有無を診断する、
旋動式破砕機の故障予兆診断方法。 - 破砕負荷を取得し、前記破砕負荷が所定の負荷閾値を下回る期間を前記無破砕負荷期間と見做し、当該無破砕負荷期間に前記噛合振動加速度のサンプリングを行う、
請求項5に記載の旋動式破砕機の故障予兆診断方法。 - 故障の予兆の有無を診断することが、前記噛合振動加速度波形に対してFFTスペクトル処理を行い、分析周波数帯全体のスペクトルの合算値を求め、前記合算値が所定の診断閾値を超える場合に故障の予兆が見つかったと判断し、前記合算値が前記診断閾値以下である場合に故障の予兆が見つからなかったと判断することを含む、
請求項5又は6に記載の旋動式破砕機の故障予兆診断方法。 - 故障の予兆の有無を診断することが、前記噛合振動加速度波形に対してFFTスペクトル処理を行い、或る特定の周波数帯のスペクトルの合算値を求め、前記合算値が所定の診断閾値を超える場合に故障の予兆が見つかったと判断し、前記合算値が所定の診断閾値以下である場合に故障の予兆が見つからなかったと判断することを含む、
請求項5又は6に記載の旋動式破砕機の故障予兆診断方法。 - 主軸と、
前記主軸に固定されたマントルと、
前記マントルと対峙するように配置され、前記マントルとの間に破砕室を形成するコンケーブと、
前記主軸の下部を下部軸受を介して支持する偏心スリーブと、
前記偏心スリーブを回転駆動する駆動モータと、前記駆動モータにより回転駆動される横軸、前記横軸に配置されたベベルピニオン、及び、前記偏心スリーブに配置されて前記ベベルピニオンと噛合するベベルギヤを含み、前記駆動モータの出力を前記偏心スリーブへ伝達する動力伝達機構と、
前記ベベルピニオン及び前記ベベルギヤの噛み合いにより生じる噛合振動加速度を検出する噛合振動検出器と、
請求項1~4のいずれか一項に記載の旋動式破砕機の故障予兆診断装置と、を備える、
旋動式破砕機。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022538032A JP7308364B2 (ja) | 2020-07-20 | 2021-07-20 | 旋動式破砕機並びにその故障予兆診断装置及び方法 |
AU2021311660A AU2021311660B2 (en) | 2020-07-20 | 2021-07-20 | Gyratory crusher, and predictive failure diagnoser for and predictive failure diagnosis method of making predictive failure diagnosis on gyratory crusher |
ZA2023/00967A ZA202300967B (en) | 2020-07-20 | 2023-01-23 | Gyratory crusher, and predictive failure diagnoser for and predictive failure diagnosis method of making predictive failure diagnosis on gyratory crusher |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-123710 | 2020-07-20 | ||
JP2020123710 | 2020-07-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022019317A1 true WO2022019317A1 (ja) | 2022-01-27 |
Family
ID=79729190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/027233 WO2022019317A1 (ja) | 2020-07-20 | 2021-07-20 | 旋動式破砕機並びにその故障予兆診断装置及び方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7308364B2 (ja) |
AU (1) | AU2021311660B2 (ja) |
WO (1) | WO2022019317A1 (ja) |
ZA (1) | ZA202300967B (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001017880A (ja) * | 1999-07-07 | 2001-01-23 | Babcock Hitachi Kk | ローラ式粉砕装置 |
US20140175199A1 (en) * | 2011-08-01 | 2014-06-26 | Sandvik Intellectual Property Ab | Cone crusher and method of preparing cone crusher for operation |
JP2016153120A (ja) * | 2011-04-14 | 2016-08-25 | ハ, ヨンガンHA, Yong−Gan | コーン型クラッシャー |
CN107638900A (zh) * | 2017-10-26 | 2018-01-30 | 盐城市大丰匀力机械制造厂 | 震动式破碎机 |
JP2019202245A (ja) * | 2018-05-21 | 2019-11-28 | 株式会社アーステクニカ | 旋動式破砕機及びその制御方法 |
JP2021104483A (ja) * | 2019-12-26 | 2021-07-26 | 川崎重工業株式会社 | 摩耗検知装置 |
-
2021
- 2021-07-20 WO PCT/JP2021/027233 patent/WO2022019317A1/ja active Application Filing
- 2021-07-20 AU AU2021311660A patent/AU2021311660B2/en active Active
- 2021-07-20 JP JP2022538032A patent/JP7308364B2/ja active Active
-
2023
- 2023-01-23 ZA ZA2023/00967A patent/ZA202300967B/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001017880A (ja) * | 1999-07-07 | 2001-01-23 | Babcock Hitachi Kk | ローラ式粉砕装置 |
JP2016153120A (ja) * | 2011-04-14 | 2016-08-25 | ハ, ヨンガンHA, Yong−Gan | コーン型クラッシャー |
US20140175199A1 (en) * | 2011-08-01 | 2014-06-26 | Sandvik Intellectual Property Ab | Cone crusher and method of preparing cone crusher for operation |
CN107638900A (zh) * | 2017-10-26 | 2018-01-30 | 盐城市大丰匀力机械制造厂 | 震动式破碎机 |
JP2019202245A (ja) * | 2018-05-21 | 2019-11-28 | 株式会社アーステクニカ | 旋動式破砕機及びその制御方法 |
JP2021104483A (ja) * | 2019-12-26 | 2021-07-26 | 川崎重工業株式会社 | 摩耗検知装置 |
Also Published As
Publication number | Publication date |
---|---|
AU2021311660B2 (en) | 2024-03-07 |
JP7308364B2 (ja) | 2023-07-13 |
AU2021311660A1 (en) | 2023-02-16 |
ZA202300967B (en) | 2024-05-30 |
JPWO2022019317A1 (ja) | 2022-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7325759B2 (en) | Method for minimizing damage to a waste fragmentation machine | |
CA2732663C (en) | Improvements in or relating to control of centrifuge systems | |
US20060105896A1 (en) | Controlled centrifuge systems | |
US9146554B2 (en) | Aggregate processing control system | |
KR101824051B1 (ko) | 미분기 실시간 상태감시시스템 및 그 방법 | |
WO2022019317A1 (ja) | 旋動式破砕機並びにその故障予兆診断装置及び方法 | |
CN107063679A (zh) | 结构调谐共振的齿轮缺陷快速检测方法及检测装置 | |
US7489254B2 (en) | System and method for monitoring a vertical shaft impact crusher | |
CN113795871B (zh) | 用于确定建筑机械、材料搬运机械和/或运输机械的实际状态和剩余寿命的装置 | |
JP7473644B2 (ja) | 破砕状態判定装置および破砕状態判定方法 | |
US20170225172A1 (en) | Monitor and Control of Tumbling Mill Using Measurements of Vibration, Electrical Power Input and Mechanical Power | |
CN114353863A (zh) | 一种基于物联网的选煤设备远程在线监测系统 | |
JP2022504113A (ja) | ロータリー圧力フィルターモジュール | |
JP7422880B2 (ja) | 旋動式破砕機並びにその制御システム及び方法 | |
US8944895B2 (en) | Method for filling sausages with a paste-like substance and filling machine for performing this method | |
JPH09313960A (ja) | エンジン駆動型旋動式破砕機の運転制御方法 | |
US2814450A (en) | Lubrication means for gyratory crushers and feed mechanism therefor | |
CN112912707A (zh) | 用于传动装置的改进的运行方法 | |
US11712701B2 (en) | Wood grinding machine with vibration detection system and related methods | |
WO2022092092A1 (ja) | 破砕機の破砕負荷制御装置及び方法 | |
JP2020171897A (ja) | 篩い分け装置のベアリング監視システム | |
Campbell et al. | The collection and analysis of single sensor surface vibration data to estimate operating conditions in pilot-scale and production-scale AG/SAG mills | |
JP2020116546A (ja) | 竪型粉砕機及びその運転方法 | |
CN117816526A (zh) | 智能椭圆振动筛及其工作方法 | |
JPH10118509A (ja) | 竪型ミル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21846788 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022538032 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021311660 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2021311660 Country of ref document: AU Date of ref document: 20210720 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21846788 Country of ref document: EP Kind code of ref document: A1 |