WO2012141096A1 - フレキシブル多層基板 - Google Patents

フレキシブル多層基板 Download PDF

Info

Publication number
WO2012141096A1
WO2012141096A1 PCT/JP2012/059515 JP2012059515W WO2012141096A1 WO 2012141096 A1 WO2012141096 A1 WO 2012141096A1 JP 2012059515 W JP2012059515 W JP 2012059515W WO 2012141096 A1 WO2012141096 A1 WO 2012141096A1
Authority
WO
WIPO (PCT)
Prior art keywords
multilayer substrate
skin
resin
flexible multilayer
main surface
Prior art date
Application number
PCT/JP2012/059515
Other languages
English (en)
French (fr)
Inventor
喜人 大坪
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201280017775.9A priority Critical patent/CN103460823B/zh
Priority to JP2013509879A priority patent/JP5447735B2/ja
Publication of WO2012141096A1 publication Critical patent/WO2012141096A1/ja
Priority to US14/047,623 priority patent/US9012785B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09509Blind vias, i.e. vias having one side closed
    • H05K2201/09527Inverse blind vias, i.e. bottoms outwards in multilayer PCB; Blind vias in centre of PCB having opposed bottoms
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/096Vertically aligned vias, holes or stacked vias
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12583Component contains compound of adjacent metal
    • Y10T428/1259Oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to a flexible multilayer substrate.
  • the flexible multilayer substrate can be produced by laminating resin layers. Such a flexible multilayer board may be mounted while being bent on a specific side. Depending on the application, the flexible multilayer substrate may be used in a bent state at the time of mounting, or may be repeatedly bent at the time of use even if it is not bent at the time of mounting.
  • Patent Document 1 An example of a flexible substrate that can be bent to the same side is described in Japanese Patent Application Laid-Open No. 2007-201263 (Patent Document 1).
  • an object of the present invention is to provide a flexible multilayer substrate that can be less likely to be peeled off when used in a bent state.
  • a flexible multilayer substrate includes a laminated body including a plurality of laminated resin layers, and the laminated body is an innermost surface that is an inner surface by being bent during use.
  • Each of the plurality of resin layers has a first main surface and a second main surface that face each other, and the first main surface and the second main surface.
  • the vicinity of the first main surface is a skin layer harder than other portions of the resin layer
  • a conductor pattern is formed on the second main surface
  • the laminate is
  • the skin layer joining surface which is a surface where the first main surfaces of the two resin layers adjacent to each other are in contact with each other is included in one place in the middle of the thickness direction, and in other places in the middle of the thickness direction of the laminate.
  • Two adjacent to each other The first main surface and the second main surface of the oil layer are laminated so that they contact each other, and the skin layer-to-skin joint surface is closer to the innermost surface than the center surface in the thickness direction of the laminate. Is arranged.
  • the first resin layer and the second resin layer that are adjacent to each other across the joint surface between the skin layers are penetrated in the thickness direction, respectively, and the first main surface and the second main surface,
  • Each of the via conductors has a tapered shape in which the diameter of the first main surface is larger than the diameter of the second main surface,
  • the via conductors of the first resin layer and the via conductors of the second resin layer are in contact with each other at the joint surface between the skin layers in the bent portion.
  • the joint surface between the skin layers is located between the first resin layer and the second resin layer as counted from the innermost surface.
  • the skin layer joining surface becomes the innermost joining surface when the flexible multilayer substrate is bent, and thus the effect of making it difficult to cause peeling due to the skin layer joining surface is obtained. be able to.
  • the inventors paid attention to the presence of a skin layer present in a resin sheet with a metal foil used when producing a flexible multilayer substrate.
  • the resin sheet 12 with metal foil is in a state in which the metal foil 2 is stretched on one surface, but the skin layer 1 is formed on the surface layer portion of the surface without the metal foil 2.
  • the “skin layer” is made of a resin of the same material as the resin constituting the main part of the resin sheet, but the orientation state of the resin molecules is different from the other parts, and as a result, only the surface layer part becomes hard. It shall mean the surface layer part.
  • non-skin layer resin surface the resin 4 (hereinafter referred to as “non-skin layer resin surface”) 4 which is not affected by the skin layer is exposed.
  • the skin layer 1 remains on the surface on the opposite side, and a conductor pattern is not newly formed on the skin layer 1. Therefore, when laminating the resin sheets, as long as the front and back surfaces of the resin sheets are continuously stacked in the same direction, the skin layer 1 and the non-skin layer resin surface 4 are bonded as shown in FIG.
  • the inventors have a bonding force that is greater than the surface bonded between the skin layers 1 and the non-skin layer resin surface 4 as shown in FIG. 3. Focused on weakening.
  • the flexible multilayer substrate 10 is configured as a laminate of a plurality of resin layers 3.
  • via conductors 6 are usually formed so as to penetrate in the thickness direction. If the conductor pattern 7 is to be exposed as the external electrodes 18 and 19 on both the uppermost surface and the lowermost surface of the laminate 10, it is necessary to reverse the front and back of the resin sheet on some surface in the middle of the laminate.
  • the surface where the skin layers are bonded to each other (hereinafter referred to as “the bonded surface between the skin layers”) 30 is generated at least at one location. In other words, at least one place in the thickness direction of the laminate as the flexible multilayer substrate 10 has a place where the bonding force is weaker than the others. Based on such consideration, the inventors have made the present invention.
  • the flexible multilayer substrate in Embodiment 1 based on this invention is demonstrated.
  • the flexible multilayer substrate 20 in the present embodiment includes a laminate including a plurality of laminated resin layers 3.
  • the laminate has an innermost surface 21 that is an inner surface and an outermost surface 22 that is an outer surface by being bent during use.
  • FIG. 7 shows an enlarged view of the Z portion shown in FIG.
  • Each of the plurality of resin layers 3 has a first main surface 31 and a second main surface 32 facing each other.
  • the upper surface of the resin layer 3 shown in the center is the first main surface 31, and the lower surface is the second main surface 32.
  • the vicinity of the first main surface 31 is a skin layer 1 that is harder than other portions of the resin layer 3.
  • conductor pattern 7 is formed on second main surface 32.
  • This laminate includes a skin layer-to-skin bonding surface 30 that is a surface with which the first main surfaces 31 of the resin layers 3 adjacent to each other come into contact with each other at one place in the thickness direction. In other places in the middle of the laminate in the thickness direction, the first main surface 31 and the second main surface 32 of the resin layers 3 adjacent to each other are laminated so as to contact each other.
  • the skin layer bonding surface 30 is disposed on the side closer to the innermost surface 21 than the center surface 23 in the thickness direction of the laminate.
  • the via conductor 6 is provided so as to penetrate all the resin layers 3 included in the laminate in the thickness direction, and the conductor pattern 7 is provided on one surface of the resin layer 3. ing.
  • the display rules for the conductor pattern in FIG. 6 will be described. The same rule applies to the display of conductor patterns in other cross-sectional views.
  • the conductor pattern 7 provided on the upper surface or the lower surface of each resin layer 3 included in the laminate is not displayed inside each resin layer 3 itself, but adjacent to each other outside each resin layer 3. It is displayed so as to bite into the resin layer 3. Therefore, in FIG. 6, the resin layer 3 surrounded by the ellipse of the Z portion has the conductor pattern 7 on the lower surface, and does not have the conductor pattern on the upper surface.
  • the conductor pattern that appears to be on the upper surface of the resin layer 3 surrounded by the ellipse of the Z portion is the conductor pattern 7 stretched on the lower surface of the resin layer 3 adjacent to the upper side.
  • the skin layer-to-skin bonding surface 30 which is a surface in which the bonding force is weaker than the others in the laminate of resin layers, is disposed closer to the innermost surface 21 than the center plane 23 in the thickness direction of the laminate. Therefore, when this flexible multilayer substrate 20 is bent, the skin layer-to-skin joint surface 30 is positioned inside the bent state. Therefore, the skin layer bonding surface 30 is in a compressed state, not a tensile state, and as a result, peeling due to the skin layer bonding surface 30 hardly occurs. Even if peeling occurs, the peeled portions are pressed against each other in the compressed state, so that the peeling can be prevented from expanding.
  • FIG. 8 flexible multilayer substrate 20i according to the second embodiment of the present invention will be described.
  • the basic configuration of the flexible multilayer substrate 20i in the present embodiment is the same as that of the flexible multilayer substrate 20 described in the first embodiment, but the flexible multilayer substrate 20i is different in that it clearly includes a via conductor.
  • the first resin layer 3a and the second resin layer 3b adjacent to each other across the joint surface 30 between the skin layers are respectively penetrated in the thickness direction and the first main surface.
  • Via conductors 6a and 6b are electrically connected to the second main surface.
  • FIG. 9 shows the vicinity of the via conductor 6a of the first resin layer 3a taken out.
  • the vicinity of the via conductor 6b in the second resin layer 3b also has the same structure, only upside down.
  • Each of via conductors 6a and 6b has a tapered shape in which the diameter at first main surface 31 is larger than the diameter at second main surface 32, as shown in FIG.
  • the via conductor 6a of the first resin layer 3a and the via conductor 6b of the second resin layer 3b face each other at the skin layer-to-skin bonding surface 30 in the bent portion of the laminate. It is in contact.
  • a portion where the via conductor 6a and the via conductor 6b are in contact with each other so as to face each other corresponds to a portion where the flexible multilayer substrate 20i is bent, as shown in FIG.
  • the first resin layer 3a and the second resin layer 3b that are adjacent to each other across the joint surface 30 between the skin layers include via conductors 6a and 6b, respectively, and the via conductors 6a and 6b are as described above. Since it has such a tapered shape, as shown in FIG. 10, the angle ⁇ appearing in the sectional view is smaller than 180 °. That is, the corner is convex toward the outer peripheral side. As described above, in the portion where the diameter is convex toward the outer peripheral side at the joint surface between the via conductors, the resin layer 3 is relatively easily peeled from the corner where the via conductors are generally in contact.
  • the skin layer-to-skin joint surface 30 is disposed closer to the innermost surface 21 than the center surface 23 in the thickness direction of the laminate, in other words, the angle at which the via conductors contact each other. That is, it is arranged closer to the innermost surface 21 than the center plane 23 in the thickness direction of the laminate. Therefore, when this flexible multilayer substrate 20i is bent, the angle at which the via conductors are in contact is located inside the bent state.
  • FIG. 11 shows a state when the flexible multilayer substrate 20i is bent with attention paid to the portion A in FIG. Part A includes a part of the flexible multilayer substrate 20i that can be bent. Since the angle at which the via conductors are in contact is located inside the bent shape, as shown in FIG.
  • the vicinity of the angle at which the via conductors are in contact is in a compressed state.
  • the angle at which the via conductors are in contact is the starting point. Separation between the resin layers 3 is less likely to occur. Even if peeling occurs, the peeled portions are pressed against each other in the compressed state, so that the peeling can be prevented from expanding.
  • the skin layer-to-skin bonding surface 30 includes a first resin layer 3c and a second resin layer 3d counted from the innermost surface 21. Located between.
  • the skin layer-to-skin joint surface 30 that is a surface in which the joining force is weaker than others in the laminate of the resin layers is the innermost joint surface when the flexible multilayer substrate 20j is bent. Therefore, when the flexible multilayer substrate 20j is bent with the innermost surface 21 as the inner side, the skin layer-to-skin joint surface 30 among the several joint surfaces of the resin layers 3 existing in the laminate is the most prominent compression. It becomes a state. Therefore, in this Embodiment, the effect which makes it difficult to produce the peeling resulting from the skin layer joining surface 30 can be acquired especially big.
  • the resin sheet 12 with a metal foil is a sheet having a structure in which the metal foil 2 is attached to one side of the resin layer 3.
  • the resin layer 3 is made of, for example, LCP (liquid crystal polymer) which is a thermoplastic resin.
  • LCP liquid crystal polymer
  • the material of the resin layer 3 may be PEEK (polyether ether ketone), PEI (polyether imide), PPS (poniphenylene sulfide), PI (polyimide), or the like.
  • the metal foil 2 is a 18 ⁇ m thick foil made of Cu, for example.
  • the material of the metal foil 2 may be Ag, Al, SUS, Ni, Au, or may be an alloy of two or more different metals selected from these metals.
  • the metal foil 2 has a thickness of 18 ⁇ m, but the thickness of the metal foil 2 may be about 3 to 40 ⁇ m.
  • the metal foil 2 may be any thickness that allows circuit formation.
  • via holes 11 are formed so as to penetrate the resin layer 3 by irradiating the surface of the resin sheet 12 with metal foil on the resin layer 3 side with a carbon dioxide laser beam.
  • the via hole 11 penetrates the resin layer 3 but does not penetrate the metal foil 2. Thereafter, the smear (not shown) of the via hole 11 is removed.
  • carbon dioxide laser light is used here to form the via hole 11, other types of laser light may be used.
  • a method other than laser beam irradiation may be employed to form the via hole 11.
  • a resist pattern 13 corresponding to a desired circuit pattern is printed on the surface of the metal foil 2 of the resin sheet with metal foil 12 by a method such as screen printing. 15 is displayed upside down compared to FIG.
  • etching is performed using the resist pattern 13 as a mask, and the portion of the metal foil 2 not covered with the resist pattern 13 is removed as shown in FIG.
  • the portion of the metal foil 2 remaining after this etching is referred to as “conductor pattern 7”.
  • the resist pattern 13 is removed.
  • a desired conductor pattern 7 is obtained on one surface of the resin layer 3.
  • the via hole 11 is filled with a conductive paste by screen printing or the like.
  • the via conductor 6 is formed.
  • Screen printing is performed from the lower surface in FIG. 17 and 18, for convenience of explanation, the via hole 11 is displayed in a posture in which the via hole 11 faces downward.
  • the conductive paste to be filled may be mainly composed of silver as described above, but may instead be composed mainly of copper, for example.
  • This conductive paste forms an alloy layer with the metal that is the material of the conductor pattern 7 at the temperature when the laminated resin layer is thermocompression bonded (hereinafter referred to as “thermocompression temperature”). It is preferable that the metal powder contains an appropriate amount.
  • this conductive paste contains copper, that is, Cu as a main component for exerting conductivity
  • this conductive paste includes at least one of Ag, Cu, and Ni in addition to the main component, and Sn, Bi, Zn. It is preferable that at least one of them is included.
  • the flexible multilayer substrate 20 shown in FIG. 6 is obtained.
  • Other multilayer substrates exemplified in the above-described embodiment can also be manufactured by appropriately changing the stacking direction when stacking, or by appropriately forming a via conductor in the intermediate portion.
  • the conductor patterns 7 disposed on the lower surface and the upper surface of the flexible multilayer substrate serve as external electrodes 18 and 19, respectively.
  • the pressure bonding may be performed all at once, but may be performed in two steps of temporary pressure bonding and main pressure bonding.
  • the number of the resin layers is other than 5. May be.
  • the name “flexible multilayer substrate” is used to refer to the product based on the present invention, but this is not limited to the multilayer substrate that is flexible over the entire area. Even if it is a multilayer substrate partially including a rigid portion, the present invention can be applied inside the flexible portion as long as it is a multilayer substrate including a flexible portion.
  • the present invention can be used for a flexible multilayer substrate.

Abstract

 フレキシブル多層基板(20)は、積層された複数の樹脂層(3)を含む積層体を備え、この積層体は、使用時に折り曲げられることによって内側となる表面である最内側表面(21)と外側となる表面である最外側表面(22)とを有する。複数の樹脂層(3)の各々は、一方の表面近傍がスキン層(1)となっている。この積層体は、スキン層同士接合面(30)を厚み方向の途中の1ヶ所に含み、厚み方向の途中の他の箇所では、スキン層(1)とそうでない面とが互いに当接するように積層されている。スキン層同士接合面(30)は、積層体の厚み方向の中心面(23)より最内側表面(21)に近い側に配置されている。

Description

フレキシブル多層基板
 本発明は、フレキシブル多層基板に関するものである。
 フレキシブル多層基板は樹脂層を積層して作製することができる。このようなフレキシブル多層基板においては、ある特定の側に曲げられたまま実装される場合がある。フレキシブル多層基板は、用途によっては、その実装時に曲げられた状態のまま使用されることもありえ、あるいは、実装時には曲げられていなかったとしても、使用時に繰り返し曲げられることもありうる。
 同じ側に曲げられるフレキシブル基板の一例は、特開2007-201263号公報(特許文献1)に記載されている。
特開2007-201263号公報
 フレキシブル多層基板が、曲げられた状態のまま使用される場合や、繰り返し曲げられて使用される場合は、フレキシブル多層基板の内部のビア導体同士の接合面または樹脂層同士の剥離が問題となる。
 そこで、本発明は、曲げて使用される際の内部における剥離を生じにくくすることができるフレキシブル多層基板を提供することを目的とする。
 上記目的を達成するため、本発明に基づくフレキシブル多層基板は、積層された複数の樹脂層を含む積層体を備え、上記積層体は、使用時に折り曲げられることによって内側となる表面である最内側表面と外側となる表面である最外側表面とを有し、上記複数の樹脂層の各々は、互いに対向する第1主表面および第2主表面を有し、上記第1主表面および上記第2主表面のうち上記第1主表面の近傍が、上記樹脂層のうちの他の部分より硬いスキン層となっており、上記第2主表面には導体パターンが形成されており、上記積層体は、互いに隣接する2つの上記樹脂層の上記第1主表面同士が当接する面であるスキン層同士接合面を厚み方向の途中の1ヶ所に含み、上記積層体の厚み方向の途中の他の箇所では、互いに隣接する2つの上記樹脂層の上記第1主表面と上記第2主表面とが当接するように積層されており、上記スキン層同士接合面は、上記積層体の厚み方向の中心面より上記最内側表面に近い側に配置されている。この構成を採用することにより、スキン層同士接合面では引張状態ではなく圧縮状態となり、スキン層同士接合面に起因した剥離は生じにくくなる。
 上記発明において好ましくは、上記スキン層同士接合面を挟んで互いに隣接する第1樹脂層および第2樹脂層はそれぞれ、厚み方向に貫通するようにして上記第1主表面と上記第2主表面とを電気的に接続するビア導体を含んでおり、上記ビア導体の各々は、上記第1主表面における径が上記第2主表面における径より大きくなるテーパ形状を有しており、上記積層体の折り曲げられる部分における上記スキン層同士接合面において、上記第1樹脂層の上記ビア導体と上記第2樹脂層の上記ビア導体とが、互いに対向するようにして当接している。この構成を採用することにより、通常であれば、樹脂の剥離の起点となりやすいビア導体同士の接合箇所が、曲げ形状の内側に位置することとなるので、この近傍は圧縮状態となり、剥離が生じにくくなる。
 上記発明において好ましくは、上記スキン層同士接合面は、上記最内側表面から数えて1層目の樹脂層と2層面の樹脂層との間に位置する。この構成を採用することにより、スキン層同士接合面は、フレキシブル多層基板を曲げたときの最も内側の接合面となるので、スキン層同士接合面に起因した剥離を生じにくくする効果を特に大きく得ることができる。
発明者らが検討した金属箔付き樹脂シートの部分断面図である。 発明者らが検討した金属箔付き樹脂シートにおいて金属箔の不要部分をエッチング除去した状態の部分断面図である。 発明者らが検討した樹脂シートの積層に関する第1の説明図である。 発明者らが検討した樹脂シートの積層に関する第2の説明図である。 発明者らが検討したフレキシブル多層基板の断面図である。 本発明に基づく実施の形態1におけるフレキシブル多層基板の断面図である。 図6におけるZ部の拡大図である。 本発明に基づく実施の形態2におけるフレキシブル多層基板の断面図である。 本発明に基づく実施の形態2におけるフレキシブル多層基板に含まれるビア導体およびその近傍を取り出した状態の断面図である。 本発明に基づく実施の形態2におけるフレキシブル多層基板に含まれるビア導体同士の接合箇所の説明図である。 本発明に基づく実施の形態2におけるフレキシブル多層基板を曲げたときのA部の内部状態の説明図である。 本発明に基づく実施の形態3におけるフレキシブル多層基板の断面図である。 本発明に基づく実施の形態4におけるフレキシブル多層基板の製造方法の第1の工程の説明図である。 本発明に基づく実施の形態4におけるフレキシブル多層基板の製造方法の第2の工程の説明図である。 本発明に基づく実施の形態4におけるフレキシブル多層基板の製造方法の第3の工程の説明図である。 本発明に基づく実施の形態4におけるフレキシブル多層基板の製造方法の第4の工程の説明図である。 本発明に基づく実施の形態4におけるフレキシブル多層基板の製造方法の第5の工程の説明図である。 本発明に基づく実施の形態4におけるフレキシブル多層基板の製造方法の第6の工程の説明図である。
 発明者らは、フレキシブル多層基板を作製する際に用いられる金属箔付き樹脂シートに存在するスキン層の存在に注目した。図1に示すように、金属箔付き樹脂シート12は、一方の面に金属箔2が張られた状態のものであるが、金属箔2のない側の面の表層部にはスキン層1が生じている。ここで「スキン層」とは、樹脂シートの主な部分を構成する樹脂と同じ材質の樹脂からなるが、樹脂の分子の配向状態が他の部分とは異なり、その結果、表層部のみ硬くなっている場合の表層部を意味するものとする。
 樹脂シートの金属箔2が設けられていた面においては、樹脂シートへの金属箔2の張り付けによりスキン層がほぼ破壊されており、スキン層がほとんどなくなっている。この面における金属箔の不要部分をエッチング除去して導体パターンを形成する。図2に示すように導体パターン7を形成した面の導体パターンがない領域においては、スキン層はほとんどなくなっている。したがって、この領域には、スキン層の影響がない状態の樹脂(以下「非スキン層樹脂面」という。)4が露出することとなる。
 一方、その反対側の表面にはスキン層1が残存し、このスキン層1の上には導体パターンが新たに形成されないのが普通である。したがって、樹脂シートを積層するに当たって、樹脂シートの表裏が同じ向きで重ねられ続ける限り、図3に示すように、スキン層1と非スキン層樹脂面4とが接合されることとなる。
 発明者らは、図4に示すようにスキン層1同士で接合される面は、図3に示すようにスキン層1と非スキン層樹脂面4とで接合される面に比べて接合力が弱くなることに着目した。
 図5に示すように、フレキシブル多層基板10は、複数の樹脂層3の積層体として構成される。フレキシブル多層基板10に含まれる樹脂層3の多くには、通常、厚み方向に貫通するようにビア導体6が形成される。積層体10の最上面および最下面の両方に導体パターン7を外部電極18,19として露出させようとした場合、積層体の途中のどこかの面で樹脂シートの表裏を逆転させる必要が生じるので、少なくとも1ヶ所にスキン層同士が接合する面(以下「スキン層同士接合面」という。)30が生じる。言い換えれば、フレキシブル多層基板10としての積層体の厚み方向の途中の少なくとも1ヶ所に、接合力が他より弱い箇所が生じる。このような考察に基づいて、発明者らは本発明をなすに至った。
 (実施の形態1)
 図6、図7を参照して、本発明に基づく実施の形態1におけるフレキシブル多層基板について説明する。図6に示すように本実施の形態におけるフレキシブル多層基板20は、積層された複数の樹脂層3を含む積層体を備える。この積層体は、使用時に折り曲げられることによって内側となる表面である最内側表面21と外側となる表面である最外側表面22とを有する。図6に示すZ部を拡大したところを図7に示す。複数の樹脂層3の各々は、互いに対向する第1主表面31および第2主表面32を有する。図7においては、中央に示される樹脂層3の上面が第1主表面31であり、下面が第2主表面32である。第1主表面31および第2主表面32のうち第1主表面31の近傍が、樹脂層3のうちの他の部分より硬いスキン層1となっている。第2主表面32には、図6に示すように、導体パターン7が形成されている。この積層体は、互いに隣接する樹脂層3の第1主表面31同士が当接する面であるスキン層同士接合面30を厚み方向の途中の1ヶ所に含む。積層体の厚み方向の途中の他の箇所では、互いに隣接する樹脂層3の第1主表面31と第2主表面32とが当接するように積層されている。スキン層同士接合面30は、図6に示すように、積層体の厚み方向の中心面23より最内側表面21に近い側に配置されている。
 図6に示した例においては、積層体に含まれる樹脂層3の全てに、厚み方向に貫通するようにビア導体6が設けられ、樹脂層3の一方の面には導体パターン7が設けられている。
 なお、図6における導体パターンの表示ルールについて説明する。他の断面図においても導体パターンの表示に際しては同様のルールである。図6においては、積層体に含まれる各樹脂層3の上面または下面に設けられた導体パターン7は、それぞれ各樹脂層3自体の内側に表示するのではなく、各樹脂層3の外側において隣接する樹脂層3に食い込むように表示している。したがって、図6においてZ部の楕円が囲んでいる樹脂層3は、下面に導体パターン7を有しているのであって、上面には導体パターンを有していない。図6において、Z部の楕円が囲んでいる樹脂層3の上面にあるように見える導体パターンは上側に隣接する樹脂層3の下面に張られていた導体パターン7である。
 本実施の形態では、樹脂層の積層体の中で接合力が他より弱くなる面であるスキン層同士接合面30が積層体の厚み方向の中心面23より最内側表面21に近い側に配置されているので、このフレキシブル多層基板20を曲げたときにスキン層同士接合面30は曲げ状態の内側に位置することとなる。したがって、スキン層同士接合面30では引張状態ではなく圧縮状態となり、その結果、スキン層同士接合面30に起因した剥離は生じにくくなる。仮に剥離が生じていたとしても、圧縮状態においては剥離した部分が押し付け合う状態となるので、剥離が拡大することを防ぐことができる。
 (実施の形態2)
 図8を参照して、本発明に基づく実施の形態2におけるフレキシブル多層基板20iについて説明する。本実施の形態におけるフレキシブル多層基板20iの基本的な構成は実施の形態1で説明したフレキシブル多層基板20と同様であるが、フレキシブル多層基板20iは内部に明確にビア導体を備えるという点で異なる。本実施の形態におけるフレキシブル多層基板20iは、スキン層同士接合面30を挟んで互いに隣接する第1樹脂層3aおよび第2樹脂層3bはそれぞれ、厚み方向に貫通するようにして第1主表面と第2主表面とを電気的に接続するビア導体6a,6bを含んでいる。第1樹脂層3aのビア導体6aの近傍を取り出したところを図9に示す。第2樹脂層3bにおけるビア導体6bの近傍も上下が逆になるのみであって同様の構造である。ビア導体6a,6bの各々は、図9に示すように、第1主表面31における径が第2主表面32における径より大きくなるテーパ形状を有している。図8に示すように、積層体の折り曲げられる部分におけるスキン層同士接合面30において、第1樹脂層3aのビア導体6aと第2樹脂層3bのビア導体6bとが、互いに対向するようにして当接している。ビア導体6aとビア導体6bとが互いに対向するように当接している部位は、後述する図11に示すように、フレキシブル多層基板20iの折り曲げられる部分に該当する。
 本実施の形態では、スキン層同士接合面30を挟んで互いに隣接する第1樹脂層3aおよび第2樹脂層3bがそれぞれビア導体6a,6bを含んでおり、ビア導体6a,6bは上述したようなテーパ形状を有しているので、図10に示すように断面図に表れる角度αは180°より小さくなっている。すなわち、外周側に凸な角である。このようにビア導体同士の接合面で径が外周側に凸となっている箇所では、一般的にビア導体同士が接する角を起点として樹脂層3の剥離が比較的生じやすい。しかし、本実施の形態では、スキン層同士接合面30は、積層体の厚み方向の中心面23より最内側表面21に近い側に配置されているので、言い換えれば、ビア導体同士が接する角も積層体の厚み方向の中心面23より最内側表面21に近い側に配置されているということになる。したがって、このフレキシブル多層基板20iを曲げたときには、ビア導体同士が接する角は、曲げ状態の内側に位置することとなる。図8におけるA部に注目し、フレキシブル多層基板20iを曲げたときの状態を図11に示す。A部はフレキシブル多層基板20iの折り曲げられる部分を含んでいる。ビア導体同士が接する角は、曲げた形状の内側に位置するので、図11に示すように、ビア導体同士が接する角の近傍は圧縮状態となり、その結果、ビア導体同士が接する角を起点とした樹脂層3同士の剥離は生じにくくなる。仮に剥離が生じていたとしても、圧縮状態においては剥離した部分が押し付け合う状態となるので、剥離が拡大することを抑制することができる。
 また、図9に示すように、ビア導体6a,6bの径が広い側の表面には凹み14が生じる傾向がある。図10に示されるようにスキン層同士接合面30を挟んでビア導体6a,6b同士が接合する箇所は、凹み14を有する表面同士が接合することとなるので、元々接合力が劣り、剥離が生じやすい傾向があるが、本実施の形態では、このような接合面が曲げた形状の内側に位置するので、この接合面の近傍は圧縮状態となり、その結果、凹み14を有する表面同士が接合する面を起点とした剥離は生じにくくなる。
 (実施の形態3)
 図12を参照して、本発明に基づく実施の形態3におけるフレキシブル多層基板20jについて説明する。本実施の形態におけるフレキシブル多層基板20jの基本的な構成は実施の形態1,2で説明したフレキシブル多層基板と同様である。本実施の形態におけるフレキシブル多層基板20jにおいては、図12に示すように、スキン層同士接合面30は、最内側表面21から数えて1層目の樹脂層3cと2層目の樹脂層3dとの間に位置する。
 本実施の形態では、樹脂層の積層体の中で接合力が他より弱くなる面であるスキン層同士接合面30は、フレキシブル多層基板20jを曲げたときの最も内側の接合面となる。したがって、最内側表面21を内側としてフレキシブル多層基板20jを曲げたときに、積層体の中に存在する樹脂層3同士のいくつかの接合面のうちスキン層同士接合面30は、最も顕著な圧縮状態となる。よって、本実施の形態では、スキン層同士接合面30に起因した剥離を生じにくくする効果を特に大きく得ることができる。
 (実施の形態4)
 図13~図18を参照して、本発明に基づく実施の形態4におけるフレキシブル多層基板の製造方法について説明する。
 まず、図13に示すような金属箔付き樹脂シート12を用意する。金属箔付き樹脂シート12は、樹脂層3の片面に金属箔2が付着した構造のシートである。樹脂層3は、たとえば熱可塑性樹脂であるLCP(液晶ポリマー)からなるものである。樹脂層3の材料としては、LCPの他に、PEEK(ポリエーテルエーテルケトン)、PEI(ポリエーテルイミド)、PPS(ポニフェニレンスルファイド)、PI(ポリイミド)などであってもよい。金属箔2は、たとえばCuからなる厚さ18μmの箔である。なお、金属箔2の材料はCu以外にAg、Al、SUS、Ni、Auであってもよく、これらの金属のうちから選択された2以上の異なる金属の合金であってもよい。本実施の形態では、金属箔2は厚さ18μmとしたが、金属箔2の厚みは3~40μm程度であってよい。金属箔2は、回路形成が可能な厚みであればよい。
 図14に示すように、金属箔付き樹脂シート12の樹脂層3側の表面に炭酸ガスレーザ光を照射することによって樹脂層3を貫通するようにビア孔11を形成する。ビア孔11は、樹脂層3を貫通しているが金属箔2は貫通していない。その後、ビア孔11のスミア(図示せず)を除去する。ここではビア孔11を形成するために炭酸ガスレーザ光を用いたが、他の種類のレーザ光を用いてもよい。また、ビア孔11を形成するためにレーザ光照射以外の方法を採用してもよい。
 次に、図15に示すように、金属箔付き樹脂シート12の金属箔2の表面に、スクリーン印刷などの方法で、所望の回路パターンに対応するレジストパターン13を印刷する。なお、図15では、図14に比べて上下を逆にして表示している。
 次に、レジストパターン13をマスクとしてエッチングを行ない、図16に示すように、金属箔2のうちレジストパターン13で被覆されていない部分を除去する。金属箔2のうち、このエッチングの後に残った部分を「導体パターン7」と称する。その後、図17に示すように、レジストパターン13を除去する。こうして樹脂層3の一方の表面に所望の導体パターン7が得られる。
 次に、図18に示すように、ビア孔11に、スクリーン印刷などにより導電性ペーストを充填する。こうしてビア導体6が形成される。スクリーン印刷は、図17における下側の面から行なわれる。図17および図18では説明の便宜上、ビア孔11が下方を向いた姿勢で表示しているが、実際には適宜姿勢を変えてスクリーン印刷を行なってよい。充填する導電性ペーストは上述したように銀を主成分とするものであってもよいが、その代わりにたとえば銅を主成分とするものであってもよい。この導電性ペーストは、のちに積層した樹脂層を熱圧着する際の温度(以下「熱圧着温度」という。)で、導体パターン7の材料である金属との間で合金層を形成するような金属粉を適量含むものであることが好ましい。この導電性ペーストは導電性を発揮するための主成分として銅すなわちCuを含むので、この導電性ペーストは主成分の他にAg,Cu,Niのうち少なくとも1種類と、Sn,Bi,Znのうち少なくとも1種類とを含むことが好ましい。
 さらにこの構造体を用いて積層および圧着をすることによって、たとえば図6に示したフレキシブル多層基板20が得られる。上述の実施の形態で例示した他の多層基板についても、積層する際の重ねる向きを適宜変更すること、あるいは、ビア導体を中間部に適宜形成することによって作製可能である。フレキシブル多層基板の下面および上面に配置された導体パターン7はそれぞれ外部電極18,19となる。圧着は、1回でまとめて行なってもよいが、仮圧着と本圧着との2回に分けて行なってもよい。
 なお、上記各実施の形態では、フレキシブル多層基板に含まれる樹脂層3の数が5である例を前提に説明してきたが、本発明を適用するに当たっては、樹脂層の数は5以外であってもよい。
 上記各実施の形態では、いずれの部位においても厚みが一定なフレキシブル多層基板を前提に説明してきたが、本発明を適用するに当たっては、部位によって厚みが異なるフレキシブル多層基板であってもよい。
 ここまでのところ、本発明に基づく製品を称するのに「フレキシブル多層基板」という名称を用いているが、これは全域にわたってフレキシブルとなっている多層基板に限定するものではない。部分的にリジッド部を含む多層基板であっても、フレキシブル部を含む多層基板であれば、そのフレキシブル部の内部で本発明を適用可能である。
 なお、今回開示した上記実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。
 本発明は、フレキシブル多層基板に利用することができる。
 1 スキン層、2 金属箔、3,3c,3d 樹脂層、3a 第1樹脂層、3b 第2樹脂層、4 非スキン層樹脂面、6,6a,6b ビア導体、7 導体パターン、10,20,20i,20j フレキシブル多層基板、11 ビア孔、12 金属箔付き樹脂シート、13 レジストパターン、14 凹み、18,19 外部電極、21 最内側表面、22 最外側表面、23 中心面、30 スキン層同士接合面、31 (各樹脂層の)第1主表面、32 (各樹脂層の)第2主表面。

Claims (3)

  1.  積層された複数の樹脂層(3)を含む積層体を備え、
     前記積層体は、使用時に折り曲げられることによって内側となる表面である最内側表面(21)と外側となる表面である最外側表面(22)とを有し、
     前記複数の樹脂層の各々は、互いに対向する第1主表面(31)および第2主表面(32)を有し、前記第1主表面および前記第2主表面のうち前記第1主表面の近傍が、前記樹脂層のうちの他の部分より硬いスキン層(1)となっており、前記第2主表面には導体パターン(7)が形成されており、
     前記積層体は、互いに隣接する2つの前記樹脂層の前記第1主表面同士が当接する面であるスキン層同士接合面(30)を厚み方向の途中の1ヶ所に含み、前記積層体の厚み方向の途中の他の箇所では、互いに隣接する2つの前記樹脂層の前記第1主表面と前記第2主表面とが当接するように積層されており、
     前記スキン層同士接合面は、前記積層体の厚み方向の中心面(23)より前記最内側表面に近い側に配置されている、フレキシブル多層基板。
  2.  前記スキン層同士接合面を挟んで互いに隣接する第1樹脂層および第2樹脂層はそれぞれ、厚み方向に貫通するようにして前記第1主表面と前記第2主表面とを電気的に接続するビア導体(6,6a,6b)を含んでおり、前記ビア導体の各々は、前記第1主表面における径が前記第2主表面における径より大きくなるテーパ形状を有しており、前記積層体の折り曲げられる部分における前記スキン層同士接合面において、前記第1樹脂層の前記ビア導体と前記第2樹脂層の前記ビア導体とが、互いに対向するようにして当接している、請求項1に記載のフレキシブル多層基板。
  3.  前記スキン層同士接合面は、前記最内側表面から数えて1層目の樹脂層(3c)と2層目の樹脂層(3d)との間に位置する、請求項1に記載のフレキシブル多層基板。
PCT/JP2012/059515 2011-04-13 2012-04-06 フレキシブル多層基板 WO2012141096A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280017775.9A CN103460823B (zh) 2011-04-13 2012-04-06 柔性多层基板
JP2013509879A JP5447735B2 (ja) 2011-04-13 2012-04-06 フレキシブル多層基板
US14/047,623 US9012785B2 (en) 2011-04-13 2013-10-07 Flexible multilayer substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011088967 2011-04-13
JP2011-088967 2011-04-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/047,623 Continuation US9012785B2 (en) 2011-04-13 2013-10-07 Flexible multilayer substrate

Publications (1)

Publication Number Publication Date
WO2012141096A1 true WO2012141096A1 (ja) 2012-10-18

Family

ID=47009271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059515 WO2012141096A1 (ja) 2011-04-13 2012-04-06 フレキシブル多層基板

Country Status (4)

Country Link
US (1) US9012785B2 (ja)
JP (1) JP5447735B2 (ja)
CN (1) CN103460823B (ja)
WO (1) WO2012141096A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016035631A1 (ja) * 2014-09-04 2017-04-27 株式会社村田製作所 部品内蔵基板

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6248688B2 (ja) * 2014-02-20 2017-12-20 株式会社村田製作所 樹脂多層基板
US10416721B2 (en) 2014-07-08 2019-09-17 Samsung Display Co., Ltd. Foldable display device
JP6439636B2 (ja) 2015-09-10 2018-12-19 株式会社デンソー プリント基板の製造方法
CN210157483U (zh) * 2016-10-27 2020-03-17 株式会社村田制作所 多层基板
WO2019044425A1 (ja) * 2017-08-30 2019-03-07 株式会社村田製作所 多層基板及びアンテナモジュール
KR20210000809A (ko) 2019-06-25 2021-01-06 삼성디스플레이 주식회사 표시 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07312469A (ja) * 1994-05-16 1995-11-28 Nippon Mektron Ltd 多層フレキシブル回路基板の屈曲部構造
JP2687149B2 (ja) * 1988-10-15 1997-12-08 三共化成株式会社 金属膜と絶縁体とインサート部材の接続方法
JP2825558B2 (ja) * 1989-10-25 1998-11-18 株式会社日立製作所 組成物及びこの樹脂組成物を使用した多層プリント回路板の製造方法
JP2004127970A (ja) * 2002-09-30 2004-04-22 Denso Corp 多層基板用素板の製造方法およびその素板を用いた多層基板の製造方法
JP2006073763A (ja) * 2004-09-01 2006-03-16 Denso Corp 多層基板の製造方法
WO2011018979A1 (ja) * 2009-08-11 2011-02-17 株式会社村田製作所 多層基板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5928839A (en) * 1992-05-15 1999-07-27 Morton International, Inc. Method of forming a multilayer printed circuit board and product thereof
JP3687041B2 (ja) * 1997-04-16 2005-08-24 大日本印刷株式会社 配線基板、配線基板の製造方法、および半導体パッケージ
KR100975258B1 (ko) * 2002-02-22 2010-08-11 가부시키가이샤후지쿠라 다층 배선 기판, 다층 배선 기판용 기재, 프린트 배선기판 및 그 제조 방법
JP2007201263A (ja) 2006-01-27 2007-08-09 Alps Electric Co Ltd フレキシブル基板の取付構造
JP5471104B2 (ja) * 2009-07-15 2014-04-16 株式会社村田製作所 フレキシブル配線基板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2687149B2 (ja) * 1988-10-15 1997-12-08 三共化成株式会社 金属膜と絶縁体とインサート部材の接続方法
JP2825558B2 (ja) * 1989-10-25 1998-11-18 株式会社日立製作所 組成物及びこの樹脂組成物を使用した多層プリント回路板の製造方法
JPH07312469A (ja) * 1994-05-16 1995-11-28 Nippon Mektron Ltd 多層フレキシブル回路基板の屈曲部構造
JP2004127970A (ja) * 2002-09-30 2004-04-22 Denso Corp 多層基板用素板の製造方法およびその素板を用いた多層基板の製造方法
JP2006073763A (ja) * 2004-09-01 2006-03-16 Denso Corp 多層基板の製造方法
WO2011018979A1 (ja) * 2009-08-11 2011-02-17 株式会社村田製作所 多層基板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016035631A1 (ja) * 2014-09-04 2017-04-27 株式会社村田製作所 部品内蔵基板

Also Published As

Publication number Publication date
CN103460823B (zh) 2016-08-17
US20140034365A1 (en) 2014-02-06
JPWO2012141096A1 (ja) 2014-07-28
JP5447735B2 (ja) 2014-03-19
CN103460823A (zh) 2013-12-18
US9012785B2 (en) 2015-04-21

Similar Documents

Publication Publication Date Title
JP5447735B2 (ja) フレキシブル多層基板
JP2006344828A (ja) 多層基板及びその製造方法
JP5618001B2 (ja) フレキシブル多層基板
JP5668854B2 (ja) フレキシブル多層基板
JP5652481B2 (ja) 樹脂多層基板およびその製造方法
WO2012124362A1 (ja) 樹脂多層基板
WO2018163859A1 (ja) 多層基板、電子機器および多層基板の製造方法
JP6536751B2 (ja) 積層コイルおよびその製造方法
JP5516830B2 (ja) 部品内蔵樹脂基板
JP2011171579A (ja) プリント配線基板
JP6729754B2 (ja) 樹脂多層基板の製造方法
JP2013145847A (ja) プリント配線板及び該プリント配線板の製造方法
JP6319447B2 (ja) 樹脂多層基板
JP5668866B2 (ja) 部品内蔵樹脂基板
WO2017006665A1 (ja) 基板およびこれを備える電子機器
JP2012209383A (ja) 多層基板およびその製造方法
JP6089614B2 (ja) 樹脂多層基板
JP2014222692A (ja) 樹脂多層基板
JP6535980B2 (ja) フレキシブル多層基板
US11445618B2 (en) Flexible circuit board and method for manufacturing same
JP2011228471A (ja) 多層基板とその製造方法
JP2014222686A (ja) 樹脂多層基板
JP4059401B2 (ja) 配線回路基板とその製造方法
JP2006156475A (ja) 回路基板の製造方法及び多層配線板の製造方法
JP2013191668A (ja) 樹脂多層基板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013509879

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12771941

Country of ref document: EP

Kind code of ref document: A1