WO2012133031A1 - 二次電池電極形成用水性組成物、二次電池用電極、及び二次電池 - Google Patents

二次電池電極形成用水性組成物、二次電池用電極、及び二次電池 Download PDF

Info

Publication number
WO2012133031A1
WO2012133031A1 PCT/JP2012/057144 JP2012057144W WO2012133031A1 WO 2012133031 A1 WO2012133031 A1 WO 2012133031A1 JP 2012057144 W JP2012057144 W JP 2012057144W WO 2012133031 A1 WO2012133031 A1 WO 2012133031A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ethylenically unsaturated
electrode
weight
secondary battery
Prior art date
Application number
PCT/JP2012/057144
Other languages
English (en)
French (fr)
Inventor
大 稲垣
浩一郎 宮嶋
順幸 諸石
真吾 池田
一成 春田
幸子 成廣
隆明 小池
安紀子 仁科
隆明 大竹
Original Assignee
東洋インキScホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキScホールディングス株式会社 filed Critical 東洋インキScホールディングス株式会社
Priority to JP2013507421A priority Critical patent/JP5880544B2/ja
Publication of WO2012133031A1 publication Critical patent/WO2012133031A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/28Precipitating active material on the carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an aqueous composition for forming a secondary battery electrode, an electrode obtained using the composition, and a secondary battery obtained using the electrode.
  • An important characteristic required for the composite ink used for forming the electrode and the composition for forming the underlayer includes uniformity when the active material and the conductive additive are dispersed. This is because the dispersion state of the active material and the conductive auxiliary in the composition ink and the underlayer forming composition is the distribution state of the active material and the conductive auxiliary in the composite layer and the distribution state of the conductive auxiliary in the underlayer. This is because it affects the physical properties of the electrode and the battery performance.
  • the dispersion of the active material and the conductive aid is an important issue.
  • carbon materials (conducting aids) with excellent conductivity have a strong cohesive force due to their large structure and specific surface area, and evenly mix and disperse, whether in mixed ink or in the composition for forming the underlayer. Is difficult.
  • the dispersibility and particle size control of the carbon material that is the conductive auxiliary agent is insufficient, the internal resistance of the electrode cannot be reduced because a uniform conductive network is not formed, and as a result, the performance of the electrode material is sufficient. The problem of being unable to withdraw.
  • the active material is not sufficiently dispersed in the composite ink as well as the conductive auxiliary agent, partial aggregation occurs in the composite layer formed from such a composite ink.
  • This partial aggregation causes a resistance distribution on the electrode, and as a result, current concentration occurs when used as a battery, which may cause problems such as partial heat generation and deterioration.
  • the composite ink and the underlayer forming composition are required to have appropriate fluidity so as to be coated on the surface of the metal foil functioning as a current collector. Furthermore, in order to form a composite material layer or a base layer having a surface that is as flat as possible and having a uniform thickness, the composite ink or the base layer forming composition is required to have an appropriate viscosity.
  • the base layer After the formation of the composite layer formed from the composite ink and the composition for forming the base layer, the base layer is cut into pieces of a desired size and shape together with the metal foil as the base material, It is punched out. Therefore, the material layer and the base layer are required to have hardness that does not damage and softness that does not crack or peel off by cutting or punching.
  • the composite material layer and the underlayer are exposed to the electrolyte in the battery, the composite material layer and the underlayer may be collapsed and peeled off from the current collector. Therefore, elution resistance in the electrolytic solution is also required for the composite material layer and the underlayer.
  • Patent Documents 1 to 4 an active material and a conductive material are mixed, and this mixture is kneaded with a cellulose-based thickener aqueous solution, and then an aqueous binder such as tetrafluoropolyethylene or latex is further added and further kneaded. It is disclosed that a composite ink is obtained. However, these composite inks have a problem that the dispersed state is insufficient and the flexibility is poor, and a desired electrode cannot be produced, so that good battery performance cannot be obtained.
  • the object of the present invention is to improve the dispersibility and rheological properties of the active material and conductive additive in the electrode-forming composition, and to adhere the layer formed from the electrode-forming composition to the current collector. It is to improve the strength of the coating film, the flexibility of the coating film, and the elution resistance of the electrolytic solution, and further to improve the battery cycle test performance.
  • This invention solves the said subject by using the cationic dispersing agent (A) excellent in the dispersibility of an electrode active material and a conductive support agent.
  • An aqueous composition for forming a secondary battery electrode comprising at least one of a carbon material that is an electrode active material or a conductive additive, a cationic dispersant (A), and water,
  • the cationic dispersant (A) has at least one of an aliphatic amine or an aromatic amine as a cationic site, has an amine value of 110 to 1000 mgKOH / g, a hydroxyl value of 0 to 400 mgKOH / g, and a weight
  • An aqueous composition for forming a secondary battery electrode having an average molecular weight of 5000 or more.
  • composition according to [5] above, wherein the cross-linked resin fine particles are resin fine particles obtained by emulsion polymerization of the following monomers in water in the presence of a surfactant with a radical polymerization initiator.
  • C1 From the group consisting of an ethylenically unsaturated monomer (c1) having a monofunctional or polyfunctional alkoxysilyl group and a monomer (c2) having two or more ethylenically unsaturated groups in one molecule At least one monomer selected: 0.1 to 5% by weight (C2) Ethylenically unsaturated monomer (c3) other than the monomers (c1) to (c2): 95 to 99.9% by weight (However, the total of the above (c1) to (c3) is 100% by weight.)
  • composition according to [6] above, wherein the ethylenically unsaturated monomer (c3) has the following composition.
  • Ethylenically unsaturated monomer (c4) having a monofunctional or polyfunctional epoxy group
  • ethylenically unsaturated monomer (c5) having a monofunctional or polyfunctional amide group
  • ethylene having a monofunctional or polyfunctional hydroxyl group
  • composition according to [7] above, wherein the ethylenically unsaturated monomer (c7) has the following composition. At least one monomer selected from the group consisting of an ethylenically unsaturated monomer (c8) having an alkyl group having 8 to 18 carbon atoms and an ethylenically unsaturated monomer (c9) having a cyclic structure: 30 ⁇ 95% by weight Ethylenically unsaturated monomers other than (c1) to (c6), (c8) and (c9): 0 to 69.8% by weight (However, the total of the above (c1) to (c3) is 100% by weight.)
  • the binder composition (C) is at least one selected from the group consisting of an uncrosslinked epoxy group-containing compound, an uncrosslinked amide group-containing compound, an uncrosslinked hydroxyl group-containing compound, and an uncrosslinked oxazoline group-containing compound.
  • An electrode for a secondary battery comprising a current collector and at least one of a composite material layer or an electrode underlayer formed from the composition described in [1] to [10] above.
  • a secondary battery comprising a positive electrode, a negative electrode, and an electrolytic solution, wherein at least one of the positive electrode and the negative electrode is the secondary battery electrode according to [11].
  • a lithium secondary battery comprising a positive electrode, a negative electrode, and an electrolytic solution, wherein at least one of the positive electrode and the negative electrode is the secondary battery electrode according to [11].
  • an electrode-forming composition having excellent rheological properties and dispersed state can be obtained. Furthermore, by preparing a composite material layer and an underlayer with this electrode forming composition, the adhesion to the current collector, the strength of the coating film, the flexibility of the coating film, and the resistance to electrolytic solution elution are improved. Cycle test performance can be improved.
  • the electrode for the secondary battery can be obtained by various methods. For example, on the surface of a current collector such as a metal foil, (1) an ink-like composition containing an active material and a liquid medium (hereinafter referred to as a composite ink), or (2) an active material, a conductive auxiliary agent, and a liquid A composite ink containing a medium, (3) a composite ink containing an active material, a binder and a liquid medium, and (4) a composite ink containing an active material, a conductive additive, a binder and a liquid medium.
  • a composite ink an ink-like composition containing an active material and a liquid medium
  • an electrode underlayer is formed on the surface of the current collector of the metal foil using a composition for forming an underlayer containing a conductive additive and a liquid medium, and the above composite ink (1 ) To (4) and other composite inks can be used to form a composite layer to obtain an electrode.
  • the dispersion state of the active material and the conductive aid and the electrolytic solution elution resistance of the electrode mixture layer and the base layer influence the battery performance.
  • the cationic dispersant (A) mitigates the aggregation of the active material or functions as a dispersant for the carbon material that is a conductive additive. Therefore, the aqueous composition for forming a secondary battery electrode of the present invention can be used as a composite ink that requires an active material or a composition for forming an underlayer that does not require an active material.
  • the cationic dispersant (A) in the present invention has at least one of an aliphatic amine or an aromatic amine as a cationic site, has an amine value of 110 to 1000 mgKOH / g, and a hydroxyl value of 0 to 400 mgKOH / g. Yes, a resin-type dispersant having a weight average molecular weight of 5000 or more.
  • the cationic dispersant (A) having an aliphatic amine or an aromatic amine is not particularly limited as long as it is a resin having an aliphatic amine or an aromatic amine.
  • it has an aliphatic amino group or an aromatic amino group. It is obtained by polymerizing or condensing a monomer, and is preferably obtained by polymerizing an ethylenically unsaturated monomer (a2) having an aliphatic amino group or an aromatic amino group.
  • One type of monomer having an aliphatic amino group or aromatic amino group may be used, or a plurality of types may be used in combination.
  • an ethylenically unsaturated monomer (a1) having an aromatic ring and an ethylenically unsaturated monomer having an aliphatic amino group or an aromatic amino group A resin type dispersant obtained by copolymerizing a2) with an ethylenically unsaturated monomer (a3) other than (a1) and (a2) can be used.
  • the monomer (a1) or (a3) is an optional component.
  • the ethylenically unsaturated monomer constituting the cationic dispersant (A) in the present invention indicates a monomer having one ethylenically unsaturated group in one molecule.
  • the ethylenically unsaturated monomer (a1) having an aromatic ring is not particularly limited as long as it is a monomer having an aromatic ring, and examples thereof include styrene, ⁇ -methylstyrene, and benzyl (meth) acrylate. .
  • the ethylenically unsaturated monomer (a2) having an aliphatic amino group or an aromatic amino group is not particularly limited as long as it is a monomer having an aliphatic amino group or an aromatic amino group.
  • a monomer having one ethylenically unsaturated group in one molecule dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, methylethylaminoethyl (meth) acrylate, N , N-dimethylaminopropyl (meth) acrylate, allylamine
  • examples of monomers having two ethylenically unsaturated groups in one molecule include diallylamine, diallylmethylamine, etc., and aromatic amino groups Aminostyrene, dimethylaminostyrene, diethylaminos It can be exemplified Len like.
  • (meth) acrylate compounds include alkyl (meth) acrylates and alkylene glycol (meth) acrylates.
  • alkyl (meth) acrylate examples include alkyl (meth) acrylate having 1 to 22 carbon atoms such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate and the like.
  • alkyl group-containing acrylate having an alkyl group having 2 to 10 carbon atoms, more preferably 2 to 8 carbon atoms, or a corresponding methacrylate is exemplified.
  • alkylene glycol-based (meth) acrylate examples include a monoacrylate having a hydroxyl group at the terminal and having a polyoxyalkylene chain, such as diethylene glycol mono (meth) acrylate and polyethylene glycol mono (meth) acrylate, or a corresponding monoacrylate.
  • methacrylate methoxyethylene glycol (meth) acrylate, methoxydiethylene glycol (meth) acrylate, monoacrylate having an alkoxy group at the end and having a polyoxyalkylene chain, or the corresponding monomethacrylate, phenoxyethylene glycol
  • methacrylate methoxyethylene glycol (meth) acrylate, methoxydiethylene glycol (meth) acrylate, monoacrylate having an alkoxy group at the end and having a polyoxyalkylene chain, or the corresponding monomethacrylate, phenoxyethylene glycol
  • polyoxyalkylene-based acrylates having a phenoxy or aryloxy group at the terminal such as (meth) acrylates, or corresponding methacrylates.
  • hydroxyl-containing unsaturated compounds other than the above include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, glycerol mono (meth) acrylate, 4-hydroxyvinylbenzene Etc.
  • Nitrogen-containing unsaturated compounds other than those mentioned above include, for example, acrylamide unsaturated compounds, and monoalkylols such as (meth) acrylamide, N-methylol (meth) acrylamide, N-methoxymethyl- (meth) acrylamide (meta) ) Acrylamide, dialalkylol (meth) acrylamide such as N, N-di (methylol) acrylamide, N-methylol-N-methoxymethyl (meth) acrylamide, N, N-di (methoxymethyl) acrylamide and the like.
  • monoalkylols such as (meth) acrylamide, N-methylol (meth) acrylamide, N-methoxymethyl- (meth) acrylamide (meta) ) Acrylamide, dialalkylol (meth) acrylamide such as N, N-di (methylol) acrylamide, N-methylol-N-methoxymethyl (meth) acryl
  • unsaturated compounds include, for example, perfluoroalkyl group-containing vinyl monomers such as perfluoromethylmethyl (meth) acrylate, perfluoroethylmethyl (meth) acrylate, 2-perfluorobutylethyl (meth) acrylate, 2- Perfluoroalkylalkyl (meth) acrylates having a perfluoroalkyl group having 1 to 20 carbon atoms such as perfluorohexylethyl (meth) acrylate; perfluorobutylethylene, perfluorohexylethylene, perfluorooctylethylene, perfluoro Perfluoroalkylalkylenes such as decylethylene and the like, and as vinyl compounds containing silanol groups, vinyltrichlorosilane, vinyltris ( ⁇ -methoxyethoxy) silane, vinyltol Ethoxysilane, .gamma. (meth) acryloxy propyl trimeth
  • fatty acid vinyl compound examples include vinyl acetate, vinyl butyrate, vinyl propionate, vinyl hexanoate, vinyl caprylate, vinyl laurate, vinyl palmitate, and vinyl stearate.
  • alkyl vinyl ether compound examples include butyl vinyl ether and ethyl vinyl ether.
  • Examples of the ⁇ -olefin compound include 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene and the like.
  • vinyl compounds include allyl compounds such as allyl acetate, allyl alcohol, allylbenzene, and allyl cyanide, vinyl cyanide, vinylcyclohexane, vinylmethylketone, styrene, ⁇ -methylstyrene, 2-methylstyrene, chlorostyrene, and the like. It is done.
  • ethynyl compound examples include acetylene, ethynylbenzene, ethynyltoluene, 1-ethynyl-1-cyclohexanol and the like. These can be used alone or in combination of two or more.
  • the ratio of the ethylenically unsaturated monomer constituting the copolymer in the cationic dispersant (A) used in the present invention is such that the total of the monomers (a1) to (a3) is 100% by weight.
  • the other monomer (a3) other than (a1) to (a2) is preferably 0 to 70% by weight.
  • ethylenically unsaturated monomer (a1) having an aromatic ring 50 to 80% by weight of ethylenically unsaturated monomer (a2) having an amino group
  • the other monomer (a3) other than the above (a1) to (a2) is 0 to 50% by weight.
  • the cationic dispersant (A) is produced by polymerizing or condensing a monomer having an amino group, and the composition ratio of the monomer having a cationic functional group in the entire molecule of the cationic dispersant (A). Is represented by the amine value as follows. That is, the amine value of the cationic dispersant (A) used is preferably in the range of 110 mgKOH / g or more and less than 1000 mgKOH / g, and more preferably in the range of 250 mgKOH / g or more and less than 1000 mgKOH / g.
  • the dispersion stability of the dispersion tends to decrease and the viscosity tends to increase.
  • the adhesion of the cationic dispersant (A) to the pigment surface is lowered, and the storage stability of the dispersion tends to be lowered.
  • the amine value is represented by the number of mg of potassium hydroxide equivalent to perchloric acid required to neutralize all basic nitrogen contained in 1 g of the sample.
  • the measurement method is a value obtained by converting the solid content obtained by the potentiometric titration method described in JIS K 7237 (1995).
  • the hydroxyl value of the cationic dispersant (A) is preferably 0 mgKOH / g or more and 400 mgKOH / g or less, and more preferably 0 mgKOH / g or more and 250 mgKOH / g or less.
  • the hydroxyl value is 400 mgKOH / g or more, the interaction between molecules in the aqueous medium becomes stronger, and the viscosity of the dispersant solution becomes higher than necessary, so that the dispersibility of the conductive carbon or the active material is deteriorated. There is.
  • the weight average molecular weight of the cationic dispersant (A) is preferably 5000 or more. More preferably, it is 30000 or more. Moreover, the upper limit is preferably 1500,000 or less, and more preferably 800,000 or less. When the weight average molecular weight is less than 5,000, there is a possibility of causing poor dispersion of the carbon material that is the electrode active material or the conductive auxiliary agent, and when it is less than 30,000, there is a possibility that deterioration of the electrolyte dissolution property may be caused.
  • the cationic dispersant (A) can be obtained by various production methods.
  • the monomers (a1) to (a3) are polymerized in an organic solvent that can be azeotroped with water. Thereafter, an aqueous liquid medium typified by water and a neutralizing agent are added to neutralize at least a part of the amino groups, the azeotropic solvent is distilled off, and an aqueous solution of the cationic dispersant (A) or An aqueous dispersion can be obtained.
  • the organic solvent for the polymerization may be any one that azeotropes with water, but is preferably highly soluble in the resulting dispersant resin, preferably ethanol, 1-propanol, 2-propanol, 1-butanol. 1-butanol is more preferable.
  • the above monomers are polymerized in a hydrophilic organic solvent, and then neutralized and aqueousized by adding water and a neutralizing agent (the hydrophilic organic solvent is not distilled off).
  • a solution in which the cationic dispersant (A) is dissolved or dispersed in an aqueous liquid medium containing can be obtained.
  • the hydrophilic organic solvent used is preferably one having high solubility in the resulting dispersant resin, preferably glycol ethers, diols, more preferably (poly) alkylene glycol monoalkyl ether, carbon number. 3-6 alkanediols are preferred.
  • the neutralizing agent used for neutralization in the above production process for example, an organic acid or an inorganic acid can be used.
  • a neutralizing agent may be added to the cationic dispersant.
  • the salt of the basic functional group is easily dissociated in an aqueous medium, and is more easily charged. For this reason, the conductive carbon surface and the positive and negative electrode active material surfaces on which the neutralized cationic dispersant is adsorbed are charged, and dispersibility is further improved by the repulsion.
  • Examples of the acid used for this neutralization include inorganic acids such as sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, hydrobromic acid, hydroiodic acid, and carboxylic acids, phosphonic acids, sulfonic acids, aromatic hydroxy groups, and the like.
  • Organic acids containing can be mentioned.
  • the amount of acid used for the cationic dispersant having a basic functional group is preferably 0.1 to 10 equivalents, more preferably 0.8, of the basic functional group of the cationic dispersant used. ⁇ 1.2 equivalents.
  • the hydrophobic part which is a constituent part of the cationic dispersant, becomes a main adsorption part to the active material and carbon material described later.
  • an aromatic ring is included as a hydrophobic portion, it is considered that the adsorptive power to an active material or a carbon material is improved.
  • the ethylenically unsaturated monomer (a2) having an aliphatic amino group or an aromatic amino group is considered to have a function of dissolving or dispersing the dispersant resin or a neutralized product thereof in an aqueous liquid medium.
  • the active material and the carbon material are acted on (for example, adsorbed) by a dispersant resin via a hydrophobic portion (for example, an aromatic ring) and neutralized, whereby the active material is subjected to charge repulsion of ionized amino groups. It is considered that the dispersion state of the carbon material and the carbon material in the aqueous liquid medium can be kept stable.
  • the amino group possessed by the cationic dispersant (A) is preferably an aliphatic amino group.
  • aliphatic amines have a higher pKa and higher basicity, and thus have a higher function of dissolving or dispersing the dispersant in the aqueous liquid medium.
  • ⁇ Cellulose-based thickener (B)> Although it does not specifically limit as a cellulose thickener (B), For example, carboxymethylcellulose (CMC), carboxyethylcellulose, hydroxyethylcellulose (HEC), hydroxypropylcellulose (HPC), ethylhydroxyethylcellulose (EHEC), hydroxymethyl, for example. Examples include ethyl cellulose, hydroxyhydroxypropyl methyl cellulose, methyl cellulose (MC), and hydroxyalkyl methyl cellulose.
  • CMC carboxymethylcellulose
  • HEC hydroxyethylcellulose
  • HPC hydroxypropylcellulose
  • EHEC ethylhydroxyethylcellulose
  • hydroxymethyl for example.
  • examples include ethyl cellulose, hydroxyhydroxypropyl methyl cellulose, methyl cellulose (MC), and hydroxyalkyl methyl cellulose.
  • Cellulose in pulp is a polysaccharide to which anhydroglucose monomer units are bonded, and has three hydroxy groups in one glucose monomer unit.
  • the substituent that is substituted with one or more of the hydroxy groups can be selected without any particular limitation, but is a hydrophilic substituent in order to be a water-soluble cellulose-based thickener (B). It is preferable.
  • a carboxyalkyl group and a hydroxyalkyl group are preferable, and a hydroxyalkyl group is particularly preferable.
  • the number of substituents substituted with hydroxy groups in cellulose is not particularly limited, but it is preferable that 0.5 or more of three hydroxy groups of one glucose monomer unit are substituted.
  • the average degree of polymerization of the cellulosic thickener (B) can be selected without any particular limitation.
  • the added dispersant (A) acts (for example, adsorbs) on the surface of the carbon material and the surface of the active material, so that the carbon material surface and the surface of the active material material are wetted with the solvent. It is considered that the dispersion state and rheological properties are improved by solving the aggregation of the carbon material and the active material.
  • the dispersant (A) when used in combination with the cellulose-based thickener (B), the dispersibility and rheological properties by the dispersant (A) and the thickening effect by the cellulose-based thickener (B) are impaired. It can function without being disintegrated and exhibit even higher dispersion stability. At this time, the dispersant (A) is more likely to act (for example, adsorb) on the surface of the carbon material and the active material, so that it exhibits a dispersibility improving effect and a rheological property improving effect, and the cellulose-based thickener (B) Is considered to exert a thickening effect mainly.
  • Cellulosic thickener (B) can be used in combination with dispersant (A) regardless of whether it is anionic or nonionic, but considering the dispersibility improvement effect and rheological property improvement effect of compound ink In this case, the nonionic cellulose thickener (B) is more preferable. This is because the nonionic cellulose-based thickener (B) has a lower effect on the surface of the carbon material and the active material surface, and thus the dispersion effect, so that when used in combination with the dispersant (A), the function is further separated. It seems to work.
  • the dispersant (A) having a charge has high hydrophilicity and is compatible with the cellulosic thickener (B). Therefore, it is possible to form a composite ink coating film without phase separation of the dispersant (A) and the cellulose-based thickener (B) during the drying process of the composite ink. It is considered that the mixing of is more uniform and the coating becomes stronger. As a result, the strength of the composite material layer is increased, and it is considered that cracking when the composite material layer is thickened is improved (flexibility is improved).
  • the binder composition (C) it is preferable to include cross-linked resin fine particles.
  • the crosslinked resin fine particles are resin fine particles having an internal cross-linked structure (three-dimensional cross-linked structure), and it is important that the fine particles are cross-linked inside the particles.
  • the cross-linked resin fine particles have a cross-linked structure, the electrolytic solution elution resistance can be improved, and the effect can be enhanced by adjusting the cross-linking inside the particles.
  • the cross-linked resin fine particles contain a specific functional group, it is possible to contribute to adhesion with the current collector or the electrode.
  • the composition for secondary battery electrode formation excellent in flexibility can be obtained by adjusting the quantity of a crosslinked structure and a functional group. Furthermore, the flexibility of the binder can also be adjusted by adding a crosslinking agent and utilizing crosslinking between particles (crosslinking between particles). In this case, since the leakage of the cross-linking agent component to the electrolytic solution and variations in electrode production may occur, it is necessary to use the cross-linking agent to such an extent that the resistance to the electrolytic solution is not impaired.
  • crosslinked resin fine particles used in the electrode-forming composition of the present invention include resin fine particles obtained by emulsion polymerization of an ethylenically unsaturated monomer in water in the presence of a surfactant with a radical polymerization initiator. Is mentioned.
  • Such crosslinked resin fine particles are preferably obtained by emulsion polymerization of an ethylenically unsaturated monomer containing the following monomers (C1) and (C2) in the following proportions.
  • (C1) From the group consisting of an ethylenically unsaturated monomer (c1) having a monofunctional or polyfunctional alkoxysilyl group and a monomer (c2) having two or more ethylenically unsaturated groups in one molecule At least one monomer selected: 0.1 to 5% by weight (C2) Ethylenically unsaturated monomer (c3) other than the monomers (c1) to (c2): 95 to 99.9% by weight (However, the total of the above (c1) to (c3) is 100% by weight.)
  • (c1) and (c3) indicate monomers having one ethylenically unsaturated group in one molecule unless otherwise specified. .
  • the functional group (alkoxysilyl group, ethylenically unsaturated group) possessed by the monomer contained in the monomer group (C1) is a self-crosslinking reactive functional group, and is mainly used for particle internal crosslinking during particle synthesis. Has the effect of forming. Electrolytic solution resistance can be improved by sufficiently carrying out internal crosslinking of the particles. Therefore, it is possible to obtain crosslinked resin fine particles by using a monomer contained in the monomer group (C1). In addition, by sufficiently carrying out particle crosslinking, the resistance to electrolytic solution can be improved.
  • Examples of the ethylenically unsaturated monomer (c1) having a monofunctional or polyfunctional alkoxysilyl group include ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, and ⁇ -methacryloxypropyltributoxy.
  • Silane ⁇ -methacryloxypropylmethyldimethoxysilane, ⁇ -methacryloxypropylmethyldiethoxysilane, ⁇ -acryloxypropyltrimethoxysilane, ⁇ -acryloxypropyltriethoxysilane, ⁇ -acryloxypropylmethyldimethoxysilane, ⁇ - Examples include methacryloxymethyltrimethoxysilane, ⁇ -acryloxymethyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltributoxysilane, and vinylmethyldimethoxysilane. That.
  • Examples of the monomer (c2) having two or more ethylenically unsaturated groups in one molecule include allyl (meth) acrylate, 1-methylallyl (meth) acrylate, and 2-methylallyl (meth) acrylate.
  • the purpose of the alkoxysilyl group or ethylenically unsaturated group in the monomer (c1) or monomer (c2) is to introduce a cross-linked structure into the particle by self-condensation or polymerization mainly during the polymerization. However, a part of it may remain inside or on the surface after polymerization. The remaining alkoxysilyl group or ethylenically unsaturated group contributes to interparticle crosslinking of the binder composition. In particular, an alkoxysilyl group is preferable because it has an effect of improving adhesion to the current collector.
  • the monomer classified into the monomer group (C1) is used in an amount of 0.1 to 5% by weight in the whole ethylenically unsaturated monomer (100% by weight in total) used for emulsion polymerization. And preferably 0.5 to 3% by weight.
  • the monomer classified into the monomer group (C1) is less than 0.1% by weight, the particles are not sufficiently crosslinked, and the resistance to the electrolytic solution is deteriorated.
  • it exceeds 5% by weight there will be a problem in the polymerization stability at the time of emulsion polymerization, or even if it can be polymerized, there will be a problem in the storage stability.
  • the crosslinked resin fine particles used in the binder composition include a monomer group (C2) other than the monomers (c1) and (c2).
  • the monomer (c3) having an ethylenically unsaturated group can be obtained by emulsion polymerization at the same time.
  • the monomer (c3) is not particularly limited as long as it is a monomer having an ethylenically unsaturated group other than the monomers (c1) and (c2).
  • At least one monomer selected from the group consisting of (c6), and a monomer having an ethylenically unsaturated group other than the monomers (c1), (c2), (c4) to (c6) ( c7) can be used.
  • an epoxy group, an amide group, or a hydroxyl group can be left in or on the surface of the cross-linked resin fine particles, and thereby adherence to the current collector.
  • the physical properties such as can be improved.
  • the functional groups of the monomers (c4) to (c6) are likely to remain inside or on the surface even after the particle synthesis, and the adhesion effect to the current collector is large even in a small amount.
  • a part of them may be used for the crosslinking reaction, and by adjusting the degree of crosslinking of these functional groups, it is possible to balance the resistance to electrolytic solution and the adhesion.
  • Examples of the ethylenically unsaturated monomer (c4) having a monofunctional or polyfunctional epoxy group include glycidyl (meth) acrylate and 3,4-epoxycyclohexyl (meth) acrylate.
  • Examples of the monomer ethylenically unsaturated (c5) having a monofunctional or polyfunctional amide group include, for example, a primary amide group-containing ethylenically unsaturated monomer such as (meth) acrylamide; N-methylolacrylamide, N, Alkylol (meth) acrylamides such as N-di (methylol) acrylamide and N-methylol-N-methoxymethyl (meth) acrylamide; N-methoxymethyl- (meth) acrylamide, N-ethoxymethyl- (meth) acrylamide, Monoalkoxy (meth) acrylamides such as N-propoxymethyl- (meth) acrylamide, N-butoxymethyl- (meth) acrylamide, N-pentoxymethyl- (meth) acrylamide; N, N-di (methoxymethyl) acrylamide N-ethoxymethyl-N-methoxy Tylmethacrylamide, N, N-di (ethoxymethyl
  • Examples of the ethylenically unsaturated monomer (c6) having a monofunctional or polyfunctional hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, Examples include 2- (meth) acryloyloxyethyl-2-hydroxyethylphthalic acid, glycerol mono (meth) acrylate, 4-hydroxyvinylbenzene, 1-ethynyl-1-cyclohexanol, and allyl alcohol.
  • a part of the functional groups of the monomers classified into monomers (c4) to (c6) may react during particle polymerization and be used for intraparticle crosslinking.
  • the monomers classified into the monomers (c4) to (c6) are 0.1 to 20% by weight in the whole ethylenically unsaturated monomers (100% by weight in total) used for emulsion polymerization. %, Preferably 1 to 15% by weight, particularly preferably 2 to 10% by weight.
  • the amount of the monomers (c4) to (c6) is less than 0.1% by weight, the amount of functional groups remaining in the interior of the particles or on the surface after polymerization is reduced, and the adhesion to the current collector is improved. Cannot contribute enough.
  • it exceeds 20% by weight there will be a problem in the polymerization stability at the time of emulsion polymerization, or even if it can be polymerized, there will be a problem in the storage stability.
  • the monomer (c7) is not particularly limited as long as it is a monomer other than the monomers (c1), (c2), (c4) to (c6) and has an ethylenically unsaturated group, Examples thereof include an ethylenically unsaturated monomer (c8) having an alkyl group having 8 to 18 carbon atoms and an ethylenically unsaturated monomer (c9) having a cyclic structure.
  • the monomers (c8) and (c9) are all monomers having an ethylenically unsaturated group ((c1), (c2), (c4) to (c6) and (c7)).
  • a total of 30 to 95% by weight is preferably contained therein. It is preferable to use the monomer (c8) or the monomer (c9) because the particle stability during particle synthesis and the resistance to electrolytic solution are excellent. If it is less than 30% by weight, the electrolyte solution resistance may be adversely affected. If it exceeds 95% by weight, the stability during particle synthesis will be adversely affected, or even if synthesis is possible, the temporal stability of the particles will be impaired. There is a case.
  • Examples of the ethylenically unsaturated monomer (c8) having an alkyl group having 8 to 18 carbon atoms include 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, myristyl (meth) acrylate, and cetyl (meth) acrylate. And stearyl (meth) acrylate.
  • Examples of the ethylenically unsaturated monomer (c9) having a cyclic structure include alicyclic ethylenically unsaturated monomers and aromatic ethylenically unsaturated monomers.
  • Examples of the alicyclic ethylenically unsaturated monomer include cyclohexyl (meth) acrylate and isobornyl (meth) acrylate, and examples of the aromatic ethylenically unsaturated monomer include benzyl (meth) acrylate.
  • Phenoxyethyl (meth) acrylate styrene, ⁇ -methylstyrene, 2-methylstyrene, chlorostyrene, allylbenzene, ethynylbenzene and the like.
  • Examples of monomers other than the monomer (c8) and monomer (c9) classified as monomer (c7) include methyl (meth) acrylate, ethyl (meth) acrylate, and propyl (meta).
  • Examples of monomers other than the monomer (c8) and monomer (c9) classified as monomer (c7) include maleic acid, fumaric acid, itaconic acid, citraconic acid, or , These alkyl or alkenyl monoesters, phthalic acid ⁇ - (meth) acryloxyethyl monoester, isophthalic acid ⁇ - (meth) acryloxyethyl monoester, terephthalic acid ⁇ - (meth) acryloxyethyl monoester, succinic acid Carboxyl group-containing ethylenically unsaturated monomers such as ⁇ - (meth) acryloxyethyl monoester, acrylic acid, methacrylic acid, crotonic acid, cinnamic acid; tertiary butyl groups such as tertiary butyl (meth) acrylate Ethylenically unsaturated monomer: Ethylene sulfonic acid group-containing ethylene such as vinyl
  • a polyfunctional hydrazide compound having two or more hydrazide groups capable of reacting with a keto group as a crosslinking agent is mixed with the binder composition.
  • a tough coating film can be obtained by crosslinking between a keto group and a hydrazide group.
  • This coating film has excellent electrolytic solution resistance and binding properties. Furthermore, since it is possible to achieve both durability and flexibility in a high temperature environment due to repeated charge / discharge and heat generation, a long-life non-aqueous secondary battery with reduced discharge capacity reduction in the charge / discharge cycle is obtained. Can do.
  • the resin fine particles obtained by copolymerization of the body have the effect of improving the physical properties such as adhesion to the current collector, and the functional groups remain in the particles and on the surface even after the polymerization. Since aggregation may be prevented or particle stability after synthesis may be maintained, it can be preferably used.
  • a part of the carboxyl group, tertiary butyl group, sulfonic acid group, and phosphoric acid group may react during polymerization and be used for intra-particle crosslinking.
  • the total amount of ethylenically unsaturated monomers used in the emulsion polymerization (100% by weight in total) is 0.
  • the content is preferably 1 to 10% by weight, and more preferably 1 to 5% by weight.
  • the monomer containing these functional groups is less than 0.1% by weight, the stability of the particles may be deteriorated.
  • the content exceeds 10% by weight the hydrophilicity of the binder composition becomes too strong, and the electrolytic solution resistance may deteriorate.
  • these functional groups may react during drying and be used for cross-linking within or between particles.
  • carboxyl groups can react with epoxy groups during polymerization and drying to introduce a crosslinked structure into resin fine particles.
  • a tertiary butyl group can also react with an epoxy group in the same manner as described above because tertiary butyl alcohol is generated and a carboxyl group is formed when heat of a certain temperature or higher is applied.
  • These monomers (c7) are used in combination of two or more of the above-mentioned monomers in order to adjust the polymerization stability and glass transition temperature of the particles, as well as the film formability and film properties. Can be used. Further, for example, by using (meth) acrylonitrile in combination, there is an effect that rubber elasticity is exhibited.
  • the crosslinked resin fine particles can be synthesized by a conventionally known emulsion polymerization method.
  • emulsifier used in emulsion polymerization As the emulsifier used in the emulsion polymerization, conventionally known emulsifiers such as a reactive emulsifier having an ethylenically unsaturated group and a non-reactive emulsifier having no ethylenically unsaturated group can be arbitrarily used.
  • the reactive emulsifier having an ethylenically unsaturated group can be further roughly classified into anionic and nonionic nonionic ones. Especially when anionic reactive emulsifier or nonionic reactive emulsifier having an ethylenically unsaturated group is used, the dispersion particle size of the copolymer becomes finer and the particle size distribution becomes narrower, so it is used as a binder for secondary battery electrodes. In this case, the resistance to electrolytic solution can be improved.
  • anionic reactive emulsifiers or nonionic reactive emulsifiers having an ethylenically unsaturated group may be used singly or in combination.
  • anionic reactive emulsifier having an ethylenically unsaturated group are illustrated below, but usable emulsifiers are not limited thereto.
  • an alkyl ether type (commercially available products include, for example, Aqualon KH-05, KH-10, KH-20, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Adeka Soap SR-10N, SR-20N manufactured by ADEKA Co., Ltd.
  • sulfosuccinic acid ester system for example, Latemul S-120, S-120A, S-180P, S-180A manufactured by Kao Corporation, Elemiol manufactured by Sanyo Chemical Co., Ltd.) JS-2 etc.
  • alkyl phenyl ether type or alkyl phenyl ester type commercially available products include, for example, Aqualon H-2855A, H-3855B, H-3855C, H-3856, HS-05 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) , HS-10, HS-20, HS-30, ADEKA Corporation ADEKA Soap SDX-222, SDX-223, SDX-232, SDX-233, SDX-259, SE-10N, SE-20N, etc.) (meth) acrylate sulfate ester (commercially available products include, for example, Japan Emulsifier Stock Company Antox MS-60
  • Nonionic reactive emulsifiers include, for example, alkyl ethers (for example, commercially available products such as Adeka Soap ER-10, ER-20, ER-30, ER-40 manufactured by ADEKA Corporation, LATEMUL PD- manufactured by Kao Corporation, etc.
  • alkylphenyl ethers or alkylphenyl esters commercially available products include, for example, Aqualon RN-10, RN-20, RN-30, RN manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) -50, Adeka Soap NE-10, NE-20, NE-30, NE-40, etc., manufactured by ADEKA Corporation; (meth) acrylate sulfate ester (commercially available products include, for example, RMA- manufactured by Nippon Emulsifier Co., Ltd.) 564, RMA-568, RMA-1114, etc.).
  • a non-reactive emulsifier having no ethylenically unsaturated group can be used in combination with the above-described reactive emulsifier having an ethylenically unsaturated group, if necessary.
  • Non-reactive emulsifiers can be broadly classified into non-reactive anionic emulsifiers and non-reactive nonionic emulsifiers.
  • non-reactive nonionic emulsifiers include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether and polyoxyethylene stearyl ether; polyoxyethylene alkyl such as polyoxyethylene octyl phenyl ether and polyoxyethylene nonyl phenyl ether Sorbitan monolaurate, sorbitan monostearate, sorbitan higher fatty acid esters such as sorbitan trioleate; polyoxyethylene sorbitan higher fatty acid esters such as polyoxyethylene sorbitan monolaurate; polyoxyethylene monolaurate, Polyoxyethylene higher fatty acid esters such as polyoxyethylene monostearate; oleic acid monoglyceride, stearic acid monog Glycerine higher fatty acid esters such as celite, polyoxyethylene-polyoxypropylene block copolymers, and the like can be exemplified polyoxyethylene distyrenated phenyl ether.
  • non-reactive anionic emulsifiers include higher fatty acid salts such as sodium oleate; alkylaryl sulfonates such as sodium dodecylbenzene sulfonate; alkyl sulfate esters such as sodium lauryl sulfate; polyoxyethylene lauryl ether Polyoxyethylene alkyl ether sulfates such as sodium sulfate; polyoxyethylene alkylaryl ether sulfates such as sodium polyoxyethylene nonylphenyl ether sulfate; sodium monooctyl sulfosuccinate, sodium dioctyl sulfosuccinate, polyoxyethylene lauryl sulfosuccinic acid Alkylsulfosuccinic acid ester salts such as sodium and their derivatives; polyoxyethylene distyrenated phenyl ether And the like can be exemplified Le sulfuric ester salts.
  • the amount of the emulsifier used is not necessarily limited, and can be appropriately selected according to physical properties required when the crosslinked resin fine particles are finally used as a binder for a secondary battery electrode.
  • the emulsifier is usually preferably 0.1 to 30 parts by weight, more preferably 0.3 to 20 parts by weight, based on 100 parts by weight of the total of ethylenically unsaturated monomers. More preferably, it is in the range of 5 to 10 parts by weight.
  • a water-soluble protective colloid can be used in combination.
  • water-soluble protective colloids include polyvinyl alcohols such as partially saponified polyvinyl alcohol, fully saponified polyvinyl alcohol, and modified polyvinyl alcohol; cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose, and carboxymethyl cellulose salt; Examples thereof include saccharides, and these can be used alone or in a combination of plural kinds.
  • the amount of the water-soluble protective colloid used is 0.1 to 5 parts by weight, more preferably 0.5 to 2 parts by weight per 100 parts by weight of the total amount of ethylenically unsaturated monomers.
  • aqueous medium used in emulsion polymerization examples include water, and hydrophilic organic solvents can be used as long as the object of the present invention is not impaired.
  • the polymerization initiator is not particularly limited as long as it has the ability to initiate radical polymerization, and known oil-soluble polymerization initiators and water-soluble polymerization initiators can be used.
  • the oil-soluble polymerization initiator is not particularly limited, and examples thereof include benzoyl peroxide, tert-butyl peroxybenzoate, tert-butyl hydroperoxide, tert-butyl peroxy (2-ethylhexanoate), and tert-butyl peroxide.
  • Organic peroxides such as oxy-3,5,5-trimethylhexanoate and di-tert-butyl peroxide; 2,2′-azobisisobutyronitrile, 2,2′-azobis-2,4- Examples thereof include azobis compounds such as dimethylvaleronitrile, 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 1,1′-azobiscyclohexane-1-carbonitrile. These can be used alone or in combination of two or more. These polymerization initiators are preferably used in an amount of 0.1 to 10.0 parts by weight with respect to 100 parts by weight of the ethylenically unsaturated monomer.
  • a water-soluble polymerization initiator is preferable.
  • ammonium persulfate, potassium persulfate, hydrogen peroxide, 2,2′-azobis (2-methylpropionamidine) dihydrochloride, and the like which are conventionally known are preferably used.
  • Can do are preferably used.
  • a reducing agent when performing emulsion polymerization, can be used in combination with a polymerization initiator as desired. Thereby, it becomes easy to accelerate the emulsion polymerization rate or to perform the emulsion polymerization at a low temperature.
  • a reducing agent include reducing organic compounds such as metal salts such as ascorbic acid, ersorbic acid, tartaric acid, citric acid, glucose, and formaldehyde sulfoxylate, sodium thiosulfate, sodium sulfite, sodium bisulfite, Examples include reducing inorganic compounds such as sodium bisulfite, ferrous chloride, Rongalite, thiourea dioxide, and the like. These reducing agents are preferably used in an amount of 0.05 to 5.0 parts by weight with respect to 100 parts by weight of the total ethylenically unsaturated monomer.
  • the polymerization temperature is not less than the polymerization start temperature of each polymerization initiator.
  • the polymerization time is not particularly limited, but is usually 2 to 24 hours.
  • ⁇ Other materials used for reaction> sodium acetate, sodium citrate, sodium bicarbonate and the like as a buffering agent, and octyl mercaptan, 2-ethylhexyl thioglycolate, octyl thioglycolate, stearyl mercaptan, lauryl mercaptan as a chain transfer agent
  • a suitable amount of mercaptans such as t-dodecyl mercaptan can be used.
  • a monomer having an acidic functional group such as a carboxyl group-containing ethylenically unsaturated monomer
  • it may be neutralized with a basic compound before or after the polymerization.
  • a basic compound such as trimethylamine, triethylamine and butylamine
  • alcohol amines such as 2-dimethylaminoethanol, diethanolamine, triethanolamine and aminomethylpropanol
  • a base such as morpholine.
  • it is a highly volatile base that is highly effective in drying, and preferred bases are aminomethylpropanol and ammonia.
  • the glass transition temperature (hereinafter also referred to as Tg) of the crosslinked resin fine particles is preferably ⁇ 30 to 70 ° C., more preferably ⁇ 20 to 30 ° C.
  • Tg glass transition temperature
  • the glass transition temperature is a value obtained using a DSC (differential scanning calorimeter).
  • Measurement of the glass transition temperature by DSC can be performed as follows. About 2 mg of resin obtained by drying the cross-linked resin fine particles is weighed on an aluminum pan, the test container is set on a DSC measurement holder, and the endothermic peak of the chart obtained under a temperature rising condition of 10 ° C./min is read. The peak temperature at this time is defined as the glass transition temperature.
  • the particle structure of the crosslinked resin fine particles may be a multi-layer structure, so-called core-shell particles.
  • core-shell particles it is possible to localize a resin in which a monomer having a functional group is mainly polymerized in the core part or the shell part, or to provide a difference in Tg or composition between the core and the shell, thereby improving the curability and drying.
  • Property, film formability, and mechanical strength of the binder can be improved.
  • the average particle size of the crosslinked resin fine particles is preferably 10 to 500 nm, more preferably 30 to 250 nm, from the viewpoint of the binding property of the electrode active material and the stability of the particles. Further, when a large amount of coarse particles exceeding 1 ⁇ m are contained, the stability of the particles is impaired, so that the coarse particles exceeding 1 ⁇ m are preferably at most 5% by weight.
  • an average particle diameter represents a volume average particle diameter, and can be measured by the dynamic light scattering method.
  • the measurement of the average particle diameter by the dynamic light scattering method can be performed as follows.
  • the cross-linked resin fine particle dispersion is diluted with water 200 to 1000 times depending on the solid content.
  • About 5 ml of the diluted solution is injected into a cell of a measuring device [Microtrack manufactured by Nikkiso Co., Ltd.], and the measurement is performed after inputting the solvent (for example, water) and the refractive index condition of the resin according to the sample.
  • the peak of the volume particle size distribution data (histogram) obtained at this time is defined as the average particle size.
  • the binder composition further includes a non-crosslinked epoxy group-containing compound, an uncrosslinked amide group-containing compound, an uncrosslinked hydroxyl group-containing compound, and an uncrosslinked oxazoline group-containing compound. It is preferable to include at least one uncrosslinked compound (D) [hereinafter sometimes referred to as compound (D)].
  • the “uncrosslinked functional group-containing compound” which is the compound (D) is an internal cross-linked structure (three-dimensional cross-linked structure) of cross-linked resin fine particles as in the monomer group (C1). Unlike the compound to be formed, it refers to a compound which is added after the resin fine particles are subjected to emulsion polymerization (polymer formation) (does not participate in the internal cross-linking of the resin fine particles). That is, “uncrosslinked” means not involved in the formation of an internal crosslinked structure (three-dimensional crosslinked structure) of the crosslinked resin fine particles.
  • the cross-linked resin fine particles have a cross-linked structure, so that the electrolytic solution resistance is secured, and by using the compound (D), it is selected from an epoxy group, an amide group, a hydroxyl group, and an oxazoline group in the compound (D).
  • the at least one functional group may contribute to adhesion with the current collector or the electrode.
  • the binder composition for secondary battery electrodes excellent in flexibility can be obtained by adjusting the amount of the crosslinked structure and functional group.
  • the cross-linked resin fine particles need to be cross-linked inside the particles. Electrolytic solution resistance can be ensured by appropriately adjusting the crosslinking inside the particles. Furthermore, by adding the uncrosslinked compound (D) to the functional group-containing crosslinked resin fine particles, an epoxy group, an amide group, a hydroxyl group or an oxazoline group acts on the current collector, and adhesion to the current collector or the electrode. Can be improved effectively. Since the functional group contained in the compound (D) is stable by heat during long-term storage or electrode production, the effect of adhesion to the current collector is large even when used in a small amount. Furthermore, it is excellent in storage stability.
  • the compound (D) may react with the functional group in the cross-linked resin fine particles for the purpose of adjusting the flexibility and the electrolytic solution resistance of the binder. If the functional group in the compound (D) is excessively used for the reaction, the functional group capable of interacting with the current collector or the electrode is decreased. For this reason, the reaction between the crosslinked resin fine particles and the compound (D) needs to be at a level that does not impair the adhesion to the current collector or the electrode. Further, when a part of the functional group contained in the compound (D) is used for the crosslinking reaction [when the compound (D) is a polyfunctional compound], by adjusting the degree of crosslinking of these functional groups, It is possible to balance the resistance to electrolytic solution and the adhesion.
  • uncrosslinked epoxy group-containing compound examples include epoxy group-containing ethylenically unsaturated monomers such as glycidyl (meth) acrylate and 3,4-epoxycyclohexyl (meth) acrylate; Radical polymerization resins obtained by polymerizing ethylenically unsaturated monomers containing monomers; ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, 1,6-hexanediol Diglycidyl ether, trimethylolpropane triglycidyl ether, diglycidyl aniline, N, N, N ′, N′-tetraglycidyl-m-xylylenediamine, 1,3-bis (N, N′-diglycidylaminomethyl) Cyclohexane Poly
  • epoxy resins such as bisphenol A-epichlorohydrin type epoxy resins and bisphenol F-epichlorohydrin type epoxy resins, and ethylenically unsaturated monomers containing epoxy group-containing ethylenically unsaturated monomers.
  • a radical polymerization resin obtained by polymerizing a saturated monomer is preferred.
  • the epoxy resin can be expected to have a synergistic effect of improving the electrolytic solution resistance by having a bisphenol skeleton and improving the adhesion of the current collector by a hydroxyl group contained in the skeleton.
  • the radical polymerization resin obtained by polymerizing an ethylenically unsaturated monomer containing an epoxy group-containing ethylenically unsaturated monomer has a higher adhesion to the current collector by having more epoxy groups in the resin skeleton.
  • it since it is a resin, an effect of improving the resistance to electrolytic solution can be expected as compared with the monomer.
  • Non-crosslinked amide group-containing compounds include, for example, primary amide group-containing compounds such as (meth) acrylamide; N-methylolacrylamide, N, N-di (methylol) acrylamide, N-methylol-N-methoxymethyl (meta) ) Alkyrol (meth) acrylamide compounds such as acrylamide; N-methoxymethyl- (meth) acrylamide, N-ethoxymethyl- (meth) acrylamide, N-propoxymethyl- (meth) acrylamide, N-butoxymethyl- (meta ) Monoalkoxy (meth) acrylamide compounds such as acrylamide and N-pentoxymethyl- (meth) acrylamide; N, N-di (methoxymethyl) acrylamide, N-ethoxymethyl-N-methoxymethylmethacrylamide, N, N -Di (Etoki Methyl) acrylamide, N-ethoxymethyl-N-propoxy
  • radical polymerization resins obtained by polymerizing ethylenically unsaturated monomers including amide group-containing ethylenically unsaturated monomers such as acrylamide are particularly preferable.
  • amide group-containing ethylenically unsaturated monomers such as acrylamide
  • uncrosslinked hydroxyl group-containing compound examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, glycerol mono (meth) acrylate 4-hydroxyvinylbenzene, Hydroxyl group-containing ethylenically unsaturated monomers such as 1-ethynyl-1-cyclohexanol and allyl alcohol; radical polymerization obtained by polymerizing ethylenically unsaturated monomers containing the hydroxyl group-containing ethylenically unsaturated monomers Resins: linear aliphatic diols such as ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol; propylene glycol, neopenty
  • radical polymerization resins obtained by polymerizing ethylenically unsaturated monomers including a hydroxyl group-containing ethylenically unsaturated monomer or cyclic diols are particularly preferable.
  • the radical polymerization resin obtained by polymerizing ethylenically unsaturated monomers including hydroxyl group-containing ethylenically unsaturated monomers improves current collector adhesion by having more hydroxyl groups in the resin skeleton.
  • the resin can be expected to have an effect of improving the resistance to electrolytic solution compared to the monomer.
  • cyclic diols can be expected to have an effect of improving the resistance to electrolytic solution by having a cyclic structure in the skeleton.
  • Uncrosslinked oxazoline group-containing compound examples include 2′-methylenebis (2-oxazoline), 2,2′-ethylenebis (2-oxazoline), and 2,2′-ethylenebis (4-methyl-2-oxazoline).
  • oxazoline group-containing compounds in particular, phenylene bis-type oxazoline compounds such as 2′-p-phenylenebis (2-oxazoline), or ethylenically unsaturated monomers containing an oxazoline group-containing ethylenically unsaturated monomer A radical polymerization resin obtained by polymerizing is preferred.
  • the phenylenebis type oxazoline compound has an effect of improving the resistance to electrolytic solution by having a phenyl group in the skeleton.
  • a radical polymerization resin obtained by polymerizing an ethylenically unsaturated monomer containing an oxazoline group-containing ethylenically unsaturated monomer has a current collector adhesion by having more oxazoline groups in the resin skeleton.
  • the resistance to an electrolytic solution can be improved as compared with a monomer.
  • Compound (D) is preferably added in an amount of 0.1 to 50 parts by weight, more preferably 5 to 40 parts by weight, based on 100 parts by weight of the solid content of the binder composition (for example, crosslinked resin fine particles). .
  • the addition amount of the compound (D) is less than 0.1 parts by weight, the amount of the functional group contributing to the adhesion to the current collector decreases, and may not sufficiently contribute to the improvement in the adhesion to the current collector. is there.
  • the amount exceeds 50 parts by weight adverse effects on the binder performance such as leakage of the compound (D) into the electrolyte solution may occur.
  • two or more types of compounds (D) can be used in combination.
  • the molecular weight of the compound (D) is not particularly limited, but the weight average molecular weight is preferably 1,000 to 1,000,000, and more preferably 5,000 to 500,000. If the molecular weight is less than 1,000, the adhesion effect to the current collector may not be sufficient, and if the molecular weight exceeds 1,000,000, the viscosity of the compound may increase, The handling property may be deteriorated.
  • the said weight average molecular weight is the value of polystyrene conversion measured by the gel permeation chromatography (GPC) method.
  • the compound (D) may be a compound that dissolves in a solvent or a compound that disperses.
  • the aqueous composition for forming a secondary battery electrode of the present invention can be used as a composite ink or a composition for forming a base layer.
  • a composite ink that essentially includes an active material, which is one of the preferred embodiments of the electrode forming composition.
  • the mixed ink includes positive electrode mixed ink or negative electrode mixed ink, and the mixed ink is composed of an electrode active material, a binder composition (C), a dispersant (A), and an aqueous liquid medium (E). Further, a carbon material which is a thickener and a conductive aid can be contained.
  • the positive electrode active material for the lithium ion secondary battery is not particularly limited, but metal oxides capable of doping or intercalating lithium ions, metal compounds such as metal sulfides, and conductive polymers are used. be able to. Examples thereof include transition metal oxides such as Fe, Co, Ni, and Mn, composite oxides with lithium, and inorganic compounds such as transition metal sulfides. Specifically, transition metal oxide powders such as MnO, V 2 O 5 , V 6 O 13 , TiO 2 , layered structure lithium nickelate, lithium cobaltate, lithium manganate, spinel structure lithium manganate, etc.
  • lithium and transition metals examples include composite oxide powders of lithium and transition metals, lithium iron phosphate materials that are phosphate compounds having an olivine structure, transition metal sulfide powders such as TiS 2 and FeS, and the like.
  • conductive polymers such as polyaniline, polyacetylene, polypyrrole, and polythiophene can also be used.
  • the negative electrode active material for the lithium ion secondary battery is not particularly limited as long as it can be doped or intercalated with lithium ions.
  • metal Li alloys thereof such as tin alloys, silicon alloys, lead alloys, etc., Li X Fe 2 O 3 , Li X Fe 3 O 4 , Li X WO 2 , lithium titanate, lithium vanadate, silicon
  • Metal oxides such as lithium oxide, conductive polymer such as polyacetylene and poly-p-phenylene, amorphous carbonaceous materials such as soft carbon and hard carbon, artificial graphite such as highly graphitized carbon materials, or natural Examples thereof include carbonaceous powders such as graphite, carbon black, mesophase carbon black, resin-fired carbon materials, air-growth carbon fibers, and carbon fibers.
  • These negative electrode active materials can be used alone or in combination.
  • the size of these electrode active materials is preferably in the range of 0.05 to 100 ⁇ m, more preferably in the range of 0.1 to 50 ⁇ m.
  • the dispersed particle diameter of the electrode active material in the composite ink is preferably 0.5 to 20 ⁇ m.
  • the dispersed particle size referred to here is a particle size (D50) that is 50% when the volume ratio of the particles is integrated from the fine particle size distribution in the volume particle size distribution.
  • a particle size distribution meter such as a dynamic light scattering type particle size distribution meter ("Microtrack UPA" manufactured by Nikkiso Co., Ltd.).
  • the composite ink preferably contains a carbon material in order to further increase the conductivity of the formed electrode.
  • the carbon material is not particularly limited as long as it is a conductive carbon material, but graphite, carbon black, conductive carbon fiber (carbon nanotube, carbon nanofiber, carbon fiber), fullerene, etc. alone Or two or more types can be used together. From the viewpoint of conductivity, availability, and cost, it is preferable to use carbon black.
  • Carbon black is a furnace black produced by continuously pyrolyzing a gas or liquid raw material in a reactor, especially ketjen black using ethylene heavy oil as a raw material.
  • Ordinarily oxidized carbon black, hollow carbon and the like can also be used.
  • the oxidation treatment of carbon is performed by treating carbon at a high temperature in the air or by secondary treatment with nitric acid, nitrogen dioxide, ozone, etc., for example, such as phenol group, quinone group, carboxyl group, carbonyl group.
  • This is a treatment for directly introducing (covalently bonding) an oxygen-containing polar functional group to the carbon surface, and is generally performed to improve the dispersibility of carbon.
  • it since it is common for the conductivity of carbon to fall, so that the introduction amount of a functional group increases, it is preferable to use the carbon which has not been oxidized.
  • the specific surface area (BET) determined from the adsorption amount of nitrogen is 20 m 2 / g or more and 1500 m 2 / g or less, preferably 50 m 2 / g or more and 1500 m 2 / g or less, more preferably 100 m 2. / G or more and 1500 m 2 / g or less are desirable.
  • BET specific surface area
  • the particle size of carbon black is preferably 0.005 to 1 ⁇ m in terms of primary particle size, and particularly preferably 0.01 to 0.2 ⁇ m.
  • the primary particle diameter here is an average of the particle diameters measured with an electron microscope or the like.
  • the dispersed particle size of the carbon material, which is a conductive additive, in the mixed ink is refined to 0.03 ⁇ m or more and 5 ⁇ m or less. It may be difficult to produce a composition having a dispersed particle size of the carbon material as the conductive aid of less than 0.03 ⁇ m. In addition, when a composition having a dispersed particle diameter of the carbon material as the conductive auxiliary agent exceeding 2 ⁇ m is used, problems such as variations in the material distribution of the composite coating film and variations in the resistance distribution of the electrode may occur. .
  • the dispersed particle size referred to here is a particle size (D50) that is 50% when the volume ratio of the particles is integrated from the fine particle size distribution in the volume particle size distribution.
  • a particle size distribution meter such as a dynamic light scattering type particle size distribution meter ("Microtrack UPA" manufactured by Nikkiso Co., Ltd.).
  • Examples of commercially available carbon black include Toka Black # 4300, # 4400, # 4500, # 5500 (Tokai Carbon Co., Furnace Black), Printex L and the like (Degussa Co., Furnace Black), Raven 7000, 5750, 5250, 5000 ULTRA III, 5000 ULTRA, etc., Conductex SC ULTRA, Conductex 975 ULTRA, etc., PUER BLACK100, 115, 205 etc. (Furnace Black, manufactured by Colombian), # 2350, # 2400B, # 2600B, # 30050B, # 3030B, # 3030B, # 3030B # 3350B, # 3400B, # 5400B, etc.
  • conductive carbon fibers those obtained by firing from petroleum-derived raw materials are preferable, but those obtained by firing from plant-derived raw materials can also be used.
  • VGCF manufactured by Showa Denko Co., Ltd. manufactured with petroleum-derived raw materials can be mentioned.
  • aqueous liquid medium (E) As the aqueous liquid medium (E), it is preferable to use water. However, if necessary, for example, a liquid medium compatible with water may be used to improve the coating property to the current collector. good. Liquid media compatible with water include alcohols, glycols, cellosolves, amino alcohols, amines, ketones, carboxylic acid amides, phosphoric acid amides, sulfoxides, carboxylic acid esters, and phosphoric acid esters , Ethers, nitriles and the like, and may be used as long as they are compatible with water.
  • a film forming aid an antifoaming agent, a leveling agent, a preservative, a pH adjuster, a viscosity adjuster, and the like can be blended in the composite ink as necessary.
  • the viscosity of the composite ink is preferably 100 mPa ⁇ s or more and 30,000 mPa ⁇ s or less within a solid content of 30 to 90% by weight. Further, it is preferable that the active material is contained as much as possible within the viscosity range that can be applied.
  • the ratio of the active material to the solid content of the composite ink is preferably 80% by weight or more and 99% by weight or less.
  • the proportion of the dispersant (A) in the solid ink solid content is preferably 0.1 to 15% by weight.
  • the proportion of the carbon material in the solid material ink solid content is preferably 0.1 to 15% by weight.
  • the composite ink can be obtained by various methods. However, the use of a carbon material is optional.
  • a carbon material is optional.
  • a carbon material is optional.
  • a binder containing a carbon material and crosslinked resin fine particles in the aqueous dispersion A composition ink can be obtained by adding the composition (C).
  • the binder composition (C) containing the carbon material and the crosslinked resin fine particles can be added simultaneously, or after adding the carbon material, the binder may be added, or vice versa.
  • a composition ink can be obtained by adding the composition (C).
  • the active material and the binder can be added simultaneously, or after adding the active material, the binder composition (C) containing the crosslinked resin fine particles may be added, or vice versa.
  • the aqueous dispersion A carbon material can be added to the body to obtain a composite ink.
  • a dispersant (A), a binder composition (C) containing crosslinked resin fine particles and an aqueous liquid medium (E) After obtaining an aqueous dispersion of the active material containing the active material, the dispersant (A), the binder composition (C) containing the crosslinked resin fine particles and the aqueous liquid medium (E), the aqueous dispersion A carbon material can be added to the body to obtain a composite ink.
  • a mixture ink can be obtained by almost simultaneously mixing an active material, a carbon material, a dispersant (A), a binder composition (C) containing crosslinked resin fine particles and an aqueous liquid medium (E). .
  • the cellulosic thickener (B) may be added simultaneously with the dispersant (A) or may be added separately.
  • a disperser or a mixer which is usually used for pigment dispersion or the like can be used.
  • mixers such as disperser, homomixer, or planetary mixer; homogenizers such as “Clearmix” manufactured by M Technique, or “Fillmix” manufactured by PRIMIX; paint conditioner (manufactured by Red Devil), ball mill, sand mill (Shinmaru Enterprises "Dynomill”, etc.), Attritor, Pearl Mill (Eirich “DCP Mill”, etc.), or Coball Mill, etc .; Media type dispersers; Wet Jet Mill (Genus, “Genus PY”, Sugino Media-less dispersers such as “Starburst” manufactured by Machine, “Nanomizer” manufactured by Nanomizer, etc., “Claire SS-5” manufactured by M Technique, or “MICROS” manufactured by Nara Machinery; or other roll mills, etc.
  • the present invention is
  • a disperser in which the agitator and vessel are made of a ceramic or resin disperser, or the surface of the metal agitator and vessel is treated with tungsten carbide spraying or resin coating is preferably used.
  • the media it is preferable to use glass beads, ceramic beads such as zirconia beads or alumina beads.
  • a roll mill it is preferable to use a ceramic roll. Only one type of dispersion device may be used, or a plurality of types of devices may be used in combination.
  • a medialess disperser such as a roll mill or a homogenizer is preferable to a media type disperser.
  • the composition for forming an underlayer contains at least a conductive additive, a binder composition (C), a dispersant (A), and an aqueous liquid medium (E). Furthermore, a thickener (B) can also be used. About each component, it is the same as that of the case of compound ink.
  • the ratio of the carbon material as a conductive additive to the total solid content of the composition used for the electrode underlayer is preferably 5% by weight or more and 95% by weight or less, and more preferably 10% by weight or more and 90% by weight or less. If the carbon material that is the conductive auxiliary agent is small, the conductivity of the underlayer may not be maintained. On the other hand, if the carbon material that is the conductive auxiliary agent is too large, the resistance of the coating film may be reduced.
  • the appropriate viscosity of electrode base layer ink is based on the coating method of electrode base layer ink, generally it is preferable to set it as 10 mPa * s or more and 30,000 mPa * s or less.
  • the composite ink can be applied and dried on the current collector to form a composite layer, whereby a secondary battery electrode can be produced.
  • a composite material layer may be provided on the underlayer to produce a secondary battery electrode.
  • the composite layer provided on the underlayer may be formed using the above-described composite inks (1) to (4), or may be formed using other composite inks.
  • the material and shape of the current collector used for the electrode are not particularly limited, and those suitable for various secondary batteries can be appropriately selected.
  • examples of the material for the current collector include metals and alloys such as aluminum, copper, nickel, titanium, and stainless steel.
  • aluminum is particularly preferable as the positive electrode material
  • copper is preferable as the negative electrode material.
  • shape foil on a flat plate is generally used, but the surface is roughened, porous foam, perforated foil, and mesh current collector. Can also be used.
  • the method for applying the mixture ink on the current collector is not particularly limited, and a known method can be used. Specific examples include die coating method, dip coating method, roll coating method, doctor coating method, knife coating method, spray coating method, gravure coating method, screen printing method or electrostatic coating method, and the like. Examples of methods that can be used include standing drying, blower dryers, hot air dryers, infrared heaters, and far-infrared heaters, but are not particularly limited thereto. Moreover, you may perform the rolling process by a lithographic press, a calender roll, etc. after application
  • the thickness of the electrode mixture layer is generally 1 ⁇ m or more and 500 ⁇ m or less, preferably 10 ⁇ m or more and 300 ⁇ m or less. When the underlayer is provided, the thickness of the underlayer is generally 0.1 ⁇ m or more and 100 ⁇ m or less, preferably 0.5 ⁇ m or more and 50 ⁇ m or less.
  • a secondary battery can be manufactured using the above electrode for at least one of a positive electrode and a negative electrode.
  • Secondary batteries include alkaline secondary batteries, lead-acid batteries, sodium-sulfur secondary batteries, lithium-air secondary batteries, etc., as well as lithium ion secondary batteries, which are conventionally known for each secondary battery. Electrolytic solutions, separators, and the like can be used as appropriate.
  • ⁇ Electrolyte> A case of a lithium ion secondary battery will be described as an example.
  • an electrolyte containing lithium dissolved in a non-aqueous solvent is used.
  • the electrolyte LiBF 4 , LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 3 C , LiI, LiBr, LiCl, LiAlCl , LiHF 2, LiSCN, or LiBPh 4 etc. but are not limited to.
  • the non-aqueous solvent is not particularly limited.
  • carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate; ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ - Lactones such as octanoic lactone; tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,2-methoxyethane, 1,2-ethoxyethane, and 1,2 -Grimes such as dibutoxyethane; esters such as methyl formate, methyl acetate and methyl propionate; sulfoxides such as dimethyl sulfoxide and sulfolane; and nitriles such as acetonitrile. And the like.
  • These solvents may be used alone or in combination of two or more.
  • the electrolyte solution can be a polymer electrolyte that is held in a polymer matrix and made into a gel.
  • the polymer matrix include, but are not limited to, an acrylate resin having a polyalkylene oxide segment, a polyphosphazene resin having a polyalkylene oxide segment, and a polysiloxane having a polyalkylene oxide segment.
  • ⁇ Separator> examples of the separator include, but are not limited to, a polyethylene nonwoven fabric, a polypropylene nonwoven fabric, a polyamide nonwoven fabric and those obtained by subjecting them to a hydrophilic treatment.
  • the structure of the lithium ion secondary battery using the electrode forming composition of the present invention is not particularly limited, but is usually composed of a positive electrode and a negative electrode, and a separator provided as necessary, a paper type, a cylindrical type, Various shapes can be formed according to the purpose of use, such as a button type and a laminated type.
  • the mixture was further reacted at 110 ° C. for 3 hours, 0.5 part of V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the reaction was further continued at 110 ° C. for 1 hour to obtain a cationic dispersant (A1- A solution of 1) was obtained.
  • the weight average molecular weight of the cationic dispersant (A1-1) was about 20,000.
  • Binder composition (C1-4) A reaction vessel equipped with a stirrer, a thermometer, a dropping funnel and a refluxing vessel was charged with 40 parts of ion-exchanged water and 0.2 part of ADEKA rear soap SR-10 (manufactured by ADEKA Corporation) as a surfactant.
  • the contents of the dropping tanks 1 and 2 were dropped over 2 hours to carry out polymerization. After completion of dropping, stirring was continued for 1 hour while maintaining the internal temperature at 80 ° C. After confirming that the conversion rate exceeded 98% by solid content measurement, the temperature was cooled to 30 ° C., and the solid content was 50%. An epoxy group-containing compound (methyl methacrylate / methyl acrylate / glycidyl methacrylate copolymer) solution was obtained. In addition, solid content was calculated
  • the contents of the dropping tanks 1 and 2 were dropped over 2 hours to carry out polymerization. After completion of dropping, stirring was continued for 1 hour while maintaining the internal temperature at 80 ° C. After confirming that the conversion rate exceeded 98% by solid content measurement, the temperature was cooled to 30 ° C., and the solid content was 50%. A solution containing a hydroxyl group-containing compound (methyl methacrylate / butyl acrylate / 2-hydroxyethyl methacrylate copolymer) was obtained. In addition, solid content was calculated
  • CMC carboxymethyl cellulose, hydroxyl value: 415 to 500 mg KOH / g -HEC: hydroxyethyl cellulose, hydroxyl value: 600-720 mgKOH / g
  • Carbon material dispersion for secondary battery electrode 10 parts of acetylene black (DENKA BLACK HS-100) as a carbon material as a conductive additive, and 10 parts of an aqueous solution or dispersion of the cationic dispersant (A1-2) described in Synthesis Example 2 (2 parts as a solid content) ), 80 parts of water was mixed in a mixer, and further dispersed in a sand mill to obtain a carbon material dispersion (1) for a secondary battery electrode having a composition ratio shown in Table 4.
  • Carbon material dispersions (2) to (29) for secondary battery electrodes were obtained in the same manner as the carbon material dispersion for secondary battery electrodes (1) with the formulation shown in Table 4.
  • the degree of dispersion of the carbon material dispersion for the secondary battery electrode was determined by judgment using a grind gauge (in accordance with JIS K5600-2-5). The evaluation results are shown in Table 4. The numbers in the table indicate the size of coarse particles. The smaller the value, the better the dispersibility and the more uniform secondary battery electrode forming composition.
  • Example 1 Secondary battery electrode by mixing 50 parts of carbon material dispersion for secondary battery electrode (1) (6 parts in solids) and binder composition (C1-4) in an amount of 4 parts by weight in solids A forming composition was obtained.
  • Examples 2 to 24, Comparative Examples 1 to 9 Compositions for forming secondary battery electrodes of Examples 2 to 24 and Comparative Examples 1 to 9 were prepared by mixing a carbon material dispersion for secondary battery electrodes and a binder composition so that the composition ratio shown in Table 5 was obtained. Got.
  • the evaluation of the electrolyte dissolution property was performed as follows.
  • the composition for forming a secondary battery electrode shown in Table 5 was applied on a 20 ⁇ m thick aluminum foil using a doctor blade, and then dried by heating under reduced pressure to form a coating film for forming a secondary battery electrode having a thickness of 5 ⁇ m. Produced.
  • the obtained coating film was immersed in a 1: 1 (volume ratio) non-aqueous electrolyte solvent of ethylene carbonate and diethyl carbonate, stored in a 60 ° C. environment for 3 days, and then the state of the coating film was observed.
  • the evaluation criteria are shown below, and the evaluation results are shown in Table 5. ⁇ : “No disintegration or peeling of coating film” ⁇ : “Partial disintegration and peeling of coating film are observed” ⁇ : “Most of the coating film is disintegrated and peeled”
  • Example 25 90 parts of LiCoO 2 as a positive electrode active material, 5 parts of an aqueous solution of a dispersant (A1-3) (1 part as a resin solid content), 8 parts (4 parts as a solid content) of a binder composition (C1-4) and water 43. Two parts were mixed to produce a positive electrode material ink for a secondary battery electrode having a solid content of 65% by weight.
  • the degree of dispersion of the composite ink was determined by judgment using a grind gauge (according to JIS K5600-2-5). The evaluation results are shown in Table 6A.
  • the numbers in the table indicate the size of the coarse particles. The smaller the value, the better the dispersibility and the more uniform the ink mixture for secondary battery electrodes.
  • this positive electrode secondary battery electrode composite ink was applied onto a 20 ⁇ m thick aluminum foil serving as a current collector using a doctor blade, and then dried under reduced pressure and dried to a thickness of 100 ⁇ m. It adjusted so that it might become. Furthermore, the rolling process by a roll press was performed and the positive electrode whose thickness is set to 80 micrometers was produced. The charge / discharge storage characteristics were evaluated using an evaluation coin type battery having a positive electrode as a working electrode and a metal lithium foil as a counter electrode.
  • Examples 26 to 40, Comparative Examples 10 to 25 For the secondary battery electrode for the positive electrode by changing the combination of the active material shown in Tables 6A and 6B, the carbon material as the conductive auxiliary agent, the carbon material dispersion, the composition for forming the secondary battery electrode, the dispersant and the binder composition. Except that water was added so that the final solid content of the composite ink was 65% by weight, a composite ink for a positive electrode for a positive electrode and a positive electrode were obtained and evaluated in the same manner as in Example 25. .
  • Example 41 95 parts of natural graphite as a negative electrode active material, 2.5 parts of an aqueous solution of a dispersant (A1-4) (0.5 parts as a resin solid content), 4 parts of a binder composition (C1-4) (2 parts as a solid content) And 93.5 parts of water were mixed to prepare a composite ink for a secondary battery electrode for a negative electrode having a solid content of 50% by weight.
  • the degree of dispersion of the composite ink was determined by judgment using a grind gauge. The evaluation results are shown in Table 6C.
  • the negative electrode secondary battery electrode composite ink was applied onto a copper foil having a thickness of 20 ⁇ m as a current collector using a doctor blade, and then dried by heating under reduced pressure to obtain an electrode thickness of 100 ⁇ m. It adjusted so that it might become. Furthermore, the rolling process by a roll press was performed, the negative electrode whose thickness was set to 80 micrometers was produced, and it evaluated similarly to the case of a positive electrode. The charge / discharge storage characteristics were evaluated using an evaluation coin-type battery having a negative electrode as a working electrode and a metal lithium foil as a counter electrode.
  • Examples 42 to 44, Comparative Examples 26 to 32 The active material shown in Table 6C, a carbon material as a conductive additive, a carbon material dispersion, a composition for forming a secondary battery electrode, a combination of a dispersant and a binder composition was changed, and a composite material for a secondary battery electrode for a negative electrode Except that water was added so that the final solid content of the ink was 50% by weight, a mixture ink for a secondary battery electrode for a negative electrode and a negative electrode were obtained and evaluated in the same manner as in Example 41.
  • Example 45 90 parts of LiCoO 2 as a positive electrode active material, 2.5 parts of an aqueous solution of a dispersing agent (A1-9) (0.5 part as a resin solid content), 33.3 parts of a 3% aqueous solution of CMC as a thickener (as a solid content) 1 part), 7 parts of binder composition (C1-6) (3.5 parts as a solid content) and 13.3 parts of water are mixed to obtain a composite material for a secondary battery electrode for a positive electrode having a solid content of 65% by weight. An ink was prepared. The composition is shown in Table 7A. Production and evaluation of the positive electrode were carried out in the same manner as in Example 25.
  • Examples 46 to 52, Examples 60 to 70, and Comparative Examples 33 to 40 The active material shown in Table 7A and Table 8A, the carbon material that is a conductive auxiliary agent, the carbon material dispersion, the composition for forming a secondary battery electrode, the dispersant, the thickener, and the binder composition are changed to be used for the positive electrode.
  • Example 45 In the same manner as in Example 45 except that water was added so that the final solid content of the secondary battery electrode mixture ink was 65% by weight, a positive electrode secondary battery electrode mixture ink and a positive electrode were obtained. , Evaluated in the same way.
  • Example 53 94 parts of natural graphite as a negative electrode active material, 2.5 parts of an aqueous solution of a dispersant (A1-3) (0.5 parts as a resin solid content), 5 parts of a binder composition (C1-4) (2.5 parts as a solid content) Part), 25 parts of a 2% aqueous solution of CMC as a thickener (0.5 part as a solid content) and 68.5 parts of water are mixed, and a composite material for a secondary battery electrode for a negative electrode having a solid content of 50% by weight.
  • An ink was prepared. The composition is shown in Table 7B. Production and evaluation of the negative electrode were carried out in the same manner as in Example 41.
  • Examples 54 to 59, Examples 71 to 78, Comparative Examples 41 to 43 The active material shown in Table 7B and Table 8B, the carbon material that is a conductive auxiliary agent, the carbon material dispersion, the composition for forming a secondary battery electrode, the dispersant, the thickener, and the binder composition are changed to be used for the negative electrode.
  • Example 53 In the same manner as in Example 53 except that water was added so that the final solid content of the secondary battery electrode composite ink was 50% by weight, a secondary battery electrode composite ink for a negative electrode and a negative electrode were obtained. Evaluation was performed in the same manner.
  • Viscosity of compound ink To measure the viscosity of the slurry, a rheometer (“AR-G2” manufactured by TA Instruments) was used, and 0.01 (when the share rate was changed from 0.001 (1 / s) to 10 (1 / s). The viscosities of 1 / s) and 1 (1 / s) were determined.
  • the electrode produced above was formed into a strip shape and wound so that the current collector side was in contact with a metal rod having a diameter of 3 mm, and cracks on the electrode surface that occurred during winding were determined by visual observation. The one that does not crack is more flexible. ⁇ : “No cracks (a level where there is no practical problem)” ⁇ ⁇ : “In rare cases, cracks are seen (there is a problem, but the usable level)” ⁇ : “Partial cracks are seen” ⁇ : “Overall cracks are seen”
  • a coin-type battery comprising a non-aqueous electrolyte solution in which LiPF 6 was dissolved at a concentration of 1 M in a mixed solvent in which carbonate was mixed at a ratio of 1: 1 (volume ratio) was produced.
  • the coin-type battery was fabricated in a glove box substituted with argon gas.
  • the obtained coin-type battery was subjected to charge / discharge measurement using a charge / discharge device (SM-8 manufactured by Hokuto Denko).
  • SM-8 charge / discharge device
  • the active material to be used was LiFePO 4
  • constant current and constant voltage charging was continued to a charge end voltage of 4.5 V at a charging current of 1.0 C.
  • constant current discharge was performed at a discharge current of 1.0C until the discharge end voltage of 2.0V was reached.
  • These charging / discharging cycles were taken as one cycle, and 100 cycles of charging / discharging were repeated.
  • the discharge capacity at the third cycle was defined as the initial discharge capacity (the initial discharge capacity was set to 100% discharge capacity retention rate), and the discharge capacity retention rate after 100 cycles was calculated (the closer to 100%, the better).
  • “Change rate is 95% or more. Particularly excellent.” ⁇ ⁇ : “Change rate is 90% or more and less than 95%. No problem at all” ⁇ : “Change rate is 85% or more and less than 90%. ⁇ : “Change rate is less than 85%.
  • the carbon material that is the active material or conductive aid is insufficiently dispersed in the composite ink, a uniform conductive network is not formed when it is used as an electrode. It is considered that the resulting resistance distribution occurs and current concentration occurs when used as a battery, thereby causing deterioration.
  • the dispersion control of the carbon material or the active material, which is a conductive auxiliary agent is insufficient, that is, when the cationic dispersant is not used or the cationic dispersant is not within the scope of the present invention, In the case where is used, there is a tendency that the coating film characteristics and battery characteristics of the electrode are insufficient. In particular, when the dispersion control of the carbon material that is a conductive additive is insufficient, the tendency is remarkable.
  • the resistance of the electrode coating film to the electrolytic solution is further improved by combining a dispersant and a binder composition (particularly, a binder composition containing a crosslinkable resin fine particle aqueous dispersion).
  • Example 79 and 80, Comparative Example 44 The composition for forming a secondary battery electrode shown in Table 9 was applied onto a 20 ⁇ m-thick aluminum foil serving as a current collector using a doctor blade, and then dried by heating, so that the base layer was 5 ⁇ m in thickness. Formed. Subsequently, after applying the mixed ink for secondary battery positive electrode shown in Table 6A on the underlayer, it was dried by heating under reduced pressure to obtain a positive electrode in the same manner as in Example 25 and evaluated in the same manner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 電極活物質もしくは導電助剤である炭素材料の少なくとも一方と、カチオン性分散剤(A)と、水とを含有する二次電池電極形成用水性組成物において、カチオン性分散剤(A)が、カチオン性部位として脂肪族アミンもしくは芳香族アミンの少なくとも一方を有し、アミン価が110~1000mgKOH/gであり、水酸基価が0~400mgKOH/gであり、重量平均分子量が5000以上であるものとすることにより、活物質や導電助剤の分散性に優れ、また、充放電サイクル特性に優れる二次電池を形成することができる電極形成用組成物を提供する。

Description

二次電池電極形成用水性組成物、二次電池用電極、及び二次電池
 本発明は、二次電池電極形成用水性組成物、及びその組成物を用いて得られる電極、並びにその電極を用いて得られる二次電池に関する。
 近年、デジタルカメラや携帯電話のような小型携帯型電子機器が広く用いられるようになってきた。これらの電子機器には、容積を最小限にし、かつ重量を軽くすることが常に求められてきており、搭載される電池においても、小型、軽量かつ大容量の電池の実現が求められている。また、自動車搭載用等の電池においても、従来の鉛蓄電池に代えて、大型二次電池の実現が望まれている。
 そのような要求に応えるため、リチウムイオン二次電池、アルカリ二次電池などの二次電池の開発、例えば、電極の形成に使用される合材インキの開発が活発に行われている。また、合材層の下地層の形成に使用される下地層形成用組成物にも関心が集まりつつある。
 電極の形成に使用される合材インキや下地層形成用組成物に求められる重要特性としては、活物質や導電助剤が分散されたときの均一性が挙げられる。これは合材インキや下地層形成用組成物中の活物質や導電助剤の分散状態が、合材層中の活物質や導電助剤の分布状態や下地層中の導電助剤の分布状態に関連しているため、電極物性ひいては電池性能に影響するからである。
 そのため、活物質や導電助剤の分散は重要な課題である。とりわけ導電性に優れた炭素材料(導電助剤)は、ストラクチャーや比表面積が大きいため凝集力が強く、合材インキ中であれ、下地層形成用組成物中であれ、均一に混合・分散することが困難である。そして、導電助剤である炭素材料の分散性や粒度の制御が不十分な場合、均一な導電ネットワークが形成されないために電極の内部抵抗の低減が図れず、その結果、電極材料の性能を十分に引き出せないという問題が生じている。
 また、導電助剤だけでなく、合材インキ中の活物質の分散が不十分であると、そのような合材インキから形成される合材層中に部分的凝集が生じる。この部分的凝集は電極上に抵抗分布を生じさせ、この結果、電池として使用した際の電流集中が生じて、部分的な発熱および劣化が促進される等の不具合が生じることがある。
 また、合材インキや下地層形成用組成物には、集電体として機能する金属箔表面に塗工可能とするための適度な流動性が求められる。さらに、表面ができるだけ平坦で厚みが均一な合材層や下地層を形成するために、合材インキや下地層形成用組成物には、適度な粘性も求められる。
 合材インキから形成された合材層や下地層形成用組成物から形成された下地層は、形成された後、基材である金属箔ごと所望の大きさ・形状の切片に切り分けられたり、打ち抜かれたりする。そこで、切り分け加工や打ち抜き加工によって、傷つかない堅さと割れたり剥がれたりしない柔らかさとが、合材層や下地層には要求される。
 さらに、合材層や下地層は電池中では電解液中にさらされるため、合材層や下地層の崩壊、集電体からの剥離が生じる恐れがある。そこで、電解液中での耐溶出性も合材層や下地層には要求される。
 特許文献1~4には、活物質と導電材とを混合し、この混合物をセルロース系増粘剤水溶液とともに混練した後、さらに4フッ化ポリエチレン、ラテックス系などの水性バインダーを加え、さらに混練して合材インキを得る旨が開示されている。しかし、これらの合材インキは、分散状態が不十分であり柔軟性に乏しく、所望の電極が作製できないため、良好な電池性能が得られないなどの問題があった。
 また、これらの問題を解決するため、合材インキの作製時に、従来の材料に加えて分散剤を用いる方法も開発されている(特許文献5~8参照)。しかし、それら分散剤の使用においても合材インキの良好な分散状態は不十分であり、所望の電極、および二次電池が得られないことが多いため、特に導電助剤をさらに均一に分散させた合材インキが望まれている。また、特に水系媒体を使用した場合は、これらの従来の課題の解決が困難であった。
特開平2-158055号公報 特開平9-082364号公報 特開2003-142102号公報 特開2010-165493号公報 特許第3213944号 特許第4147994号 特許第4468306号 WO2010/013786号公報
 本発明の目的は、電極形成用組成物における活物質や導電助剤の分散性、レオロジー特性を改善させること、並びに、電極形成用組成物から形成される層について、集電体への密着性、塗膜の強度、塗膜の柔軟性、耐電解液溶出性を改善させること、さらには電池サイクル試験性能を向上させることである。
 本発明は、電極活物質や導電助剤の分散性に優れるカチオン性分散剤(A)を用いることで、前記課題を解決すものである。
[1] 電極活物質もしくは導電助剤である炭素材料の少なくとも一方と、カチオン性分散剤(A)と、水とを含有する二次電池電極形成用水性組成物であって、
 カチオン性分散剤(A)が、カチオン性部位として脂肪族アミンもしくは芳香族アミンの少なくとも一方を有し、アミン価が110~1000mgKOH/gであり、水酸基価が0~400mgKOH/gであり、重量平均分子量が5000以上である、二次電池電極形成用水性組成物。
[2] カチオン性分散剤(A)が下記単量体を共重合して得られる共重合体である、上記[1]に記載の組成物。
 芳香環を有するエチレン性不飽和単量体(a1):0~30重量%
 脂肪族アミノ基もしくは芳香族アミノ基を有するエチレン性不飽和単量体(a2):30~80重量%
 前記(a1)~(a2)以外のエチレン性不飽和単量体(a3):0~70重量%
 (但し、前記(a1)~(a3)の合計を100重量%とする。)
[3] 更に、セルロース系増粘剤(B)を含む、上記[1]または[2]に記載の組成物。
[4] 更に、バインダー組成物(C)を含む、上記[1]~[3]のいずれか一項に記載の組成物。
[5] バインダー組成物(C)が架橋型樹脂微粒子を含む、上記[4]に記載の組成物。
[6] 架橋型樹脂微粒子が、下記単量体を水中にて界面活性剤の存在下、ラジカル重合開始剤によって乳化重合してなる樹脂微粒子である、上記[5]に記載の組成物。
 (C1)単官能または多官能アルコキシシリル基を有するエチレン性不飽和単量体(c1)、および1分子中に2つ以上のエチレン性不飽和基を有する単量体(c2)からなる群より選ばれる少なくとも1つの単量体:0.1~5重量%
 (C2)前記単量体(c1)~(c2)以外のエチレン性不飽和単量体(c3):95~99.9重量%
 (但し、前記(c1)~(c3)の合計を100重量%とする。)
[7] エチレン性不飽和単量体(c3)が下記組成である、上記[6]に記載の組成物。
 単官能または多官能エポキシ基を有するエチレン性不飽和単量体(c4)、単官能または多官能アミド基を有するエチレン性不飽和単量体(c5)、および単官能または多官能水酸基を有するエチレン性不飽和単量体(c6)からなる群より選ばれる少なくとも1つの単量体:0.1~20重量%
 前記単量体(c1)、(c2)、(c4)~(c6)以外のエチレン性不飽和単量体(c7):75~99.8重量%
 (但し、前記(c1)~(c3)の合計を100重量%とする。)
[8] エチレン性不飽和単量体(c7)が下記組成である、上記[7]に記載の組成物。
 炭素数8~18のアルキル基を有するエチレン性不飽和単量体(c8)、および環状構造を有するエチレン性不飽和単量体(c9)からなる群より選ばれる少なくとも1つの単量体:30~95重量%
 前記(c1)~(c6)、(c8)、(c9)以外のエチレン性不飽和単量体:0~69.8重量%
 (但し、前記(c1)~(c3)の合計を100重量%とする。)
[9] バインダー組成物(C)が、未架橋のエポキシ基含有化合物、未架橋のアミド基含有化合物、未架橋の水酸基含有化合物、および未架橋のオキサゾリン基含有化合物からなる群より選ばれる少なくとも1つの未架橋の化合物(D)をさらに含む、上記[5]~[8]のいずれか一項に記載の組成物。
[10] セルロース系増粘剤(B)がヒドロキシアルキルセルロースである、上記[1]~[9]のいずれか一項に記載の組成物。
[11] 集電体と、上記[1]~[10]に記載の組成物から形成される合材層もしくは電極下地層の少なくとも一層とを具備する、二次電池用電極。
[12] 正極と負極と電解液とを具備する二次電池であって、前記正極もしくは前記負極の少なくとも一方が上記[11]に記載の二次電池用電極である、二次電池。
[13] 正極と負極と電解液とを具備する二次電池であって、前記正極もしくは前記負極の少なくとも一方が上記[11]に記載の二次電池用電極である、リチウム二次電池。
 本発明の好ましい実施態様によれば、レオロジー特性、分散状態に優れた電極形成用組成物を得ることができる。更に、この電極形成用組成物で合材層や下地層を作製することにより、集電体への密着性、塗膜の強度、塗膜の柔軟性、耐電解液溶出性が改善され、電池サイクル試験性能を向上させることができる。
 二次電池用の電極は、種々の方法で得ることができる。例えば、金属箔等の集電体の表面に、(1)活物質と液状媒体とを含有するインキ状組成物(以下、合材インキという)や、(2)活物質と導電助剤と液状媒体とを含有する合材インキや、(3)活物質とバインダーと液状媒体とを含有する合材インキや、(4)活物質と導電助剤とバインダーと液状媒体とを含有する合材インキを用いて合材層を形成し、電極を得ることができる。
 あるいは、金属箔の集電体の表面に、導電助剤と液状媒体とを含有する下地層形成用組成物を用いて電極下地層を形成し、該下地層上に上記の合材インキ(1)~(4)やその他の合材インキ用いて合材層を形成して、電極を得ることもできる。
 いずれの場合であっても、活物質や導電助剤の分散状態及び、電極の合材層や下地層の耐電解液溶出性が電池性能を左右することは上述したとおりである。カチオン性分散剤(A)は、活物質の凝集を緩和したり、導電助剤である炭素材料に対しても分散剤として機能したりする。従って、本発明の二次電池電極形成用水性組成物は、活物質を必須とする合材インキとしても、活物質を必須とはしない下地層形成用組成物としても活用できる。
<カチオン性分散剤(A)>
 まず本発明におけるカチオン性分散剤(A)について説明する。以下、分散剤(A)と略する場合がある。本発明におけるカチオン性分散剤(A)は、カチオン性部位として脂肪族アミンもしくは芳香族アミンの少なくとも一方を有し、アミン価が110~1000mgKOH/gであり、水酸基価が0~400mgKOH/gであり、重量平均分子量が5000以上である、樹脂型分散剤である。
 脂肪族アミンもしくは芳香族アミンを有するカチオン性分散剤(A)としては、脂肪族アミンもしくは芳香族アミンを有する樹脂であれば特に限定されないが、例えば、脂肪族アミノ基もしくは芳香族アミノ基を有する単量体を重合もしくは縮合してなり、好ましくは、脂肪族アミノ基もしくは芳香族アミノ基を有するエチレン性不飽和単量体(a2)を重合して得られるものである。脂肪族アミノ基もしくは芳香族アミノ基を有する単量体は1種類を用いてもよいし、複数種類を組み合わせて用いてもよい。
 また、本発明におけるカチオン性分散剤(A)としては、芳香環を有するエチレン性不飽和単量体(a1)と、脂肪族アミノ基もしくは芳香族アミノ基を有するエチレン性不飽和単量体(a2)と、(a1)及び(a2)以外のエチレン性不飽和単量体(a3)とを共重合して得られる樹脂型分散剤を用いることができる。ここで、単量体(a1)又は(a3)は任意成分である。
 本発明におけるカチオン性分散剤(A)を構成するエチレン性不飽和単量体は、特に断らない限り、1分子中に1つのエチレン性不飽和基を有する単量体を示す。
<単量体(a1)について>
 芳香環を有するエチレン性不飽和単量体(a1)としては、芳香環を有する単量体であれば特に限定されないが、スチレン、α-メチルスチレンもしくはベンジル(メタ)アクリレートを例示することができる。
<単量体(a2)について>
 脂肪族アミノ基もしくは芳香族アミノ基を有するエチレン性不飽和単量体(a2)は、脂肪族アミノ基もしくは芳香族アミノ基を有する単量体であれば特に限定されないが、脂肪族アミノ基を有するものとしては、例えば、1分子中に1つのエチレン性不飽和基を有する単量体として、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、メチルエチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、アリルアミン、1分子中に2つのエチレン性不飽和基を有する単量体として、ジアリルアミン、ジアリルメチルアミン等を例示することができ、また、芳香族アミノ基を有するものとしては、アミノスチレン、ジメチルアミノスチレン、ジエチルアミノスチレン等を例示することができる。
<単量体(a3)について>
 次に、前記(a1)~(a2)以外のその他の単量体(a3)について説明する。
 (メタ)アクリレート系化合物としては、アルキル系(メタ)アクリレート、アルキレングリコール系(メタ)アクリレートがある。
 更に具体的に例示すると、アルキル系(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート等の炭素数1~22のアルキル(メタ)アクリレートがあり、極性の調節を目的とする場合には好ましくは炭素数2~10、さらに好ましくは炭素数2~8のアルキル基を有するアルキル基含有アクリレートまたは対応するメタクリレートが挙げられる。
 また、アルキレングリコール系(メタ)アクリレートとしては、例えば、ジエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート等の、末端に水酸基を有し、ポリオキシアルキレン鎖を有するモノアクリレートまたは対応するモノメタアクリレート等や、メトキシエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート等の、末端にアルコキシ基を有し、ポリオキシアルキレン鎖を有するモノアクリレートまたは対応するモノメタアクリレート等や、フェノキシエチレングリコール(メタ)アクリレート等の、末端にフェノキシまたはアリールオキシ基を有するポリオキシアルキレン系アクリレートまたは対応するメタアクリレートが挙げられる。
 上記以外の水酸基含有不飽和化合物としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、4-ヒドロキシビニルベンゼンなどが挙げられる。
 上記以外の窒素含有不飽和化合物としては、例えばアクリルアミド系不飽和化合物が挙げられ、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メトキシメチル-(メタ)アクリルアミド等のモノアルキロール(メタ)アクリルアミドや、N,N-ジ(メチロール)アクリルアミド、N-メチロール-N-メトキシメチル(メタ)アクリルアミド、N,N-ジ(メトキシメチル)アクリルアミド等のジアルキロール(メタ)アクリルアミド等を例示できる。
 更にその他の不飽和化合物としては、例えばパーフルオロアルキル基含有ビニルモノマーとして、パーフルオロメチルメチル(メタ)アクリレート、パーフルオロエチルメチル(メタ)アクリレート、2-パーフルオロブチルエチル(メタ)アクリレート、2-パーフルオロヘキシルエチル(メタ)アクリレート等の炭素数1~20のパーフルオロアルキル基を有するパーフルオロアルキルアルキル(メタ)アクリレート類や;パーフルオロブチルエチレン、パーフルオロヘキシルエチレン、パーフルオロオクチルエチレン、パーフルオロデシルエチレン等のパーフルオロアルキルアルキレン類等が挙げられ、また、シラノール基含有ビニル化合物として、ビニルトリクロルシラン、ビニルトリス(βメトキシエトキシ)シラン、ビニルトリエトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン等が挙げられ、さらにはそれらの誘導体などを挙げることができ、これらの群から複数用いることができる。
 脂肪酸ビニル化合物としては、酢酸ビニル、酪酸ビニル、プロピオン酸ビニル、ヘキサン酸ビニル、カプリル酸ビニル、ラウリル酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル等が挙げられる。
 アルキルビニルエーテル化合物としては、ブチルビニルエーテル、エチルビニルエーテル等が挙げられる。
 α-オレフィン化合物としては、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン等が挙げられる。
 ビニル化合物としては、酢酸アリル、アリルアルコール、アリルベンゼン、シアン化アリル等のアリル化合物、シアン化ビニル、ビニルシクロヘキサン、ビニルメチルケトン、スチレン、α-メチルスチレン、2-メチルスチレン、クロロスチレン等が挙げられる。
 エチニル化合物としては、アセチレン、エチニルベンゼン、エチニルトルエン、1-エチニル-1-シクロヘキサノール等が挙げられる。これらは単独もしくは2種類以上を併用して使用することもできる。
<単量体(a1)~(a3)の構成比>
 本発明で用いられるカチオン性分散剤(A)中の共重合体を構成するエチレン性不飽和単量体の比率は、単量体(a1)~(a3)の合計を100重量%とした場合に、
 芳香環を有するエチレン性不飽和単量体(a1)が0~30重量%、
 アミノ基を有するエチレン性不飽和単量体(a2)が30~80重量%、
 前記(a1)~(a2)以外のその他の単量体(a3)が0~70重量%であることが好ましい。
 更に好ましくは、
 芳香環を有するエチレン性不飽和単量体(a1)が0~30重量%、
 アミノ基を有するエチレン性不飽和単量体(a2)が50~80重量%、
 前記(a1)~(a2)以外のその他の単量体(a3)が0~50重量%である。
<分散剤のアミン価>
 カチオン性分散剤(A)は、アミノ基を有する単量体を重合もしくは縮合して製造されるが、カチオン性分散剤(A)の分子全体におけるカチオン性官能基を有する単量体の構成比率をアミン価で表すと下記のようであることが好ましい。即ち、使用するカチオン性分散剤(A)のアミン価が、110mgKOH/g以上1000mgKOH/g未満の範囲であることが好ましく、更には250mgKOH/g以上1000mgKOH/g未満の範囲であることが好ましい。
 カチオン性分散剤(A)のアミン価が上記した範囲よりも低いと分散体の分散安定性が低下し、粘度が増加する傾向がある。また、アミン価が上記した範囲より高いと、顔料表面に対するカチオン性分散剤(A)の付着力が低下し、分散体の保存安定性が低下する傾向がある。
 なお、アミン価は、試料1g中に含まれる全塩基性窒素を中和するのに要する過塩素酸と当量の水酸化カリウムのmg数で表したものである。測定方法は、JIS K 7237(1995)に記載されている電位差滴定法により求めたものを固形分換算した値である。
<分散剤の水酸基価>
 カチオン性分散剤(A)の水酸基価は、0mgKOH/g以上400mgKOH/g以下であることが望ましく、更には、0mgKOH/g以上250mgKOH/g以下であることが好ましい。水酸基価が400mgKOH/g以上であると、水媒体中での分子間の相互作用が強くなり、分散剤溶液の粘度が必要以上高くなるため、導電性炭素または活物質の分散性が悪化する場合がある。
<分散剤の分子量>
 カチオン性分散剤(A)の重量平均分子量は5000以上が好ましい。更に好ましくは30000以上である。また、その上限値は1500000以下が好ましく、800000以下がさらに好ましい。重量平均分子量が5000未満の場合、電極活物質もしくは導電助剤である炭素材料の分散不良を引き起こす可能性があり、30000未満の場合、電解液溶出性の悪化を引き起こす可能性がある。
<分散剤の製造方法>
 カチオン性分散剤(A)は、種々の製造方法で得ることができる。例えば、上記単量体(a1)~(a3)を、水と共沸し得る有機溶剤中で重合する。その後、水に代表される水性液状媒体と中和剤とを加えてアミノ基の少なくとも一部を中和し、共沸可能な溶剤を留去して、カチオン性分散剤(A)の水溶液ないし水性分散液を得ることができる。
 重合時の有機溶剤としては、水と共沸するものであれば良いが、得られる分散剤樹脂に対し溶解性の高いものが良く、好ましくはエタノール、1-プロパノール、2-プロパノール、1-ブタノールであり、さらに好ましくは1-ブタノールである。
 あるいは、親水性有機溶剤中で上記単量体を重合した後、水と中和剤を加えて中和・水性化することで(親水性有機溶剤は留去しない)、親水性有機溶剤と水とを含む水性液状媒体に、カチオン性分散剤(A)が溶解ないし分散した液を得ることができる。
 この場合、用いられる親水性有機溶剤としては、得られる分散剤樹脂に対し溶解性の高いものが良く、好ましくはグリコールエーテル類、ジオール類、さらに好ましくは(ポリ)アルキレングリコールモノアルキルエーテル、炭素数3~6のアルカンジオール類が良い。
 上記製造工程で中和に使用される中和剤としては、例えば有機酸や無機酸等を使用することができる。
<中和剤について>
 カチオン性分散剤には中和剤を添加することもできる。カチオン性分散剤の塩基性官能基の一部若しくは全部を中和することで、塩基性官能基の塩は水媒体中で解離しやすくなり、より電荷を帯びやすくなる。そのため、中和したカチオン性分散剤が吸着した導電性炭素表面、正負極活物質表面は電荷を帯び、その反発によりさらに分散性が向上する。
 この中和に用いる酸としては、例えば、硫酸、塩酸、リン酸、硝酸、臭化水素酸、ヨウ化水素酸等の無機酸、並びに、カルボン酸、ホスホン酸、スルホン酸、芳香族ヒドロキシ基等を含有する有機酸が挙げられる。
 また、塩基性官能基を有すカチオン性分散剤に対して用いる酸の量は、使用するカチオン性分散剤が有する塩基性官能基の0.1~10当量が好ましく、更に好ましくは0.8~1.2当量である。
<分散剤としての機能について>
 カチオン性分散剤の構成部位である疎水性部分が、後述する活物質や炭素材料への主たる吸着部位となると推測している。特に疎水性部分として芳香環が含まれると活物質や炭素材料への吸着力が向上すると考えられる。脂肪族アミノ基もしくは芳香族アミノ基を有するエチレン性不飽和単量体(a2)は、分散剤樹脂もしくはその中和物を水性液状媒体に溶解ないし分散させる機能を担うものと思われる。そして、活物質や炭素材料に、疎水性部分(例えば芳香環)を介して分散剤樹脂が作用(例えば吸着)し、中和されることで、イオン化されたアミノ基の電荷反発により、活物質や炭素材料の水性液状媒体中における分散状態を安定に保つことができるようになるものと考察される。
 カチオン性分散剤(A)が有するアミノ基は、脂肪族アミノ基が好ましい。この理由の一つは脂肪族アミンの方が、pKaが大きく塩基性度が高いため、水性液状媒体に対して分散剤を溶解ないし分散させる機能が高いためと考えられる。もう一つの理由としては、芳香族アミノ基の場合は芳香環とアミノ基が近傍に存在するため、活物質や炭素材料への作用力(例えば吸着)と水性液状媒体への溶解力ないし分散力が脂肪族アミノ基よりも劣る場合があるためと考えられる。
<セルロース系増粘剤(B)>
 セルロース系増粘剤(B)としては、特に限定はされないが、例えば、カルボキシメチルセルロース(CMC)、カルボキシエチルセルロース、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロース(HPC)、エチルヒドロキシエチルセルロース(EHEC)、ヒドロキシメチルエチルセルロース、ヒドロキシヒドロキシプロピルメチルセルロース、メチルセルロース(MC)、ヒドロキシアルキルメチルセルロース等が挙げられる。
 パルプ中のセルロースは、無水グルコース単量体単位が結合されている多糖類であり、1グルコース単量体単位中に3個のヒドロキシ基を持つ。このヒドロキシ基の1つもしくは複数に置換する置換基は、特に限定されずに選択することができるが、水溶性のセルロース系増粘剤(B)であるためには親水性の置換基であることが好ましい。好ましくは、カルボキシアルキル基とヒドロキシアルキル基であり、特に好ましくは、ヒドロキシアルキル基である。
 セルロース中のヒドロキシ基に置換する置換基数は、特に限定はされないが、1グルコース単量体単位が有する3個のヒドロキシ基のうち、0.5個以上置換されていることが好ましい。また、セルロース系増粘剤(B)の平均重合度は特に制限されずに選択することができる。
<分散剤(A)とセルロース系増粘剤(B)と併用の効果>
 分散剤(A)の効果のひとつとして、添加した分散剤(A)が炭素材料表面、活物質材料表面に作用(例えば吸着)することにより、炭素材料表面および活物質材料表面の溶剤に対する濡れが促進され、炭素材料や活物質材料の凝集を解して、分散状態やレオロジー特性を改善するものと考えられる。
 また、分散剤(A)はセルロース系増粘剤(B)と併用した場合、分散剤(A)による分散性やレオロジー特性と、セルロース系増粘剤(B)による増粘効果が、それぞれ損なわれることなく機能し、さらに高い分散安定性を発揮することができる。このとき、分散剤(A)の方が炭素材料表面、活物質材料表面に作用(例えば吸着)しやすいため、分散性改善効果とレオロジー特性改善効果を発揮し、セルロース系増粘剤(B)は主に増粘効果を発揮するものと考えられる。
 また、セルロース系増粘剤(B)はアニオン性とノニオン性のどちらであっても分散剤(A)と併用して使用できるが、合材インキの分散性改善効果とレオロジー特性改善効果を考慮した場合、ノニオン性のセルロース系増粘剤(B)の方がより好ましい。これは、ノニオン性セルロース系増粘剤(B)の方が、炭素材料表面や活物質材料表面への作用、ひいては分散効果が低いため、分散剤(A)と併用すると、さらに機能分離して作用するためと思われる。
 また、電荷を有する分散剤(A)は親水性が高く、セルロース系増粘剤(B)と相溶性が良い。そのため合材インキの乾燥過程で分散剤(A)とセルロース系増粘剤(B)とが相分離することなく、合材インキ塗膜を形成することができ、このため、塗膜中の材料の混合はより均一になって塗膜はより強固となるものと考えられる。その結果、合材層の強度は強くなり、合材層を厚くした際のひび割れが改善(柔軟性が向上)するものと思われる。
<バインダー組成物(C)>
 次に、バインダー組成物(C)について説明する。本発明では、架橋型樹脂微粒子を含むことが好ましい。架橋型樹脂微粒子とは、内部架橋構造(三次元架橋構造)を有する樹脂微粒子を示し、粒子内部で架橋していることが重要である。架橋型樹脂微粒子が架橋構造をとることにより耐電解液溶出性を向上させることができ、粒子内部の架橋を調整することでその効果を高めることができる。また、架橋型樹脂微粒子が特定の官能基を含有することにより、集電体、または電極との密着性に寄与することができる。さらには架橋構造や官能基の量を調整することで、可とう性に優れた二次電池電極形成用組成物を得ることができる。また、さらに架橋剤を添加し、粒子同士の架橋(粒子間架橋)を利用することでバインダーの可とう性を調整することもできる。この場合は、架橋剤成分の電解液への漏出や電極作製時のバラツキが生じる場合もあるため、架橋剤は耐電解液性を損なわない程度に用いる必要がある。
 本発明の電極形成用組成物に用いる架橋型樹脂微粒子としては、例えば、エチレン性不飽和単量体を水中にて界面活性剤の存在下、ラジカル重合開始剤によって乳化重合して得られる樹脂微粒子が挙げられる。このような架橋型樹脂微粒子は、下記単量体(C1)および(C2)を下記割合で含むエチレン性不飽和単量体を乳化重合して得ることが好ましい。
 (C1)単官能または多官能アルコキシシリル基を有するエチレン性不飽和単量体(c1)、および1分子中に2つ以上のエチレン性不飽和基を有する単量体(c2)からなる群より選ばれる少なくとも1つの単量体:0.1~5重量%
 (C2)前記単量体(c1)~(c2)以外のエチレン性不飽和単量体(c3):95~99.9重量%
(但し、前記(c1)~(c3)の合計を100重量%とする。)
 架橋型樹脂微粒子を構成するエチレン性不飽和単量体のうち(c1)、(c3)は、特に断らない限り、1分子中に1つのエチレン性不飽和基を有する単量体のことを示す。
<単量体群(C1)について>
 単量体群(C1)に含まれる単量体の有する官能基(アルコキシシリル基、エチレン性不飽和基)は、自己架橋型反応性官能基であり、主に粒子合成中における粒子内部架橋を形成する効果がある。粒子の内部架橋を十分に行うことで、耐電解液性を向上させることができる。したがって、単量体群(C1)に含まれる単量体を使用することで架橋型樹脂微粒子とすることができる。また、粒子架橋を十分に行うことで、耐電解液性を向上させることができる。
 単官能または多官能アルコキシシリル基を有するエチレン性不飽和単量体(c1)としては、例えば、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリブトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリエトキシシラン、γ-アクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシメチルトリメトキシシラン、γ-アクリロキシメチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリブトキシシラン、ビニルメチルジメトキシシランなどがあげられる。
 1分子中に2つ以上のエチレン性不飽和基を有する単量体(c2)としては、例えば、(メタ)アクリル酸アリル、(メタ)アクリル酸1-メチルアリル、(メタ)アクリル酸2-メチルアリル、(メタ)アクリル酸1-ブテニル、(メタ)アクリル酸2-ブテニル、(メタ)アクリル酸3-ブテニル、(メタ)アクリル酸1,3-メチル-3-ブテニル、(メタ)アクリル酸2-クロルアリル、(メタ)アクリル酸3-クロルアリル、(メタ)アクリル酸o-アリルフェニル、(メタ)アクリル酸2-(アリルオキシ)エチル、(メタ)アクリル酸アリルラクチル、(メタ)アクリル酸シトロネリル、(メタ)アクリル酸ゲラニル、(メタ)アクリル酸ロジニル、(メタ)アクリル酸シンナミル、ジアリルマレエート、ジアリルイタコン酸、(メタ)アクリル酸ビニル、クロトン酸ビニル、オレイン酸ビニル、リノレン酸ビニル、(メタ)アクリル酸2-(2’-ビニロキシエトキシ)エチルなどのエチレン性不飽和基含有(メタ)アクリル酸エステル類;ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸トリエチレングリコール、ジ(メタ)アクリル酸テトラエチレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、トリ(メタ)アクリル酸ペンタエリスリトール、ジアクリル酸1,1,1-トリスヒドロキシメチルエタン、トリアクリル酸1,1,1-トリスヒドロキシメチルエタン、1,1,1-トリスヒドロキシメチルプロパントリアクリル酸などの多官能(メタ)アクリル酸エステル類;ジビニルベンゼン、アジピン酸ジビニルなどのジビニル類;イソフタル酸ジアリル、フタル酸ジアリル、マレイン酸ジアリルなどのジアリル類などがあげられる。
 単量体(c1)または単量体(c2)中のアルコキシシリル基またはエチレン性不飽和基は、主に重合中にそれぞれが自己縮合、または重合して粒子に架橋構造を導入することを目的としているが、その一部が重合後にも粒子内部や表面に残存していてもよい。残存したアルコキシシリル基、またはエチレン性不飽和基は、バインダー組成物の粒子間架橋に寄与する。特にアルコキシシリル基は集電体への密着性向上に寄与する効果があるため好ましい。
 本発明では、単量体群(C1)に分類される単量体は、乳化重合に使用するエチレン性不飽和単量体全体(合計100重量%)中で0.1~5重量%使用することを特徴とし、好ましくは0.5~3重量%である。単量体群(C1)に分類される単量体が、0.1重量%未満であると粒子の架橋が十分でなくなり、耐電解液性が悪くなる。また、5重量%を超えると、乳化重合する際の重合安定性に問題を生じるか、重合できたとしても保存安定性に問題を生じる。
<単量体群(C2)について>
 バインダー組成物に用いる架橋型樹脂微粒子は、上述した単量体(c1)及び単量体(c2)に加えて、単量体群(C2)として、単量体(c1)及び(c2)以外の、エチレン性不飽和基を有する単量体(c3)を同時に乳化重合することで得ることができる。
 単量体(c3)としては、単量体(c1)及び(c2)以外であって、エチレン性不飽和基を有する単量体であれば特に限定されないが、例えば、単官能または多官能エポキシ基を有するエチレン性不飽和単量体(c4)、単官能または多官能アミド基を有するエチレン性不飽和単量体(c5)、および単官能または多官能水酸基を有するエチレン性不飽和単量体(c6)からなる群より選ばれる少なくとも1つの単量体、および、単量体(c1)、(c2)、(c4)~(c6)以外の、エチレン性不飽和基を有する単量体(c7)を使用することができる。
 単量体(c4)~(c6)を使用することにより、エポキシ基、アミド基、または水酸基を架橋型樹脂微粒子の粒子内や表面に残存させることができ、これにより集電体への密着性などの物性を向上させることができる。単量体(c4)~(c6)は、粒子合成後でもその官能基が粒子内部や表面に残存しやすく、少量でも集電体への密着性効果が大きい。また、その一部が架橋反応に使用されてもよく、これらの官能基の架橋度合いを調整することで、耐電解液性と密着性のバランスをとることができる。
 単官能または多官能エポキシ基を有するエチレン性不飽和単量体(c4)としては、例えば、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシル(メタ)アクリレートなどがあげられる。
 単官能または多官能アミド基を有する単量体エチレン性不飽和(c5)としては、例えば、(メタ)アクリルアミドなどの第一アミド基含有エチレン性不飽和単量体;N-メチロールアクリルアミド、N,N-ジ(メチロール)アクリルアミド、N-メチロール-N-メトキシメチル(メタ)アクリルアミドなどのアルキロール(メタ)アクリルアミド類;N-メトキシメチル-(メタ)アクリルアミド、N-エトキシメチル-(メタ)アクリルアミド、N-プロポキシメチル-(メタ)アクリルアミド、N-ブトキシメチル-(メタ)アクリルアミド、N-ペントキシメチル-(メタ)アクリルアミドなどのモノアルコキシ(メタ)アクリルアミド類;N,N-ジ(メトキシメチル)アクリルアミド、N-エトキシメチル-N-メトキシメチルメタアクリルアミド、N,N-ジ(エトキシメチル)アクリルアミド、N-エトキシメチル-N-プロポキシメチルメタアクリルアミド、N,N-ジ(プロポキシメチル)アクリルアミド、N-ブトキシメチル-N-(プロポキシメチル)メタアクリルアミド、N,N-ジ(ブトキシメチル)アクリルアミド、N-ブトキシメチル-N-(メトキシメチル)メタアクリルアミド、N,N-ジ(ペントキシメチル)アクリルアミド、N-メトキシメチル-N-(ペントキシメチル)メタアクリルアミドなどのジアルコキシ(メタ)アクリルアミド類;N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジエチルアミノプロピルアクリルアミドなどのジアルキルアミノ(メタ)アクリルアミド類;N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミドなどのジアルキル(メタ)アクリルアミド類;ダイアセトン(メタ)アクリルアミドなどのケト基含有(メタ)アクリルアミド類などがあげられる。
 単官能または多官能水酸基を有するエチレン性不飽和単量体(c6)としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチルフタル酸、グリセロールモノ(メタ)アクリレート、4-ヒドロキシビニルベンゼン、1-エチニル-1-シクロヘキサノール、アリルアルコールなどがあげられる。
 単量体(c4)~(c6)に分類される単量体の官能基は、その一部が粒子重合中に反応し、粒子内架橋に使われても構わない。本発明では、単量体(c4)~(c6)に分類される単量体は、乳化重合に使用するエチレン性不飽和単量体全体(合計100重量%)中で0.1~20重量%使用することを特徴とし、好ましくは1~15重量%であり、特に好ましくは2~10重量%である。単量体(c4)~(c6)が0.1重量%未満であると、重合後の粒子内部や表面に残存している官能基の量が少なくなり、集電体への密着性向上に十分寄与できない。また、20重量%を超えると、乳化重合する際の重合安定性に問題を生じるか、重合できたとしても保存安定性に問題を生じる。
 単量体(c7)としては、単量体(c1)、(c2)、(c4)~(c6)以外であって、エチレン性不飽和基を有する単量体であれば特に限定されないが、例えば、炭素数8~18のアルキル基を有するエチレン性不飽和単量体(c8)、環状構造を有するエチレン性不飽和単量体(c9)などがあげられる。単量体(c7)として、該単量体(c8)および/または単量体(c9)を乳化重合に使用する場合には(単量体(c7)としてそれら以外の単量体を含んでいてもよい)、該単量体(c8)および(c9)が、エチレン性不飽和基を有する単量体全体((c1)、(c2)、(c4)~(c6)および(c7))中に合計で30~95重量%含まれることが好ましい。単量体(c8)や単量体(c9)を使用することで粒子合成時の粒子安定性や耐電解液性に優れるため好ましい。30重量%未満であると耐電解液性に悪影響をおよぼす場合があり、95重量%を超えると粒子合成時の安定性に悪影響をおよぼすか、合成できたとしても粒子の経時安定性が損なわれる場合がある。
 炭素数8~18のアルキル基を有するエチレン性不飽和単量体(c8)としては、例えば、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ミリスチル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレートなどがあげられる。
 環状構造を有するエチレン性不飽和単量体(c9)としては、脂環式エチレン性不飽和単量体や芳香族エチレン性不飽和単量体などがあげられる。脂環式エチレン性不飽和単量体としては、例えば、シクロヘキシル(メタ)アクリレート、イソボニル(メタ)アクリレートなどがあげられ、芳香族エチレン性不飽和単量体としては、例えば、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、スチレン、α-メチルスチレン、2-メチルスチレン、クロロスチレン、アリルベンゼン、エチニルベンゼンなどがあげられる。
 単量体(c7)に分類される、上記単量体(c8)、単量体(c9)以外の単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘプチル(メタ)アクリレートなどのアルキル基含有エチレン性不飽和単量体;(メタ)アクリロニトリルなどのニトリル基含有エチレン性不飽和単量体;パーフルオロメチルメチル(メタ)アクリレート、パーフルオロエチルメチル(メタ)アクリレート、2-パーフルオロブチルエチル(メタ)アクリレート、2-パーフルオロヘキシルエチル(メタ)アクリレート、2-パーフルオロオクチルエチル(メタ)アクリレート、2-パーフルオロイソノニルエチル(メタ)アクリレート、2-パーフルオロノニルエチル(メタ)アクリレート、2-パーフルオロデシルエチル(メタ)アクリレート、パーフルオロプロピルプロピル(メタ)アクリレート、パーフルオロオクチルプロピル(メタ)アクリレート、パーフルオロオクチルアミル(メタ)アクリレート、パーフルオロオクチルウンデシル(メタ)アクリレートなどの炭素数1~20のパーフルオロアルキル基を有するパーフルオロアルキル基含有エチレン性不飽和単量体;パーフルオロブチルエチレン、パーフルオロヘキシルエチレン、パーフルオロオクチルエチレン、パーフルオロデシルエチレンなどのパーフルオロアルキル、アルキレン類などのパーフルオロアルキル基含有エチレン性不飽和化合物;ポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、プロポキシポリエチレングリコール(メタ)アクリレート、n-ブトキシポリエチレングリコール(メタ)アクリレート、n-ペンタキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、プロポキシポリプロピレングリコール(メタ)アクリレート、n-ブトキシポリプロピレングリコール(メタ)アクリレート、n-ペンタキシポリプロピレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、ポリテトラメチレングリコール(メタ)アクリレート、メトキシポリテトラメチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、ヘキサエチレングリコール(メタ)アクリレート、メトキシヘキサエチレングリコール(メタ)アクリレートなどのポリエーテル鎖を有するエチレン性不飽和化合物;ラクトン変性(メタ)アクリレートなどのポリエステル鎖を有するエチレン性不飽和化合物;(メタ)アクリル酸ジメチルアミノエチルメチルクロライド塩、トリメチル-3-(1-(メタ)アクリルアミド-1,1-ジメチルプロピル)アンモニウムクロライド、トリメチル-3-(1-(メタ)アクリルアミドプロピル)アンモニウムクロライド、およびトリメチル-3-(1-(メタ)アクリルアミド-1,1-ジメチルエチル)アンモニウムクロライドなどの四級アンモニウム塩基含有エチレン性不飽和化合物;酢酸ビニル、酪酸ビニル、プロピオン酸ビニル、ヘキサン酸ビニル、カプリル酸ビニル、ラウリル酸ビニル、パルミチン酸ビニル、ステアリン酸ビニルなどの脂肪酸ビニル系化合物;ブチルビニルエーテル、エチルビニルエーテルなどのビニルエーテル系エチレン性不飽和単量体;1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセンなどのα-オレフィン系エチレン性不飽和単量体;酢酸アリル、シアン化アリルなどのアリル単量体;シアン化ビニル、ビニルシクロヘキサン、ビニルメチルケトンなどのビニル単量体;アセチレン、エチニルトルエンなどのエチニル単量体などがあげられる。
 また、単量体(c7)に分類される、上記単量体(c8)、単量体(c9)以外の単量体としては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、または、これらのアルキルもしくはアルケニルモノエステル、フタル酸β-(メタ)アクリロキシエチルモノエステル、イソフタル酸β-(メタ)アクリロキシエチルモノエステル、テレフタル酸β-(メタ)アクリロキシエチルモノエステル、コハク酸β-(メタ)アクリロキシエチルモノエステル、アクリル酸、メタクリル酸、クロトン酸、けい皮酸などのカルボキシル基含有エチレン性不飽和単量体;ターシャリーブチル(メタ)アクリレートなどのターシャリーブチル基含有エチレン性不飽和単量体;ビニルスルホン酸、スチレンスルホン酸などのスルホン酸基含有エチレン性不飽和単量体;(2-ヒドロキシエチル)メタクリレートアッシドホスフェートなどのリン酸基含有エチレン性不飽和単量体;ダイアセトン(メタ)アクリルアミド、アクロレイン、N-ビニルホルムアミド、ビニルメチルケトン、ビニルエチルケトン、アセトアセトキシエチル(メタ)アクリレート、アセトアセトキシプロピル(メタ)アクリレート、アセトアセトキシブチル(メタ)アクリレートなどのケト基含有エチレン性不飽和単量体(1分子中に1つのエチレン性不飽和基と、ケト基とを有する単量体)などがあげられる。
 単量体(c7)として、ケト基含有エチレン性不飽和単量体を使用する場合、架橋剤としてケト基と反応しうるヒドラジド基を2個以上有する多官能ヒドラジド化合物をバインダー組成物に混合すると、ケト基とヒドラジド基との架橋により強靱な塗膜を得ることができる。この塗膜は優れた耐電解液性、結着性を有する。さらに、充放電の繰り返しや、発熱による高温環境下における耐性と可とう性とを両立することができるため、充放電サイクルにおける放電容量低下の低減された長寿命の非水系二次電池を得ることができる。
 また、単量体(c7)の中でもカルボキシル基、ターシャリーブチル基(熱によりターシャリーブタノールが脱離してカルボキシル基になる。)、スルホン酸基、およびリン酸基を有するエチレン性不飽和単量体を共重合して得られた樹脂微粒子は、重合後にも粒子内や表面に前記官能基が残存し、集電体への密着性などの物性を向上させる効果があると同時に、合成時の凝集を防いだり、合成後の粒子安定性を保持したりする場合あるため好ましく使用することができる。
 カルボキシル基、ターシャリーブチル基、スルホン酸基、およびリン酸基は、その一部が重合中に反応し、粒子内架橋に使われても構わない。カルボキシル基、ターシャリーブチル基、スルホン酸基、およびリン酸基を含む単量体を用いる場合には、乳化重合に使用するエチレン性不飽和単量体全体(合計100重量%)中に0.1~10重量%含まれることが好ましく、さらには1~5重量%含まれることがより好ましい。これらの官能基を含む単量体が0.1重量%未満であると、粒子の安定性が悪くなる場合がある。また10重量%を超えると、バインダー組成物の親水性が強くなりすぎて耐電解液性が悪くなる場合がある。さらにこれらの官能基は、乾燥時に反応して粒子内や粒子間の架橋に使われても構わない。
 例えばカルボキシル基は、重合中および乾燥時にエポキシ基と反応して樹脂微粒子に架橋構造を導入できる。同様に、ターシャリーブチル基も一定温度以上の熱が加わるとターシャリーブチルアルコールが生成するとともにカルボキシル基が形成されるため、前記と同様にエポキシ基と反応することができる。
 これらの単量体(c7)は、粒子の重合安定性やガラス転移温度、さらには成膜性や塗膜物性を調整するために、上記にあげたような単量体を2種以上併用して用いることができる。また、例えば(メタ)アクリロニトリルなどを併用することでゴム弾性が発現する効果がある。
<架橋型樹脂微粒子の製造方法>
 架橋型樹脂微粒子は、従来既知の乳化重合方法により合成することができる。
<乳化重合で用いられる乳化剤>
 乳化重合の際に用いられる乳化剤としては、エチレン性不飽和基を有する反応性乳化剤やエチレン性不飽和基を有しない非反応性乳化剤など、従来公知のものを任意に使用することができる。
 エチレン性不飽和基を有する反応性乳化剤はさらに大別して、アニオン系、非イオン系のノニオン系のものが例示できる。特にエチレン性不飽和基を有するアニオン系反応性乳化剤若しくはノニオン性反応性乳化剤を用いると、共重合体の分散粒子径が微細となるとともに粒度分布が狭くなるため、二次電池電極用バインダーとして使用した際に耐電解液性を向上することができ好ましい。このエチレン性不飽和基を有するアニオン系反応性乳化剤若しくはノニオン性反応性乳化剤は、1種を単独で使用しても、複数種を混合して用いてもよい。
 エチレン性不飽和基を有するアニオン系反応性乳化剤の一例として、以下にその具体例を例示するが、使用可能な乳化剤はこれらに限定されるものではない。
 乳化剤としては、アルキルエーテル系(市販品としては、例えば、第一工業製薬株式会社製アクアロンKH-05、KH-10、KH-20、株式会社ADEKA製アデカリアソープSR-10N、SR-20N、花王株式会社製ラテムルPD-104など);スルフォコハク酸エステル系(市販品としては、例えば、花王株式会社製ラテムルS-120、S-120A、S-180P、S-180A、三洋化成株式会社製エレミノールJS-2など);アルキルフェニルエーテル系もしくはアルキルフェニルエステル系(市販品としては、例えば、第一工業製薬株式会社製アクアロンH-2855A、H-3855B、H-3855C、H-3856、HS-05、HS-10、HS-20、HS-30、株式会社ADEKA製アデカリアソープSDX-222、SDX-223、SDX-232、SDX-233、SDX-259、SE-10N、SE-20N、など);(メタ)アクリレート硫酸エステル系(市販品としては、例えば、日本乳化剤株式会社製アントックスMS-60、MS-2N、三洋化成工業株式会社製エレミノールRS-30など);リン酸エステル系(市販品としては、例えば、第一工業製薬株式会社製H-3330PL、株式会社ADEKA製アデカリアソープPP-70など)などがあげられる。
 ノニオン系反応性乳化剤としては、例えばアルキルエーテル系(市販品としては、例えば、株式会社ADEKA製アデカリアソープER-10、ER-20、ER-30、ER-40、花王株式会社製ラテムルPD-420、PD-430、PD-450など);アルキルフェニルエーテル系もしくはアルキルフェニルエステル系(市販品としては、例えば、第一工業製薬株式会社製アクアロンRN-10、RN-20、RN-30、RN-50、株式会社ADEKA製アデカリアソープNE-10、NE-20、NE-30、NE-40など);(メタ)アクリレート硫酸エステル系(市販品としては、例えば、日本乳化剤株式会社製RMA-564、RMA-568、RMA-1114など)などがあげられる。
 官能基含有架橋型樹脂微粒子を乳化重合により得るに際しては、前記したエチレン性不飽和基を有する反応性乳化剤とともに、必要に応じエチレン性不飽和基を有しない非反応性乳化剤を併用することができる。非反応性乳化剤は、非反応性アニオン系乳化剤と非反応性ノニオン系乳化剤とに大別することができる。
 非反応性ノニオン系乳化剤の例としては、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテルなどのポリオキシエチレンアルキルエーテル類;ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテルなどのポリオキシエチレンアルキルフェニルエーテル類;ソルビタンモノラウレート、ソルビタンモノステアレート、ソルビタントリオレエートなどのソルビタン高級脂肪酸エステル類;ポリオキシエチレンソルビタンモノラウレートなどのポリオキシエチレンソルビタン高級脂肪酸エステル類;ポリオキシエチレンモノラウレート、ポリオキシエチレンモノステアレートなどのポリオキシエチレン高級脂肪酸エステル類;オレイン酸モノグリセライド、ステアリン酸モノグリセライドなどのグリセリン高級脂肪酸エステル類;ポリオキシエチレン・ポリオキシプロピレン・ブロックコポリマー、ポリオキシエチレンジスチレン化フェニルエーテルなどを例示することができる。
 また、非反応性アニオン系乳化剤の例としては、オレイン酸ナトリウムなどの高級脂肪酸塩類;ドデシルベンゼンスルホン酸ナトリウムなどのアルキルアリールスルホン酸塩類;ラウリル硫酸ナトリウムなどのアルキル硫酸エステル塩類;ポリエキシエチレンラウリルエーテル硫酸ナトリウムなどのポリオキシエチレンアルキルエーテル硫酸エステル塩類;ポリオキシエチレンノニルフェニルエーテル硫酸ナトリウムなどのポリオキシエチレンアルキルアリールエーテル硫酸エステル塩類;モノオクチルスルホコハク酸ナトリウム、ジオクチルスルホコハク酸ナトリウム、ポリオキシエチレンラウリルスルホコハク酸ナトリウムなどのアルキルスルホコハク酸エステル塩およびその誘導体類;ポリオキシエチレンジスチレン化フェニルエーテル硫酸エステル塩類などを例示することができる。
 乳化剤の使用量は、必ずしも限定されるものではなく、架橋型樹脂微粒子が最終的に二次電池電極用バインダーとして使用される際に求められる物性にしたがって適宜選択できる。例えば、エチレン性不飽和単量体の合計100重量部に対して、乳化剤は通常0.1~30重量部であることが好ましく、0.3~20重量部であることがより好ましく、0.5~10重量部の範囲内であることがさらに好ましい。
 乳化重合に際しては、水溶性保護コロイドを併用することもできる。水溶性保護コロイドとしては、例えば、部分ケン化ポリビニルアルコール、完全ケン化ポリビニルアルコール、変性ポリビニルアルコールなどのポリビニルアルコール類;ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース塩などのセルロース誘導体;グアガムなどの天然多糖類などがあげられ、これらは、単独でも複数種併用の態様でも利用できる。水溶性保護コロイドの使用量としては、エチレン性不飽和単量体の合計100重量部当り0.1~5重量部であり、さらに好ましくは0.5~2重量部である。
<乳化重合で用いられる水性媒体>
 乳化重合に際して用いられる水性媒体としては、水があげられ、親水性の有機溶剤も本発明の目的を損なわない範囲で使用することができる。
<乳化重合で用いられる重合開始剤>
 重合開始剤としては、ラジカル重合を開始する能力を有するものであれば特に制限はなく、公知の油溶性重合開始剤や水溶性重合開始剤を使用することができる。
 油溶性重合開始剤としては特に限定されず、例えば、ベンゾイルパーオキサイド、tert-ブチルパーオキシベンゾエート、tert-ブチルハイドロパーオキサイド、tert-ブチルパーオキシ(2-エチルヘキサノエート)、tert-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、ジ-tert-ブチルパーオキサイドなどの有機過酸化物;2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス-2,4-ジメチルバレロニトリル、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、1,1’-アゾビス-シクロヘキサン-1-カルボニトリルなどのアゾビス化合物などをあげることができる。これらは1種類または2種類以上を混合して使用することができる。これら重合開始剤は、エチレン性不飽和単量体100重量部に対して、0.1~10.0重量部の量を用いるのが好ましい。
 特に水溶性重合開始剤が好ましく、例えば、過硫酸アンモニウム、過硫酸カリウム、過酸化水素、2,2’-アゾビス(2-メチルプロピオンアミジン)ジハイドロクロライドなど、従来既知のものを好適に使用することができる。
 また、乳化重合を行うに際して、所望により重合開始剤とともに還元剤を併用することができる。これにより、乳化重合速度を促進したり、低温において乳化重合を行ったりすることが容易になる。このような還元剤としては、例えば、アスコルビン酸、エルソルビン酸、酒石酸、クエン酸、ブドウ糖、ホルムアルデヒドスルホキシラートなどの金属塩などの還元性有機化合物、チオ硫酸ナトリウム、亜硫酸ナトリウム、重亜硫酸ナトリウム、メタ重亜硫酸ナトリウムなどの還元性無機化合物、塩化第一鉄、ロンガリット、二酸化チオ尿素などを例示できる。これら還元剤は、全エチレン性不飽和単量体100重量部に対して、0.05~5.0重量部の量を用いるのが好ましい。
<乳化重合の条件>
 なお、重合開始剤によらずとも、光化学反応や、放射線照射などによっても重合を行うことができる。重合温度は各重合開始剤の重合開始温度以上とする。例えば、過酸化物系重合開始剤では、通常70℃程度とすればよい。重合時間は特に制限されないが、通常2~24時間である。
<反応に用いられるその他の材料>
 さらに必要に応じて、緩衝剤として、酢酸ナトリウム、クエン酸ナトリウム、重炭酸ナトリウムなどが、また、連鎖移動剤としてのオクチルメルカプタン、チオグリコール酸2-エチルヘキシル、チオグリコール酸オクチル、ステアリルメルカプタン、ラウリルメルカプタン、t-ドデシルメルカプタンなどのメルカプタン類が適量使用できる。
 架橋型樹脂微粒子の重合にカルボキシル基含有エチレン性不飽和単量体などの酸性官能基を有する単量体を使用した場合、重合前や重合後に塩基性化合物で中和してもよい。中和する際、アンモニアもしくはトリメチルアミン、トリエチルアミン、ブチルアミンなどのアルキルアミン類;2-ジメチルアミノエタノール、ジエタノールアミン、トリエタノールアミン、アミノメチルプロパノールなどのアルコールアミン類;モルホリンなどの塩基で中和することができる。ただし、乾燥性に効果が高いのは揮発性の高い塩基であり、好ましい塩基はアミノメチルプロパノール、アンモニアである。
<架橋型樹脂微粒子のガラス転移温度>
 また、架橋型樹脂微粒子のガラス転移温度(以下、Tgともいう)は、-30~70℃が好ましく、-20~30℃がさらに好ましい。Tgが-30℃未満の場合、バインダーが過度に電極活物質を覆い、インピーダンスが高くなりやすい。また、Tgが70℃を超えると、バインダーの柔軟性、粘着性が乏しくなり、電極活物質の集電材への接着性、電極の成形性が劣る場合がある。なお、ガラス転移温度は、DSC(示差走査熱量計)を用いて求めた値である。
 DSC(示差走査熱量計)によるガラス転移温度の測定は以下のようにして行うことができる。架橋型樹脂微粒子を乾固した樹脂約2mgをアルミニウムパン上で秤量し、該試験容器をDSC測定ホルダーにセットし、10℃/分の昇温条件にて得られるチャートの吸熱ピークを読み取る。このときのピーク温度をガラス転移温度とする。
<架橋型樹脂微粒子の粒子構造>
 また、架橋型樹脂微粒子の粒子構造を多層構造、いわゆるコアシェル粒子にすることもできる。例えば、コア部、またはシェル部に官能基を有する単量体を主に重合させた樹脂を局在化させたり、コアとシェルによってTgや組成に差を設けたりすることにより、硬化性、乾燥性、成膜性、バインダーの機械強度を向上させることができる。
<架橋型樹脂微粒子の粒子径>
 架橋型樹脂微粒子の平均粒子径は、電極活物質の結着性や粒子の安定性の点から、10~500nmであることが好ましく、30~250nmであることがより好ましい。また、1μmを超えるような粗大粒子が多く含有されるようになると粒子の安定性が損なわれるので、1μmを超える粗大粒子は多くとも5重量%以下であることが好ましい。なお、平均粒子径とは、体積平均粒子径のことを表し、動的光散乱法により測定できる。
 動的光散乱法による平均粒子径の測定は、以下のようにして行うことができる。架橋型樹脂微粒子分散液は固形分に応じて200~1000倍に水希釈しておく。該希釈液約5mlを測定装置[(株)日機装製 マイクロトラック]のセルに注入し、サンプルに応じた溶剤(例として水)および樹脂の屈折率条件を入力後、測定を行う。この時得られた体積粒子径分布データ(ヒストグラム)のピークを平均粒子径とする。
<重合した樹脂微粒子に添加する未架橋の化合物(D)>
 バインダー組成物は、架橋型樹脂微粒子に加えて、さらに、未架橋のエポキシ基含有化合物、未架橋のアミド基含有化合物、未架橋の水酸基含有化合物、および未架橋のオキサゾリン基含有化合物からなる群より選ばれる少なくとも1つの未架橋の化合物(D)[以下、化合物(D)と表記する場合がある]とを含むことが好ましい。
 化合物(D)である「未架橋の官能基含有化合物」とは、単量体群(C1)に分類される単量体のように架橋型樹脂微粒子の内部架橋構造(三次元架橋構造)を形成する化合物とは異なり、樹脂微粒子が乳化重合(ポリマー形成)された後に添加される(樹脂微粒子の内部架橋形成に関与しない)化合物のことのことをいう。すなわち、「未架橋」とは、架橋型樹脂微粒子の内部架橋構造(三次元架橋構造)の形成に関与していないことを意味する。
 架橋型樹脂微粒子が架橋構造をとることにより耐電解液性が確保され、また、化合物(D)を使用することで、化合物(D)中のエポキシ基、アミド基、水酸基、およびオキサゾリン基から選ばれる少なくとも1つの官能基が、集電体、または電極との密着性に寄与することができる。さらには架橋構造や官能基の量を調整することで、可とう性に優れた二次電池電極用バインダー組成物を得ることができる。
 なお、架橋型樹脂微粒子は、粒子内部で架橋していることが必要である。粒子内部の架橋を適度に調整することによって、耐電解液性を確保することができる。さらに、官能基含有架橋型樹脂微粒子に未架橋の化合物(D)を添加することで、エポキシ基、アミド基、水酸基またはオキサゾリン基が集電体に作用し、集電体や電極への密着性を効果的に向上させることができる。化合物(D)に含まれる上記官能基は、長期保存時や電極作製時の熱によっても安定であるため、少量の使用でも集電体への密着性効果が大きい。さらには保存安定性にも優れている。化合物(D)は、バインダーの可とう性や耐電解液性を調整する目的で架橋型樹脂微粒子中の官能基と反応してもよいが、官能基含有架橋型樹脂微粒子中の官能基との反応のために化合物(D)中の官能基が使われすぎると、集電体または電極と相互作用し得る官能基が少なくなってしまう。このため、架橋型樹脂微粒子と化合物(D)との反応は、集電体または電極への密着性を損なわない程度である必要がある。また、化合物(D)に含まれる上記官能基の一部が架橋反応に用いられる場合[化合物(D)が多官能化合物の場合]には、これらの官能基の架橋度合いを調整することで、耐電解液性と密着性のバランスをとることができる。
<未架橋のエポキシ基含有化合物>
 未架橋のエポキシ基含有化合物としては、例えば、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシル(メタ)アクリレートなどのエポキシ基含有エチレン性不飽和単量体;前記エポキシ基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂;エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N’-ジグリシジルアミノメチル)シクロヘキサンなどの多官能エポキシ化合物;ビスフェノールA-エピクロロヒドリン型エポキシ樹脂、ビスフェノールF-エピクロロヒドリン型エポキシ樹脂などのエポキシ系樹脂などがあげられる。
 エポキシ基含有化合物の中でも特にビスフェノールA-エピクロロヒドリン型エポキシ樹脂、ビスフェノールF-エピクロロヒドリン型エポキシ樹脂などのエポキシ系樹脂や、エポキシ基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂が好ましい。エポキシ系樹脂は、ビスフェノール骨格を有することで耐電解液性を向上させ、また、骨格に含まれる水酸基により集電体密着性を向上させるという相乗効果が期待できる。また、エポキシ基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂は、樹脂骨格内により多くのエポキシ基を有することにより集電体密着性を向上させ、また、樹脂であることにより、単量体に比べて耐電解液性を向上させる効果が期待できる。
<未架橋のアミド基含有化合物>
 未架橋のアミド基含有化合物としては、例えば、(メタ)アクリルアミドなどの第一アミド基含有化合物;N-メチロールアクリルアミド、N,N-ジ(メチロール)アクリルアミド、N-メチロール-N-メトキシメチル(メタ)アクリルアミドなどのアルキロール(メタ)アクリルアミド系化合物;N-メトキシメチル-(メタ)アクリルアミド、N-エトキシメチル-(メタ)アクリルアミド、N-プロポキシメチル-(メタ)アクリルアミド、N-ブトキシメチル-(メタ)アクリルアミド、N-ペントキシメチル-(メタ)アクリルアミドなどのモノアルコキシ(メタ)アクリルアミド系化合物;N,N-ジ(メトキシメチル)アクリルアミド、N-エトキシメチル-N-メトキシメチルメタアクリルアミド、N,N-ジ(エトキシメチル)アクリルアミド、N-エトキシメチル-N-プロポキシメチルメタアクリルアミド、N,N-ジ(プロポキシメチル)アクリルアミド、N-ブトキシメチル-N-(プロポキシメチル)メタアクリルアミド、N,N-ジ(ブトキシメチル)アクリルアミド、N-ブトキシメチル-N-(メトキシメチル)メタアクリルアミド、N,N-ジ(ペントキシメチル)アクリルアミド、N-メトキシメチル-N-(ペントキシメチル)メタアクリルアミドなどのジアルコキシ(メタ)アクリルアミド系化合物;N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジエチルアミノプロピルアクリルアミドなどのジアルキルアミノ(メタ)アクリルアミド系化合物;N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミドなどのジアルキル(メタ)アクリルアミド系化合物;ダイアセトン(メタ)アクリルアミドなどのケト基含有(メタ)アクリルアミド系化合物など、以上のアミド基含有エチレン性不飽和単量体;前記アミド基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂などがあげられる。
 アミド基含有化合物の中でも、特にアクリルアミドなどのアミド基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂が好ましい。樹脂骨格内に、より多くのアミド基を有することにより集電体密着性を向上させ、また、樹脂であることにより、単量体に比べて耐電解液性を向上させる効果が期待できる。
<未架橋の水酸基含有化合物>
 未架橋の水酸基含有化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート4-ヒドロキシビニルベンゼン、1-エチニル-1-シクロヘキサノール、アリルアルコールなどの水酸基含有エチレン性不飽和単量体;前記水酸基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂;エチレングリコール、ジエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオールなどの直鎖脂肪族ジオール類;プロピレングリコール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,2-ジエチル-1,3-プロパンジオールなどの分岐鎖脂肪族ジオール類;1,4-ビス(ヒドロキシメチル)シクロヘキサンなどの環状ジオール類などがあげられる。
 水酸基含有化合物の中でも、特に水酸基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂、または環状ジオール類が好ましい。水酸基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂は、樹脂骨格内に、より多くの水酸基を有することにより集電体密着性を向上させ、また、樹脂であることにより、単量体に比べて耐電解液性を向上させる効果が期待できる。また、環状ジオール類は、骨格に環状構造を有することにより、耐電解液性を向上させる効果が期待できる。
<未架橋のオキサゾリン基含有化合物>
 未架橋のオキサゾリン基含有化合物としては、例えば、2’-メチレンビス(2-オキサゾリン)、2,2’-エチレンビス(2-オキサゾリン)、2,2’-エチレンビス(4-メチル-2-オキサゾリン)、2,2’-プロピレンビス(2-オキサゾリン)、2,2’-テトラメチレンビス(2-オキサゾリン)、2,2’-ヘキサメチレンビス(2-オキサゾリン)、2,2’-オクタメチレンビス(2-オキサゾリン)、2,2’-p-フェニレンビス(2-オキサゾリン)、2,2’-p-フェニレンビス(4,4’-ジメチル-2-オキサゾリン)、2,2’-p-フェニレンビス(4-メチル-2-オキサゾリン)、2,2’-p-フェニレンビス(4-フェニル-2-オキサゾリン)、2,2’-m-フェニレンビス(2-オキサゾリン)、2,2’-m-フェニレンビス(4-メチル-2-オキサゾリン)、2,2’-m-フェニレンビス(4,4’-ジメチル-2-オキサゾリン)、2,2’-m-フェニレンビス(4-フェニレンビス-2-オキサゾリン)、2,2’-o-フェニレンビス(2-オキサゾリン)、2,2’-o-フェニレンビス(4-メチル-2-オキサゾリン)、2,2’-ビス(2-オキサゾリン)、2,2’-ビス(4-メチル-2-オキサゾリン)、2,2’-ビス(4-エチル-2-オキサゾリン)、2,2’-ビス(4-フェニル-2-オキサゾリン)、さらにはオキサゾリン基含有ラジカル重合系樹脂などがあげられる。
 オキサゾリン基含有化合物の中でも、特に、2’-p-フェニレンビス(2-オキサゾリン)などのフェニレンビス型オキサゾリン化合物、または、オキサゾリン基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂が好ましい。フェニレンビス型オキサゾリン化合物は、骨格内にフェニル基を有することにより耐電解液性を向上させる効果がある。また、オキサゾリン基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂は、樹脂骨格内により多くのオキサゾリン基を有することにより集電体密着性を向上させ、また、樹脂であることにより、単量体に比べて耐電解液性を向上させることができる。
<化合物(D)の添加量、分子量>
 化合物(D)は、バインダー組成物(例として架橋型樹脂微粒子)の固形分100重量部に対して0.1~50重量部添加するのが好ましく、5~40重量部添加するのがさらに好ましい。化合物(D)の添加量が0.1重量部未満であると、集電体への密着性に寄与する官能基の量が少なくなり、集電体への密着性向上に十分寄与できない場合がある。また、50重量部を超えると、化合物(D)の電解液への漏出など、バインダー性能への悪影響を起こす場合がある。さらに、化合物(D)は2種類以上併用することも可能である。
 化合物(D)の分子量は特に限定されないが、重量平均分子量が1,000~1,000,000であるのが好ましく、さらには5,000~500,000がより好ましい。分子量が1,000未満であると集電体への密着性効果が十分でない場合があり、また、分子量が1,000,000を超えると化合物の粘度が高くなる場合があり、電極作製時のハンドリング性が悪くなる場合がある。なお、上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定したポリスチレン換算の値である。さらに化合物(D)は、溶媒に溶解する化合物であっても、分散する化合物であってもよい。
<合材インキ>
 本発明の二次電池電極形成用水性組成物は、合材インキや下地層形成用組成物として使用できる。まず、電極形成用組成物の好適な態様の1つである活物質を必須とする合材インキについて説明する。合材インキは、正極合材インキまたは負極合材インキがあり、合材インキは、電極活物質と、バインダー組成物(C)と、分散剤(A)と、水性液状媒体(E)からなり、さらに増粘剤、導電助剤である炭素材料を含有させることができる。
<電極活物質>
 リチウムイオン二次電池用の正極活物質としては、特に限定はされないが、リチウムイオンをドーピングまたはインターカレーション可能な金属酸化物、金属硫化物等の金属化合物、および導電性高分子等を使用することができる。例えば、Fe、Co、Ni、Mn等の遷移金属の酸化物、リチウムとの複合酸化物、遷移金属硫化物等の無機化合物等が挙げられる。具体的には、MnO、V、V13、TiO等の遷移金属酸化物粉末、層状構造のニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウム、スピネル構造のマンガン酸リチウムなどのリチウムと遷移金属との複合酸化物粉末、オリビン構造のリン酸化合物であるリン酸鉄リチウム系材料、TiS、FeSなどの遷移金属硫化物粉末等が挙げられる。また、ポリアニリン、ポリアセチレン、ポリピロール、ポリチオフェン等の導電性高分子を使用することもできる。また、上記の無機化合物や有機化合物を混合して用いてもよい。
 リチウムイオン二次電池用の負極活物質としては、リチウムイオンをドーピングまたはインターカレーション可能なものであれば特に限定されない。例えば、金属Li、その合金であるスズ合金、シリコン合金、鉛合金等の合金系、LiFe、LiFe、LiWO、チタン酸リチウム、バナジウム酸リチウム、ケイ素酸リチウム等の金属酸化物系、ポリアセチレン、ポリ-p-フェニレン等の導電性高分子系、ソフトカーボンやハードカーボンといった、アモルファス系炭素質材料や、高黒鉛化炭素材料等の人造黒鉛、あるいは天然黒鉛等の炭素質粉末、カーボンブラック、メソフェーズカーボンブラック、樹脂焼成炭素材料、気層成長炭素繊維、炭素繊維などの炭素系材料が挙げられる。これら負極活物質は、1種または複数を組み合わせて使用することもできる。
 これら電極活物質の大きさは、0.05~100μmの範囲内であることが好ましく、さらに好ましくは、0.1~50μmの範囲内である。そして、合材インキ中の電極活物質の分散粒径は、0.5~20μmであることが好ましい。ここでいう分散粒径とは、体積粒度分布において、粒子径の細かいものからその粒子の体積割合を積算していったときに、50%となるところの粒子径(D50)であり、一般的な粒度分布計、例えば、動的光散乱方式の粒度分布計(日機装社製「マイクロトラックUPA」)等で測定される。
<導電助剤である炭素材料>
 合材インキは、形成される電極の導電性をより高めるために、炭素材料を含有することが好ましい。炭素材料としては、導電性を有する炭素材料であれば特に限定されるものではないが、グラファイト、カーボンブラック、導電性炭素繊維(カーボンナノチューブ、カーボンナノファイバー、カーボンファイバー)、フラーレン等を単独で、もしくは2種類以上併せて使用することができる。導電性、入手の容易さ、およびコスト面から、カーボンブラックの使用が好ましい。
 カーボンブラックとしては、気体もしくは液体の原料を反応炉中で連続的に熱分解し製造するファーネスブラック、特にエチレン重油を原料としたケッチェンブラック、原料ガスを燃焼させて、その炎をチャンネル鋼底面にあて急冷し析出させたチャンネルブラック、ガスを原料とし燃焼と熱分解を周期的に繰り返すことにより得られるサーマルブラック、特にアセチレンガスを原料とするアセチレンブラックなどの各種のものを単独で、もしくは2種類以上併せて使用することができる。また、通常行われている酸化処理されたカーボンブラックや、中空カーボン等も使用できる。
 カーボンの酸化処理は、カーボンを空気中で高温処理したり、硝酸や二酸化窒素、オゾン等で二次的に処理したりすることより、例えばフェノール基、キノン基、カルボキシル基、カルボニル基の様な酸素含有極性官能基をカーボン表面に直接導入(共有結合)する処理であり、カーボンの分散性を向上させるために一般的に行われている。しかしながら、官能基の導入量が多くなる程カーボンの導電性が低下することが一般的であるため、酸化処理をしていないカーボンの使用が好ましい。
 カーボンブラックの比表面積は、値が大きいほど、カーボンブラック粒子どうしの接触点が増えるため、電極の内部抵抗を下げるのに有利となる。具体的には、窒素の吸着量から求められる比表面積(BET)で、20m/g以上、1500m/g以下、好ましくは50m/g以上、1500m/g以下、更に好ましくは100m/g以上、1500m/g以下のものを使用することが望ましい。比表面積が20m/gを下回るカーボンブラックを用いると、十分な導電性を得ることが難しくなる場合があり、1500m/gを超えるカーボンブラックは、市販材料での入手が困難となる場合がある。
 カーボンブラックの粒径は、一次粒子径で0.005~1μmが好ましく、特に、0.01~0.2μmが好ましい。ただし、ここでいう一次粒子径とは、電子顕微鏡などで測定された粒子径を平均したものである。
 導電助剤である炭素材料の合材インキ中の分散粒径は、0.03μm以上、5μm以下に微細化することが望ましい。導電助剤としての炭素材料の分散粒径が0.03μm未満の組成物は、その作製が難しい場合がある。また、導電助剤としての炭素材料の分散粒径が2μmを超える組成物を用いた場合には、合材塗膜の材料分布のバラつき、電極の抵抗分布のバラつき等の不具合が生じる場合がある。
 ここでいう分散粒径とは、体積粒度分布において、粒子径の細かいものからその粒子の体積割合を積算していったときに、50%となるところの粒子径(D50)であり、一般的な粒度分布計、例えば、動的光散乱方式の粒度分布計(日機装社製「マイクロトラックUPA」)等で測定される。
 市販のカーボンブラックとしては、例えば、トーカブラック#4300、#4400、#4500、#5500等(東海カーボン社製、ファーネスブラック)、プリンテックスL等(デグサ社製、ファーネスブラック)、Raven7000、5750、5250、5000ULTRAIII、5000ULTRA等、Conductex SC ULTRA、Conductex 975 ULTRA等、PUER BLACK100、115、205等(コロンビヤン社製、ファーネスブラック)、#2350、#2400B、#2600B、#30050B、#3030B、#3230B、#3350B、#3400B、#5400B等(三菱化学社製、ファーネスブラック)、MONARCH1400、1300、900、VulcanXC-72R、BlackPearls2000等(キャボット社製、ファーネスブラック)、Ensaco250G、Ensaco260G、Ensaco350G、SuperP-Li(TIMCAL社製)、ケッチェンブラックEC-300J、EC-600JD(アクゾ社製)、デンカブラック、デンカブラックHS-100、FX-35(電気化学工業社製、アセチレンブラック)等、グラファイトとしては例えば人造黒鉛や燐片状黒鉛、塊状黒鉛、土状黒鉛などの天然黒鉛が挙げられるが、これらに限定されるものではなく、2種以上を組み合わせて用いても良い。
 導電性炭素繊維としては石油由来の原料から焼成して得られるものが良いが、植物由来の原料からも焼成して得られるものも用いることができる。例えば石油由来の原料で製造される昭和電工社製のVGCFなどを挙げることができる。
<水性液状媒体(E)>
 水性液状媒体(E)としては、水を使用することが好ましいが、必要に応じて、例えば、集電体への塗工性向上のために、水と相溶する液状媒体を使用しても良い。水と相溶する液状媒体としては、アルコール類、グリコール類、セロソルブ類、アミノアルコール類、アミン類、ケトン類、カルボン酸アミド類、リン酸アミド類、スルホキシド類、カルボン酸エステル類、リン酸エステル類、エーテル類、ニトリル類等が挙げられ、水と相溶する範囲で使用しても良い。
<その他の添加剤>
 さらに、合材インキには、成膜助剤、消泡剤、レベリング剤、防腐剤、pH調整剤、粘性調整剤などを必要に応じて配合できる。
<合材インキの諸物性>
 塗工方法によるが、固形分30~90重量%の範囲で、合材インキの粘度は100mPa・s以上、30,000mPa・s以下とするのが好ましい。また、塗工可能な粘度範囲内において、活物質はできるだけ多く含まれることが好ましく、例えば、合材インキ固形分に占める活物質の割合は、80重量%以上、99重量%以下が好ましい。また、合材インキ固形分に占める分散剤(A)の割合は、0.1~15重量%であることが好ましい。炭素材料を含む場合、合材インキ固形分に占める炭素材料の割合は、0.1~15重量%であることが好ましい。
<合材インキの調製方法>
 合材インキは、種々の方法で得ることができる。ただし、炭素材料の使用は任意である。例えば、
(4-1) 活物質と分散剤(A)と水性液状媒体(E)とを含有する活物質の水性分散体を得た後、該水性分散体に炭素材料と架橋型樹脂微粒子を含むバインダー組成物(C)とを加え、合材インキを得ることができる。この場合、炭素材料と架橋型樹脂微粒子を含むバインダー組成物(C)は、同時に加えることもできるし、炭素材料を加えた後、バインダーを加えてもよいし、その逆であってもよい。
(4-2) 炭素材料と分散剤(A)と水性液状媒体(E)と含有する導電助剤の水性分散体を得た後、該水性分散体に活物質と架橋型樹脂微粒子を含むバインダー組成物(C)とを加え、合材インキを得ることができる。この場合、活物質とバインダー同時に加えることもできるし、活物質を加えた後、架橋型樹脂微粒子を含むバインダー組成物(C)を加えてもよいし、その逆であってもよい。
(4-3) 活物質と分散剤(A)と架橋型樹脂微粒子を含むバインダー組成物(C)と水性液状媒体(E)と含有する活物質の水性分散体を得た後、該水性分散体に炭素材料を加え、合材インキを得ることができる。
(4-4) 炭素材料と分散剤(A)と架橋型樹脂微粒子を含むバインダー組成物(C)と水性液状媒体(E)と含有する導電助剤の水性分散体を得た後、該水性分散体に活物質を加え、合材インキを得ることができる。
(4-5) 活物質と炭素材料と分散剤(A)と架橋型樹脂微粒子を含むバインダー組成物(C)と水性液状媒体(E)をほとんど同時に混合し、合材インキを得ることができる。
 上記の工程で、セルロース系増粘剤(B)は、分散剤(A)と同時に加えても良いし、別に加えても良い。
<分散機・混合機>
 合材インキを得る際に用いられる装置としては、顔料分散等に通常用いられている分散機、混合機が使用できる。例えば、ディスパー、ホモミキサー、若しくはプラネタリーミキサー等のミキサー類;エム・テクニック社製「クレアミックス」、若しくはPRIMIX社「フィルミックス」等のホモジナイザー類;ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノミル」等)、アトライター、パールミル(アイリッヒ社製「DCPミル」等)、若しくはコボールミル等のメディア型分散機;湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン社製「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS-5」、若しくは奈良機械社製「MICROS」等のメディアレス分散機;または、その他ロールミル等が挙げられるが、これらに限定されるものではない。また、分散機としては、分散機からの金属混入防止処理を施したものを用いることが好ましい。
 例えば、メディア型分散機を使用する場合は、アジテーター及びベッセルがセラミック製又は樹脂製の分散機を使用する方法や、金属製アジテーター及びベッセル表面をタングステンカーバイド溶射や樹脂コーティング等の処理をした分散機を用いることが好ましい。そして、メディアとしては、ガラスビーズ、または、ジルコニアビーズ、若しくはアルミナビーズ等のセラミックビーズを用いることが好ましい。また、ロールミルを使用する場合についても、セラミック製ロールを用いることが好ましい。分散装置は、1種のみを使用しても良いし、複数種の装置を組み合わせて使用しても良い。また、強い衝撃で粒子が割れたり、潰れたりしやすい正極または負極活物質の場合は、メディア型分散機よりは、ロールミルやホモジナイザー等のメディアレス分散機が好ましい。
<下地層形成用組成物>
 下地層形成用組成物は、少なくとも導電助剤とバインダー組成物(C)と分散剤(A)と水性液状媒体(E)とを含有する。さらに、増粘剤(B)を使用することもできる。各成分については、合材インキの場合と同様である。
 電極下地層に用いる組成物の総固形分に占める導電助剤としての炭素材料の割合は、5重量%以上、95重量%以下が好ましく、10重量%以上、90重量%以下が更に好ましい。導電助剤である炭素材料が少ないと、下地層の導電性が保てない場合があり、一方、導電助剤である炭素材料が多すぎると、塗膜の耐性が低下する場合がある。また、電極下地層インキの適正粘度は、電極下地層インキの塗工方法によるが、一般には、10mPa・s以上、30,000mPa・s以下とするのが好ましい。
<電極>
 合材インキを、集電体上に塗工・乾燥し、合材層を形成し、二次電池用電極を作製することができる。あるいは、下地層形成用組成物を用いて集電体上に下地層を形成した後、該下地層上に、合材層を設けて、二次電池用電極を作製することもできる。下地層上に設ける合材層は、上記した合材インキ(1)~(4)を用いて形成してもよいし、他の合材インキを用いて形成することもできる。
<集電体>
 電極に使用する集電体の材質や形状は特に限定されず、各種二次電池にあったものを適宜選択することができる。例えば、集電体の材質としては、アルミニウム、銅、ニッケル、チタン、又はステンレス等の金属や合金が挙げられる。リチウムイオン電池の場合、特に正極材料としてはアルミニウムが、負極材料としては銅が、それぞれ好ましい。また、形状としては、一般的には平板上の箔が用いられるが、表面を粗面化したものや、多孔質の発泡状のもの、穴あき箔状のもの、及びメッシュ状の集電体も使用できる。
 集電体上に合材インキを塗工する方法としては、特に制限はなく公知の方法を用いることができる。具体的には、ダイコーティング法、ディップコーティング法、ロールコーティング法、ドクターコーティング法、ナイフコーティング法、スプレーコティング法、グラビアコーティング法、スクリーン印刷法または静電塗装法等が挙げる事ができ、乾燥方法としては放置乾燥、送風乾燥機、温風乾燥機、赤外線加熱機、遠赤外線加熱機などが使用できるが、特にこれらに限定されるものではない。また、塗布後に平版プレスやカレンダーロール等による圧延処理を行っても良い。電極合材層の厚みは、一般的には1μm以上、500μm以下であり、好ましくは10μm以上、300μm以下である。また、下地層を具備する場合には下地層の厚みは、一般的には0.1μm以上、100μm以下であり、好ましくは0.5μm以上、50μm以下である。
<二次電池>
 正極もしくは負極の少なくとも一方に上記の電極を用い、二次電池を作製することができる。二次電池としては、リチウムイオン二次電池の他、アルカリ二次電池、鉛蓄電池、ナトリウム硫黄二次電池、リチウム空気二次電池等が挙げられ、それぞれの二次電池で従来から知られている、電解液やセパレーター等を適宜用いることができる。
<電解液>
 リチウムイオン二次電池の場合を例にとって説明する。電解液としては、リチウムを含んだ電解質を非水系の溶剤に溶解したものを用いる。電解質としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiCFSO、Li(CFSON、LiCSO、Li(CFSOC、LiI、LiBr、LiCl、LiAlCl、LiHF、LiSCN、又はLiBPh等が挙げられるがこれらに限定されない。
 非水系の溶剤としては特に限定はされないが、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、及びジエチルカーボネート等のカーボネート類;γ-ブチロラクトン、γ-バレロラクトン、及びγ-オクタノイックラクトン等のラクトン類;テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,2-メトキシエタン、1,2-エトキシエタン、及び1,2-ジブトキシエタン等のグライム類;メチルフォルメート、メチルアセテート、及びメチルプロピオネート等のエステル類;ジメチルスルホキシド、及びスルホラン等のスルホキシド類;並びに、アセトニトリル等のニトリル類等が挙げられる。又これらの溶剤は、それぞれ単独で使用しても良いが、2種以上を混合して使用しても良い。
 さらに上記電解液を、ポリマーマトリクスに保持しゲル状とした高分子電解質とすることもできる。ポリマーマトリクスとしては、ポリアルキレンオキシドセグメントを有するアクリレート系樹脂、ポリアルキレンオキシドセグメントを有するポリホスファゼン系樹脂、及びポリアルキレンオキシドセグメントを有するポリシロキサン等が挙げられるがこれらに限定されない。
<セパレーター>
 セパレーターとしては、例えば、ポリエチレン不織布、ポリプロピレン不織布、ポリアミド不織布及びそれらに親水性処理を施したものが挙げられるが、特にこれらに限定されるものではない。
<電池構造・構成>
 本発明の電極形成用組成物を用いたリチウムイオン二次電池の構造については特に限定されないが、通常、正極及び負極と、必要に応じて設けられるセパレーターとから構成され、ペーパー型、円筒型、ボタン型、積層型等、使用する目的に応じた種々の形状とすることができる。
 以下に、実施例により本発明をさらに具体的に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。なお、実施例および比較例における「部」は「重量部」を表す。
<カチオン性分散剤の合成例>
(合成例1)
カチオン性分散剤(A1-1)
 ガス導入管、温度計、コンデンサー及び攪拌機を備えた反応容器に、ブタノール93.4部を仕込み、窒素ガスで置換した。反応容器内を110℃に加熱して、2-エチルヘキシルアクリレート10.0部、メチルメタクリレート20.0部、ジメチルアミノエチルメタクリレート70.0部及びV-601(和光純薬製)4.5部の混合物を2時間かけて滴下し、重合反応を行った。滴下終了後、さらに110℃で3時間反応させた後、V-601(和光純薬製)0.5部を添加し、さらに110℃で1時間反応を続けて、カチオン性分散剤(A1-1)の溶液を得た。カチオン性分散剤(A1-1)の重量平均分子量は約20000であった。
 さらに、室温まで冷却した後、塩酸0.01%水溶液48.9部を添加して中和した。これは、ジメチルアミノエチルメタクリレートを100%中和する量である。さらに、水103部を添加した後、90℃以上に加熱し、ブタノールを水と共沸させてブタノールを留去した。内温が100℃に達した時点で1gサンプリングして、180℃で20分間加熱乾燥して不揮発分を測定し、この測定値に基づいて、水性化した樹脂溶液の不揮発分が20%になるように水を加えた。これより、カチオン性分散剤(A1-1)の不揮発分20%の水溶液ないし水性分散体を得た。
(合成例2~9及び15~17)
 表1に示す配合組成で、合成例1と同様の方法により、カチオン性分散剤(A1-2)~(A1-9)及び(A1-15)~(A1-17)の水溶液ないし水性分散体を得た。
Figure JPOXMLDOC01-appb-T000001
 なお、表1中の省略記号の説明は以下のとおりである。
  St  :スチレン
  BzMA:ベンジルメタクリレート
  DM  :ジメチルアミノエチルメタクリレート
  HEMA:ヒドロキシエチルメタクリレート
  MMA :メタクリル酸メチル
  2EHA:2-エチルヘキシルアクリレート
  Aam :アクリルアミド
<バインダー組成物の調製>
[合成例18]
バインダー組成物(C1-4)
 攪拌器、温度計、滴下ロート及び還流器を備えた反応容器に、イオン交換水40部と界面活性剤としてアデカリアソープSR-10(株式会社ADEKA製)0.2部とを仕込み、これに対して、別途、メチルメタクリレート48.5部、ブチルアクリレート50部、アクリル酸1部、3-メタクリロキシプロピルトリメトキシシラン0.5部、イオン交換水53部および界面活性剤としてアデカリアソープSR-10(株式会社ADEKA製)1.8部をあらかじめ混合しておいたプレエマルジョンのうちの1%をさらに加えた。内温を70℃に昇温し十分に窒素置換した後、過硫酸カリウムの5%水溶液10部の10%を添加し重合を開始した。反応系内を70℃で5分間保持した後、内温を70℃に保ちながらプレエマルジョンの残りと過硫酸カリウムの5%水溶液の残りを3時間かけて滴下し、さらに2時間攪拌を継続した。固形分測定にて転化率が98%超えたことを確認した後、温度を30℃まで冷却した。25%アンモニア水を添加して、pHを8.5とし、さらにイオン交換水で固形分を50%に調整して樹脂微粒子水分散体を得た。なお、固形分は、150℃20分焼き付け残分により求めた。
[合成例19~37]
 表2に示す配合組成で、合成例18と同様の方法により、樹脂微粒子水分散体であるバインダー組成物(C1-5)~(C1-17)、(C1-1)~(C1-3)、(C2-1)、(C3-1)及び(C4-1)を得た。ただし、バインダー組成物(C1-16)及び(C1-17)は乳化重合時に樹脂が凝集し、目的の樹脂微粒子を得ることができなかった。
Figure JPOXMLDOC01-appb-T000002
 なお、表2中の記号の説明は以下のとおりである。
※1:3-メタクリロキシプロピルトリメトキシシラン
※2:アリルメタクリレート
※3:グリシジルメタクリレート
※4:ダイアセトンアクリルアミド
※5:ジエチルアクリルアミド
※6:アクリルアミド
※7:N-メチロールアクリルアミド
※8:ヒドロキシエチルメタクリレート
※9:2-エチルヘキシルアクリレート
※10:ラウリルメタクリレート
※11:スチレン
※12:シクロヘキシルメタクリレート
※13:イタコン酸
※14:アクリル酸
※15:スチレンスルホン酸
※16:アシッド・ホスホオキシエチルメタクリレート
※17:メチルメタクリレート
※18:ブチルアクリレート
※19:アクリロニトリル
※20:1,3-ブタジエン
※21:アデカリアソープSR-10
   アルキルエーテル系アニオン界面活性剤(株式会社ADEKA製)
※22:アデカリアソープER-20
   アルキルエーテル系ノニオン界面活性剤(株式会社ADEKA製)
※23:5%過硫酸カリウム水溶液
<化合物(D)の製造[エポキシ基含有化合物の製造]>
[製造例1]
 攪拌器、温度計、滴下ロート及び還流器を備えた反応容器にイソプロピルアルコール20部及び水20部を仕込み、別途、メチルメタクリレート40部、メチルアクリレート40部及びグリシジルメタクリレート20部を滴下槽1に、また、過硫酸カリウム2部をイソプロピルアルコール30部および水30部に溶解させて滴下槽2に仕込んだ。内温を80℃に昇温し十分に窒素置換した後、滴下槽1及び2の内容物を2時間かけて滴下し、重合を行った。滴下終了後、内温を80℃に保ったまま1時間攪拌を続け、固形分測定にて転化率が98%超えたことを確認した後、温度を30℃まで冷却し、固形分50%のエポキシ基含有化合物(メチルメタクリレート/メチルアクリレート/グリシジルメタクリレート共重合体)溶液を得た。なお、固形分は、150℃20分焼き付け残分により求めた。
<化合物(D)の製造[アミド基含有化合物の製造]>
[製造例2]
 攪拌器、温度計、滴下ロート及び還流器を備えた反応容器に水90部を仕込み、別途、アクリルアミド20部を滴下槽1に、また、過硫酸カリウム2部を水90部に溶解させて滴下槽2に仕込んだ。内温を80℃に昇温し十分に窒素置換した後、滴下槽1及び2の内容物を2時間かけて滴下し、重合を行った。滴下終了後、内温を80℃に保ったまま1時間攪拌を続け、固形分測定にて転化率が98%超えたことを確認した後、温度を30℃まで冷却し、固形分10%のアミド基含有化合物(ポリアクリルアミド)溶液を得た。なお、固形分は、150℃20分焼き付け残分により求めた。
[製造例3]
 攪拌器、温度計、滴下ロート及び還流器を備えた反応容器に水40部を仕込み、別途、2-エチルヘキシルアクリレート40部、スチレン40部及びジメチルアクリルアミド20部を滴下槽1に、また、過硫酸カリウム2部を水60部に溶解させて滴下槽2に仕込んだ。内温を80℃に昇温し十分に窒素置換した後、滴下槽1及び2の内容物を2時間かけて滴下し、重合を行った。滴下終了後、内温を80℃に保ったまま1時間攪拌を続け、固形分測定にて転化率が98%超えたことを確認した後、温度を30℃まで冷却し、固形分50%のアミド基含有化合物(2-エチルヘキシルアクリレート/スチレン/ジメチルアクリルアミド共重合体)溶液を得た。なお、固形分は、150℃20分焼き付け残分により求めた。
<化合物(D)の製造[水酸基含有化合物の製造]>
[製造例4]
 攪拌器、温度計、滴下ロート及び還流器を備えた反応容器にイソプロピルアルコール20部及び水20部を仕込み、別途、メチルメタクリレート40部、ブチルアクリレート40部及び2-ヒドロキシエチルメタクリレート20部を滴下槽1に、また、過硫酸カリウム2部をイソプロピルアルコール30部および水30部に溶解させて滴下槽2に仕込んだ。内温を80℃に昇温し十分に窒素置換した後、滴下槽1及び2の内容物を2時間かけて滴下し、重合を行った。滴下終了後、内温を80℃に保ったまま1時間攪拌を続け、固形分測定にて転化率が98%超えたことを確認した後、温度を30℃まで冷却し、固形分50%の水酸基含有化合物(メチルメタクリレート/ブチルアクリレート/2-ヒドロキシエチルメタクリレート共重合体)溶液を得た。なお、固形分は、150℃20分焼き付け残分により求めた。
[合成例38~44]
 表3に示す配合組成で未架橋の化合物(D)を含むバインダー組成物を得た。
Figure JPOXMLDOC01-appb-T000003
 なお、表3中の製品名の説明は以下のとおりである。
 エポキシ樹脂;製品名アデカレジンEM-1-60L、株式会社ADEKA製、エポキシ当量320、ビスフェノールA-エピクロロヒドリン型エポキシ樹脂
 オキサゾリン含有アクリル・スチレン樹脂;製品名エポクロスK-2020E、株式会社日本触媒製、オキサゾリン当量550
<セルロース系増粘剤(B)>
・CMC:カルボキシメチルセルロース、水酸基価:415~500mgKOH/g
・HEC:ヒドロキシエチルセルロース、水酸基価:600~720mgKOH/g
<二次電池電極用炭素材料分散体>
 導電助剤である炭素材料としてアセチレンブラック(デンカブラックHS-100)10部、合成例2に記載のカチオン性分散剤(A1-2)の水溶液ないし水性分散体を10部(固形分として2部)、水80部をミキサーに入れて混合し、更にサンドミルに入れて分散を行い、表4に示す組成比の二次電池電極用炭素材料分散体(1)を得た。
 表4に示す配合組成で、二次電池電極用炭素材料分散体(1)と同様の方法で二次電池電極用炭素材料分散体(2)~(29)を得た。
 二次電池電極用炭素材料分散体の分散度を、グラインドゲージによる判定(JIS K5600-2-5に準ず)より求めた。評価結果を表4に示す。表中の数字は粗大粒子の大きさを示し、数値が小さいほど分散性に優れ、均一な二次電池電極形成用組成物であることを示している。
Figure JPOXMLDOC01-appb-T000004
 なお、表4中の省略記号の説明は以下のとおりである。
A:アセチレンブラック、デンカブラックHS-100(電気化学工業社製)
F:ファーネスブラック、Super-P Li(TIMCAL社製)
C:カーボンナノチューブ、VGCF-H(昭和電工社製)
市販分散剤A:アリルアミン重合体、重量平均分子量:25000、アミン価:982mgKOH/g
市販分散剤B:アリルアミン塩酸塩重合体、重量平均分子量:150000、アミン価:982mgKOH/g
市販分散剤C:ジアリルアミン塩酸塩重合体、重量平均分子量:110000、アミン価:505mgKOH/g
市販分散剤D:ジアリルジメチルアンモニウムクロリド重合体、重量平均分子量:200000、アミン価:505mgKOH/g
市販分散剤E:アリルアミン塩酸塩・ジアリルアミン塩酸塩共重合体、重量平均分子量:100000、アミン価:743mgKOH/g
市販分散剤F:ポリエチレンイミン、重量平均分子量約:70000、アミン価:1008mgKOH/g
CMC:カルボキシメチルセルロース、水酸基価:415~500mgKOH/g
HEC:ヒドロキシエチルセルロース、水酸基価:600~720mgKOH/g
<二次電池電極形成用組成物>
[実施例1]
 二次電池電極用炭素材料分散体(1)50部(固形分で6部)と、固形分で4重量部となる量のバインダー組成物(C1-4)とを混合して二次電池電極形成用組成物を得た。
[実施例2~24、比較例1~9]
 表5に示す組成比となるように、二次電池電極用炭素材料分散体とバインダー組成物とを混合して、実施例2~24、比較例1~9の二次電池電極形成用組成物を得た。
 二次電池電極形成用組成物を用いて電極を作製した場合の電解液への溶出は、電池を作製した後の電極崩壊、集電体からの電極層の剥離による電池特性劣化を引き起こしてしまうため、その溶出が見られないことが望ましい。電解液溶出性の評価は次のように行なった。表5に示す二次電池電極形成用組成物を厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥して厚さ5μmの二次電池電極形成用組成物塗膜を作製した。得られた塗膜をエチレンカーボネートとジエチルカーボネートを1:1(体積比)の非水系電解液溶媒に浸して60℃の環境下で3日間保管後、塗膜の状態を観察した。評価基準を下記に示し、評価結果を表5に示す。
  ○:「塗膜の崩壊、剥離は見られない」
  △:「塗膜の部分的な崩壊、剥離が見られる」
  ×:「塗膜の大部分が崩壊、剥離している」
Figure JPOXMLDOC01-appb-T000005
<リチウムイオン二次電池電極用合材インキ、正極、コイン型電池>
[実施例25]
 正極活物質としてLiCoO90部、分散剤(A1-3)の水溶液5部(樹脂固形分として1部)、バインダー組成物(C1-4)8部(固形分として4部)及び水43.2部を混合して、固形分65重量%の正極用の二次電池電極用合材インキを作製した。合材インキの分散度を、グラインドゲージによる判定(JIS K5600-2-5に準ず)より求めた。評価結果を表6Aに示す。表中の数字は粗大粒子の大きさを示し、数値が小さいほど分散性に優れ、均一な二次電池電極用合材インキであることを示している。
 次に、この正極用の二次電池電極用合材インキを集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥して電極の厚さが100μmとなるよう調整した。さらに、ロールプレスによる圧延処理を行い、厚さが80μmとなる正極を作製した。なお、充放電保存特性は、正極を作用極、金属リチウム箔を対極とした評価用コイン型電池を用いて、評価した。
[実施例26~40、比較例10~25]
 表6A及び6Bに示す活物質、導電助剤である炭素材料、炭素材料分散体、二次電池電極形成用組成物、分散剤及びバインダー組成物の組み合せを変え、正極用の二次電池電極用合材インキの最終固形分が65重量%となるように水を加えた以外は実施例25と同様にして、正極用の二次電池電極用合材インキ及び正極を得て、同様に評価した。
<リチウムイオン二次電池用負極の作製>
[実施例41]
 負極活物質として天然黒鉛95部、分散剤(A1-4)の水溶液2.5部(樹脂固形分として0.5部)、バインダー組成物(C1-4)4部(固形分として2部)及び水93.5部を混合して、固形分50重量%の負極用の二次電池電極用合材インキを作製した。合材インキの分散度を、グラインドゲージによる判定より求めた。評価結果を表6Cに示す。
 次に、この負極用の二次電池電極用合材インキを集電体となる厚さ20μmの銅箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥して電極の厚さが100μmとなるよう調整した。さらに、ロールプレスによる圧延処理を行い、厚さが80μmとなる負極を作製し、正極の場合と同様に評価した。なお、充放電保存特性は、負極を作用極、金属リチウム箔を対極とした評価用コイン型電池を用いて、評価した。
[実施例42~44、比較例26~32]
 表6Cに示す活物質、導電助剤である炭素材料、炭素材料分散体、二次電池電極形成用組成物、分散剤及びバインダー組成物の組み合せを変え、負極用の二次電池電極用合材インキの最終固形分が50重量%となるように水を加えた以外は実施例41と同様にして、負極用の二次電池電極用合材インキ及び負極を得て、同様に評価した。
[実施例45]
 正極活物質としてLiCoO90部、分散剤(A1-9)の水溶液2.5部(樹脂固形分として0.5部)、増粘剤としてCMCの3%水溶液33.3部(固形分として1部)、バインダー組成物(C1-6)7部(固形分として3.5部)及び水13.3部を混合して、固形分65重量%の正極用の二次電池電極用合材インキを作製した。組成を表7Aに示す。正極の作製、評価は実施例25と同様におこなった。
[実施例46~52、実施例60~70、比較例33~40]
 表7Aおよび表8Aに示す活物質、導電助剤である炭素材料、炭素材料分散体、二次電池電極形成用組成物、分散剤、増粘剤及びバインダー組成物の組み合せを変え、正極用の二次電池電極用合材インキの最終固形分が65重量%となるように水を加えた以外は実施例45と同様にして、正極用の二次電池電極用合材インキ及び正極を得て、同様に評価した。
[実施例53]
 負極活物質として天然黒鉛94部、分散剤(A1-3)の水溶液2.5部(樹脂固形分として0.5部)、バインダー組成物(C1-4)5部(固形分として2.5部)、増粘剤としてCMCの2%水溶液25部(固形分として0.5部)及び水68.5部を混合して、固形分50重量%の負極用の二次電池電極用合材インキを作製した。組成を表7Bに示す。負極の作製、評価は実施例41と同様におこなった。
[実施例54~59、実施例71~78、比較例41~43]
 表7Bおよび表8Bに示す活物質、導電助剤である炭素材料、炭素材料分散体、二次電池電極形成用組成物、分散剤、増粘剤及びバインダー組成物の組み合せを変え、負極用の二次電池電極用合材インキの最終固形分が50重量%となるように水を加えた以外は実施例53と同様にして、負極用の二次電池電極用合材インキ及び負極を得、同様に評価した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 なお、表6A~6C中の省略記号の説明は以下のとおりである。
LCO:LiCoO
LFP:LiFePO
LMO:LiMn
NMC:LiNi1/3Mn1/3Co1/3
炭素材料A:アセチレンブラック、デンカブラックHS-100(電気化学工業社製)
市販分散剤B:アリルアミン塩酸塩重合体
市販分散剤F:ポリエチレンイミン
HEC:ヒドロキシエチルセルロース
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 なお、表7A及び7B中の省略記号の説明は以下のとおりである。
LCO:LiCoO
LFP:LiFePO
LMO:LiMn
NMC:LiNi1/3Mn1/3Co1/3
炭素材料A:アセチレンブラック、デンカブラックHS-100(電気化学工業社製)
炭素材料C:カーボンナノチューブ、VGCF-H(昭和電工社製)
市販分散剤C:ジアリルアミン塩酸塩重合体
市販分散剤D:ジアリルジメチルアンモニウムクロリド重合体
市販分散剤E:アリルアミン塩酸塩・ジアリルアミン塩酸塩共重合体
CMC:カルボキシメチルセルロース
HEC:ヒドロキシエチルセルロース
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 なお、表8A及び8B中の省略記号の説明は以下のとおりである。
LFP:LiFePO
LMO:LiMn
炭素材料A:アセチレンブラック、デンカブラックHS-100(電気化学工業社製)
炭素材料C:カーボンナノチューブ、VGCF-H(昭和電工社製)
CMC:カルボキシメチルセルロース
HEC:ヒドロキシエチルセルロース
PTFE:ポリテトラフルオロエチレン
<作製した合材インキ、塗膜の特性評価、電池評価の方法>
(合材インキの分散度)
 二次電池電極形成用組成物の分散度と同様、グラインドゲージによる判定(JIS K5600-2-5に準ず)より求めた。
(合材インキの粘度)
 スラリーの粘度測定には、レオメーター(TAインスツメント製「AR-G2」)を用い、シェアレートを0.001(1/s)~10(1/s)で変化させた時の0.01(1/s)と1(1/s)の粘度を求めた。
0.01(1/s)の粘度について
 ○:10000mPa・sより大きく、50000mPa・s以下の場合
 △:50000mPa・sより大きく、100000mPa・s以下の場合
 ×:100000mPa・sより大きい場合
1(1/s)の粘度について
 ○:1000mPa・sより大きく、5000mPa・s以下の場合
 △:5000mPa・sより大きく、8000mPa・s以下の場合
 ×:8000mPa・sより大きい場合
(合材インキの沈降性)
 合材インキを作製してから1日後に底部に沈降物が生じるか確認した。
 ○:1日後の合材インキに沈降物は全く確認されない。
 ×:1日後の合材インキに沈降物は僅かでも確認できる。
(塗膜の剥離強度)
 上記で作製した電極(実施例25を参照)に、ナイフを用いて電極表面から集電体に達する深さまでの切込みを2mm間隔で縦横それぞれ6本の碁盤目の切込みを入れた。この切り込みに粘着テープを貼り付けて直ちに引き剥がし、活物質の脱落の程度を目視判定で判定した。評価基準を下記に示す。
  ○:「剥離なし(実用上問題のないレベル)」
 ○△:「わずかに剥離(問題はあるが使用可能レベル)」
  △:「半分程度剥離」
  ×:「ほとんどの部分で剥離」
(塗膜の柔軟性)
 上記で作製した電極を短冊状にして集電体側を直径3mmの金属棒に接するように巻きつけ、巻きつけ時に起こる電極表面のひび割れを、目視観察により判定した。ひび割れが起こらないものほど、柔軟性が良い。
  ○:「ひび割れなし(実用上問題のないレベル)」
 ○△:「ごくまれにひび割れが見られる(問題があるが、使用可能レベル)」
  △:「部分的にひび割れが見られる」
  ×:「全体的にひび割れが見られる」
(電解液溶出性)
 実施例1における電解液溶出性の評価と同様の方法により求めた。
(充放電保存特性)
 上記で作製した電極を直径16mmに打ち抜いて作製した作用極と、金属リチウム箔の対極と、作用極及び対極の間に挿入されるセパレーター(多孔質ポリプロピレンフィルム)と、電解液(エチレンカーボネートとジエチルカーボネートを1:1(体積比)の割合で混合した混合溶媒にLiPFを1Mの濃度で溶解させた非水系電解液)とからなるコイン型電池を作製した。コイン型電池はアルゴンガスで置換したグロ-ブボックス内で作製した。
 得られたコイン型電池について、充放電装置(北斗電工社製SM-8)を用い、充放電測定を行った。使用する活物質がLiFePOの場合は、充電電流1.0Cにて充電終止電圧4.5Vまで定電流定電圧充電を続けた。電池の電圧が4.5Vに達した後、放電電流1.0Cで放電終止電圧2.0Vに達するまで定電流放電を行った。これらの充電・放電サイクルを1サイクルとして100サイクルの充電・放電を繰り返した。3サイクル目の放電容量を初回放電容量(初回放電容量を放電容量維持率100%とする)とし、100サイクル後の放電容量維持率を算出した(100%に近いほど良好)。
  ○:「変化率が95%以上。特に優れている。」
 ○△:「変化率が90%以上、95%未満。全く問題なし。」
  △:「変化率が85%以上、90%未満。問題はあるが使用可能なレベル。」
  ×:「変化率が85%未満。実用上問題あり、使用不可。」
 また、使用する活物質がLiCoO、LiMn、LiNiOの場合は、充電電流1.0Cにて充電終止電圧4.2Vまで定電流定電圧充電を続けた。電池の電圧が4.2Vに達した後、放電電流1.0Cで放電終止電圧3.0Vに達するまで定電流放電を行った。これらの充電・放電サイクルを1サイクルとして100サイクルの充電・放電を繰り返した。
 また、使用する活物質がLiNi1/3Mn1/3Co1/3の場合は、充電電流1.0Cにて充電終止電圧4.3Vまで定電流定電圧充電を続けた。電池の電圧が4.3Vに達した後、放電電流1.0Cで放電終止電圧2.8Vに達するまで定電流放電を行った。これらの充電・放電サイクルを1サイクルとして100サイクルの充電・放電を繰り返した。
(充放電サイクル後の塗膜外観)
 充放電サイクル特性評価後にセルを分解し、電極塗膜の外観を目視にて確認した。評価結果が良いほど、電極の強度に優れていることを示す。
 ○:「剥がれなし」
 △:「僅かに剥がれ」
 ×:「大部分剥がれ」
 表6A~C、表7A、表7B、表8A及び8Bに示すように、本発明の二次電池電極形成用水性組成物を用いた場合、活物質、または導電助剤である炭素材料が合材インキ中で均一に分散されているため、合材インキの流動特性、電極の柔軟性、密着性のバランスが取れ、電池特性においても、充放電保存特性が向上すると考えられる。
 活物質または導電助剤である炭素材料が、合材インキ中での分散制御が不十分であった場合、電極とした時の均一な導電ネットワークが形成されないために、電極中で部分的凝集に起因する抵抗分布が生じてしまい、電池として使用した際の電流集中が起こるために劣化促進を引き起こしているのではないかと考察している。導電助剤である炭素材料または活物質の分散制御が不十分な場合、すなわち、カチオン性分散剤を使用しない場合やカチオン性分散剤であっても本願発明の範囲から外れるようなカチオン性分散剤を用いた場合には、電極の塗膜特性や電池特性が不十分な傾向が見られている。特に導電助剤である炭素材料の分散制御が不十分な場合、その傾向は顕著である。
 更には、分散剤とバインダー組成物(特に架橋性樹脂微粒子水分散体を含むバインダー組成物)を組み合わせることにより、電極塗膜の電解液に対する耐性がより向上しているものと考えられる。
[実施例79、80、比較例44]
 表9に示す二次電池電極形成用組成物を、集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、加熱乾燥し、厚さが5μmとなるように下地層を形成した。次いで、前記下地層上に表6Aに示す二次電池正極用合材インキを塗布した後、減圧加熱乾燥して、以下実施例25と同様にして正極を得て、同様に評価した。
Figure JPOXMLDOC01-appb-T000013
 表9に示すように、本発明の二次電池電極形成用組成物を下地層へ用いた場合も実施例27及び32の評価結果と同様に良好となっていることが分かる。このことは、本発明の二次電池電極形成用組成物が、集電体と合材層との密着部分を均一、かつ強固にしたためと考えられる。しかしながら、比較例6の下地層用の二次電池電極形成用組成物の分散状態、電解液への耐溶出性が不十分であり、電極とした場合においても、実施例26の評価結果と比較して劣る結果であった。このことは、集電体と合材層との密着状態がかえって不十分な状態となってしまったため、下地層を使用しない場合よりも電極として不均一な状態になってしまったためと考えられる。

Claims (13)

  1.  電極活物質もしくは導電助剤である炭素材料の少なくとも一方と、カチオン性分散剤(A)と、水とを含有する二次電池電極形成用水性組成物であって、
     カチオン性分散剤(A)が、カチオン性部位として脂肪族アミンもしくは芳香族アミンの少なくとも一方を有し、アミン価が110~1000mgKOH/gであり、水酸基価が0~400mgKOH/gであり、重量平均分子量が5000以上である、二次電池電極形成用水性組成物。
  2.  カチオン性分散剤(A)が下記単量体を共重合して得られる共重合体である、請求項1に記載の組成物。
     芳香環を有するエチレン性不飽和単量体(a1):0~30重量%
     脂肪族アミノ基もしくは芳香族アミノ基を有するエチレン性不飽和単量体(a2):30~80重量%
     前記(a1)~(a2)以外のエチレン性不飽和単量体(a3):0~70重量%
     (但し、前記(a1)~(a3)の合計を100重量%とする。)
  3.  更に、セルロース系増粘剤(B)を含む、請求項1または2に記載の組成物。
  4.  更に、バインダー組成物(C)を含む、請求項1~3のいずれか一項に記載の組成物。
  5.  バインダー組成物(C)が架橋型樹脂微粒子を含む、請求項4に記載の組成物。
  6.  架橋型樹脂微粒子が、下記単量体を水中にて界面活性剤の存在下、ラジカル重合開始剤によって乳化重合してなる樹脂微粒子である、請求項5に記載の組成物。
     (C1)単官能または多官能アルコキシシリル基を有するエチレン性不飽和単量体(c1)、および1分子中に2つ以上のエチレン性不飽和基を有する単量体(c2)からなる群より選ばれる少なくとも1つの単量体:0.1~5重量%
     (C2)前記単量体(c1)~(c2)以外のエチレン性不飽和単量体(c3):95~99.9重量%
     (但し、前記(c1)~(c3)の合計を100重量%とする。)
  7.  エチレン性不飽和単量体(c3)が下記組成である、請求項6に記載の組成物。
     単官能または多官能エポキシ基を有するエチレン性不飽和単量体(c4)、単官能または多官能アミド基を有するエチレン性不飽和単量体(c5)、および単官能または多官能水酸基を有するエチレン性不飽和単量体(c6)からなる群より選ばれる少なくとも1つの単量体:0.1~20重量%
     前記単量体(c1)、(c2)、(c4)~(c6)以外のエチレン性不飽和単量体(c7):75~99.8重量%
     (但し、前記(c1)~(c3)の合計を100重量%とする。)
  8.  エチレン性不飽和単量体(c7)が下記組成である、請求項7に記載の組成物。
     炭素数8~18のアルキル基を有するエチレン性不飽和単量体(c8)、および環状構造を有するエチレン性不飽和単量体(c9)からなる群より選ばれる少なくとも1つの単量体:30~95重量%
     前記(c1)~(c6)、(c8)、(c9)以外のエチレン性不飽和単量体:0~69.8重量%
     (但し、前記(c1)~(c3)の合計を100重量%とする。)
  9.  バインダー組成物(C)が、未架橋のエポキシ基含有化合物、未架橋のアミド基含有化合物、未架橋の水酸基含有化合物、および未架橋のオキサゾリン基含有化合物からなる群より選ばれる少なくとも1つの未架橋の化合物(D)をさらに含む、請求項5~8のいずれか一項に記載の組成物。
  10.  セルロース系増粘剤(B)がヒドロキシアルキルセルロースである、請求項1~9のいずれか一項に記載の組成物。
  11.  集電体と、請求項1~10に記載の組成物から形成される合材層もしくは電極下地層の少なくとも一層とを具備する、二次電池用電極。
  12.  正極と負極と電解液とを具備する二次電池であって、前記正極もしくは前記負極の少なくとも一方が請求項11に記載の二次電池用電極である、二次電池。
  13.  正極と負極と電解液とを具備する二次電池であって、前記正極もしくは前記負極の少なくとも一方が請求項11に記載の二次電池用電極である、リチウム二次電池。
PCT/JP2012/057144 2011-03-31 2012-03-21 二次電池電極形成用水性組成物、二次電池用電極、及び二次電池 WO2012133031A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013507421A JP5880544B2 (ja) 2011-03-31 2012-03-21 二次電池電極形成用水性組成物、二次電池用電極、及び二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-078956 2011-03-31
JP2011078956 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012133031A1 true WO2012133031A1 (ja) 2012-10-04

Family

ID=46930763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057144 WO2012133031A1 (ja) 2011-03-31 2012-03-21 二次電池電極形成用水性組成物、二次電池用電極、及び二次電池

Country Status (2)

Country Link
JP (1) JP5880544B2 (ja)
WO (1) WO2012133031A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107073A (ja) * 2012-11-27 2014-06-09 Toyo Ink Sc Holdings Co Ltd 非水系二次電池電極形成用導電性プライマー組成物、それを用いた非水系二次電池電極、及び非水系二次電池
JP2014120411A (ja) * 2012-12-19 2014-06-30 Toyo Ink Sc Holdings Co Ltd 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP2014120410A (ja) * 2012-12-19 2014-06-30 Toyo Ink Sc Holdings Co Ltd 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP2014123495A (ja) * 2012-12-21 2014-07-03 Denki Kagaku Kogyo Kk 電極用バインダー組成物
JP2014135275A (ja) * 2012-12-14 2014-07-24 Toyo Ink Sc Holdings Co Ltd 蓄電デバイス電極形成用組成物、蓄電デバイス電極、及び蓄電デバイス
JP2014154506A (ja) * 2013-02-13 2014-08-25 Mitsubishi Chemicals Corp 非水系二次電池負極用活物質、非水系二次電池用負極及び非水系二次電池
WO2014141721A1 (ja) * 2013-03-15 2014-09-18 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池用スラリー組成物、二次電池用負極、および、二次電池
WO2014196547A1 (ja) * 2013-06-04 2014-12-11 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP2015028932A (ja) * 2013-07-05 2015-02-12 東洋インキScホールディングス株式会社 燃料電池用水性触媒ペースト組成物、及び燃料電池
JP2015030777A (ja) * 2013-08-01 2015-02-16 東洋インキScホールディングス株式会社 カーボンブラック分散液およびその利用
JPWO2012173072A1 (ja) * 2011-06-15 2015-02-23 東洋インキScホールディングス株式会社 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP2015070089A (ja) * 2013-09-27 2015-04-13 東洋インキScホールディングス株式会社 キャパシタ電極形成用組成物、キャパシタ電極、及びキャパシタ
JP2016012484A (ja) * 2014-06-30 2016-01-21 東洋インキScホールディングス株式会社 蓄電デバイス下地層用樹脂微粒子、下地層形成用インキ、下地層付き集電体、蓄電デバイス用電極、蓄電デバイス。
CN105280904A (zh) * 2014-07-22 2016-01-27 天奈科技有限公司 电池用电极组合物
JPWO2014119481A1 (ja) * 2013-01-29 2017-01-26 株式会社大阪ソーダ 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP2017188283A (ja) * 2016-04-05 2017-10-12 東洋インキScホールディングス株式会社 蓄電デバイス電極形成用組成物、蓄電デバイス電極、及び蓄電デバイス
JP2017532737A (ja) * 2014-09-26 2017-11-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 2次電池電極のための高固形分ペースト製剤
CN107406625A (zh) * 2015-03-05 2017-11-28 阿科玛法国公司 基于碳的纳米填料的液体组合物用于铅电池电极配制物的用途
KR20200022488A (ko) * 2017-06-30 2020-03-03 피피지 인더스트리즈 오하이오 인코포레이티드 리튬 이온 전기 저장 장치용 전극 슬러리 조성물
CN112956051A (zh) * 2018-11-02 2021-06-11 日产化学株式会社 活性物质复合材料形成用组合物、活性物质复合材料及其制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574102B (zh) * 2017-02-28 2022-05-27 荒川化学工业株式会社 用于锂离子电池的粘合剂水溶液、浆料、电极、隔膜、隔膜/电极积层体以及锂离子电池
JP7147331B2 (ja) * 2018-07-27 2022-10-05 荒川化学工業株式会社 リチウムイオン電池電極用スラリー及びその製造方法、リチウムイオン電池用電極、並びにリチウムイオン電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278303A (ja) * 2005-03-25 2006-10-12 Nippon Zeon Co Ltd 非水電解質二次電池電極用バインダー、バインダー組成物、電極用組成物、ならびに電極
JP2006309958A (ja) * 2005-04-26 2006-11-09 Sumitomo Osaka Cement Co Ltd リチウムイオン電池の電極形成用スラリー及びその製造方法並びにリチウムイオン電池
JP2010021059A (ja) * 2008-07-11 2010-01-28 Toyo Ink Mfg Co Ltd 水系炭素材料組成物及びそれを用いた電池用組成物
JP2010129528A (ja) * 2008-12-01 2010-06-10 Toyo Ink Mfg Co Ltd 電池用組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278303A (ja) * 2005-03-25 2006-10-12 Nippon Zeon Co Ltd 非水電解質二次電池電極用バインダー、バインダー組成物、電極用組成物、ならびに電極
JP2006309958A (ja) * 2005-04-26 2006-11-09 Sumitomo Osaka Cement Co Ltd リチウムイオン電池の電極形成用スラリー及びその製造方法並びにリチウムイオン電池
JP2010021059A (ja) * 2008-07-11 2010-01-28 Toyo Ink Mfg Co Ltd 水系炭素材料組成物及びそれを用いた電池用組成物
JP2010129528A (ja) * 2008-12-01 2010-06-10 Toyo Ink Mfg Co Ltd 電池用組成物

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012173072A1 (ja) * 2011-06-15 2015-02-23 東洋インキScホールディングス株式会社 二次電池電極形成用組成物、二次電池電極、及び二次電池
US9853290B2 (en) 2011-06-15 2017-12-26 Toyo Ink Sc Holdings Co., Ltd. Composition for forming secondary battery electrode, secondary battery electrode, and secondary battery
JP2014107073A (ja) * 2012-11-27 2014-06-09 Toyo Ink Sc Holdings Co Ltd 非水系二次電池電極形成用導電性プライマー組成物、それを用いた非水系二次電池電極、及び非水系二次電池
JP2014135275A (ja) * 2012-12-14 2014-07-24 Toyo Ink Sc Holdings Co Ltd 蓄電デバイス電極形成用組成物、蓄電デバイス電極、及び蓄電デバイス
JP2014120411A (ja) * 2012-12-19 2014-06-30 Toyo Ink Sc Holdings Co Ltd 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP2014120410A (ja) * 2012-12-19 2014-06-30 Toyo Ink Sc Holdings Co Ltd 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP2014123495A (ja) * 2012-12-21 2014-07-03 Denki Kagaku Kogyo Kk 電極用バインダー組成物
US10014525B2 (en) 2013-01-29 2018-07-03 Osaka Soda Co., Ltd. Binder for battery electrode, and electrode and battery using same
JPWO2014119481A1 (ja) * 2013-01-29 2017-01-26 株式会社大阪ソーダ 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP2014154506A (ja) * 2013-02-13 2014-08-25 Mitsubishi Chemicals Corp 非水系二次電池負極用活物質、非水系二次電池用負極及び非水系二次電池
JPWO2014141721A1 (ja) * 2013-03-15 2017-02-16 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池用スラリー組成物、二次電池用負極、および、二次電池
CN105027338B (zh) * 2013-03-15 2017-03-15 日本瑞翁株式会社 二次电池用粘合剂组合物、二次电池用浆料组合物、二次电池用负极、以及二次电池
CN105027338A (zh) * 2013-03-15 2015-11-04 日本瑞翁株式会社 二次电池用粘合剂组合物、二次电池用浆料组合物、二次电池用负极、以及二次电池
WO2014141721A1 (ja) * 2013-03-15 2014-09-18 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池用スラリー組成物、二次電池用負極、および、二次電池
US10090527B2 (en) 2013-03-15 2018-10-02 Zeon Corporation Binder composition for secondary battery, slurry composition for secondary battery, negative electrode for secondary battery, and secondary battery
WO2014196547A1 (ja) * 2013-06-04 2014-12-11 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JPWO2014196547A1 (ja) * 2013-06-04 2017-02-23 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP2015028932A (ja) * 2013-07-05 2015-02-12 東洋インキScホールディングス株式会社 燃料電池用水性触媒ペースト組成物、及び燃料電池
JP2015030777A (ja) * 2013-08-01 2015-02-16 東洋インキScホールディングス株式会社 カーボンブラック分散液およびその利用
JP2015070089A (ja) * 2013-09-27 2015-04-13 東洋インキScホールディングス株式会社 キャパシタ電極形成用組成物、キャパシタ電極、及びキャパシタ
JP2016012484A (ja) * 2014-06-30 2016-01-21 東洋インキScホールディングス株式会社 蓄電デバイス下地層用樹脂微粒子、下地層形成用インキ、下地層付き集電体、蓄電デバイス用電極、蓄電デバイス。
CN105280904B (zh) * 2014-07-22 2020-01-03 新奈科技有限公司 电池用电极组合物
JP2016025077A (ja) * 2014-07-22 2016-02-08 シーナノ テクノロジー リミテッド 電池用電極組成物
CN105280904A (zh) * 2014-07-22 2016-01-27 天奈科技有限公司 电池用电极组合物
US10707489B2 (en) 2014-09-26 2020-07-07 Applied Materials, Inc. High solids content paste formulations for secondary battery electrode
JP2017532737A (ja) * 2014-09-26 2017-11-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 2次電池電極のための高固形分ペースト製剤
CN107406625A (zh) * 2015-03-05 2017-11-28 阿科玛法国公司 基于碳的纳米填料的液体组合物用于铅电池电极配制物的用途
JP2017188283A (ja) * 2016-04-05 2017-10-12 東洋インキScホールディングス株式会社 蓄電デバイス電極形成用組成物、蓄電デバイス電極、及び蓄電デバイス
KR20200022488A (ko) * 2017-06-30 2020-03-03 피피지 인더스트리즈 오하이오 인코포레이티드 리튬 이온 전기 저장 장치용 전극 슬러리 조성물
JP2020527827A (ja) * 2017-06-30 2020-09-10 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. リチウムイオン蓄電装置用の電極スラリー組成物
US11374223B2 (en) 2017-06-30 2022-06-28 Ppg Industries Ohio, Inc. Slurry composition including binder containing reaction product of epoxy functional polymer and acid functional polymer for lithium ion electrical storage devices
JP7110249B2 (ja) 2017-06-30 2022-08-01 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド リチウムイオン蓄電装置用の電極スラリー組成物
KR102428261B1 (ko) * 2017-06-30 2022-08-02 피피지 인더스트리즈 오하이오 인코포레이티드 리튬 이온 전기 저장 장치용 전극 슬러리 조성물
CN112956051A (zh) * 2018-11-02 2021-06-11 日产化学株式会社 活性物质复合材料形成用组合物、活性物质复合材料及其制造方法
US20220037655A1 (en) * 2018-11-02 2022-02-03 Nissan Chemical Corporation Composition for forming an active material composite, an active material composite, and a method for producing an active material composite

Also Published As

Publication number Publication date
JP5880544B2 (ja) 2016-03-09
JPWO2012133031A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5880544B2 (ja) 二次電池電極形成用水性組成物、二次電池用電極、及び二次電池
JP5252134B2 (ja) 二次電池電極形成用水性組成物、二次電池用電極、及び二次電池
JP5935820B2 (ja) 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス
JP5760945B2 (ja) 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP2013206759A (ja) 二次電池電極形成用水性組成物、二次電池用電極、及び二次電池
JP6539978B2 (ja) 導電性組成物、蓄電デバイス用電極、及び蓄電デバイス
JP5707605B2 (ja) 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス
JP5891974B2 (ja) 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP6079386B2 (ja) 二次電池電極形成用組成物、その製造方法、二次電池電極、及び二次電池
JP6476882B2 (ja) 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス
JP5954322B2 (ja) 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP5900111B2 (ja) 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP6167723B2 (ja) 二次電池電極形成用合材インキ
JP6365011B2 (ja) 蓄電デバイス下地層用樹脂微粒子、下地層形成用インキ、下地層付き集電体、蓄電デバイス用電極、蓄電デバイス。
JP6275307B1 (ja) 水系電極用塗工液およびその利用
JP6269013B2 (ja) 蓄電デバイス電極形成用組成物、蓄電デバイス電極、及び蓄電デバイス
JP6036261B2 (ja) 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP6036260B2 (ja) 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP2014216432A (ja) キャパシタ用電極形成用組成物、キャパシタ用電極、及びキャパシタ
JP6244783B2 (ja) キャパシタ電極形成用組成物、キャパシタ電極、及びキャパシタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12762950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507421

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12762950

Country of ref document: EP

Kind code of ref document: A1