WO2012132931A1 - ガス焚きエンジン - Google Patents

ガス焚きエンジン Download PDF

Info

Publication number
WO2012132931A1
WO2012132931A1 PCT/JP2012/056695 JP2012056695W WO2012132931A1 WO 2012132931 A1 WO2012132931 A1 WO 2012132931A1 JP 2012056695 W JP2012056695 W JP 2012056695W WO 2012132931 A1 WO2012132931 A1 WO 2012132931A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pressure
hydraulic
engine
pump
Prior art date
Application number
PCT/JP2012/056695
Other languages
English (en)
French (fr)
Inventor
村田 聡
岡 勝
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020147021429A priority Critical patent/KR20140108720A/ko
Priority to KR1020157002736A priority patent/KR101600763B1/ko
Priority to CN201280002387.3A priority patent/CN103080525B/zh
Priority to US13/985,065 priority patent/US9169769B2/en
Priority to KR1020137003635A priority patent/KR101494109B1/ko
Publication of WO2012132931A1 publication Critical patent/WO2012132931A1/ja
Priority to US14/735,633 priority patent/US20150275824A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0245High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • F02B43/12Methods of operating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/022Control of components of the fuel supply system to adjust the fuel pressure, temperature or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/04Gas-air mixing apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/06Apparatus for de-liquefying, e.g. by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • F02B2043/103Natural gas, e.g. methane or LNG used as a fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a gas-fired engine that is applied to, for example, a main engine of a ship, a generator drive engine, and the like and is operated using gas fuel such as natural gas as fuel.
  • SSD-GI high-pressure gas injection type low-speed two-stroke diesel engine
  • boil-off gas (hereinafter referred to as “BOG”) at approximately atmospheric pressure was compressed by a multistage gas compressor, A method of cooling the BOG after compression and using it as an engine fuel has been studied.
  • the method of compressing and cooling BOG has been regarded as a drawback because it requires large-scale equipment and consumes a large amount of power.
  • a propulsion engine for an LNG carrier for example, as described in the following Patent Document 1 (see FIG. 7 and the like), the BOG in the gas tank is compressed in two stages by a low-pressure and high-pressure compressor and placed in the engine compartment. There is something to introduce.
  • the geared speed reduction mechanism is a speed reduction mechanism that combines a plurality of gears having different numbers of teeth
  • the pulley speed reduction mechanism has a structure that rotates large and small wheels connected by a V-belt.
  • the pressure of the liquefied gas taken out from the storage tank is increased by a pump in a liquid state to increase the pressure. Things have been done.
  • This electronically controlled engine is an electronic control of at least part of the fuel injection system, exhaust valve system, starter system and cylinder lubrication system driven by a conventional camshaft. Is used to drive each device of the engine.
  • the first problem relates to a mechanical speed reduction mechanism necessary for driving the electric motor of the reciprocating pump. More specifically, in the geared type reduction mechanism, damage to the gear tooth surface and the tooth root due to torque fluctuation from the reciprocating pump side is expected. For this reason, when considering durability against long-time continuous operation, it is necessary to consider coupling such as an elastic joint and an inertia wheel for buffering torque fluctuation.
  • the pulley type speed reduction mechanism has the advantage that the torque fluctuation peculiar to the piston pump can be mitigated by the slip of the belt, but the belt is a consumable that needs to be replaced in a short period. This method is not suitable for continuous use.
  • the pulley type deceleration mechanism is concerned about the occurrence of sparks at the exposed high-speed contact portion, installation in a gas hazardous area is not preferable for safety.
  • the second problem relates to the electric motor that drives the reciprocating pump. More specifically, when the electric motor is decelerated to the rotational speed of the reciprocating pump by the reduction mechanism, a frequency control mechanism (inverter) is required regardless of which of the above-described geared method and pulley method.
  • a frequency control mechanism inverter
  • the frequency control mechanism of an electric motor has difficulty in accuracy at low frequencies, it is disadvantageous when the control range is wide and high-precision control is required even in a considerably low speed rotation region.
  • the present invention has been made in order to solve the above-described problems.
  • the object of the present invention is to provide a fuel gas (for example, an electronically controlled high-pressure gas injection type low-speed two-stroke diesel engine) in a combustion chamber (for example, In high-pressure injection technology applied to high-pressure gas injection diesel engines that supply natural gas) at high pressure, the pressure of fuel liquefied gas (for example, LNG) is increased using a reciprocating pump that can be easily placed in a gas hazardous area. It is to provide a gas-fired engine that can be supplied.
  • the gas-fired engine includes an electronic control unit that drives the engine by controlling high-pressure hydraulic oil with a controller and a solenoid valve, and boosts the fuel gas injected into the combustion chamber to a high-pressure liquefied gas
  • a gas-fired engine of a high-pressure gas injection diesel engine provided with a gas fuel supply device to be supplied by the gas fuel supply device, which is driven by a hydraulic motor to boost the introduced liquefied gas to a desired pressure.
  • the gas fuel supply device is driven by the hydraulic motor to increase and discharge the introduced liquefied gas to a desired pressure, and the hydraulic pressure of the electronic control unit From a hydraulic introduction system that introduces a part of high-pressure hydraulic oil from the system and supplies / drives it to the hydraulic motor, a hydraulic return system that returns the high-pressure hydraulic oil used to drive the hydraulic motor to the hydraulic system, and a reciprocating pump A heating device that heats and vaporizes the supplied liquefied gas after being pressurized, a controller that adjusts the rotational speed of the hydraulic motor to keep the gas fuel outlet pressure of the heating device constant, and a gas fuel pressure that is injected into the combustion chamber An engine inlet gas pressure reducing valve for adjusting the pressure.
  • the high-pressure hydraulic oil of the electronic control unit is a suitable hydraulic source for the reciprocating pump for boosting the liquefied gas, which increases the required flow rate and pressure as the fuel (vaporized liquefied gas) consumption increases.
  • the rotational speed of the hydraulic motor may be controlled by adjusting a discharge amount of a hydraulic pump that supplies the high-pressure hydraulic oil to the electronic control unit.
  • the rotational speed of the hydraulic motor that drives the reciprocating pump is controlled by controlling the capacity of the hydraulic pump (oil amount control) that supplies high-pressure hydraulic oil into the electronic control unit. It is not necessary to add a mechanism or motor speed control.
  • the reciprocating pump driven by the hydraulic motor and the hydraulic pump unit that supplies hydraulic pressure to the hydraulic motor can be connected separately by hydraulic piping, they can be placed separately from each other. A reciprocating pump without a gas is easy to install in a gas hazardous area.
  • a gas-fired engine is a gas-fired engine of a high-pressure gas injection diesel engine equipped with a gas fuel supply device that boosts and supplies fuel gas injected into a combustion chamber to high-pressure liquefied gas.
  • the gas fuel supply device is operated by a reciprocating pump that is driven by a hydraulic motor to boost the introduced liquefied gas to a desired pressure and discharges it, and extracts a part of the exhaust gas from the engine exhaust static pressure pipe.
  • a hydraulic pump unit that supplies hydraulic pressure for driving to the hydraulic motor from a hydraulic pump that is driven by a rotary shaft of an exhaust turbine, and a heating device that heats and vaporizes the liquefied gas after being supplied from the reciprocating pump
  • a control unit for adjusting the rotational speed of the hydraulic motor to keep the gas fuel outlet pressure of the heating device constant, and the gas fuel pressure injected into the combustion chamber. It includes an engine inlet gas pressure reducing valve that, the.
  • the gas fuel supply device is driven by the hydraulic motor to increase the pressure of the introduced liquefied gas to a desired pressure and discharge from the engine exhaust static pressure pipe.
  • a hydraulic pump unit that supplies hydraulic pressure for driving to a hydraulic motor from a hydraulic pump that is driven by an exhaust turbine that is operated by extracting a part of the exhaust gas, and heats the liquefied gas after pressure increase that is supplied from the reciprocating pump
  • a heating device that is vaporized
  • a control unit that adjusts the rotational speed of the hydraulic motor to keep the gas fuel outlet pressure of the heating device constant, an engine inlet gas pressure reducing valve that adjusts the gas fuel pressure injected into the combustion chamber, It has.
  • the hydraulic pump unit can be driven by the effective use of the exhaust gas whose generation amount increases as the engine load increases, and the liquefied gas can be boosted by the reciprocating pump driven by the hydraulic motor.
  • the amount of exhaust gas also increases. Therefore, when the amount of fuel (vaporized liquefied gas) increases, the required flow rate and pressure also increase.
  • a drive hydraulic pump provides a suitable hydraulic source.
  • a gas-fired engine is a high-pressure gas injection diesel engine comprising a supercharger and a gas fuel supply device that boosts and supplies a high-pressure liquefied gas to the fuel gas injected into the combustion chamber.
  • the gas fuel supply device is driven by a reciprocating pump that is driven by a hydraulic motor to increase the pressure of the introduced liquefied gas to a desired pressure and discharges it, and a rotary shaft of the supercharger.
  • a hydraulic pump unit that supplies hydraulic pressure for driving from the hydraulic pump to the hydraulic motor, a heating device that heats and vaporizes the pressurized liquefied gas supplied from the reciprocating pump, and a rotational speed of the hydraulic motor.
  • a control unit that adjusts and maintains the gas fuel outlet pressure of the heating device constant, and an engine inlet gas pressure reducing valve that adjusts the gas fuel pressure injected into the combustion chamber.
  • the gas fuel supply device is driven by the hydraulic motor to increase the pressure of the introduced liquefied gas to a desired pressure and discharges it, and the rotation of the supercharger
  • a hydraulic pump unit that supplies hydraulic pressure for driving from a hydraulic pump driven by a shaft to a hydraulic motor, a heating device that heats and vaporizes the liquefied gas after pressure supplied from the reciprocating pump, and a rotational speed of the hydraulic motor
  • a controller for keeping the gas fuel outlet pressure of the heating device constant, and an engine inlet gas pressure reducing valve for adjusting the gas fuel pressure injected into the combustion chamber.
  • the hydraulic pump unit can be driven by the effective use of the exhaust gas whose generation amount increases as the engine load increases, and the liquefied gas can be boosted by the reciprocating pump driven by the hydraulic motor.
  • the amount of exhaust gas also increases. Therefore, when the amount of fuel (vaporized liquefied gas) increases, the required flow rate and pressure also increase.
  • a drive hydraulic pump provides a suitable hydraulic source.
  • the gas fuel supply device is configured such that the hydraulic pump is a variable displacement type, and the control unit performs variable displacement control of the hydraulic pump.
  • the structure may be such that the gas fuel outlet pressure is kept constant by adjusting the rotational speed.
  • the rotational speed of the hydraulic motor that drives the reciprocating pump is adjusted by controlling the capacity of the hydraulic pump (oil amount control), so that no mechanical speed reduction mechanism or motor speed control is required.
  • the hydraulic pump is a swash plate type and the pump discharge amount is controlled by appropriately adjusting the swash plate angle.
  • the reciprocating pump driven by the hydraulic motor and the hydraulic pump unit that supplies hydraulic pressure to the hydraulic motor can be connected separately by hydraulic piping, they can be placed separately from each other. A reciprocating pump without a gas is easy to install in a gas hazardous area.
  • the gas fuel supply device is configured such that the hydraulic pump is a constant displacement type, and the control unit adjusts the rotational speed of the hydraulic motor by controlling the rotational speed of the exhaust turbine.
  • the gas fuel outlet pressure may be kept constant.
  • an exhaust gas flow rate control valve may be provided on the inlet side of the exhaust turbine, and the rotational speed of the exhaust turbine may be controlled by appropriately adjusting the valve opening.
  • the rotational speed of the hydraulic motor that drives the reciprocating pump is adjusted by controlling the rotational speed of the exhaust turbine on the drive side, so there is no need for a mechanical speed reduction mechanism or control of the rotational speed of the electric motor. It becomes.
  • the reciprocating pump driven by the hydraulic motor and the hydraulic pump unit that supplies hydraulic pressure to the hydraulic motor can be connected separately by hydraulic piping, they can be placed separately from each other. A reciprocating pump without a gas is easy to install in a gas hazardous area.
  • a high-pressure gas that supplies fuel gas (for example, natural gas) at a high pressure into the combustion chamber, such as an electronically controlled high-pressure gas injection type low-speed two-stroke diesel engine.
  • fuel gas for example, natural gas
  • a reciprocating pump driven by a hydraulic pump that can be easily disposed in a gas hazardous area can be used to increase the pressure of a fuel liquefied gas (for example, LNG).
  • the hydraulic pressure is supplied from the engine-side electronic control unit, it is not necessary to install a new hydraulic unit that supplies the hydraulic pressure to the hydraulic motor for driving the reciprocating pump. As a result, it is possible to reduce the installation space and cost of the gas-fired engine. In particular, in a limited ship, it is possible to effectively use the ship space such as increasing the cargo space.
  • the components of the hydraulic unit that supplies hydraulic pressure to the hydraulic motor for driving the reciprocating pump Can be minimized. As a result, it is possible to reduce the installation space and cost of the gas-fired engine. In particular, in a limited ship, it is possible to effectively use the ship space such as increasing the cargo space.
  • FIG. 1 is a system diagram showing a first embodiment as an embodiment of a gas-fired engine according to the present invention. It is a systematic diagram showing a second embodiment as an embodiment of a gas-fired engine according to the present invention. It is a systematic diagram which shows 3rd Embodiment as one Embodiment of the gas-fired engine which concerns on this invention. It is explanatory drawing which shows the pump load and recirculation control valve (RCV) opening degree of a reciprocating pump on a vertical axis
  • RCV pump load and recirculation control valve
  • the gas-fired engine 1 of the embodiment shown in FIG. 1 includes an electronic control unit 60 that drives the engine by controlling high-pressure hydraulic oil with a controller and a solenoid valve, and a high-pressure liquefied gas that is injected into the combustion chamber of the engine.
  • This is a high-pressure gas injection diesel engine equipped with a gas fuel supply device 10 that is pressurized and supplied to the engine.
  • the electronic control unit 60 to be described later is an electronic control of the conventional camshaft drive for at least a part of the fuel injection system, exhaust valve system, start system, and cylinder lubrication system of the gas-fired engine 1. .
  • the illustrated gas-fired engine 1 is provided with a gas fuel supply device 10 having a “high-pressure mode” that injects and supplies fuel gas obtained by vaporizing liquefied gas into a combustion chamber of a high-pressure gas injection diesel engine.
  • a specific example of the gas-fired engine 1 according to the present embodiment is a high-pressure gas injection diesel engine, for example, a high-pressure gas injection low-speed two-stroke diesel engine (hereinafter referred to as “SSD-GI”).
  • the liquefied gas is liquefied natural gas (hereinafter referred to as “LNG”), and the natural gas vaporized by LNG is used as fuel gas.
  • LNG liquefied natural gas
  • the present invention is also applicable to an engine using liquefied gas such as gas (LPG) as fuel.
  • the gas fuel supply device 10 includes an LNG fuel system that injects and supplies natural gas that has been vaporized after the LNG has been boosted by the reciprocating pump 20 into a combustion chamber of a high-pressure gas injection engine, and a hydraulic pressure that drives the reciprocating pump 20
  • a hydraulic system that supplies hydraulic pressure to the motor 50 and a control unit (not shown) that controls the hydraulic motor 50 and the like are provided.
  • one set of LNG fuel system and hydraulic system is shown, but a plurality of installations may be connected to each other, and the present invention is not limited to this.
  • the LNG fuel system includes a reciprocating pump 20 driven by a hydraulic motor 50.
  • the reciprocating pump 20 is a pump that introduces LNG in a substantially atmospheric pressure state, raises the pressure to a desired pressure, and discharges the pressure.
  • the LNG supply pipe 22 connected to the discharge side of the reciprocating pump 20 includes a heating device 30 and an engine inlet gas pressure reducing valve (hereinafter referred to as “gas pressure reducing valve”) 40 arranged in order from the pump side.
  • the heating device 30 is a device that heats and vaporizes the pressurized LNG supplied from the reciprocating pump 20. That is, the high-pressure LNG that has flowed into the heating device 30 is heated in the device, and flows out as natural gas vaporized from the LNG.
  • a pressure sensor (not shown) is provided in the vicinity of the outlet of the heating device 30, and the natural gas outlet pressure PV detected by the pressure sensor is input to the control unit as the gas fuel outlet pressure.
  • This control unit adjusts the rotational speed of a hydraulic motor 50, which will be described later, in order to maintain the natural gas outlet pressure PV at a predetermined constant pressure value.
  • this control part may be comprised integrally with the control part of the electronic control unit 60 mentioned later.
  • the natural gas supplied from the heating device 30 is adjusted to a desired pressure by the gas pressure reducing valve 40 and then injected and supplied into a high-pressure combustion chamber. That is, the natural gas injection (supply) pressure adjusted by the gas pressure reducing valve 40 is compressed by the piston and injected into the combustion chamber in a high-pressure state, and therefore needs to be set higher than the pressure in the combustion chamber.
  • a high pressure mode Such an operation mode in which natural gas is injected into the combustion chamber at a high pressure.
  • the injection pressure of natural gas in the high pressure mode is approximately 150 to 300 bar.
  • the gas pressure reducing valve 40 has a “low pressure mode” that supplies natural gas of gas fuel as fuel for a gas spark type Otto cycle engine.
  • This “low pressure mode” is used, for example, when gas fuel is supplied to a power generation engine or the like that covers inboard power, and has a lower pressure than the “high pressure mode”.
  • the LNG supply pipe 22 includes a recirculation line 23 that branches from the upstream side of the heating device 30.
  • the recirculation line 23 is a piping system that branches the LNG boosted by the reciprocating pump 20 from the upstream side of the heating device 30 and flows it to the suction drum 24.
  • a circulation control valve 25 is provided.
  • the LNG introduction pipe 21 connected to the suction drum 24 is connected to an LNG tank or the like (not shown).
  • the LNG flowing through the recirculation line 23 by adjusting the opening of the flow rate adjustment valve 25. It becomes possible to respond by controlling the recirculation flow rate. More specifically, as shown in the explanatory diagram of FIG. 4, for example, in a low speed region where the pump load is small, the opening of the recirculation control valve 25 is increased to ensure the recirculation flow rate, that is, the operating point where the pump load is small.
  • the total flow rate of LNG flowing through the reciprocating pump 20 is secured by increasing the recirculation flow rate, and is maintained in the rotation speed region where the hydraulic motor 50 can be controlled.
  • the recirculation flow rate for bypassing the heating device 30 is increased by increasing the opening degree of the recirculation control valve 25 and the supply amount to the heating device 30 may be limited.
  • the suction drum 24 is an LNG container that collects the LNG branched and introduced from the LNG supply pipe 22 and returns it to the recirculation suction unit of the reciprocating pump 20.
  • the recirculation flow rate of LNG introduced into the recirculation line 23 is adjusted by the recirculation control valve 25 that operates based on the control signal of the operating point OP output from the control unit.
  • the control signal for this operating point OP is an opening signal that defines the operating point output by the control unit based on, for example, a set point SP given by the engine speed and a natural gas outlet pressure PV detected by the pressure sensor. is there.
  • a set point SP in this case, a variable value that provides a pressure value with high controllability of the gas pressure reducing valve 40, such as the engine speed described above, may be adopted, or the set point SP may be a fixed value. It is good.
  • the hydraulic system introduces a part of the hydraulic pressure held by the electronic control unit 60 and supplies it to the hydraulic motor 50 that drives the reciprocating pump 20. That is, a hydraulic introduction system 51 that introduces a part of high-pressure hydraulic oil from the hydraulic system 61 of the electronic control unit 60 and supplies and drives the hydraulic motor 50, and the high-pressure hydraulic oil used to drive the hydraulic motor 50 is supplied to the hydraulic system 61. And a hydraulic pressure return system 52 for returning to.
  • the hydraulic system 61 of the electronic control unit 60 uses part of the engine lubricating oil stored in the crankcase 62 as high-pressure hydraulic hydraulic fluid.
  • the engine lubricating oil in the crankcase 62 is supplied to the filter unit 65 by an electric lubricating oil pump 64 provided in the lubricating oil line 63.
  • the engine lubricating oil is supplied to the hydraulic system 61 with high-pressure hydraulic oil that has been boosted by the engine drive pump 66 or the electric pump 67.
  • the electric pump 67 described above is necessary when the engine is started, and the hydraulic pressure supply from the engine drive pump 66 is mainly used in the normal operation after the engine is started.
  • a switching valve block 68 is provided between the engine drive pump 66 driven by the gas-fired engine 1 and the hydraulic system 61 to change the pump suction direction and the pump discharge direction when the gas-fired engine 1 is reversely rotated. .
  • the hydraulic introduction system 51 is a piping system that branches from the hydraulic system 61 on the upstream side of the electronic control unit 60 and supplies a part of the high-pressure hydraulic oil to the hydraulic motor 50.
  • the hydraulic pressure return system 52 is a piping system that returns the high-pressure hydraulic oil used for driving the hydraulic motor 50 to the hydraulic system 61.
  • the oil return system 52 is provided with a sub-storage tank 53 for temporarily storing high-pressure hydraulic oil used for driving the hydraulic motor 50.
  • the hydraulic oil stored in the auxiliary storage tank 53 is returned to the crankcase 62 through the hydraulic pressure return system 52 by operating the electric oil return pump 54.
  • reference numeral 55 in the drawing is a pipe line connecting the hydraulic pressure introduction system 51 and the auxiliary storage tank 53
  • reference numeral 56 is a check valve provided in the pipe line 55.
  • the gas fuel supply apparatus 10 of the present embodiment does not newly provide a hydraulic supply system (hydraulic pump or the like) for driving the hydraulic motor 50, but is electronically controlled by the gas-fired engine 1.
  • a hydraulic supply system hydraulic pump or the like
  • the LNG is boosted by the reciprocating pump 20 driven by the hydraulic motor 50. Therefore, the gas fuel supply apparatus 10 of the present embodiment minimizes new additional equipment by sharing the hydraulic equipment of the electronic control unit 60 in the hydraulic system necessary for supplying LNG as engine fuel. Can be suppressed.
  • Such a gas-fired engine 1 can arbitrarily change the engine speed on the ship side according to the ship speed. For example, since the engine speed increases due to an increase in engine load, the pump discharge amount and hydraulic pressure of the engine drive pump 66 that supplies high-pressure hydraulic oil to the electronic control unit 60 will increase. That is, for the reciprocating pump 20 for boosting liquefied gas, the required flow rate and pressure values increase as the amount of gas fuel consumed by vaporizing LNG increases.
  • the high-pressure hydraulic fluid of the electronic control unit 60 is a suitable hydraulic source. Become.
  • the rotational speed of the hydraulic motor 50 that drives the reciprocating pump 20 is controlled by performing capacity control (oil amount control) of the engine drive pump 66 that supplies high-pressure hydraulic oil to the electronic control unit 60, that is, Since control is possible by adjusting the discharge amount of the engine drive pump 66, a mechanical speed reduction mechanism and motor speed control are not required. In this case, it is desirable to employ a variable displacement type such as a plunger pump for the engine drive pump 66 and control the discharge amount by adjusting the plunger inclination angle. Accordingly, since the LNG discharge amount of the reciprocating pump 20 can be controlled by the rotation speed and hydraulic pressure of the hydraulic motor 50, the supply amount of LNG to the heating device 30 is the supply amount of high-pressure hydraulic oil as the engine load varies. In addition, control (increase / decrease) can be easily performed in conjunction with increase / decrease in hydraulic pressure.
  • the reciprocating pump 20 driven by the hydraulic motor 50 and the engine drive pump 66 serving as a hydraulic pump unit that supplies hydraulic pressure to the hydraulic motor 50 the hydraulic piping of the hydraulic pressure introduction system 51 and the hydraulic pressure return system 52 is mutually connected. Connected by. That is, the reciprocating pump 20 driven by the hydraulic motor 50 and the engine drive pump 66 serving as a hydraulic supply source can be separated by being connected by the hydraulic introduction system 51 and the hydraulic return system 52.
  • the reciprocating pump 20 having no equipment or speed reduction mechanism can be easily installed in the gas danger zone.
  • the hydraulic pressure is supplied from the main engine of the ship, it is necessary to drive a power generation four-stroke engine that is inferior in thermal efficiency as compared to the two-stroke engine of the main engine in order to supply driving power to a separate hydraulic unit.
  • the cost of operation can be reduced.
  • a gas-fired engine 1A according to the embodiment shown in FIG. 2 includes a gas fuel supply device 10A having a configuration different from that of the above-described embodiment.
  • the LNG fuel system has substantially the same configuration as that of the above-described embodiment, but the configuration of the hydraulic system that supplies hydraulic pressure to the hydraulic motor 50 is different.
  • the hydraulic system in this case drives the hydraulic pump 70 of a hydraulic pump unit that supplies hydraulic pressure for driving to the hydraulic motor 50 by effectively using the exhaust gas of the gas-fired engine 1A.
  • the hydraulic pump 70 is a variable displacement pump that uses an exhaust turbine 81 that is operated by extracting a part of the exhaust gas from the engine exhaust static pressure pipe 80 as a drive source.
  • a plunger pump is used.
  • the exhaust turbine 81 includes an exhaust gas supply passage 82 for introducing a part of the exhaust gas from the engine exhaust static pressure pipe 80, and an exhaust gas discharge passage for guiding the exhaust gas that has worked in the exhaust turbine 81 to an air discharge chimney. 83 is connected.
  • An exhaust gas flow rate control valve 84 is provided in the exhaust gas supply channel 82 in order to adjust the flow rate of the exhaust gas supplied to the exhaust turbine 81 when necessary. Further, the exhaust gas supply passage 82 is provided with an exhaust gas bypass passage 85 that branches from the upstream side of the exhaust gas flow control valve 84. The exhaust gas bypass passage 85 is connected to an exhaust gas discharge passage 83, and a bypass flow rate adjusting valve 86 and an orifice 87 are provided in the middle of the passage. The main flow of the exhaust gas discharged from the engine exhaust static pressure pipe 80 is supplied to the exhaust turbine 89 a of the supercharger 89 through the main exhaust gas supply passage 88. The exhaust gas main flow is led to the chimney through the main exhaust gas discharge passage 90 after driving the exhaust turbine 89a. Note that the above-described exhaust gas discharge channel 83 is connected to the main exhaust gas discharge channel 90.
  • a compressor 89b driven by the rotating shaft of the exhaust turbine 89a sucks and compresses air in the engine room.
  • the compressed air for supply air (scavenging) compressed by the compressor 89b is cooled by the air cooler 91 and supplied to the supply air manifold 92 in a state where the air density is increased.
  • symbol 93 in a figure is a cylinder of 1 A of gas-fired engines, and although it is 6 cylinders in the example of a structure shown in the figure, it is not limited to this.
  • the hydraulic pump 70 is operated to supply hydraulic pressure to the hydraulic motor 50 by effectively using the exhaust gas released to the atmosphere as the hydraulic pressure supply source of the gas fuel supply apparatus 10A. It becomes possible.
  • the high-pressure hydraulic oil discharged from the hydraulic pump 70 is supplied to the hydraulic motor 50 through the hydraulic introduction system 51A.
  • the hydraulic oil that has flowed into the auxiliary storage tank 53 by driving the hydraulic motor 50 is returned to the hydraulic oil storage tank 59 using the electric oil return pump 54.
  • the gas fuel supply device 10A includes the hydraulic pump 70 driven by the exhaust turbine 81 that is operated by extracting a part of the exhaust gas from the engine exhaust static pressure pipe 80.
  • the hydraulic pump 70 of the hydraulic pump unit that supplies hydraulic pressure for driving to the hydraulic motor 50 is provided.
  • the hydraulic pump 70 can be driven by the effective use of exhaust gas whose generation amount increases as the engine load increases, and the LNG can be boosted by the reciprocating pump 20 driven by the hydraulic motor.
  • the hydraulic pump 70 driven by the exhaust turbine 81 is supplied to the demand fluctuation on the fuel side and the hydraulic motor 50 driving the reciprocating pump 20 on the fuel supply side. Therefore, the oil pressure fluctuation becomes a suitable oil pressure supply source. Further, the hydraulic system of the above-described embodiment can minimize the number of new additional devices, and can increase the pressure of the liquefied gas by the reciprocating pump 20 driven by the hydraulic motor 50.
  • the hydraulic pump 70 is of a variable displacement type, and a control unit (not shown) performs variable displacement control of the hydraulic pump 70 to adjust the rotation speed of the hydraulic motor 50, It is preferable to keep the gas fuel outlet pressure of the natural gas (gas fuel) supplied from the gas pressure reducing valve 40 to the gas-fired engine 1A constant.
  • the rotational speed of the hydraulic motor 50 that drives the reciprocating pump 20 is adjusted by controlling the displacement of the hydraulic pump 70 (oil amount control). No rotation speed control is required.
  • variable displacement control suitable in this case, for example, there is a system in which the hydraulic pump is a swash plate type, the opening degree of the exhaust gas flow control valve 84 is fixed and the swash plate angle is appropriately adjusted to control the pump discharge amount. Further, in the gas fuel supply apparatus 10A of the above-described embodiment, the hydraulic pump 70 is of a constant capacity type, and a control unit (not shown) adjusts the rotational speed of the hydraulic motor 50 by controlling the rotational speed of the exhaust turbine 81, and the gas pressure reducing valve 40 A modification in which the gas fuel outlet pressure is kept constant is also possible.
  • an exhaust gas flow rate control valve that is, a flow rate control valve 84 whose opening degree can be adjusted is provided on the inlet side of the exhaust turbine 81, and the valve opening degree of the flow rate control valve 84 is appropriately adjusted so that the exhaust gas supply amount What is necessary is just to control the rotation speed of the exhaust turbine by.
  • the rotational speed of the hydraulic motor 50 that drives the reciprocating pump 20 is adjusted by controlling the rotational speed of the exhaust turbine on the drive side, the mechanical speed reduction mechanism and the rotational speed control of the electric motor can be controlled. It becomes unnecessary. Further, the reciprocating pump 20 driven by the hydraulic motor 50 and the hydraulic pump unit (hydraulic pump 70) for supplying hydraulic pressure to the hydraulic motor 50 can be connected separately by hydraulic piping. Therefore, the reciprocating pump 20 having no electrical equipment or speed reduction mechanism can be easily installed in the gas hazardous area. Furthermore, since the exhaust gas energy discharged from the main engine of the ship is effectively utilized as hydraulic pressure, power generation is inferior in thermal efficiency compared to the main two-stroke engine to supply drive power to a separate hydraulic unit. This eliminates the need for driving a four-stroke engine and reduces operating costs.
  • the gas-fired engine 1B of the embodiment shown in FIG. 3 includes a gas fuel supply device 10B having a configuration different from that of the above-described embodiment.
  • the LNG fuel system has substantially the same configuration as that of the above-described embodiment, but the configuration of the hydraulic system that supplies hydraulic pressure to the hydraulic motor 50 is different.
  • the hydraulic system in this case drives the hydraulic pump 70A of a hydraulic pump unit that supplies hydraulic pressure for driving to the hydraulic motor 50 by effectively using the exhaust gas of the gas-fired engine 1B.
  • the hydraulic pump 70A is a variable displacement pump that is driven by the rotary shaft of the exhaust turbine 89a of the supercharger 89 that is operated by the exhaust gas discharged from the engine exhaust static pressure pipe 80.
  • a plunger pump is used.
  • Exhaust gas discharged from the engine exhaust static pressure pipe 80 is supplied to the exhaust turbine 89 a of the supercharger 89 through the main exhaust gas supply passage 88.
  • the exhaust gas flow is guided to the chimney through the main exhaust gas discharge passage 90 after driving the exhaust turbine 89a.
  • a compressor 89b driven by the rotating shaft of the exhaust turbine 89a sucks and compresses air in the engine room.
  • the compressed air for supply air (scavenging) compressed by the compressor 89b is cooled by the air cooler 91 and supplied to the supply air manifold 92 in a state where the air density is increased.
  • symbol 93 in a figure is a cylinder of the gas-fired engine 1B, and although it is 6 cylinders in the example of illustration shown in the figure, it is not limited to this.
  • exhaust gas discharged to the atmosphere is effectively used as a hydraulic pressure supply source of the gas fuel supply device 10B.
  • the hydraulic pump 70 is operated by driving the shaft of the exhaust turbine 89 a of the supercharger 89, and the hydraulic oil introduced from the hydraulic oil storage tank 59 can be boosted to supply hydraulic pressure to the hydraulic motor 50.
  • the high-pressure hydraulic oil discharged from the hydraulic pump 70 is supplied to the hydraulic motor 50 through the hydraulic introduction system 51A.
  • the hydraulic oil that has flowed into the auxiliary storage tank 53 by driving the hydraulic motor 50 is returned to the hydraulic oil storage tank 59 using the electric oil return pump 54.
  • the gas fuel supply device 10B is driven by the hydraulic pump 70 driven by the exhaust turbine 89a that is operated by introducing the exhaust gas from the engine exhaust static pressure pipe 80.
  • a hydraulic pump 70 of a hydraulic pump unit that supplies hydraulic pressure for driving to 50 is provided.
  • the hydraulic pump 70 can be driven by the effective use of exhaust gas whose generation amount increases as the engine load increases, and the LNG can be boosted by the reciprocating pump 20 driven by the hydraulic motor.
  • the hydraulic pump 70 driven by the exhaust turbine 89a is supplied to the demand fluctuation on the fuel side and the hydraulic motor 50 driving the reciprocating pump 20 on the fuel supply side. Therefore, the oil pressure fluctuation becomes a suitable oil pressure supply source. Further, the hydraulic system of the above-described embodiment can minimize the number of new additional devices, and can increase the pressure of the liquefied gas by the reciprocating pump 20 driven by the hydraulic motor 50.
  • the hydraulic pump 70A is of a variable displacement type, and a control unit (not shown) performs variable displacement control of the hydraulic pump 70A to adjust the rotational speed of the hydraulic motor 50, It is preferable to keep the gas fuel outlet pressure of the natural gas (gas fuel) supplied from the gas pressure reducing valve 40 to the gas-fired engine 1B constant.
  • the rotation speed of the hydraulic motor 50 that drives the reciprocating pump 20 is controlled by displacement control (oil amount control) of the hydraulic pump 70, so that the mechanical speed reduction mechanism and the rotation speed of the motor Control is not required.
  • variable displacement control for example, a method is adopted in which a hydraulic pump is a swash plate type and a pump discharge amount is controlled by appropriately adjusting a swash plate angle. Even in this case, since the rotational speed of the hydraulic motor 50 that drives the reciprocating pump 20 is adjusted by controlling the rotational speed of the exhaust turbine on the drive side, the mechanical speed reduction mechanism and the rotational speed control of the electric motor can be controlled. It becomes unnecessary.
  • the reciprocating pump 20 driven by the hydraulic motor 50 and the hydraulic pump unit (hydraulic pump 70) for supplying hydraulic pressure to the hydraulic motor 50 can be connected separately by hydraulic piping. Therefore, the reciprocating pump 20 having no electrical equipment or speed reduction mechanism can be easily installed in the gas hazardous area. Furthermore, since the exhaust gas energy discharged from the main engine of the ship is effectively utilized as hydraulic pressure, power generation is inferior in thermal efficiency compared to the main two-stroke engine to supply drive power to a separate hydraulic unit. This eliminates the need for driving a four-stroke engine and reduces operating costs.
  • the natural gas of the fuel is introduced into the combustion chamber at a high pressure as in, for example, an electronically controlled high-pressure gas injection type low-speed two-stroke diesel engine.
  • a reciprocating pump 20 driven by a hydraulic pump that can be easily arranged in a gas danger zone is used to supply a fuel liquefied gas (for example, LNG) at a high pressure.
  • LNG fuel liquefied gas
  • the hydraulic pressure is supplied from the engine-side electronic control unit 60, it is not necessary to install a new hydraulic unit that supplies the hydraulic pressure to the hydraulic motor 50 for driving the reciprocating pump. Accordingly, it is possible to reduce the installation space and cost of the gas-fired engine 1, and it is possible to effectively use the space in the ship such as increasing the cargo space especially in a limited ship.
  • the reciprocating pump In the method of driving the hydraulic pumps 70 and 70A using the shaft output of the exhaust turbine 81 and the supercharger 89 operated using exhaust gas, such as the gas-fired engines 1A and 1B, the reciprocating pump
  • the components of the hydraulic unit that supplies hydraulic pressure to the drive hydraulic motor 50 can be minimized. Accordingly, it is possible to reduce the installation space and cost of the gas-fired engines 1A and 1B, and in particular in a limited ship, it is possible to effectively use the ship space such as increasing the cargo space.
  • this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary, it can change suitably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

ガス危険区域へ容易に配置可能な往復式ポンプを用い、燃料の液化ガス(たとえばLNG)を高圧化して供給できるガス焚きエンジンを提供する。ガス焚きエンジン1のガス燃料供給装置(10)が、油圧モータ(50)により駆動されて導入した液化ガスを所望の圧力まで昇圧して吐出する往復式ポンプ(20)と、電子制御ユニット(60)の油圧系統(61)から高圧作動油の一部を導入して油圧モータ(50)に供給・駆動する油圧導入系統と、油圧モータ(50)の駆動に使用した高圧作動油を油圧系統に戻すための油圧戻し系統と、往復式ポンプ(20)から供給される昇圧後の液化ガスを加熱して気化させる加熱装置(30)と、油圧モータ(50)の回転速度を調整して加熱装置(30)のガス燃料出口圧力を一定に保つ制御部と、燃焼室内へ噴射するガス燃料圧力を調整するエンジン入口ガス減圧弁(40)と、を備えている。

Description

ガス焚きエンジン
 本発明は、たとえば船舶の主機関や発電機駆動機関等に適用され、天然ガス等のガス燃料を燃料として運転されるガス焚きエンジンに関する。
 従来、液化天然ガス(以下、「LNG」という。)が気化した天然ガスを燃料として運転するディーゼル機関は多数存在する。近年、現存する油焚低速ディーゼル主機関の環境排出性能を改善する対策として、高圧ガス噴射型低速2ストロークディーゼル機関(以下、「SSD-GI」という。)が注目されている。このSSD-GIは、従来のLNG利用熱機関(たとえば蒸気タービンなど)に比べて高熱効率及び高応答性の機関であり、かつ、低速での出力が可能な機関であり、プロペラに直結して駆動することができる。
 しかし、天然ガスを燃料とするSSD-GIの場合には、実績のある油焚のディーゼル機関とは異なり、燃焼室内に天然ガスを高圧(約150~300barまで)で供給する高圧噴射技術が成熟しておらず、未だLNG燃料供給に関して確立された技術は見当たらない。
 従来、SSD-GIがLNG船の主機関候補とされていた頃には、略大気圧のボイルオフガス(以下、「BOG」という。)を多段ガス圧縮機にて圧縮し、さらに、圧縮過程又は圧縮後にBOGを冷却してからエンジン燃料に用いる方法が検討されてきた。しかし、BOGを圧縮及び冷却する方法は、大規模な設備を必要とし、しかも大きな動力を消費することが欠点とされてきた。
 なお、LNG運搬船の推進エンジンとしては、たとえば下記の特許文献1(図7等を参照)に記載されているように、ガスタンク内のBOGを低圧及び高圧のコンプレッサにより2段圧縮してエンジン室内に導入するものがある。
 一方、LNG船でBOGの再液化システムが実現された昨今では、BOGを燃料とせずに液化保存することが可能になっている。このため、BOGの有効利用の観点から、従来のLNG船ではBOGを燃料とする方法に努力が払われてきたが、LNGを主機関の主燃料とすることにこの点での障害はなくなってきている。また、LNG船以外の船舶でLNGを燃料とする場合には、加圧方式のLNGタンクを用いることによりBOG処理が不要である。
 このような背景から、近年の船舶においては、主機関等の燃料として良好な環境排出性能を有しているLNGの使用が注目されるようになり、LNGの使用方法等に関する種々の研究開発が活発になっている。
 さて、天然ガスを高圧噴射して燃料供給する方法としては、LNGを高圧化してから加熱・気化させることが考えられる。このようなLNGの高圧化は、往復ポンプを使用した昇圧が一般的である。この往復ポンプは、回転速度が300rpm程度であるから、一般的な電動機速度の回転速度である1800~3600rpmと比較すればかなり低速となる。このため、往復ポンプを電動機により駆動する場合には、往復ポンプの回転速度まで減速する機構が必要となる。
 また、往復ポンプの運転に使用される一般的な減速機構としては、ギアード方式やプーリー方式が知られている。ギアード方式の減速機構は、歯数の異なる複数の歯車を組み合わせた減速機構であり、プーリー方式の減速機構は、Vベルトで連結した大小のホイールを回転させる構造である。
 なお、液化ガスの再ガス化プラントにおいては、たとえば下記の特許文献2に開示されているように、貯蔵タンク内から取り出した液化ガスの圧力を、液体の状態でポンプにより昇圧させて高圧化することが行われている。
 また、近年の舶用ディーゼル機関においては、世界的な舶用機関への排ガス規制強化に対応して、窒素酸化物低減等の環境対応に有効な電子制御機関が開発されている。この電子制御機関は、燃料噴射系、排気動弁系、始動系及びシリンダ注油系の少なくとも一部について、従来のカム軸による駆動を電子制御化したものであり、コントローラと電磁弁で高圧作動油を制御し、エンジンの各装置を駆動する方式が採用されている。
特開平9-209788号公報 特開2009-204026号公報
 上述したように、近年の船舶においては、主機関の燃料としてLNGの注目度が増しているものの、燃焼室内に天然ガスを高圧で噴射するための高圧ガス供給技術は確立されていない。そして、天然ガスをエンジン燃料として高圧噴射するためには、往復式ポンプによるLNGの高圧化が必要になると考えられており、往復式ポンプの駆動制御に関する下記の問題が指摘されている。すなわち、往復ポンプの駆動源として電動機を用い、減速機構を介在させて往復ポンプの回転速度まで減速する運転方式を採用すると、減速機構や電動機に関して下記の問題が生じてくる。
 第1の問題は、往復式ポンプの電動機駆動に必要となる機械的な減速機構に関するものである。
 具体的に説明すると、ギアード方式の減速機構は、往復ポンプ側からのトルク変動による歯車歯面や歯元へのダメージが予想される。このため、長時間連続運転に対する耐久性を考慮すると、トルク変動を緩衝するための弾性継手や慣性ホイールなど、カップリングに考慮が必要になる。
 一方、プーリー方式の減速機構は、ピストンポンプ特有のトルク変動をベルトのスリップにより緩和できるという利点を有しているものの、ベルトは短期間での交換を必要とする消耗品であるから、長期間の連続使用に不向きな方式である。また、プーリー方式の減速機構は、露出する高速接触部で火花の発生が懸念されるため、ガス危険区域への設置は安全上好ましくない。
 第2の問題は、往復ポンプを駆動する電動機に関するものである。
 具体的に説明すると、電動機は、減速機構により往復ポンプの回転速度まで減速する場合、上述したギアード方式及びプーリー方式のいずれの方式を採用しても周波数制御機構(インバータ)が必要となる。しかし、電動機の周波数制御機構は低周波数での精度に難があるため、制御範囲が広く、かなりの低速回転領域でも高精度の制御を必要とする場合には不利である。
 また、電動機等の電気機器類をガス危険区域に設置する場合には、使用可能な機器の選択に制約を受けるため、電動機駆動の往復ポンプをガス危険区域に設置するには多くの制約を受けることとなる。
 本発明は、上記の課題を解決するためになされたもので、その目的とするところは、たとえば電子制御化された高圧ガス噴射型低速2ストロークディーゼル機関のように、燃焼室内に燃料ガス(たとえば天然ガス)を高圧で供給するような高圧ガス噴射ディーゼル機関に適用される高圧噴射技術において、ガス危険区域へ容易に配置可能な往復式ポンプを用い、燃料の液化ガス(たとえばLNG)を高圧化して供給できるガス焚きエンジンを提供することにある。
 本発明は、上記の課題を解決するため、下記の手段を採用した。
 本発明の第1の態様に係るガス焚きエンジンは、コントローラ及び電磁弁で高圧作動油を制御することによってエンジンを駆動する電子制御ユニットと、燃焼室内へ噴射する燃料ガスを高圧の液化ガスに昇圧して供給するガス燃料供給装置とを備えた高圧ガス噴射ディーゼル機関のガス焚きエンジンであって、前記ガス燃料供給装置が、油圧モータにより駆動されて導入した液化ガスを所望の圧力まで昇圧して吐出する往復式ポンプと、前記電子制御ユニットの油圧系統から前記高圧作動油の一部を導入して前記油圧モータに供給・駆動する油圧導入系統と、前記油圧モータの駆動に使用した前記高圧作動油を前記油圧系統に戻すための油圧戻し系統と、前記往復式ポンプから供給される昇圧後の液化ガスを加熱して気化させる加熱装置と、前記油圧モータの回転速度を調整して前記加熱装置のガス燃料出口圧力を一定に保つ制御部と、前記燃焼室内へ噴射するガス燃料圧力を調整するエンジン入口ガス減圧弁と、を備えている。
 前記第1の態様に係るガス焚きエンジンによれば、ガス燃料供給装置が、油圧モータにより駆動されて導入した液化ガスを所望の圧力まで昇圧して吐出する往復式ポンプと、電子制御ユニットの油圧系統から高圧作動油の一部を導入して油圧モータに供給・駆動する油圧導入系統と、油圧モータの駆動に使用した高圧作動油を油圧系統に戻すための油圧戻し系統と、往復式ポンプから供給される昇圧後の液化ガスを加熱して気化させる加熱装置と、油圧モータの回転速度を調整して加熱装置のガス燃料出口圧力を一定に保つ制御部と、燃焼室内へ噴射するガス燃料圧力を調整するエンジン入口ガス減圧弁と、を備えている。これにより、電子制御ユニットの高圧作動油を有効利用することで新たな追加機器類を最小限に抑え、油圧モータ駆動の往復式ポンプにより液化ガスを昇圧することが可能になる。
 このようなガス焚きエンジンは、エンジン負荷の上昇によりエンジン回転数も上昇するので、電子制御ユニットに高圧作動油を供給するエンジン駆動の油圧ポンプ吐出量及び油圧が上昇する。従って、燃料(気化した液化ガス)消費量が増加すると、要求される流量及び圧力も増加する液化ガス昇圧用の往復式ポンプにとって、電子制御ユニットの高圧作動油は好適な油圧源となる。
 前記第1の態様に係るガス焚きエンジンにおいて、前記油圧モータの回転速度は、前記電子制御ユニットに前記高圧作動油を供給する油圧ポンプの吐出量を調整して制御される構成であってもよい。すなわち、往復式ポンプを駆動する油圧モータの回転速度の制御は、電子制御ユニット内に高圧作動油を供給する油圧ポンプの容量制御(油量制御)を実施してなされるので、機械的な減速機構や電動機の回転数制御の追加は不要となる。
 また、油圧モータで駆動する往復式ポンプと、油圧モータに油圧を供給する油圧ポンプユニットとの間は、互いを油圧配管により接続して別置きすることが可能であるから、電気機器や減速機構のない往復式ポンプは、ガス危険区域内への設置が容易になる。
 本発明の第2の態様に係るガス焚きエンジンは、燃焼室内へ噴射する燃料ガスを高圧の液化ガスに昇圧して供給するガス燃料供給装置を備えた高圧ガス噴射ディーゼル機関のガス焚きエンジンであって、前記ガス燃料供給装置が、油圧モータにより駆動されて導入した液化ガスを所望の圧力まで昇圧して吐出する往復式ポンプと、エンジン排気静圧管から排気ガスの一部を抽出して運転される排気タービンの回転軸により駆動される油圧ポンプから前記油圧モータに駆動用の油圧を供給する油圧ポンプユニットと、前記往復式ポンプから供給される昇圧後の液化ガスを加熱して気化させる加熱装置と、前記油圧モータの回転速度を調整して前記加熱装置のガス燃料出口圧力を一定に保つ制御部と、前記燃焼室内へ噴射するガス燃料圧力を調整するエンジン入口ガス減圧弁と、を備えている。
 前記第2の態様に係るガス焚きエンジンによれば、ガス燃料供給装置が、油圧モータにより駆動されて導入した液化ガスを所望の圧力まで昇圧して吐出する往復式ポンプと、エンジン排気静圧管から排気ガスの一部を抽出して運転される排気タービンにより駆動される油圧ポンプから油圧モータに駆動用の油圧を供給する油圧ポンプユニットと、往復式ポンプから供給される昇圧後の液化ガスを加熱して気化させる加熱装置と、油圧モータの回転速度を調整して加熱装置のガス燃料出口圧力を一定に保つ制御部と、燃焼室内へ噴射するガス燃料圧力を調整するエンジン入口ガス減圧弁と、を備えている。これにより、エンジン負荷の上昇に伴って発生量が増加する排気ガスの有効利用により油圧ポンプユニットを駆動し、油圧モータ駆動の往復式ポンプにより液化ガスを昇圧することが可能になる。この場合、エンジン負荷が上昇すると排気ガス量も増加するので、燃料(気化した液化ガス)消費量が増加すると、要求される流量及び圧力も増加する液化ガス昇圧用の往復式ポンプにとって、排気タービン駆動の油圧ポンプは好適な油圧源となる。
 また、新たな追加機器類を最小限に抑え、油圧モータ駆動の往復式ポンプにより液化ガスを昇圧することが可能になる。
 本発明の第3の態様に係るガス焚きエンジンは、過給機と、燃焼室内へ噴射する燃料ガスを高圧の液化ガスに昇圧して供給するガス燃料供給装置とを備えた高圧ガス噴射ディーゼル機関のガス焚きエンジンであって、前記ガス燃料供給装置が、油圧モータにより駆動されて導入した液化ガスを所望の圧力まで昇圧して吐出する往復式ポンプと、前記過給機の回転軸により駆動される油圧ポンプから前記油圧モータに駆動用の油圧を供給する油圧ポンプユニットと、前記往復式ポンプから供給される昇圧後の液化ガスを加熱して気化させる加熱装置と、前記油圧モータの回転速度を調整して前記加熱装置のガス燃料出口圧力を一定に保つ制御部と、前記燃焼室内へ噴射するガス燃料圧力を調整するエンジン入口ガス減圧弁と、を備えている。
 前記第3の態様に係るガス焚きエンジンによれば、ガス燃料供給装置が、油圧モータにより駆動されて導入した液化ガスを所望の圧力まで昇圧して吐出する往復式ポンプと、過給機の回転軸により駆動される油圧ポンプから油圧モータに駆動用の油圧を供給する油圧ポンプユニットと、往復式ポンプから供給される昇圧後の液化ガスを加熱して気化させる加熱装置と、油圧モータの回転速度を調整して加熱装置のガス燃料出口圧力を一定に保つ制御部と、燃焼室内へ噴射するガス燃料圧力を調整するエンジン入口ガス減圧弁と、を備えている。これにより、エンジン負荷の上昇に伴って発生量が増加する排気ガスの有効利用により油圧ポンプユニットを駆動し、油圧モータ駆動の往復式ポンプにより液化ガスを昇圧することが可能になる。この場合、エンジン負荷が上昇すると排気ガス量も増加するので、燃料(気化した液化ガス)消費量が増加すると、要求される流量及び圧力も増加する液化ガス昇圧用の往復式ポンプにとって、排気タービン駆動の油圧ポンプは好適な油圧源となる。
 また、新たな追加機器類を最小限に抑え、油圧モータ駆動の往復式ポンプにより液化ガスを昇圧することが可能になる。
 前記第2の態様または前記第3の態様に係るガス焚きエンジンにおいて、前記ガス燃料供給装置は、前記油圧ポンプを可変容量型とし、前記制御部が前記油圧ポンプの可変容量制御により前記油圧モータの回転速度を調整して前記ガス燃料出口圧力を一定に保つ構成であってもよい。これにより、往復式ポンプを駆動する油圧モータの回転速度の調整が、油圧ポンプを容量制御(油量制御)することによりなされるので、機械的な減速機構や電動機の回転数制御は不要となる。この場合に好適な可変容量制御としては、たとえば油圧ポンプを斜板式とし、斜板角度を適宜調整してポンプ吐出量を制御する方式がある。
 また、油圧モータで駆動する往復式ポンプと、油圧モータに油圧を供給する油圧ポンプユニットとの間は、互いを油圧配管により接続して別置きすることが可能であるから、電気機器や減速機構のない往復式ポンプは、ガス危険区域内への設置が容易になる。
 前記第2の態様に係るガス焚きエンジンにおいて、前記ガス燃料供給装置は、前記油圧ポンプを一定容量型とし、前記制御部が前記排気タービンの回転数制御により前記油圧モータの回転速度を調整して前記ガス燃料出口圧力を一定に保つようにしてもよい。この場合、排気タービンの入口側に排気ガス流量の制御弁を設けておき、バルブ開度を適宜調整して排気タービンの回転数を制御すればよい。
 このようにしても、往復式ポンプを駆動する油圧モータの回転速度の調整が、駆動側の排気タービン回転数を制御することによりなされるので、機械的な減速機構や電動機の回転数制御は不要となる。また、油圧モータで駆動する往復式ポンプと、油圧モータに油圧を供給する油圧ポンプユニットとの間は、互いを油圧配管により接続して別置きすることが可能であるから、電気機器や減速機構のない往復式ポンプは、ガス危険区域内への設置が容易になる。
 上述した本発明のガス焚きエンジンによれば、たとえば電子制御化された高圧ガス噴射型低速2ストロークディーゼル機関のように、燃焼室内に燃料ガス(たとえば天然ガス)を高圧で供給するような高圧ガス噴射ディーゼル機関において、ガス危険区域へ容易に配置可能な油圧ポンプ駆動の往復式ポンプを用い、燃料の液化ガス(たとえばLNG)を高圧化して供給可能となる。
 そして、エンジン側の電子制御ユニットから油圧の供給を受ければ、往復式ポンプ駆動用の油圧モータに油圧を供給する新たな油圧ユニットの設置が不要になる。これにより、ガス焚きエンジンの設置スペースやコストの低減が可能になり、特に限られた船舶内においては、積荷スペースを増すなど船内空間の有効利用が可能になる。
 また、排気ガスを利用して運転される排気タービンや過給機の軸出力を利用して油圧ポンプを駆動する方式では、往復式ポンプ駆動用の油圧モータに油圧を供給する油圧ユニットの構成機器を最小限に抑えることができる。これにより、ガス焚きエンジンの設置スペースやコストの低減が可能になり、特に限られた船舶内においては、積荷スペースを増すなど船内空間の有効利用が可能になる。
本発明に係るガス焚きエンジンの一実施形態として、第1の実施形態を示す系統図である。 本発明に係るガス焚きエンジンの一実施形態として、第2の実施形態を示す系統図である。 本発明に係るガス焚きエンジンの一実施形態として、第3の実施形態を示す系統図である。 横軸を運転点(OP)として、縦軸に往復式ポンプのポンプ負荷及び再循環制御弁(RCV)開度を示す説明図である。
 以下、本発明に係るガス焚きエンジンの一実施形態を図面に基づいて説明する。
<第1の実施形態>
 図1に示す実施形態のガス焚きエンジン1は、コントローラ及び電磁弁で高圧作動油を制御することによってエンジンを駆動する電子制御ユニット60と、エンジンの燃焼室内に噴射する燃料ガスを高圧の液化ガスに昇圧して供給するガス燃料供給装置10とを備えた高圧ガス噴射ディーゼル機関である。
 なお、後述する電子制御ユニット60は、ガス焚きエンジン1の燃料噴射系、排気動弁系、始動系及びシリンダ注油系の少なくとも一部について、従来のカム軸による駆動を電子制御化したものである。
 図示のガス焚きエンジン1には、高圧ガス噴射ディーゼル機関の燃焼室内へ液化ガスを気化させた燃料ガスを噴射して供給する「高圧モード」を備えたガス燃料供給装置10が設けられている。本実施形態に係るガス焚きエンジン1の具体例としては、高圧ガス噴射ディーゼル機関、たとえば高圧ガス噴射型低速2ストロークディーゼル機関(以下、「SSD-GI」という。)がある。
 なお、以下の説明においては、液化ガスを液化天然ガス(以下、「LNG」という。)とし、LNGが気化した天然ガスを燃料ガスとするが、本実施形態の機関及び装置は、たとえば液化石油ガス(LPG)等の液化ガスを燃料とする機関にも適用可能である。
 ガス燃料供給装置10は、往復式ポンプ20でLNGを昇圧してから気化させた天然ガスを高圧ガス噴射機関の燃焼室内に噴射して供給するLNG燃料系と、往復式ポンプ20を駆動する油圧モータ50に油圧を供給する油圧系と、油圧モータ50等の制御を行う制御部(不図示)とを備えている。なお、図示の構成例では、1組のLNG燃料系及び油圧系を示しているが、各々複数設置が連結された構成としてもよく、これに限定されることはない。
 LNG燃料系は、油圧モータ50により駆動される往復式ポンプ20を備えている。この往復式ポンプ20は、略大気圧の状態にあるLNGを導入し、所望の圧力まで昇圧して吐出するポンプである。
 往復式ポンプ20の吐出側に接続されたLNG供給配管22は、ポンプ側から順に配置された加熱装置30及びエンジン入口ガス減圧弁(以下、「ガス減圧弁」という。)40を備えている。
 加熱装置30は、往復式ポンプ20から供給される昇圧後のLNGを加熱して気化させる装置である。すなわち、加熱装置30に流入した高圧のLNGは、装置内で加熱されることにより、LNGが気化した天然ガスとして流出する。
 加熱装置30の出口近傍には圧力センサ(不図示)が設けられており、この圧力センサで検出した天然ガス出口圧力PVが、ガス燃料出口圧力として制御部に入力される。この制御部は、天然ガス出口圧力PVを予め定めた一定の圧力値に保つため、後述する油圧モータ50の回転速度を調整する。なお、この制御部は、後述する電子制御ユニット60の制御部と一体に構成されたものでもよい。
 加熱装置30から供給される天然ガスは、ガス減圧弁40によって所望の圧力に調整された後、高圧の燃焼室内に噴射して供給される。すなわち、ガス減圧弁40で調整される天然ガスの噴射(供給)圧力は、ピストンに圧縮されて高圧の状態にある燃焼室内に噴射するため、燃焼室内の圧力より高圧に設定する必要がある。このような高圧で燃焼室内へ天然ガスを噴射する運転モードを「高圧モード」と呼ぶ。なお、SSD-GIの場合、高圧モードにおける天然ガスの噴射圧力は、概ね150~300barである。
 ガス減圧弁40は、上述した「高圧モード」に加えて、ガス燃料の天然ガスをガススパーク式オットーサイクルエンジンの燃料として供給する「低圧モード」を備えている。この「低圧モード」は、たとえば船内電力を賄う発電機関等に対してガス燃料を供給する場合に使用され、「高圧モード」と比較して低圧となる。
 LNG供給配管22は、加熱装置30の上流側から分岐する再循環ライン23を備えている。この再循環ライン23は、往復式ポンプ20で昇圧されたLNGを加熱装置30の上流側から分岐させて吸入ドラム24に流す配管系統であり、吸入ドラム24の上流側には流量調整弁の再循環制御弁25が設けられている。吸入ドラム24に接続されるLNG導入配管21は、図示しないLNGタンク等に接続されている。
 このような再循環ライン23を設けることにより、油圧モータ50の回転速度を制御できない低速領域や危急でLNG流量を絞る場合には、流量調整弁25の開度調整により再循環ライン23を流れるLNG再循環流量を制御して対応することが可能になる。
 具体的に説明すると、たとえば図4に示す説明図のように、ポンプ負荷の小さい低速領域では再循環制御弁25の開度を増して再循環流量を確保し、すなわち、ポンプ負荷の小さい運転点OPでは再循環流量を増すことにより往復動ポンプ20を流れるLNGの総流量を確保し、油圧モータ50の制御が可能な回転数領域に維持する。また、危急でLNG量を絞る場合は、再循環制御弁25の開度を増して加熱装置30をバイパスする再循環流量を増加させ、加熱装置30への供給量を制限すればよい。
 吸入ドラム24は、LNG供給配管22から分岐させて導入したLNGを集め、往復式ポンプ20の再循環吸入部に戻すLNG容器である。再循環ライン23に導入されるLNGの再循環流量は、制御部から出力される運転点OPの制御信号に基づいて動作する再循環制御弁25により調整される。この運転点OPの制御信号は、たとえば機関回転数により与えられる設定点SPと、圧力センサで検出した天然ガス出口圧力PVとに基づいて、制御部が出力する運転点を定めた開度信号である。
 なお、この場合の設定点SPは、上述した機関回転数のように、ガス減圧弁40の制御性が高い圧力値となる変動値を採用してもよいし、あるいは、設定点SPを固定値としてもよい。
 そして、この場合の油圧系は、電子制御ユニット60が保有する油圧の一部を導入し、往復式ポンプ20を駆動する油圧モータ50に供給する。すなわち、電子制御ユニット60の油圧系統61から高圧作動油の一部を導入して油圧モータ50に供給・駆動する油圧導入系統51と、油圧モータ50の駆動に使用した高圧作動油を油圧系統61に戻すための油圧戻し系統52とを備えている。
 電子制御ユニット60の油圧系統61は、クランクケース62内に貯留されているエンジン潤滑油の一部を高圧の油圧作動油として使用するものである。
 クランクケース62内のエンジン潤滑油は、潤滑油ライン63に設けた電動の潤滑油ポンプ64でフィルタユニット65に供給される。このエンジン潤滑油は、フィルタユニット65で異物の除去がなされた後、エンジン駆動ポンプ66または電動ポンプ67により昇圧された高圧作動油が油圧系統61に供給される。この場合、上述した電動ポンプ67はエンジン始動時に必要なものであり、エンジン始動後の通常運転ではエンジン駆動ポンプ66からの油圧供給が主に使用される。
 なお、ガス焚きエンジン1で駆動されるエンジン駆動ポンプ66と油圧系統61との間には、ガス焚きエンジン1の逆転時にポンプ吸入方向及びポンプ吐出方向を変化させる切替弁ブロック68が設けられている。
 油圧導入系統51は、電子制御ユニット60の上流側で油圧系統61から分岐し、高圧作動油の一部を油圧モータ50に供給する配管系統である。
 油圧戻し系統52は、油圧モータ50の駆動に使用した高圧作動油を油圧系統61に戻す配管系統である。この油戻し系統52には、油圧モータ50の駆動に使用した高圧作動油をいったん貯留するための副貯留タンク53が設けられている。この副貯留タンク53内に貯留された作動油は、電動の油戻しポンプ54を運転することにより、油圧戻し系統52を通ってクランクケース62に戻される。
 また、図中の符号55は、油圧導入系統51と副貯留タンク53との間を連結する管路であり、符号56は、管路55に設けた逆止弁である。管路55と逆止弁56を備えることで、エンジンの緊急停止などに副貯留タンク53から油を吸い上げることにより、油圧導入系統51が負圧になるのを回避することができる。
 このように、本実施形態のガス燃料供給装置10は、油圧モータ50を駆動するための油圧供給系統(油圧ポンプ等)を新たに設けるのではなく、ガス焚きエンジン1が保有している電子制御ユニット60の高圧作動油を有効利用することにより、油圧モータ50により駆動される往復式ポンプ20でLNGを昇圧している。従って、本実施形態のガス燃料供給装置10は、エンジン燃料としてLNGを供給するために必要となる油圧系において、電子制御ユニット60の油圧設備を共用することによって、新たな追加機器類を最小限に抑えることができる。
 このようなガス焚きエンジン1は、船速に合わせてエンジン回転数を船側で任意に変更可能である。たとえばエンジン負荷の上昇によりエンジン回転数も上昇するため、電子制御ユニット60に高圧作動油を供給するエンジン駆動ポンプ66のポンプ吐出量及び油圧が上昇することとなる。すなわち、LNGを気化させたガス燃料の消費量が増加すると、流量及び圧力の要求値が増大する液化ガス昇圧用の往復式ポンプ20にとって、電子制御ユニット60の高圧作動油は好適な油圧源となる。
 換言すれば、往復式ポンプ20を駆動する油圧モータ50の回転速度は、電子制御ユニット60に高圧作動油を供給するエンジン駆動ポンプ66の容量制御(油量制御)を実施することにより、すなわち、エンジン駆動ポンプ66の吐出量を調整することによって制御可能となるので、機械的な減速機構や電動機の回転数制御は不要となる。この場合、エンジン駆動ポンプ66には、たとえばプランジャポンプのような可変容量型を採用し、プランジャ傾斜角を調整することにより吐出量を制御することが望ましい。
 従って、往復式ポンプ20のLNG吐出量は、油圧モータ50の回転数及び油圧で制御可能となるので、加熱装置30に対するLNGの供給量は、エンジン負荷の変動に伴って高圧作動油の供給量及び油圧が増減することに連動して容易に制御(増減)することができる。
 また、油圧モータ50で駆動する往復式ポンプ20と、油圧モータ50に油圧を供給する油圧ポンプユニットとなるエンジン駆動ポンプ66との間は、互いを油圧導入系統51及び油圧戻し系統52の油圧配管により接続されている。すなわち、油圧モータ50で駆動する往復式ポンプ20と油圧供給源となるエンジン駆動ポンプ66との間は、油圧導入系統51及び油圧戻し系統52で接続することにより別置きが可能であるから、電気機器や減速機構のない往復式ポンプ20は、ガス危険区域内への設置も容易になる。
 また、船舶の主機関から油圧を供給する構成となるので、別置きの油圧ユニットに駆動電力を供給するために、主機の2ストローク機関に比べて熱効率で劣る発電用4ストローク機関を駆動する必要がなくなって運行コストを低減できる。
<第2の実施形態>
 次に、本発明に係るガス焚きエンジンについて、第2の実施形態を図2に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
 図2に示す実施形態のガス焚きエンジン1Aは、上述した実施形態と異なる構成のガス燃料供給装置10Aを備えている。このガス燃料供給装置10Aにおいては、LNG燃料系が上述した実施形態と実質的に同様の構成であるものの、油圧モータ50に油圧を供給する油圧系の構成が異なっている。
 この場合の油圧系は、ガス焚きエンジン1Aの排気ガスを有効に利用して、油圧モータ50に駆動用の油圧を供給する油圧ポンプユニットの油圧ポンプ70を駆動している。この油圧ポンプ70は、エンジン排気静圧管80から排気ガスの一部を抽出して運転される排気タービン81を駆動源とする可変容量型のポンプであり、たとえばプランジャポンプが使用される。
 排気タービン81には、エンジン排気静圧管80から排気ガスの一部を導入する排気ガス供給流路82と、排気タービン81で仕事をした排気ガスを大気放出用の煙突に導く排気ガス排出流路83とが接続されている。
 排気ガス供給流路82には、必要時に排気タービン81に供給する排気ガス流量の調整をするため、排気ガス流量制御弁84が設けられている。また、排気ガス供給流路82には、排気ガス流量制御弁84の上流側から分岐する排気ガスバイパス流路85が設けられている。この排気ガスバイパス流路85は排気ガス排出流路83に接続され、その流路途中にはバイパス流量調整弁86及びオリフィス87が設けられている。
 エンジン排気静圧管80から排出される排気ガスの主流は、主排気ガス供給流路88を通って過給機89の排気タービン89aに供給される。この排気ガス主流は、排気タービン89aを駆動させた後、主排気ガス排出流路90を通って煙突に導かれる。なお、この主排気ガス排出流路90には、上述した排気ガス排出流路83が接続されている。
 過給機89は、排気タービン89aの回転軸により駆動される圧縮機89bが機関室内の空気を吸入して圧縮する。圧縮機89bで圧縮された給気(掃気)用の圧縮空気は、空気冷却器91で冷却されることにより、空気密度を高めた状態にして給気マニホールド92に供給される。
 なお、図中の符号93はガス焚きエンジン1Aのシリンダであり、図示の構成例では6気筒となっているが、これに限定されることはない。
 このようなガス焚きエンジン1Aによれば、ガス燃料供給装置10Aの油圧供給源として、大気へ放出する排気ガスを有効利用することにより、油圧ポンプ70を運転して油圧モータ50に油圧を供給することが可能になる。
 油圧ポンプ70から吐出された高圧作動油は、油圧導入系統51Aを通って油圧モータ50に供給される。なお、油圧モータ50を駆動して副貯留タンク53に流入した作動油は、電動の油戻しポンプ54を用いて作動油貯蔵タンク59に戻される。
 このような本実施形態のガス焚きエンジン1Aによれば、ガス燃料供給装置10Aは、エンジン排気静圧管80から排気ガスの一部を抽出して運転される排気タービン81により駆動される油圧ポンプ70から油圧モータ50に駆動用の油圧を供給する油圧ポンプユニットの油圧ポンプ70を備えている。これにより、エンジン負荷の上昇に伴って発生量が増加する排気ガスの有効利用により油圧ポンプ70を駆動し、油圧モータ駆動の往復式ポンプ20によりLNGを昇圧することが可能になる。
 この場合、エンジン負荷が上昇するとLNGを気化させた天然ガス(エンジン燃料)の消費量が増加するとともに排気ガス量も増加するので、往復式ポンプ20に要求されるLNGの流量及び圧力も増加する。従って、このようなLNG昇圧用の往復式ポンプ20にとって、排気タービン81が駆動する油圧ポンプ70は、燃料側の要求変動と、燃料供給側の往復動ポンプ20を駆動する油圧モータ50に供給される油圧変動とが略同様の傾向を示すため、好適な油圧供給源となる。
 また、上述した実施形態の油圧系は、新たな追加機器類を最小限に抑え、油圧モータ50が駆動する往復式ポンプ20により液化ガスを昇圧することが可能になる。
 ところで、上述した実施形態のガス燃料供給装置10Aにおいては、油圧ポンプ70を可変容量型とし、図示しない制御部が油圧ポンプ70の可変容量制御を実施して油圧モータ50の回転速度を調整し、ガス減圧弁40からガス焚きエンジン1Aへ供給する天然ガス(ガス燃料)のガス燃料出口圧力を一定に保つことが好ましい。
 このような可変容量制御により、往復式ポンプ20を駆動する油圧モータ50の回転速度の調整が、油圧ポンプ70を容量制御(油量制御)することによりなされるので、機械的な減速機構や電動機の回転数制御は不要となる。
 この場合に好適な可変容量制御としては、たとえば油圧ポンプを斜板式とし、排気ガス流量制御弁84の開度を固定するとともに斜板角度を適宜調整してポンプ吐出量を制御する方式がある。
 また、上述した実施形態のガス燃料供給装置10Aは、油圧ポンプ70を一定容量型とし、図示しない制御部が排気タービン81の回転数制御により油圧モータ50の回転速度を調整し、ガス減圧弁40のガス燃料出口圧力を一定に保つようにした変形例も可能である。この場合、排気タービン81の入口側に排気ガス流量の制御弁、すなわち開度調整可能な流量制御弁84を設けておき、流量制御弁84のバルブ開度を適宜調整して、排気ガス供給量による排気タービンの回転数を制御すればよい。
 このようにしても、往復式ポンプ20を駆動する油圧モータ50の回転速度は、駆動側の排気タービン回転数を制御することにより調整されるので、機械的な減速機構や電動機の回転数制御が不要となる。
 また、油圧モータ50で駆動する往復式ポンプ20と、油圧モータ50に油圧を供給する油圧ポンプユニット(油圧ポンプ70)との間は、互いを油圧配管により接続して別置きすることが可能であるから、電気機器や減速機構のない往復式ポンプ20は、ガス危険区域内への設置が容易になる。
 さらに、船舶の主機関から排出される排気ガスエネルギーを油圧として有効利用した構成となるので、別置きの油圧ユニットに駆動電力を供給するために、主機の2ストローク機関に比べて熱効率で劣る発電用4ストローク機関を駆動する必要がなくなって運行コストを低減できる。
<第3の実施形態>
 次に、本発明に係るガス焚きエンジンについて、第3の実施形態を図3に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
 図3に示す実施形態のガス焚きエンジン1Bは、上述した実施形態と異なる構成のガス燃料供給装置10Bを備えている。このガス燃料供給装置10Bにおいては、LNG燃料系が上述した実施形態と実質的に同様の構成であるものの、油圧モータ50に油圧を供給する油圧系の構成が異なっている。
 この場合の油圧系は、ガス焚きエンジン1Bの排気ガスを有効に利用して、油圧モータ50に駆動用の油圧を供給する油圧ポンプユニットの油圧ポンプ70Aを駆動している。この油圧ポンプ70Aは、エンジン排気静圧管80から排出される排気ガスにより運転される過給機89の排気タービン89aの回転軸により駆動される可変容量型のポンプであり、たとえばプランジャポンプが使用される。
 排気タービン89aには、エンジン排気静圧管80から排気ガスを導入する主排気ガス供給流路88と、排気タービン89aで仕事をした排気ガスを大気放出用の煙突に導く主排気ガス排出流路90とが接続されている。
 エンジン排気静圧管80から排出される排気ガスは、主排気ガス供給流路88を通って過給機89の排気タービン89aに供給される。この排気ガス流は、排気タービン89aを駆動させた後、主排気ガス排出流路90を通って煙突に導かれる。
 過給機89は、排気タービン89aの回転軸により駆動される圧縮機89bが機関室内の空気を吸入して圧縮する。圧縮機89bで圧縮された給気(掃気)用の圧縮空気は、空気冷却器91で冷却されることにより、空気密度を高めた状態にして給気マニホールド92に供給される。
 なお、図中の符号93はガス焚きエンジン1Bのシリンダであり、図示の構成例では6気筒となっているが、これに限定されることはない。
 このようなガス焚きエンジン1Bによれば、ガス燃料供給装置10Bの油圧供給源として、大気へ放出する排気ガスを有効利用する。これにより、油圧ポンプ70を過給機89の排気タービン89aの軸駆動で運転し、作動油貯蔵タンク59から導入した作動油を昇圧して油圧モータ50に油圧を供給することが可能になる。
 油圧ポンプ70から吐出された高圧作動油は、油圧導入系統51Aを通って油圧モータ50に供給される。なお、油圧モータ50を駆動して副貯留タンク53に流入した作動油は、電動の油戻しポンプ54を用いて作動油貯蔵タンク59に戻される。
 このような本実施形態のガス焚きエンジン1Bによれば、ガス燃料供給装置10Bが、エンジン排気静圧管80から排気ガスを導入して運転される排気タービン89aにより駆動される油圧ポンプ70から油圧モータ50に駆動用の油圧を供給する油圧ポンプユニットの油圧ポンプ70を備えている。これにより、エンジン負荷の上昇に伴って発生量が増加する排気ガスの有効利用により油圧ポンプ70を駆動し、油圧モータ駆動の往復式ポンプ20によりLNGを昇圧することが可能になる。
 この場合、エンジン負荷が上昇するとLNGを気化させた天然ガス(エンジン燃料)の消費量が増加するとともに排気ガス量も増加するので、往復式ポンプ20に要求されるLNGの流量及び圧力も増加する。従って、このようなLNG昇圧用の往復式ポンプ20にとって、排気タービン89aが駆動する油圧ポンプ70は、燃料側の要求変動と、燃料供給側の往復動ポンプ20を駆動する油圧モータ50に供給される油圧変動とが略同様の傾向を示すため、好適な油圧供給源となる。
 また、上述した実施形態の油圧系は、新たな追加機器類を最小限に抑え、油圧モータ50が駆動する往復式ポンプ20により液化ガスを昇圧することが可能になる。
 ところで、上述した実施形態のガス燃料供給装置10Bにおいては、油圧ポンプ70Aを可変容量型とし、図示しない制御部が油圧ポンプ70Aの可変容量制御を実施して油圧モータ50の回転速度を調整し、ガス減圧弁40からガス焚きエンジン1Bへ供給する天然ガス(ガス燃料)のガス燃料出口圧力を一定に保つことが好ましい。
 このような可変容量制御により、往復式ポンプ20を駆動する油圧モータ50の回転速度が油圧ポンプ70を容量制御(油量制御)することによりなされるので、機械的な減速機構や電動機の回転数制御は不要となる。
 この場合に好適な可変容量制御としては、たとえば油圧ポンプを斜板式とし、斜板角度を適宜調整してポンプ吐出量を制御する方式が採用される。
 このようにしても、往復式ポンプ20を駆動する油圧モータ50の回転速度は、駆動側の排気タービン回転数を制御することにより調整されるので、機械的な減速機構や電動機の回転数制御が不要となる。
 また、油圧モータ50で駆動する往復式ポンプ20と、油圧モータ50に油圧を供給する油圧ポンプユニット(油圧ポンプ70)との間は、互いを油圧配管により接続して別置きすることが可能であるから、電気機器や減速機構のない往復式ポンプ20は、ガス危険区域内への設置が容易になる。
 さらに、船舶の主機関から排出される排気ガスエネルギーを油圧として有効利用した構成となるので、別置きの油圧ユニットに駆動電力を供給するために、主機の2ストローク機関に比べて熱効率で劣る発電用4ストローク機関を駆動する必要がなくなって運行コストを低減できる。
 上述したように、本実施形態のガス焚きエンジン1,1A,1Bによれば、たとえば電子制御化された高圧ガス噴射型低速2ストロークディーゼル機関のように、燃焼室内に燃料の天然ガスを高圧で供給する高圧ガス噴射ディーゼル機関においては、ガス危険区域へ容易に配置可能な油圧ポンプ駆動の往復式ポンプ20を用い、燃料の液化ガス(たとえばLNG)を高圧化して供給することが可能になる。
 そして、エンジン側の電子制御ユニット60から油圧の供給を受ければ、往復式ポンプ駆動用の油圧モータ50に油圧を供給する新たな油圧ユニットの設置が不要になる。従って、ガス焚きエンジン1の設置スペースやコストの低減が可能になり、特に限られた船舶内においては、積荷スペースを増すなど船内空間の有効利用が可能になる。
 また、ガス焚きエンジン1A,1Bのように、排気ガスを利用して運転される排気タービン81や過給機89の軸出力を利用して油圧ポンプ70,70Aを駆動する方式では、往復式ポンプ駆動用の油圧モータ50に油圧を供給する油圧ユニットの構成機器を最小限に抑えることができる。従って、ガス焚きエンジン1A,1Bの設置スペースやコストの低減が可能になり、特に限られた船舶内においては、積荷スペースを増すなど船内空間の有効利用が可能になる。
 なお、本発明は上述した実施形態に限定されることはなく、その要旨を逸脱しない範囲内において適宜変更することができる。
  1,1A,1B  ガス焚きエンジン
 10,10A,10B  ガス燃料供給装置
 20  往復式ポンプ
 21  LNG導入配管
 22  LNG供給配管
 23  再循環ライン
 24  吸入ドラム
 25  再循環制御弁
 30  加熱装置
 40  エンジン入口ガス減圧弁(ガス減圧弁)
 50  油圧モータ
 51,51A  油圧導入系統
 52  油圧戻し系統
 53  副貯留タンク
 54  油戻しポンプ
 59  作動油貯蔵タンク
 60  電子制御ユニット
 61  油圧系統
 62  クランクケース
 63  潤滑油ライン
 64  潤滑油ポンプ
 65  フィルタユニット
 66  エンジン駆動ポンプ
 67  電動ポンプ
 70,70A  油圧ポンプ
 80  エンジン排気静圧管
 81  排気タービン
 82  排気ガス供給流路
 83  排気ガス排出流路
 84  排気ガス流量制御弁
 88  主排気ガス供給流路
 89  過給機
 89a  排気タービン
 89b  圧縮機
 90  主排気ガス排出流路
 91  空気冷却器
 92  給気マニホールド
 OP  運転点
 RCV  再循環制御弁

Claims (6)

  1.  コントローラ及び電磁弁で高圧作動油を制御することによってエンジンを駆動する電子制御ユニットと、燃焼室内へ噴射する燃料ガスを高圧の液化ガスに昇圧して供給するガス燃料供給装置とを備えた高圧ガス噴射ディーゼル機関のガス焚きエンジンであって、
     前記ガス燃料供給装置が、
     油圧モータにより駆動されて導入した液化ガスを所望の圧力まで昇圧して吐出する往復式ポンプと、
     前記電子制御ユニットの油圧系統から前記高圧作動油の一部を導入して前記油圧モータに供給・駆動する油圧導入系統と、
     前記油圧モータの駆動に使用した前記高圧作動油を前記油圧系統に戻すための油圧戻し系統と、
     前記往復式ポンプから供給される昇圧後の液化ガスを加熱して気化させる加熱装置と、
     前記油圧モータの回転速度を調整して前記加熱装置のガス燃料出口圧力を一定に保つ制御部と、
     前記燃焼室内へ噴射するガス燃料圧力を調整するエンジン入口ガス減圧弁と、
    を備えているガス焚きエンジン。
  2.  前記油圧モータの回転速度は、前記電子制御ユニットに前記高圧作動油を供給する油圧ポンプの吐出量を調整して制御される請求項1に記載のガス焚きエンジン。
  3.  燃焼室内へ噴射する燃料ガスを高圧の液化ガスに昇圧して供給するガス燃料供給装置を備えた高圧ガス噴射ディーゼル機関のガス焚きエンジンであって、
     前記ガス燃料供給装置が、
     油圧モータにより駆動されて導入した液化ガスを所望の圧力まで昇圧して吐出する往復式ポンプと、
     エンジン排気静圧管から排気ガスの一部を抽出して運転される排気タービンの回転軸により駆動される油圧ポンプから前記油圧モータに駆動用の油圧を供給する油圧ポンプユニットと、
     前記往復式ポンプから供給される昇圧後の液化ガスを加熱して気化させる加熱装置と、
     前記油圧モータの回転速度を調整して前記加熱装置のガス燃料出口圧力を一定に保つ制御部と、
     前記燃焼室内へ噴射するガス燃料圧力を調整するエンジン入口ガス減圧弁と、
    を備えているガス焚きエンジン。
  4.  過給機と、燃焼室内へ噴射する燃料ガスを高圧の液化ガスに昇圧して供給するガス燃料供給装置とを備えた高圧ガス噴射ディーゼル機関のガス焚きエンジンであって、
     前記ガス燃料供給装置が、
     油圧モータにより駆動されて導入した液化ガスを所望の圧力まで昇圧して吐出する往復式ポンプと、
     前記過給機の回転軸により駆動される油圧ポンプから前記油圧モータに駆動用の油圧を供給する油圧ポンプユニットと、
     前記往復式ポンプから供給される昇圧後の液化ガスを加熱して気化させる加熱装置と、
     前記油圧モータの回転速度を調整して前記加熱装置のガス燃料出口圧力を一定に保つ制御部と、
     前記燃焼室内へ噴射するガス燃料圧力を調整するエンジン入口ガス減圧弁と、
    を備えているガス焚きエンジン。
  5.  前記ガス燃料供給装置は、前記油圧ポンプを可変容量型とし、前記制御部が前記油圧ポンプの可変容量制御により前記油圧モータの回転速度を調整して前記ガス燃料出口圧力を一定に保つ請求項3または4に記載のガス焚きエンジン。
  6.  前記ガス燃料供給装置は、前記油圧ポンプを一定容量型とし、前記制御部が前記排気タービンの回転数制御により前記油圧モータの回転速度を調整して前記ガス燃料出口圧力を一定に保つ請求項3に記載のガス焚きエンジン。
PCT/JP2012/056695 2011-03-31 2012-03-15 ガス焚きエンジン WO2012132931A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020147021429A KR20140108720A (ko) 2011-03-31 2012-03-15 가스 연소식 엔진
KR1020157002736A KR101600763B1 (ko) 2011-03-31 2012-03-15 가스 연소식 엔진
CN201280002387.3A CN103080525B (zh) 2011-03-31 2012-03-15 燃气发动机
US13/985,065 US9169769B2 (en) 2011-03-31 2012-03-15 Gas-fired engine
KR1020137003635A KR101494109B1 (ko) 2011-03-31 2012-03-15 가스 연소식 엔진
US14/735,633 US20150275824A1 (en) 2011-03-31 2015-06-10 Gas-fired engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-081193 2011-03-31
JP2011081193A JP5808128B2 (ja) 2011-03-31 2011-03-31 ガス焚きエンジン

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/985,065 A-371-Of-International US9169769B2 (en) 2011-03-31 2012-03-15 Gas-fired engine
US14/735,633 Division US20150275824A1 (en) 2011-03-31 2015-06-10 Gas-fired engine

Publications (1)

Publication Number Publication Date
WO2012132931A1 true WO2012132931A1 (ja) 2012-10-04

Family

ID=46930666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056695 WO2012132931A1 (ja) 2011-03-31 2012-03-15 ガス焚きエンジン

Country Status (5)

Country Link
US (2) US9169769B2 (ja)
JP (1) JP5808128B2 (ja)
KR (3) KR101600763B1 (ja)
CN (2) CN104727982B (ja)
WO (1) WO2012132931A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3080427A4 (en) * 2013-11-07 2017-08-16 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Apparatus and method for supplying fuel to engine of ship
CN115596549A (zh) * 2022-12-08 2023-01-13 常州柯林电子科技技术有限公司(Cn) 一种天然气燃烧混合变频电机组件及其工作方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010031033A1 (de) * 2010-07-07 2012-01-12 Robert Bosch Gmbh Vorrichtung sowie Fahrzeug oder Arbeitsmaschine
KR101386543B1 (ko) 2012-10-24 2014-04-18 대우조선해양 주식회사 선박의 증발가스 처리 시스템
KR101398357B1 (ko) 2013-04-24 2014-05-23 현대중공업 주식회사 고압 펌프 구동 장치 및 lng 연료 공급 시스템
KR101640765B1 (ko) 2013-06-26 2016-07-19 대우조선해양 주식회사 선박의 증발가스 처리 시스템 및 방법
US9751606B2 (en) 2013-09-17 2017-09-05 Daewoo Shipbuilding & Marine Engineerig Co., Ltd. Apparatus and method for transferring inflammable material on marine structure
US9745922B2 (en) 2013-09-17 2017-08-29 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Apparatus and method for supplying fuel to engine of ship
US9151248B2 (en) * 2013-09-17 2015-10-06 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Apparatus and method for transferring inflammable material on marine structure
JP6285715B2 (ja) * 2013-12-27 2018-02-28 川崎重工業株式会社 船舶の燃料供給システム
JP5848375B2 (ja) * 2014-01-30 2016-01-27 三井造船株式会社 燃料ガス供給装置
JP5778849B1 (ja) * 2014-12-22 2015-09-16 三井造船株式会社 動力装置
JP6012810B1 (ja) * 2015-04-30 2016-10-25 三井造船株式会社 内燃機関の過給機余剰動力回収装置
JP6620327B2 (ja) * 2015-09-03 2019-12-18 株式会社三井E&Sマシナリー 液化ガス昇圧装置、液化ガスの昇圧方法および燃料供給装置
JP6832173B2 (ja) * 2017-01-26 2021-02-24 本田技研工業株式会社 燃料供給装置
DK179683B1 (en) * 2017-09-04 2019-03-20 MAN Energy Solutions A LARGE TWO-STROKE COMPRESSION-IGNITED INTERNAL COMBUSTION ENGINE WITH DUAL FUEL SYSTEMS
CN107947641A (zh) * 2017-12-27 2018-04-20 广州威能机电有限公司 热气流利用装置及温差发电系统
DK181415B1 (en) 2022-11-04 2023-10-25 Man Energy Solutions Filial Af Man Energy Solutions Se Tyskland A large turbocharged two-stroke uniflow crosshead internal combustion engine and method for operating such engine
US11946679B1 (en) * 2022-12-23 2024-04-02 Jay Stephen Kaufman Exhaust gas heat recovery from cryo-compression engines with cogeneration of cryo-working fluid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111124A (ja) * 1985-09-14 1987-05-22 エム・ア−・エヌ・−ベ−・ウント・ヴエ−・デイ−ゼル・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 過給式の内燃機関
JP2005504927A (ja) * 2001-10-05 2005-02-17 ウエストポート リサーチ インコーポレイテッド 貯蔵タンクから低温流体を供給するための高圧ポンプ・システム
JP2006283736A (ja) * 2005-04-05 2006-10-19 Tokyo Gas Co Ltd 自己駆動型液化ガス用ポンプ
JP2009532614A (ja) * 2006-04-12 2009-09-10 エムエーエヌ・ディーゼル・フィリアル・アフ・エムエーエヌ・ディーゼル・エスイー・ティスクランド エネルギー回収構成を備える大型ターボ過給型ディーゼル機関
JP2009204026A (ja) * 2008-02-26 2009-09-10 Mitsubishi Heavy Ind Ltd 液化ガス貯蔵設備およびこれを用いた船舶あるいは海洋構造物

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2042541C3 (de) * 1970-08-27 1973-09-27 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspntzanlage fur Fahrzeuggasturbinen
JPS6245923A (ja) * 1985-08-22 1987-02-27 Mitsubishi Heavy Ind Ltd 内燃機関付き作動油圧源装置
JPH05215233A (ja) 1992-02-05 1993-08-24 Toyota Autom Loom Works Ltd 可変速用可変容量油圧ポンプを備えたエンジン車両
JPH0814316B2 (ja) 1992-09-17 1996-02-14 内田油圧機器工業 株式会社 閉油圧回路に設けた油圧モータの起動方法
JPH07237700A (ja) * 1994-02-27 1995-09-12 Mitsubishi Heavy Ind Ltd ローディングアーム
JPH07277015A (ja) 1994-04-04 1995-10-24 Iseki & Co Ltd 油圧式無段変速装置
JP3019718B2 (ja) 1994-05-24 2000-03-13 トヨタ自動車株式会社 油圧駆動ファン制御装置
US5499615A (en) * 1994-10-28 1996-03-19 Caterpillar Inc. Direct injection propane fuel system for diesel engine applications
JPH09151912A (ja) 1995-12-01 1997-06-10 Miyata Kogyo Kk 爆発性雰囲気下で駆動される油圧駆動走行性機械装置
DK174242B1 (da) 1996-01-15 2002-10-14 Man B & W Diesel As Fremgangsmåde til styring af brændselstilførslen til en dieselmotor, der ved højtryksindsprøjtningbåde kan tilføres brændselsolie og brændselsgas, og en højtryks gasindsprøjtningsmotor af dieseltypen
US5884488A (en) * 1997-11-07 1999-03-23 Westport Research Inc. High pressure fuel supply system for natural gas vehicles
JPH11241660A (ja) * 1998-02-25 1999-09-07 Isuzu Motors Ltd 燃料噴射装置のインジェクタ組付方法
JP3850568B2 (ja) 1998-12-07 2006-11-29 カヤバ工業株式会社 Hst車両の制御機構
AU2147100A (en) * 1999-01-21 2000-08-07 Caterpillar Inc. Engine with fluid sub-systems
US6460510B1 (en) * 2000-05-30 2002-10-08 Robert H. Breeden Pump assembly and method
JP2002168201A (ja) * 2000-11-28 2002-06-14 Komatsu Ltd エンジン駆動油圧システム
US6640556B2 (en) * 2001-09-19 2003-11-04 Westport Research Inc. Method and apparatus for pumping a cryogenic fluid from a storage tank
JP3712661B2 (ja) 2001-12-06 2005-11-02 本田技研工業株式会社 内燃機関の制御装置
US6817344B2 (en) * 2002-12-30 2004-11-16 Caterpillar Inc Fuel supply system
US6918243B2 (en) * 2003-05-19 2005-07-19 The Boeing Company Bi-propellant injector with flame-holding zone igniter
JP2005009432A (ja) * 2003-06-20 2005-01-13 Nissan Diesel Motor Co Ltd 筒内噴射式ガス燃料エンジンの燃料加圧装置
JP4176742B2 (ja) 2005-06-14 2008-11-05 三菱重工業株式会社 内燃機関の液圧供給装置
JP2007146708A (ja) 2005-11-25 2007-06-14 Toyota Motor Corp 内燃機関及び内燃機関の吸気弁制御装置
JP5117828B2 (ja) * 2007-11-21 2013-01-16 リョウコウエンジニアリング株式会社 駆動装置
CN201354692Y (zh) * 2008-12-18 2009-12-02 东风汽车公司 带液体增压的车载液化天然气发动机供气装置
JP5249866B2 (ja) 2009-06-25 2013-07-31 三菱重工業株式会社 エンジン排気エネルギー回収装置
JP2011057048A (ja) * 2009-09-09 2011-03-24 Shin Kurushima Dockyard Co Ltd タンカーにおけるバラスト水処理装置の配置構造
JP5448873B2 (ja) 2010-01-21 2014-03-19 三菱重工業株式会社 エンジン排気エネルギー回収装置、これを備える船舶、これを備える発電プラント、エンジン排気エネルギー回収装置の制御装置およびエンジン排気エネルギー回収装置の制御方法
JP7068912B2 (ja) * 2018-04-25 2022-05-17 三菱電機株式会社 情報処理装置、機器、不具合解析システム、不具合解析方法およびプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111124A (ja) * 1985-09-14 1987-05-22 エム・ア−・エヌ・−ベ−・ウント・ヴエ−・デイ−ゼル・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 過給式の内燃機関
JP2005504927A (ja) * 2001-10-05 2005-02-17 ウエストポート リサーチ インコーポレイテッド 貯蔵タンクから低温流体を供給するための高圧ポンプ・システム
JP2006283736A (ja) * 2005-04-05 2006-10-19 Tokyo Gas Co Ltd 自己駆動型液化ガス用ポンプ
JP2009532614A (ja) * 2006-04-12 2009-09-10 エムエーエヌ・ディーゼル・フィリアル・アフ・エムエーエヌ・ディーゼル・エスイー・ティスクランド エネルギー回収構成を備える大型ターボ過給型ディーゼル機関
JP2009204026A (ja) * 2008-02-26 2009-09-10 Mitsubishi Heavy Ind Ltd 液化ガス貯蔵設備およびこれを用いた船舶あるいは海洋構造物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3080427A4 (en) * 2013-11-07 2017-08-16 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Apparatus and method for supplying fuel to engine of ship
CN115596549A (zh) * 2022-12-08 2023-01-13 常州柯林电子科技技术有限公司(Cn) 一种天然气燃烧混合变频电机组件及其工作方法
CN115596549B (zh) * 2022-12-08 2023-03-10 常州柯林电子科技技术有限公司 一种天然气燃烧混合变频电机组件及其工作方法

Also Published As

Publication number Publication date
KR20140108720A (ko) 2014-09-12
CN104727982A (zh) 2015-06-24
KR101494109B1 (ko) 2015-02-16
JP2012215128A (ja) 2012-11-08
KR20150024439A (ko) 2015-03-06
CN103080525A (zh) 2013-05-01
KR101600763B1 (ko) 2016-03-09
US20150275824A1 (en) 2015-10-01
CN104727982B (zh) 2017-08-11
JP5808128B2 (ja) 2015-11-10
KR20130054345A (ko) 2013-05-24
CN103080525B (zh) 2016-04-13
US20130312408A1 (en) 2013-11-28
US9169769B2 (en) 2015-10-27

Similar Documents

Publication Publication Date Title
JP5808128B2 (ja) ガス焚きエンジン
JP6012140B2 (ja) ガス燃料供給装置、高圧ガス噴射ディーゼル機関及び高圧ガス噴射ディーゼル機関の液化ガス燃料供給方法
EP2853713B1 (en) A large low-speed tubocharged two-stroke internal combustion engine with a dual fuel supply system
RU2562684C2 (ru) Двигатель внутреннего сгорания с турбонагнетателем, приводная система и способ работы двигателя внутреннего сгорания с турбонагнетателем (варианты)
JP5026343B2 (ja) パワータービンを備えるターボエンジン
KR20190086647A (ko) 대형 2 행정 압축 점화 내연 기관용 연료 또는 윤활 펌프
JP5709293B2 (ja) 内燃機関の過給機余剰動力回収装置
CN107532502B (zh) 内燃机的增压器剩余动力回收装置
KR20220138816A (ko) 기계적 에너지와 가압 가스 전달을 위한 방법 및 대형 터보 차징 2행정 내연기관
JP5965019B1 (ja) 燃料供給装置
JP5908056B2 (ja) ガス焚きエンジン
JP6364691B2 (ja) 内燃機関の過給機余剰動力回収装置
JP6038225B2 (ja) ガス焚きエンジン
WO2013118308A1 (en) Turbocharger excess power recovery device for internal combustion engine
KR101363014B1 (ko) 내연기관 구동식 유압기계 및 이를 위한 공기과급기
CN110832179B (zh) 内燃机的增压器剩余动力回收装置及船舶

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280002387.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764710

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137003635

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13985065

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764710

Country of ref document: EP

Kind code of ref document: A1