RU2562684C2 - Двигатель внутреннего сгорания с турбонагнетателем, приводная система и способ работы двигателя внутреннего сгорания с турбонагнетателем (варианты) - Google Patents

Двигатель внутреннего сгорания с турбонагнетателем, приводная система и способ работы двигателя внутреннего сгорания с турбонагнетателем (варианты) Download PDF

Info

Publication number
RU2562684C2
RU2562684C2 RU2012103621/06A RU2012103621A RU2562684C2 RU 2562684 C2 RU2562684 C2 RU 2562684C2 RU 2012103621/06 A RU2012103621/06 A RU 2012103621/06A RU 2012103621 A RU2012103621 A RU 2012103621A RU 2562684 C2 RU2562684 C2 RU 2562684C2
Authority
RU
Russia
Prior art keywords
turbocharger
wheels
response
engine
control unit
Prior art date
Application number
RU2012103621/06A
Other languages
English (en)
Other versions
RU2012103621A (ru
Inventor
Гарольд Хойминь СУНЬ
Дейв Р. ХАННА
Майкл ЛЕВИН
Эрик Уоррен КЕРТИС
Ф Зафар Зафар ШАИКХ
Original Assignee
ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи filed Critical ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи
Publication of RU2012103621A publication Critical patent/RU2012103621A/ru
Application granted granted Critical
Publication of RU2562684C2 publication Critical patent/RU2562684C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/005Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for by means of hydraulic motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B21/00Engines characterised by air-storage chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/14Lubrication of pumps; Safety measures therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/045Detection of accelerating or decelerating state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

Изобретение может быть использовано в двигателях внутреннего сгорания. Двигатель (12) внутреннего сгорания с турбонагнетателем (14) содержит блок (24) управления, устройство (22), присоединенное к турбонагнетателю (14), для содействия в ускорении турбонагнетателя (14) в ответ на сигнал ускорения из блока управления (24) и для замедления турбонагнетателя (14) в ответ на сигнал замедления из блока (24) управления. Устройство (22) поглощает энергию из турбонагнетателя (14) в ответ на сигнал замедления из блока (24) управления двигателем для замедления турбонагнетателя (14). Раскрыты приводная система и варианты способа работы двигателя внутреннего сгорания с турбонагнетателем. Технический результат заключается в улучшении работы турбонагнетателя на переходных режимах работы. 4 н. и 14 з.п. ф-лы, 4 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение, в общем, относится к системам турбонагнетателя, а более конкретно к системам турбонагнетателя с рекуперативной поддержкой.
Уровень техники
Как известно в области техники, поскольку двигатели уменьшенных габаритов и массы с турбонагнетателем становятся главной стратегией для улучшения экономии топлива транспортного средства, улучшение их переходных характеристик является очень важным. Когда турбонагнетатель имеет относительно малые размеры для быстрой переходной характеристики, он может иссякать по потокоемкости на высокой мощности, таким образом, ограничивая свою номинальную мощность; с другой стороны, когда турбонагнетатель имеет достаточно большие размеры чтобы выдавать конкурентноспособную мощность, он может работать очень медленно во время переходных режимов. Существует несколько технологий, которые были предложены для решения этой дихотомии, например, использование системы рядных турбонагнетателей последовательного действия, нагнетателей с механическим приводом, либо нагнетателей или турбонагнетателей с электрическим приводом.
Как также известно, в обычных двигателях с турбонагнетателем, двигатель и турбонагнетатель работают независимо друг от друга. «Потеря синхронизации» выталкивает компрессор в менее эффективную рабочую область во время работы в переходном режиме и вынуждает турбину работать с низкими коэффициентами скорости (U/C) (где U/C - коэффициент скорости лопатки), таким образом, работая в рабочей области более низкой эффективности (то есть гидравлически управляемый турбонагнетатель будет предоставлять компрессору и турбине возможность проектироваться для более высокой эффективности, поскольку они не должны жертвовать эффективностью ради рабочего диапазона).
Раскрытие изобретения
В соответствии с настоящим раскрытием, предложен двигатель внутреннего сгорания с турбонагнетателем, имеющий блок управления и устройство, присоединенное к турбонагнетателю, для содействия в ускорении турбонагнетателя в ответ на сигнал ускорения из блока управления и для замедления турбонагнетателя в ответ на сигнал замедления из блока управления.
В одном из вариантов осуществления, устройство поглощает энергию из турбонагнетателя в ответ на сигнал замедления из блока управления для замедления турбонагнетателя.
В одном из вариантов осуществления, устройство включает в себя одно или более гидравлических колес на одном и том же валу между турбиной и компрессором турбонагнетателя, при этом одно или более колес приводятся в действие в ответ на сигнал ускорения для содействия в ускорении турбонагнетателя, или поглощают энергию с вала турбонагнетателя в ответ на сигнал замедления.
В одном из вариантов осуществления, колесо или колеса являются колесами с гидравлическим приводом.
В одном из вариантов осуществления, устройство включает в себя турбину с гидравлическим приводом для ускорения турбонагнетателя и насос с гидравлическим приводом для поглощения энергии для замедления турбонагнетателя.
В одном из вариантов осуществления, устройство включает в себя реверсивный турбонасос с гидравлическим приводом.
В одном из вариантов осуществления, предусмотрена система, имеющая двигатель внутреннего сгорания и турбонагнетатель, присоединенный к двигателю внутреннего сгорания. Турбонагнетатель включает в себя: компрессор; турбину; вал, присоединенный между компрессором и турбиной; одно или более колес с гидравлическим приводом, расположенных на валу; и приводное средство для приведения в действие одного или более гидравлических колес в ответ на сигнал ускорения из блока управления для содействия в ускорении турбонагнетателя, или вынуждения одного или более колес с гидравлическим приводом поглощать энергию в ответ на сигнал замедления из блока управления для содействия в замедлении турбонагнетателя.
В одном из вариантов осуществления, система использует пару гидравлических колес, расположенных на валу, и приводное средство, и приводит в действие первое одно из колес для вырабатывания составляющей крутящего момента в ответ на сигнал ускорения для ускорения вращения турбонагнетателя, или приводит в действие второе одно из колес для вырабатывания составляющей крутящего момента в ответ на сигнал управления замедлением из блока управления.
В одном из вариантов осуществления, система использует пару колес, которая расположена на валу, а приводное средство приводит в действие первое одно из колес для вырабатывания составляющей крутящего момента в первом угловом направлении в ответ на сигнал ускорения для ускорения вращения турбонагнетателя, или приводит в действие второе одно из колес для вырабатывания составляющей крутящего момента во втором, противоположном угловом направлении в ответ на сигнал управления замедлением из блока управления.
Поглощенная энергия может преобразовываться и накапливаться в качестве электрической или гидравлической/пневматической формы.
В одном из вариантов осуществления, одно или более колес приводятся в действие текучей средой.
В одном из вариантов осуществления, текучая среда является жидкостью.
В одном из вариантов осуществления, текучая среда является моторным маслом, используемым двигателем, или другой текучей средой.
В одном из вариантов осуществления, текучая среда подается энергией из пневматического источника энергии.
В одном из вариантов осуществления, текучая среда подается энергией из электрического источника энергии.
В одном из вариантов осуществления, система включает в себя гидравлический электрогенератор, приводимый в действие во время замедления для вырабатывания электроэнергии для электрического источника энергии.
В одном из вариантов осуществления, текучая среда хранится в резервуаре, отдельном от двигателя.
В одном из вариантов осуществления, гидравлический турбонасос расположен на одном и том же колесе или колесах компрессора/турбины для восстановления части энергии отработавших газов, тем самым, обеспечивая в результате более компактную надежную компоновку по сравнению с системой, которая использует систему электродвигателя/накопителя электроэнергии. Колеса являются гидравлической турбонасосной конструкцией также для содействия управлению частотой вращения турбины, то есть для набора оборотов во время ускорения двигателя и снижения скорости для восстановления энергии отработавших газов во время замедления, режимах дросселирования/прокрутки двигателя.
В одном из вариантов осуществления, гидравлическое колесо может приводиться в действие моторным маслом или топливом, либо жидкостью под высоким давлением, когда дополнительный наддув необходим для ускорения турбонагнетателя.
В одном из вариантов осуществления, предусмотрен способ для управления двигателем внутреннего сгорания с турбонагнетателем. Способ включает в себя содействие ускорению турбонагнетателя в ответ на сигнал ускорения из блока управления и замедление турбонагнетателя в ответ на сигнал замедления из блока управления.
Подробности одного или более вариантов осуществления изобретения изложены на прилагаемых чертежах и в описании, приведенном ниже. Другие признаки, задачи и преимущества изобретения будут очевидны из описания и чертежей, а также из формулы изобретения.
Краткое описание чертежей
Фиг. 1 представляет собой систему двигателя внутреннего сгорания с турбонагнетателем, имеющую устройство для избирательного содействия в ускорении или замедлении турбонагнетателя в ответ на сигнал управления согласно одному из вариантов осуществления изобретения;
Фиг. 2 представляет собой систему двигателя внутреннего сгорания с турбонагнетателем согласно еще одному варианту осуществления изобретения;
Фиг. 3 представляет собой систему двигателя внутреннего сгорания с турбонагнетателем согласно еще одному варианту осуществления изобретения; и
Фиг. 4 представляет собой систему двигателя внутреннего сгорания с турбонагнетателем согласно еще одному варианту осуществления изобретения.
Одинаковые ссылочные позиции на различных чертежах указывают идентичные элементы.
Подробное описание изобретения
Далее, со ссылкой на фиг. 1, предусмотрена система 10, имеющая двигатель 12 внутреннего сгорания и турбонагнетатель 14, присоединенный к двигателю 12 обычным образом посредством воздушного потока, указанного стрелками 15a, 15b. Турбонагнетатель 14 включает в себя: компрессор 16; турбину 18; вал 20, присоединенный между компрессором 16 и турбиной 18, и одно или более колес с гидравлическим приводом, здесь, пару колес 22a, 22b, установленных на валу 20.
Электронный блок 24 управления (который может быть отдельным от или объединенным с блоком управления двигателя для двигателя 12) служит в качестве системы управления, приводящей в действие, здесь, например, управляющей текучей средой в колесе 22b в ответ на сигнал ускорения из электронной системы управления, когда водитель, не показан, требует крутящего момента от двигателя 12, чтобы содействовать в ускорении турбонагнетателя (то есть ускорении угловой скорости вращения вала 20), и приводящей в действие, здесь, управляющей нагрузкой на колесо 22a в ответ на сигнал из блока 24 управления для содействия в замедлении турбонагнетателя (то есть замедлении угловой скорости вращения вала 20). Следует отметить, что электрические сигналы переносятся линиями, показанными пунктирными на фиг. 1, а линии, переносящие рабочую текучую среду (которая будет описана), показаны сплошными линиями.
Как будет более подробно описано ниже, одно или более колес с гидравлическим приводом представляют пример устройства 22, присоединенного к турбонагнетателю для содействия в ускорении турбонагнетателя 14 в ответ на сигнал ускорения из блока 24 управления и для замедления турбонагнетателя в ответ на сигнал замедления из блока 24 управления, причем устройство 22 поглощает энергию из турбонагнетателя в ответ на сигнал замедления из блока 24 управления для замедления турбонагнетателя 14.
Более конкретно, колеса 22a, 22b, например, могут быть рабочими колесами гидротурбины или импульсными турбинами, имеющими множество лопастей, не показанных, расположенных вокруг ее наружной круговой периферии. Колесо 22a здесь является насосом с гидравлическим приводом, а колесо 22b является турбиной с гидравлическим приводом. Таким образом, обычный турбонагнетатель, с гидравлическим кольцом распылителя и турбинным колесом, имеет одно или более колес 22, установленных на одном и том же валу 20 между газовой турбиной 18 и колесами компрессора 16.
Источник энергии, здесь, камера, хранящая сжатый воздух или другой газ в одной секции и рабочую текучую среду, здесь, моторное масло, предусматривает гидравлический/пневматический аккумулятор высокого давления. Электродвигатель или механическая трансмиссия могут использоваться для питания гидронасоса и удерживают гидравлический резервуар под давлением. В качестве альтернативы, гидронасос может быть встроен в центральный корпус турбонагнетателя на одном и том же валу между турбинным и компрессорным колесом, из условия, чтобы во время режима торможения двигателя или замедления, или даже режима нормальной запитки (например, во время прогрева двигателя для повышения гидравлического давления и ускорения после технологического прогрева вследствие дополнительной побочной нагрузки), гидронасос может приводиться в действие избыточной энергией отработавших газов из турбинного колеса для восстановления части энергии отработавших газов. Манипулирование гидравлическим колесом насоса и турбины обеспечивает средство для «синхронизации» турбонагнетателя с режимами работы двигателя, чтобы гарантировать, что компрессор и турбина являются работающими в более узкой, но более эффективной зоне, то есть гидравлически управляемый турбонагнетатель будет предоставлять компрессору и турбине возможность проектироваться для более высокой эффективности, поскольку они не должны жертвовать эффективностью ради рабочего диапазона.
Кроме того, предусмотрены клапаны 28a, 28b с электроприводом, управляемые электрическими сигналами, подаваемыми блоком 24 управления.
При работе, в ответ на сигнал ускорения из блока 24 управления, клапан 28a закрывается, а клапан 28b открывается, позволяя рабочей текучей среде, здесь, моторному маслу, проходить под высоким давлением из аккумулятора 26 к лопастям, не показаны, колеса 28b гидротурбины. Усилие на лопатках от столкновения с текучей средой увеличивает угловую скорость вращения вала 20. Рабочая текучая среда затем проходит из колеса 22b гидротурбины в картер, не показан, двигателя 12. Более конкретно, в качестве примера, следует учитывать, что вал 20 вращается в направлении по часовой стрелке (в результате преобладающего крутящего момента, выдаваемого на турбонагнетателе потоком воздуха, проходящим через турбонагнетатель обычным образом), при рассмотрении в направлении от компрессора 16 к турбине 18. В ответ на сигнал ускорения, усилие на лопатках от соударения с текучей средой, создает меньший дополнительный крутящий момент (то есть составляющую крутящего момента) в направлении по часовой стрелке, тем самым, увеличивая угловую скорость вращения вала 20.
В ответ на сигнал замедления из блока 24 управления, клапан 28a открывается, а клапан 28b закрывается, позволяя рабочей текучей среде, здесь, моторному маслу, проходить под низким давлением из картера двигателя 12 к лопастям, не показаны, колеса 22a турбонасоса, причем вращающееся колесо 22a эффективно нагнетает моторное масло. Протекание текучей среды на лопастях колеса 22a уменьшает угловую скорость вращения вала 20. Более конкретно, в качестве примера, следует учитывать, что вал 20 вращается в направлении по часовой стрелке (в результате преобладающего крутящего момента, выдаваемого на турбонагнетателе потоком воздуха, проходящим через турбонагнетатель, традиционным образом), при рассмотрении в направлении от компрессора 16 к турбине 18. В ответ на сигнал замедления, крутящий момент на колесе 22a от поступающей текучей среды создает небольшой крутящий момент (например, небольшую составляющую крутящего момента) в направлении против часовой стрелки, тем самым, уменьшая угловую скорость вращения вала 20 наряду с увеличением давления текучей среды на выходе турбонасоса. Рабочая текучая среда, нагнетаемая колесом 22a, затем проходит из колеса 22a турбонасоса в аккумулятор 26.
Далее, со ссылкой на фиг. 2, показан еще один вариант осуществления. Здесь, вместо использования моторного масла в качестве рабочей текучей среды для колес 22a, 22b, предусмотрен накопительный резервуар 30 низкого давления для хранения пригодной рабочей текучей среды, отличной от моторного масла; например, текучей среды гидроусилителя руля или другой с низкой вязкостью.
Далее, со ссылкой на фиг. 3, показан еще один вариант осуществления. Здесь используется единственное колесо 22. Здесь, колесо 22 является реверсивной турбиной 22 с гидравлическим приводом, вновь, с лопастями, расположенными по окружности вокруг ее наружной периферии. В ответ на сигнал ускорения из блока 24 управления, оба клапана 28a и 28b открыты, а запорный клапан 28c закрыт, чтобы позволить текучей среде перетекать из аккумулятора 26 высокого давления через реверсивную турбину 22 с гидравлическим приводом в двигатель 12, и, тем самым, выдавать вспомогательный крутящий момент для ускорения турбонагнетателя 14.
В ответ на сигнал замедления, клапан 28a остается открытым, клапан 28b закрывается, а запорный клапан 28c открывается, таким образом, текучая среда протекает из двигателя 12 через реверсивную турбину с гидравлическим приводом, чтобы втекать через запорный клапан 28c в аккумулятор 26 высокого давления. Здесь, в варианте осуществления, всасывающий насос 31 приводится в действие для содействия потоку текучей среды. В этом режиме откачки, клапан 28а открывается (клапан 28b закрывается), всасывающий насос 31 нагнетает текучую среду (например, приблизительно до около 2-4 бар) из двигателя 12, чтобы заполнять турбонасос 22; турбинный вал турбонасоса 22, не показан, приводится в действие турбиной 18. Как только давление выше приблизительно 60-100 бар, давление вызывает открытие запорного клапана 28c, и текучая среда втекает в аккумулятор 26. Таким образом, текучая среда протекает через реверсивную турбину с гидравлическим приводом в одном направлении во время ускорения и через реверсивную турбину 22 с гидравлическим приводом в обратном направлении во время замедления. Во время состояния установившегося режима (то есть, когда двигатель 12 не является реагирующим на сигнал ускорения или сигнал замедления), блок 24 управления подает сигнал на клапан 28a для закрытия клапана 28a.
Несмотря на то, что в варианте осуществления, показанном на фиг. 3, моторное масло используется в качестве рабочей текучей среды, другая текучая среда может использоваться с отдельным резервуаром рабочей текучей среды низкого давления, как описано выше в отношении фиг.2. Кроме того, резервуар может включать в себя всасывающий насос.
Далее, со ссылкой на фиг. 4, показан еще один вариант осуществления. Здесь, источник энергии включает в себя инвертер/аккумуляторную батарею 26′, гидрогенератор 26b, чтобы подавать энергию для заряда инвертера/аккумуляторной батареи 26′; и насосный аккумулятор 26а рабочей текучей среды, питаемый инвертером/аккумуляторной батареей 26′. Во время ускорения, клапан 28b закрывается, а клапан 28a открывается. Насосный аккумулятор 26a перекачивает рабочую текучую среду, здесь, моторное масло, в замкнутом контуре 29a из насосного аккумулятора 26a, в картер двигателя 12, через гидротурбину 22b и обратно в насосный аккумулятор 26a. Направление течения текучей среды на лопатках колеса 22b увеличивает угловую скорость вращения вала 20.
Во время замедления, клапан 28b открывается, а клапан 28a закрывается. Теперь, моторное масло перетекает из картера двигателя в колесо турбонасоса, втягивающее моторное масло из картера двигателя. Текучая среда, покидающая турбонасос 22a, проходит в гидрогенератор 26b в замкнутом контуре 29b, который вырабатывает электричество и подзаряжает аккумуляторную батарею 26′. Направление течения текучей среды на лопатках колеса 22a уменьшает угловую скорость вращения вала 20. Следует понимать, что отдельный резервуар рабочей текучей среды низкого давления может использоваться вместо использования моторного масла, как описано выше в отношении фиг. 2. Кроме того, резервуар может включать в себя всасывающий насос.
Гидронасосы, описанные выше, могут приводиться в действие электродвигателем (автономным или совместно используемым со стартером двигателя) или быть с механическим приводом от двигателя через сцепление с или без трансмиссии. Гидронасос может приводиться в действие, как только двигатель запущен, чтобы наращивать высокое давление в гидробаке, и также увеличивает дополнительную нагрузку на двигателе для ускорения двигателя и окончательного технологического прогрева.
Гидронасос, в качестве альтернативы, может быть установлен в центральном корпусе турбонагнетателя на одном и том же валу газовой турбины и компрессора, и приводиться в действие избыточной энергией отработавших газов из газовой турбины. В этом случае, установленный в турбине гидронасос будет дополнительным колесом на валу 20 турбонагнетателя.
Установленный в турбине гидронасос может использоваться для восстановления части избыточной энергии отработавших газов, которая, в свою очередь, будет использоваться для вынуждения гидротурбины во время ускорения двигателя снижать потери при перекачивании в двигателе, таким образом, улучшая экономию топлива транспортного средства. Приведение в действие гидронасоса и гидротурбины может управляться посредством управления текучей средой, таким образом, избегая механического сцепления. Накопитель гидравлической энергии дополнительно может включать в себя жидкость и газ. Текучая среда из гидронасоса, в таком случае, может использоваться для нагнетания газа, чтобы улучшать эффективность накопителя энергии.
Следует отметить, что в то время как в обычных двигателях с турбонагнетателем, двигатель и турбонагнетатель работают независимо друг от друга. «Потеря синхронизации» заставляет компрессор работать менее эффективно во время переходного режима работы и вызывает работу турбины при низком коэффициенте скорости (U/C), таким образом в зоне низкой эффективности. Манипулирование гидравлическим колесом насоса и турбины обеспечивает средство для «синхронизации» с режимами работы двигателя, чтобы гарантировать работу компрессора и турбины в более узкой, но более эффективной зоне. Гидравлически управляемый турбонагнетатель может регулировать поток воздуха независимо от режима работы двигателя, таким образом, устраняя необходимость во впускном дросселе для бензиновых и дизельных двигателей с турбонагнетателем. Любая избыточная гидравлическая энергия (например, во время режима дросселирования, режима прокрутки двигателя или торможения) может связываться с выходом энергии двигателя в качестве турбинного состава через гидродвигатель, электродвигатель или механическую трансмиссию, чтобы дополнительно улучшать экономию топлива.
Было описано множество вариантов осуществления изобретения. Например, вместо использования колес с приводом от текучей среды, можно использовать электродвигатели для приведения в действие колес, чтобы вырабатывать составляющие крутящего момента ускорения и замедления. Тем не менее, следует понимать, что могут быть выполнены различные изменения, не выходящие за рамки сущности и объема изобретения. Соответственно, другие варианты осуществления находятся в пределах объема приведенной ниже формулы изобретения.

Claims (18)

1. Двигатель внутреннего сгорания с турбонагнетателем, содержащий:
блок управления;
устройство, присоединенное к турбонагнетателю, для содействия в ускорении турбонагнетателя в ответ на сигнал ускорения из блока управления и для замедления турбонагнетателя в ответ на сигнал замедления из блока управления, при этом указанное устройство поглощает энергию из турбонагнетателя в ответ на сигнал замедления из блока управления двигателем для замедления турбонагнетателя.
2. Двигатель по п. 1, в котором устройство содержит одно или более колес на одном и том же валу и между турбиной и компрессором турбонагнетателя, при этом одно или более колес приводятся в действие в ответ на сигнал ускорения для содействия в ускорении турбонагнетателя или поглощения энергии с вала турбонагнетателя в ответ на сигнал замедления.
3. Двигатель по п. 1, в котором устройство включает в себя одно или более колес на одном и том же валу и между турбиной и компрессором турбонагнетателя, при этом одно или более колес приводятся в действие в ответ на сигнал ускорения для содействия в ускорении турбонагнетателя или поглощения энергии с вала турбонагнетателя в ответ на сигнал замедления.
4. Двигатель по п. 2, в котором одно или более колес являются колесами с гидравлическим приводом.
5. Двигатель по п. 3, в котором одно или более колес являются колесами с гидравлическим приводом.
6. Двигатель по п. 1, в котором устройство включает в себя турбину с гидравлическим приводом для ускорения турбонагнетателя и насос с гидравлическим приводом для поглощения энергии для замедления турбонагнетателя.
7. Двигатель по п. 1, в котором устройство включает в себя реверсивный турбонасос с гидравлическим приводом.
8. Приводная система, содержащая:
двигатель внутреннего сгорания;
турбонагнетатель, присоединенный к двигателю, содержащий:
компрессор;
турбину;
вал, присоединенный между компрессором и турбиной;
одно или более колес, расположенных на валу;
блок управления для выработки сигнала ускорения или сигнала замедления;
приводное средство для привода одного или более колес для ускорения вращения турбонагнетателя в ответ на ускорение или для привода колеса или колес для замедления вращения турбонагнетателя в ответ на сигнал замедления, причем одно или более колес являются парой колес, которые расположены на валу, а приводное средство приводит в действие первое одно из колес для вырабатывания составляющей крутящего момента в первом угловом направлении в ответ на сигнал ускорения для ускорения вращения турбонагнетателя, или управляет гидравлической нагрузкой на второе одно из колес для вырабатывания составляющей крутящего момента во втором, противоположном угловом направлении в ответ на сигнал замедления из блока управления двигателем.
9. Система по п. 8, в которой одно или более колес являются одним колесом, расположенным на валу, при этом приводное средство приводит в действие колесо для вырабатывания составляющей крутящего момента в ответ на сигнал управления для ускорения вращения турбонагнетателя, или управляет гидравлической нагрузкой на колесо для вырабатывания составляющей крутящего момента во втором, противоположном угловом направлении в ответ на сигнал замедления из блока управления.
10. Система по п. 8, в которой одно или более колес приводятся в действие текучей средой.
11. Система по п. 8, в которой текучая среда является жидкостью.
12. Система по п. 11, в которой текучая среда является моторным маслом, используемым двигателем.
13. Система по п. 10, в которой текучая среда приводится в движение энергией, подаваемой из пневматического источника энергии.
14. Система по п. 10, в которой текучая среда приводится в движение энергией, подаваемой из электрического источника энергии.
15. Система по п. 14, включающая в себя гидравлический электрогенератор, приводимый в действие во время замедления для вырабатывания электроэнергии для электрического источника энергии.
16. Система по п. 10, в которой текучая среда хранится в резервуаре, отдельном от двигателя.
17. Способ работы двигателя внутреннего сгорания с турбонагнетателем, включающий:
обеспечение одного или более колес на валу турбонагнетателя между турбиной и компрессором турбонагнетателя, и
приведение в действие одного или более колес в ответ на сигнал ускорения из блока управления для содействия в ускорении турбонагнетателя или поглощение энергии с вала турбонагнетателя в ответ на сигнал замедления из блока управления.
18. Способ работы двигателя внутреннего сгорания с турбонагнетателем, включающий:
обеспечение одного или более колес на валу турбонагнетателя между турбиной и компрессором турбонагнетателя,
приведение в действие одного или более колес в ответ на сигнал ускорения для содействия в ускорении турбонагнетателя или поглощение энергии с вала турбонагнетателя в ответ на сигнал замедления, и
приведение в действие блока управления для вырабатывания сигнала ускорения и сигнала замедления для содействия в ускорении турбонагнетателя в ответ на сигнал ускорения из блока управления и для замедления турбонагнетателя в ответ на сигнал замедления из блока управления.
RU2012103621/06A 2011-02-03 2012-02-02 Двигатель внутреннего сгорания с турбонагнетателем, приводная система и способ работы двигателя внутреннего сгорания с турбонагнетателем (варианты) RU2562684C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/020,769 2011-02-03
US13/020,769 US8915082B2 (en) 2011-02-03 2011-02-03 Regenerative assisted turbocharger system

Publications (2)

Publication Number Publication Date
RU2012103621A RU2012103621A (ru) 2013-08-10
RU2562684C2 true RU2562684C2 (ru) 2015-09-10

Family

ID=46547179

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012103621/06A RU2562684C2 (ru) 2011-02-03 2012-02-02 Двигатель внутреннего сгорания с турбонагнетателем, приводная система и способ работы двигателя внутреннего сгорания с турбонагнетателем (варианты)

Country Status (4)

Country Link
US (1) US8915082B2 (ru)
CN (1) CN102628396B (ru)
DE (1) DE102012200585A1 (ru)
RU (1) RU2562684C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2784830C1 (ru) * 2022-05-30 2022-11-30 Денис Викторович Шабалин Устройство для разгона ротора турбокомпрессора силовой установки танка

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120180480A1 (en) * 2011-01-19 2012-07-19 Davorin Kapich Hybrid turbocharger system with brake energy revovery
US20120180481A1 (en) * 2011-01-19 2012-07-19 Davorin Kapich Hybrid turbocharger system with brake energy revovery
CN103850781B (zh) * 2014-03-28 2016-04-13 长城汽车股份有限公司 增压器
GB2531606A (en) * 2014-10-24 2016-04-27 Turbo Dynamics Ltd Variable speed forced induction with energy recovery and drive control
JP5778849B1 (ja) * 2014-12-22 2015-09-16 三井造船株式会社 動力装置
GB2536214B (en) * 2015-03-05 2020-05-27 Elogab O Engine system and method of generating electricity from an internal combustion engine
US10415599B2 (en) 2015-10-30 2019-09-17 Ford Global Technologies, Llc Axial thrust loading mitigation in a turbocharger
GB201620314D0 (en) * 2016-11-30 2017-01-11 Vc-Ac Ip Ltd Kinetic energy recovery boosting system utilising hydraulic braking
US10113476B1 (en) * 2017-04-26 2018-10-30 Ford Global Technologies, Llc Hydraulic turbocharged engine with automatic start-stop
CN112334640A (zh) * 2018-04-17 2021-02-05 Abb瑞士有限公司 多级涡轮增压器装置
GB2587362A (en) * 2019-09-24 2021-03-31 Ford Global Tech Llc Turbocharger
EP4390083A1 (en) * 2022-12-22 2024-06-26 FERRARI S.p.A. Forced induction device for an internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622817A (en) * 1984-09-14 1986-11-18 The Garrett Corporation Hydraulic assist turbocharger system and method of operation
SU1401152A1 (ru) * 1986-10-22 1988-06-07 Камский политехнический институт Устройство дл наддува двигател внутреннего сгорани
US4969332A (en) * 1989-01-27 1990-11-13 Allied-Signal, Inc. Controller for a three-wheel turbocharger
US5076060A (en) * 1990-05-04 1991-12-31 Allied-Signal Inc. Control logic for exhaust gas driven turbocharger
RU27647U1 (ru) * 2002-05-08 2003-02-10 Самарский институт инженеров железнодорожного транспорта Привод турбокомпрессора тепловозного двигателя внутреннего сгорания

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4285200A (en) 1979-07-16 1981-08-25 The Garrett Corporation Hydraulic assist turbocharger system
US5236305A (en) 1989-02-06 1993-08-17 Davorin Kapich High speed hydraulic turbine drive
US5113658A (en) * 1990-05-21 1992-05-19 Allied-Signal, Inc. Hydraulic assist turbocharger system
US5471965A (en) 1990-12-24 1995-12-05 Kapich; Davorin D. Very high speed radial inflow hydraulic turbine
US5421310A (en) 1990-12-24 1995-06-06 Kapich; Davorin Hydraulic supercharging system
US5906098A (en) * 1996-07-16 1999-05-25 Turbodyne Systems, Inc. Motor-generator assisted turbocharging systems for use with internal combustion engines and control method therefor
US6041602A (en) * 1997-06-09 2000-03-28 Southwest Research Institute Hydraulically-actuated exhaust gas recirculation system and turbocharger for engines
US5924286A (en) * 1998-01-05 1999-07-20 Kapich; Davorin D. Hydraulic supercharger system
US6502398B2 (en) * 2001-01-16 2003-01-07 Davorin D. Kapich Exhaust power recovery system
AU2002951538A0 (en) * 2002-09-20 2002-10-03 Permo-Drive Research And Development Pty Ltd Regenerative drive system for trailers
JP4380701B2 (ja) * 2004-03-08 2009-12-09 トヨタ自動車株式会社 電動過給機付内燃機関の制御装置
US20060254274A1 (en) 2005-05-14 2006-11-16 Davorin Kapich Hydraulic turbine assisted turbocharger system
JP2007211621A (ja) 2006-02-07 2007-08-23 Toyota Central Res & Dev Lab Inc 過給装置
WO2008057539A2 (en) 2006-11-08 2008-05-15 Borgwarner Inc. Hydraulically-assisted turbocharging system
GR1006038B (el) 2006-11-27 2008-09-02 Αντωνιος Μαστροκαλος Πιταχυντες αεροσυμπιεστων, μηχανων εσωτερικης καυσης
CN101772627B (zh) * 2007-08-17 2013-06-19 博格华纳公司 增压辅助系统
US20090173071A1 (en) * 2008-01-07 2009-07-09 Davorin Kapich Diesel engine with exhaust gas recirculation system
CN101655030B (zh) * 2009-09-08 2011-09-21 奇瑞汽车股份有限公司 增压器
US20120180480A1 (en) 2011-01-19 2012-07-19 Davorin Kapich Hybrid turbocharger system with brake energy revovery
US20120180481A1 (en) 2011-01-19 2012-07-19 Davorin Kapich Hybrid turbocharger system with brake energy revovery
US20120180482A1 (en) 2011-01-19 2012-07-19 Davorin Kapich Hydraulic turbine-pump hybrid turbocharger system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622817A (en) * 1984-09-14 1986-11-18 The Garrett Corporation Hydraulic assist turbocharger system and method of operation
SU1401152A1 (ru) * 1986-10-22 1988-06-07 Камский политехнический институт Устройство дл наддува двигател внутреннего сгорани
US4969332A (en) * 1989-01-27 1990-11-13 Allied-Signal, Inc. Controller for a three-wheel turbocharger
US5076060A (en) * 1990-05-04 1991-12-31 Allied-Signal Inc. Control logic for exhaust gas driven turbocharger
RU27647U1 (ru) * 2002-05-08 2003-02-10 Самарский институт инженеров железнодорожного транспорта Привод турбокомпрессора тепловозного двигателя внутреннего сгорания

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2784830C1 (ru) * 2022-05-30 2022-11-30 Денис Викторович Шабалин Устройство для разгона ротора турбокомпрессора силовой установки танка

Also Published As

Publication number Publication date
US20120198843A1 (en) 2012-08-09
RU2012103621A (ru) 2013-08-10
CN102628396A (zh) 2012-08-08
CN102628396B (zh) 2016-06-15
DE102012200585A1 (de) 2012-08-09
US8915082B2 (en) 2014-12-23

Similar Documents

Publication Publication Date Title
RU2562684C2 (ru) Двигатель внутреннего сгорания с турбонагнетателем, приводная система и способ работы двигателя внутреннего сгорания с турбонагнетателем (варианты)
US10513972B2 (en) Supercharger device for an internal combustion engine, and a method for operating said supercharger device
CN101652535B (zh) 用于瞬时加速和减速阶段的辅助装置
JP5808128B2 (ja) ガス焚きエンジン
US9777620B2 (en) Turbocompound scheme, in particular in the field of industrial vehicles
US20120180481A1 (en) Hybrid turbocharger system with brake energy revovery
US9096116B2 (en) Drive with an internal combustion engine and an expansion machine with gas return
US20120285166A1 (en) Hybrid powertrain system
JP2015108330A (ja) ターボコンパウンドシステムの制御装置
KR101449141B1 (ko) 차량의 폐열 회수 시스템을 이용한 터보장치
US20120180482A1 (en) Hydraulic turbine-pump hybrid turbocharger system
CN102606286A (zh) 一种发动机进气增压装置
US20130233289A1 (en) Supercharged Internal Combustion Engine
US20120180480A1 (en) Hybrid turbocharger system with brake energy revovery
JP2006242051A (ja) エンジンの余剰排気エネルギ回収システム
CN111911294B (zh) 包括电动涡轮的内燃热机的四驱混动车辆及对应控制方法
EP3814618B1 (en) A method of operating a four stroke internal combustion engine system
JP6364691B2 (ja) 内燃機関の過給機余剰動力回収装置
JP5886188B2 (ja) 内燃機関の過給機余剰動力回収装置
CN111231643B (zh) 一种煤矿井下运输气动车辆动力系统和驱动方法
KR101363014B1 (ko) 내연기관 구동식 유압기계 및 이를 위한 공기과급기
KR102458754B1 (ko) 터보차저 엔진의 효율 개선장치
JP5908056B2 (ja) ガス焚きエンジン
KR101774593B1 (ko) 흡기 매니폴드 구조
CN204663660U (zh) 一种混合动力辅助涡轮增压系统

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190203