WO2012127532A1 - 関節装置の駆動方法 - Google Patents

関節装置の駆動方法 Download PDF

Info

Publication number
WO2012127532A1
WO2012127532A1 PCT/JP2011/001704 JP2011001704W WO2012127532A1 WO 2012127532 A1 WO2012127532 A1 WO 2012127532A1 JP 2011001704 W JP2011001704 W JP 2011001704W WO 2012127532 A1 WO2012127532 A1 WO 2012127532A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
motor
link
output shaft
differential
Prior art date
Application number
PCT/JP2011/001704
Other languages
English (en)
French (fr)
Inventor
将弘 土井
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP11852221.8A priority Critical patent/EP2689900B1/en
Priority to JP2012525781A priority patent/JP5387775B2/ja
Priority to PCT/JP2011/001704 priority patent/WO2012127532A1/ja
Priority to US13/577,416 priority patent/US8733207B2/en
Priority to CN201180016120.5A priority patent/CN103153556B/zh
Publication of WO2012127532A1 publication Critical patent/WO2012127532A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears
    • B25J9/1025Harmonic drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20305Robotic arm
    • Y10T74/20317Robotic arm including electric motor

Definitions

  • the present invention relates to a robot joint device and a drive control method for a joint portion of a robot. Specifically, the present invention relates to a robot joint apparatus having flexibility (back drivability) with respect to external force and a drive control method for the robot joint section.
  • service robots are required to be lightweight, capable of producing torque, and capable of high-precision operation control.
  • a combination of a servo motor and a differential speed reducer is employed for the joint portion of almost all service robots.
  • the differential reducer is compact, lightweight, highly accurate, and capable of a high reduction ratio, and is an indispensable element for joint drive of a service robot.
  • Such differential reduction gears can realize high-precision driving without backlash in a compact space, but on the other hand, the back drivability is very low.
  • a large static friction acts on the meshing of the gears in the differential reduction gear. Therefore, unless a considerably large torque is applied from the output side, the joint cannot be turned from the output side against the static friction in the differential reduction gear.
  • Non-Patent Document 1 there is a technique called dithering.
  • dithering This means that the static friction does not work in a pseudo manner by causing the motor to vibrate at a high frequency with a small amplitude when the joint is stationary.
  • the friction model is disclosed in Non-Patent Document 1, for example. This is shown in FIG.
  • FIG. 1 There are other friction models, but the basic trends are generally the same. As can be seen from this friction model, large friction (static friction) works in the low-speed region, and once the friction is reduced to a certain speed, the friction force (viscous friction) increases as the speed increases. It is.
  • Non-Patent Document 2 it is examined how much the friction at the start of operation is reduced by dithering. This Non-Patent Document 2 demonstrates that dithering requires less external force at the start of operation and reports that dithering may improve back drivability. Yes.
  • a technique for reducing friction by such dithering is applied in Patent Document 1, for example.
  • An object of the present invention is to provide a joint device suitable for a robot joint and having improved back drivability, and a driving method thereof.
  • the driving method of the joint device of the present invention is: A driving method for a joint device that includes a drive unit and a differential reducer between a first link and a second link, and controls driving of the first link and the second link as a joint,
  • the differential reducer has an inner gear, an intermediate gear and an outer gear;
  • the drive unit has a first motor and a second motor, The first motor and the second motor are fixedly provided on the first link, Connecting the output shaft of the first motor to any one of the internal gear, the intermediate gear and the external gear of the differential reducer; Connecting the output shaft of the second motor to any one of the gears connected to the output shaft of the first motor among the internal gear, the intermediate gear and the external gear of the differential reducer; Of the internal gear, intermediate gear, and external gear of the differential reducer, the gear connected to the output shaft of the first motor is different from the gear connected to the output shaft of the second motor.
  • the differential speed reducer is preferably a wave gear mechanism or a planetary gear mechanism.
  • the relationship between the relative speed difference between the inner gear, the intermediate gear and the outer gear and the friction force is specified as a friction model, It is preferable to determine the respective rotation speeds of the first motor and the second motor so that the rotation speed ratio is such that the joint can be stationary and the friction is close to the minimum speed difference.
  • the joint device of the present invention is A joint device comprising a differential speed reducer between the first link and the second link, wherein the first link and the second link are joint-driven, A first motor fixedly connected to the first link and an output shaft connected to any one of the inner gear, the intermediate gear and the outer gear of the differential reducer; A gear which is fixedly connected to the first link and whose output shaft is different from the gear connected to the output shaft of the first motor among the inner gear, the intermediate gear and the outer gear of the differential reduction gear. A second motor coupled to any one of Of the internal gear, intermediate gear, and external gear of the differential reducer, the gear connected to the output shaft of the first motor is different from the gear connected to the output shaft of the second motor. One of these is connected to the second link.
  • the joint is stationary, but the gear in the differential reducer is in a relatively moving state. That is, it is possible to prevent static friction from acting in the differential reduction gear even though the joint is stationary. Thereby, since the friction in a differential reduction gear becomes small, high back drivability is securable.
  • the figure which shows the structure of a wave gear apparatus The figure for demonstrating operation
  • the figure which showed the differential reduction gear typically.
  • the robot joint device of the present invention will be described. Before describing the configuration of the present invention, the configuration and operation of the differential reduction gear used in the robot joint device will be described. Although the configuration of the differential reduction gear is known per se, it will be briefly described because it is a premise for understanding the present invention. As an example of the differential reduction gear, a wave gear device known as Harmonic Drive (registered trademark) is taken as an example.
  • Harmonic Drive registered trademark
  • FIG. 1 is a diagram illustrating a configuration of a wave gear device.
  • 2A to 2D are diagrams for explaining the operation of the wave gear device.
  • the wave gear device 10 is a mechanism that reduces the rotation of the input shaft with a very large reduction ratio (a very large reduction ratio such as several tens to hundreds) and transmits it to the output shaft.
  • the wave gear device 10 includes a circular spline 11 as an outer gear, a flex spline 12 as an intermediate gear, and a wave generator 13 as an inner gear.
  • Inner teeth are formed inside a storage case provided to store the wave gear device 10, thereby forming a circular spline 11 as an outer gear.
  • a wave generator (internal gear) 13 is configured by arranging a plurality of pressing balls at equal intervals along the outer periphery of the elliptical cam.
  • the flexspline (intermediate gear) 12 is formed of an elastic material, and a wave generator 13 is provided inside the flexspline 12 along an inner peripheral surface thereof.
  • External teeth are formed on the outer periphery of the flexspline (intermediate gear) 12 so as to mesh with the circular spline 11 which is an external gear.
  • the flex spline (inner gear) 12 is elastically deformed into an elliptical shape. Then, two portions corresponding to the long axis of the ellipse are pushed out to the outermost side and mesh with the circular spline 12. However, the number of teeth of the circular spline 11 is two more than the number of teeth of the flexspline 12.
  • the circular spline 11 that is an outer gear is fixed, the input shaft is connected to the wave generator 13, and the output shaft is connected to the flex spline 12.
  • the elliptical cam of the wave generator 13 also rotates, and the meshing position between the flexspline 12 and the circular spline 11 also rotates.
  • 2A to 2D are diagrams showing a case where the circular spline 11 is fixed and the wave generator 13 is rotated once.
  • the number of teeth of the flexspline 12 is two less than the number of teeth of the circular spline 11.
  • the wave gear device 10 realizes a very large reduction ratio.
  • the wave generator 13 is rotated with the circular spline 11 fixed.
  • the circular spline 11 is connected to the driving means (motor) and rotated without fixing the circular spline 11.
  • the flexspline 12 does not rotate at all from the initial position. That is, by rotating the inner gear (wave generator 13) and the outer gear (circular spline 11) at a certain speed difference, it is possible to create a state where the intermediate gear (flex spline 12) does not rotate at all.
  • the differential reducer is schematically represented as shown in FIG. That is, the differential speed reducer 20 is represented by a triple box, the outermost box being the outer gear 21, the innermost box being the inner gear 23, and the box between them being the intermediate gear 22.
  • the differential reduction gear is a wave gear device
  • the outer gear 21 corresponds to the circular spline 11
  • the intermediate gear 22 corresponds to the flex spline 12
  • the inner gear 23 corresponds to the wave generator 13.
  • FIG. 5 is a diagram showing a conventional robot joint 100 as a comparative example.
  • the motor 110 is fixed to the first link 101, and the output shaft 111 of the motor 110 is connected to the internal gear (wave generator) 23.
  • An outer gear (circular spline) 21 is fixed to the first link 101.
  • the intermediate gear (flex spline) 22 is connected to the second link 102. In this state, when a current is applied to the motor 110 from a predetermined motor drive circuit (not shown), the motor 110 is rotationally driven.
  • the internal gear (wave generator) 22 rotates integrally with the output shaft 111.
  • the intermediate gear (flex spline) 22 rotates at a reduced speed by the meshing of the outer gear (circular spline) 21 and the intermediate gear (flex spline) 22.
  • the rotation of the intermediate gear (flex spline) 22 is transmitted as an output to the second link 102, and the second link 102 is driven.
  • two motors are used, and two of the three elements of the differential speed reducer 20 are continuously rotated at a predetermined speed difference. This prevents static friction from acting even when the output shaft remains stationary.
  • the first pattern is shown in FIG.
  • the first pattern has two motors, a first motor 210 and a second motor 220.
  • the first motor 210 is fixed to the first link 101, and the output shaft 211 of the first motor 210 is connected to an internal gear (wave generator) 23 of the differential reduction gear 20.
  • the second motor 220 is also fixed to the first link 101, but the output shaft 221 of the second motor 220 is connected to the outer gear (circular spline) 21 of the differential reduction gear 20.
  • the second link 102 is connected to an intermediate gear (flex spline) 22 of the differential reduction gear 20.
  • the intermediate gear (flex spline) 22 can be stationary by rotating the inner gear (wave generator) 23 and the outer gear (circular spline) 21 with a certain speed difference in the same direction.
  • the differential reduction gear 20 can be brought into a state where static friction does not act.
  • the case where the differential reduction gear 20 is the wave gear device 10 will be specifically described as an example.
  • the number of teeth of the circular spline (outer gear) 11 is Zc
  • the number of teeth of the flexspline (intermediate gear) 12 is Zf.
  • the rotation speed of the wave generator (inner gear) 13 is Vw
  • the rotation speed of the flex spline (intermediate gear) 12 is Vf
  • the rotation speed of the circular spline (outer gear) 11 is Vc.
  • the friction in the differential reduction gear is minimized when the joint is stationary. It is only necessary to rotate the wave generator (internal gear) 13 and the circular spline (outer gear) 11 so that a rotational speed ratio at which the joint can be stopped and a speed difference that minimizes friction is generated. For example, if a friction model is obtained as shown in FIG. 7, the rotational speed at which the joint can be kept still is obtained near the speed difference ⁇ V 1 or ⁇ V 2 at which the friction is minimized.
  • the speed difference means a rotational speed difference between the wave generator (internal gear) 13 and the flexspline (intermediate gear) 12.
  • a command current may be applied to each of the first motor 210 and the second motor 220 so as to realize the obtained rotation speed.
  • the second motor 220 When it is desired to perform the joint operation by driving the second link 102 relative to the first link 101, the second motor 220 is simply stopped and only the first motor 210 is driven. That is, the outer gear (circular spline) 21 may be fixed and the inner gear (wave generator) 23 may be rotated. Thereby, it becomes the same joint operation as the past.
  • the rotation of the intermediate gear (flex spline) 22 is generated by the relative rotation of the internal gear (wave generator) 23 and the external gear (circular spline) 21, so the internal gear (wave generator) 23 and the external gear (circular spline) 21 may be rotated in the opposite direction.
  • the rotational power of the intermediate gear (flex spline) 22 can be shared between the first motor 210 and the second motor 220, so the load on the first motor 210 is reduced. Can be reduced.
  • the friction in the differential reduction gear is reduced even when the joint is stationary, high back drivability can be ensured.
  • the force applied to the second link 102 is easily transmitted from the output shaft of the differential reducer 20 to the input shaft.
  • the joint is easily bent by the force, so that an effect of reducing the force at the time of contact is achieved. That is, a so-called soft joint can be realized.
  • a person teaches by moving the robot's limbs, there is an effect that a large force is not required.
  • the second pattern is shown in FIG.
  • the first motor 310 is fixed to the first link 101, and the output shaft 311 of the first motor 310 is connected to the internal gear (wave generator) 23 of the differential reduction gear 20.
  • the second motor 320 is also fixed to the first link 101, but the output shaft 321 of the second motor 320 is connected to the intermediate gear (flex spline) 22 of the differential reduction gear 20.
  • the second link is connected to the outer gear of the differential reducer.
  • the outer gear (circular spline) 21 can be stationary by rotating the inner gear (wave generator) 23 and the intermediate gear (flexspline) 22 in the opposite directions at a predetermined relative speed.
  • Differential speed reducer 20 and a wave gear device 10 in the number of teeth Z f of the flexspline 12 is 200, when 202 the number of teeth Z c of the circular spline 11, the above formula becomes as follows.
  • the flex spline (intermediate gear) 12 is rotated in the opposite direction by two teeth while the wave generator (internal gear) 13 rotates once, the circular spline (outer gear) 11 will not rotate.
  • the flex spline (intermediate gear) 12 is rotated at 0.2 rpm in the reverse direction while the wave generator (inner gear) 13 is rotated at 20 rpm, the circular spline (outer gear) 11 is stationary without rotating. .
  • the rotational speeds of the wave generator (inner gear) 13 and the flexspline (intermediate gear) 12 are set based on the friction model so that the friction in the differential reducer is minimized when the joint is stationary.
  • Ask. A command current may be applied to each of the first motor 310 and the second motor 320 so as to realize the obtained rotation speed.
  • the second motor 320 When it is desired to drive the second link 102 relative to the first link 101 to perform a joint operation, the second motor 320 is simply stopped and only the first motor 310 is driven. That is, the intermediate gear (flex spline) 22 may be fixed and the internal gear (wave generator) 23 may be rotated. As a result, the outer gear (circular spline) 21 rotates, so that the second link 102 is driven to perform the joint operation. Alternatively, the inner gear (wave generator) 23 and the intermediate gear (flex spline) 22 may be rotated in the same direction.
  • the rotational power of the outer gear (circular spline) 21 can be shared by the first motor 310 and the second motor 320, so the load on the first motor 310 is reduced. Can be reduced.
  • the differential reduction gear is a wave gear device (harmonic drive (registered trademark))
  • the planetary gear apparatus is used as a differential reduction gear
  • the planetary gear device 30 includes an outer gear 31, a plurality of planetary gears 32, a planetary carrier 33 that picks up the revolution of the planetary gear 32, and a planetary gear 33.
  • a sun gear 34 The planetary gear 32 meshes with the sun gear 34 and the outer ring gear 31, and performs rotation and revolution.
  • the outer ring gear 31 corresponds to the outer gear 21, the planetary gear 32 and the planet carrier 33 correspond to the intermediate gear 22, and the sun gear 34 corresponds to the inner gear 23.
  • the first pattern and the second pattern are also possible in the planetary gear unit 30.
  • the first pattern and the second pattern are also possible with the planetary gear mechanism, the case where the planetary gear device 30 is applied to the second pattern will be described. That is, the first motor 310 is fixed to the first link 101, and the output shaft 311 of the first motor 310 is connected to the internal gear (sun gear) 23 of the differential reduction gear 20.
  • the second motor 320 is fixed to the first link 101, and the output shaft 321 of the second motor 320 is connected to the intermediate gear (planetary gear, planetary carrier) 22 of the differential reduction gear 20.
  • the second link 102 is connected to the outer gear (outer ring gear) 21 of the differential reduction gear 20.
  • the outer gear (outer ring gear) 21 can be stationary by rotating the inner gear (sun gear) 23 and the intermediate gear (planetary gear, planet carrier) 22 in the same direction at a predetermined relative speed.
  • the differential reduction gear 20 can be brought into a state where static friction does not act.
  • the number of teeth of the sun gear 34 is Zs
  • the number of teeth of the planetary gear 32 is Zp
  • the number of teeth of the outer ring gear 31 is Zo
  • the rotational speed of the sun gear 34 is Vs
  • the rotational speed of the planetary carrier 33 (revolution speed of the planetary gear)
  • the rotational speed of the outer ring gear 31 is Vo.
  • the outer ring gear 31 is not rotated.
  • the planetary gear 32 is rotated (revolved) at 1 rpm in the same direction while the sun gear 34 is rotated at 3 rpm, the outer ring gear 31 is not rotated but is stationary. In this way, the friction in the differential reduction gear (planetary gear mechanism) can be reduced while the joint operation is stationary.
  • the third pattern is shown in FIG.
  • the first motor 410 is fixed to the first link 101, and the output shaft 411 of the first motor 410 is connected to the intermediate gear (planetary gear, planetary carrier) 22 of the differential speed reducer 20.
  • the second motor 420 is also fixed to the first link 101, but the output shaft 421 of the second motor 420 is connected to the outer gear (outer ring gear) 21 of the differential reduction gear 20.
  • the second link 102 is connected to an internal gear (sun gear) 23 of the differential reduction gear 20.
  • the inner gear (sun gear) 23 can be stationary by rotating the intermediate gear (planetary gear, planet carrier) 22 and the outer gear (outer ring gear) 21 in the same direction at a predetermined relative speed.
  • the differential reduction gear 20 can be prevented from undergoing static friction.
  • the sun gear (inner gear) 34 Will not rotate.
  • the sun gear 34 is stationary without rotating. In this way, the friction in the differential reduction gear (planetary gear mechanism) can be reduced while the joint operation is stationary.
  • the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.
  • a wave gear device and a planetary gear device are exemplified, but other differential reducers can be applied. Further, all of the first pattern, the second pattern, and the third pattern can be applied to the wave gear device, and further, all of the first pattern, the second pattern, and the third pattern can be applied to the planetary gear device. is there.

Abstract

 ロボット関節に好適であって、かつ、バックドライバビリティを改善した関節装置の駆動方法を提供する。第1モータと第2モータとを第1リンクに固定的に設ける。第1モータの出力軸を差動減速機の内ギアに連結する。第2モータの出力軸を差動減速機の外ギアに連結する。第2リンクを差動減速機の内ギアに連結する。第1リンクと第2リンクとを相対的に静止させて関節角を一定に保つ場合に、第1モータと第2モータとを共にゼロより大きい回転速度で回転させ、かつ、第1モータと第2モータとの回転速度を異ならせて第2リンクを静止させる。

Description

関節装置の駆動方法
 本発明は、ロボット関節装置およびロボットの関節部の駆動制御方法に関する。具体的には、外力に対して柔軟性(バックドライバビリティ)を有するロボット関節装置およびロボット関節部の駆動制御方法に関する。
 近年、人と近接した環境で使用されるサービスロボットの開発が進んでいる。例えば、エンターテイメント会場でパフォーマンスをしたり、人々のなかを歩行する二足歩行ロボットが知られ、さらには、介護支援ロボットも本格実用化に向けて研究が進んでいる。
 このようにロボットと人とが間近で共存するようになってくると、人とロボットとが接触した場合を想定した安全対策も大切になってくる。
 例えば、ロボットと人とが接触するような場合には、接触時に働く力を緩和させる必要がある。
 このためには、ロボットの関節にいわゆる柔らかさを与える必要がある。
 ここで、サービスロボットは、軽量で、トルクが出せて、高精度な動作制御ができることが求められる。このような観点から、ほぼすべてのサービスロボットにおいてその関節部分には、サーボモータと差動減速機との組み合わせが採用されている。差動減速機は、コンパクト、軽量、高精度であり、かつ、高い減速比が可能であり、サービスロボットの関節駆動には欠かせない要素である。こうした差動減速機はコンパクトなスペースでバックラッシュの無い高精度な駆動を実現できるのであるが、その一方、バックドライバビリティは非常に低い。特に、関節が静止した状態では、差動減速機内の歯車の噛み合いに大きな静摩擦が働く。したがって、出力側から相当大きなトルクが掛からないと、差動減速機内の静摩擦に抗して出力側から関節を回すことはできない。
 ここで、ディザリングという手法がある。
 これは、関節静止状態において、モータを小さい振幅で高周波振動させておくことにより、疑似的に静摩擦が働かない状態にすることをいう。
 摩擦モデルは、例えば非特許文献1に開示されている。これを図11に示す。摩擦モデルは他にもあるが、基本的な傾向は概ね同じである。
 この摩擦モデルからわかるように、低速領域では大きな摩擦(静摩擦)が働き、ある速度まで一旦摩擦が低減した後、速度の増加に伴って摩擦力(粘性摩擦)が大きくなっていくのが一般的である。そして、非特許文献2では、動作開始時の摩擦がディザリングによってどの程度低減するか調べられている。この非特許文献2では、ディザリングを用いた方が動作開始時に要した外力が小さいことが実証されており、ディザリングを用いることによりバックドライバビリティを改善できる可能性があることが報告されている。このようなディザリングによって摩擦を低減させる手法は例えば特許文献1で応用されている。
特開平11-49013号公報
日本ロボット学会誌Vol.13、No8、pp.1078-1083 日本ロボット学会誌Vol.22、No3、pp.353-360
 しかしながら、ディザリングを行うと、手先が微小に振動してしまうという問題が生じる。また、モータを振動的に動かすと、減速機などの機構部品の寿命が著しく低下してしまうという問題がある。さらに、モータを振動的に動かすと、振動による騒音が発生するという問題がある。
 これらは、ロボット関節としては大きな欠点であり、特にサービスロボットを考えた場合には無視できない問題である。
 本発明の目的は、ロボット関節に好適であって、かつ、バックドライバビリティを改善した関節装置およびその駆動方法を提供することにある。
 本発明の関節装置の駆動方法は、
 第1リンクと第2リンクとの間に駆動部と差動減速機とを備え、前記第1リンクと前記第2リンクとを関節として駆動制御する関節装置の駆動方法であって、
 前記差動減速機は内ギア、中間ギアおよび外ギアを有し、
 前記駆動部は第1モータと第2モータとを有し、
 前記第1モータと第2モータとを前記第1リンクに固定的に設け、
 前記第1モータの出力軸を前記差動減速機の内ギア、中間ギアおよび外ギアのいずれか一つに連結し、
 前記第2モータの出力軸を前記差動減速機の内ギア、中間ギアおよび外ギアのうちで前記第1モータの前記出力軸に連結されたギアと異なるギアのいずれか一つに連結し、
 前記差動減速機の内ギア、中間ギアおよび外ギアのうちで前記第1モータの前記出力軸に連結された前記ギアと前記第2モータの前記出力軸に連結された前記ギアとは異なるギアの一つを前記第2リンクに連結し、
 前記第1リンクと前記第2リンクとを相対的に静止させて関節角を一定に保つ場合に、
 前記第1モータと前記第2モータとを共にゼロより大きい回転速度で回転させ、かつ、前記第1モータと前記第2モータとの回転速度を異ならせて第2リンクを静止させる
 ことを特徴とする。
 本発明では、
 前記差動減速機は、波動歯車機構または遊星歯車機構である
 ことが好ましい。
 本発明では、
 前記差動減速機において、内ギア、中間ギアおよび外ギア間の相対速度差と摩擦力との関係を摩擦モデルとして特定し、
 関節静止が実現できる回転速度比であって、かつ、摩擦が最も小さくなる速度差に近くなるように、前記第1モータと第2モータとのそれぞれの回転速度を決定する
 ことが好ましい。
 本発明の関節装置は、
 第1リンクと第2リンクとの間に差動減速機を備え、前記第1リンクと前記第2リンクとを関節駆動させる関節装置であって、
 第1リンクに固定的に連結されているとともに、出力軸が前記差動減速機の内ギア、中間ギアおよび外ギアのいずれか一つに連結された第1モータと、
 第1リンクに固定的に連結されているとともに、出力軸が前記差動減速機の内ギア、中間ギアおよび外ギアのうちで前記第1モータの前記出力軸に連結された前記ギアと異なるギアのいずれか一つに連結された第2モータと、を備え、
 前記差動減速機の内ギア、中間ギアおよび外ギアのうちで前記第1モータの前記出力軸に連結された前記ギアと前記第2モータの前記出力軸に連結された前記ギアとは異なるギアの一つが前記第2リンクに連結されている
 ことを特徴とする。
 本発明により、関節は静止しているが、差動減速機内のギアは相対的に運動している状態になる。つまり、関節は静止しているにも関わらず差動減速機内には静摩擦が働かないようにできる。これにより、差動減速機内の摩擦が小さくなるので、高いバックドライバビリティが確保できる。
波動歯車装置の構成を示す図 波動歯車装置の動作を説明するための図。 波動歯車装置の動作を説明するための図。 波動歯車装置の動作を説明するための図。 波動歯車装置の動作を説明するための図。 ウェーブジェネレータとサーキュラスプラインとをそれぞれ所定角度で回転駆動させることにより、フレクスプラインの静止を実現する様子を示す図。 差動減速機を模式的に示した図。 比較例として従来のロボット関節部を示す図。 第1パターンを示す図。 摩擦モデルの例を示す図。 第2パターンを示す図。 遊星歯車装置の構成を示す図。 第3パターンを示す図。 摩擦モデルの例を示す図。
 本発明のロボット関節装置について説明するが、本発明の構成を説明する前に、ロボット関節装置に使用される差動減速機の構成と作用について説明する。
 差動減速機の構成自体は既知であるが、本発明の理解の前提となるので簡単に説明しておく。
 差動減速機の一例としてハーモニックドライブ(登録商標)で知られる波動歯車装置を例にする。
 図1は、波動歯車装置の構成を示す図である。図2Aから図2Dは、波動歯車装置の動作を説明するための図である。
 波動歯車装置10は、入力軸の回転を非常に大きな減速比(数十から百数十といった非常に大きな減速比)で減速して出力軸に伝達する機構である。波動歯車装置10は、外ギアとしてのサーキュラスプライン11と、中間ギアとしてのフレクスプライン12と、内ギアとしてのウェーブジェネレータ13と、を備える。
 波動歯車装置10を収納するように設けられた収納ケースの内側に内歯が形成され、これにより外ギアとしてのサーキュラスプライン11が形成される。一方、楕円盤カムの外周に沿って複数の押圧ボールが等間隔で配設されることにより、ウェーブジェネレータ(内ギア)13が構成されている。フレクスプライン(中間ギア)12は、弾性材料で形成され、フレクスプライン12の内側にはその内周面に沿ってウェーブジェネレータ13がある。フレクスプライン(中間ギア)12の外周に外歯が形成され、外ギアであるサーキュラスプライン11と噛合するようになっている。詳しくは、楕円盤カムが外面でボールを外周方向に押し上げると、フレクスプライン(内ギア)12が楕円形に弾性変形する。そして、楕円の長軸に対応する2箇所が最も外周側に押し出されてサーキュラスプライン12と噛合する。ただし、サーキュラスプライン11の歯数の方がフレクスプライン12の歯数よりも2枚多くなっている。
 一般的には、外ギアであるサーキュラスプライン11を固定し、入力軸をウェーブジェネレータ13に連結し、出力軸をフレクスプライン12に連結する。入力軸が回転するとウェーブジェネレータ13の楕円盤カムも回転し、フレクスプライン12とサーキュラスプライン11との噛合位置も回転する。図2Aから図2Dは、サーキュラスプライン11を固定し、ウェーブジェネレータ13を一回転させた場合を示す図である。前述のように、サーキュラスプライン11の歯数よりもフレクスプライン12の歯数が2枚少ない。したがって、入力軸(ウェーブジェネレータ13)が1回転するとき、フレクスプライン12はこの相違歯数分だけ、すなわち、2枚の歯数分(δdegとする)だけ逆方向に回転することになる。このように、波動歯車装置10により、非常に大きな減速比が実現される。
 さて、上記の説明では、サーキュラスプライン11を固定した状態でウェーブジェネレータ13を回転させた。ここで、サーキュラスプライン11を固定せずに、サーキュラスプライン11も駆動手段(モータ)に連結して回転させることを考える。例えば、ウェーブジェネレータ13を360+δdeg回転させる間に、サーキュラスプライン11をδdegだけ同方向に回転させたとする。すると、図3に示すように、フレクスプライン12は最初の位置から全く回転しないことになる。すなわち、内ギア(ウェーブジェネレータ13)と外ギア(サーキュラスプライン11)とをある速度差で回転させることにより、中間ギア(フレクスプライン12)が全く回転しない状態を作り出すことができるわけである。
 同様に考えて、内ギア(ウェーブジェネレータ13)と中間ギア(フレクスプライン12)とをある速度差で回転させることにより、外ギア(サーキュラスプライン11)が全く回らない状態を作り出すこともできる。すなわち、3要素の総てが相対的には速度差を持って運動しているのに(静摩擦状態ではない)、出力軸は静止しているように制御することが可能になるわけである。
 ここで、以後の説明のために、差動減速機を図4のように模式的に表現することとする。すなわち、差動減速機20を三重のボックスで表現し、最外側のボックスを外ギア21、最内側のボックスを内ギア23、両者の間にあるボックスを中間ギア22、とする。
 差動減速機が波動歯車装置の場合、外ギア21はサーキュラスプライン11に対応し、中間ギア22はフレクスプライン12に対応し、内ギア23はウェーブジェネレータ13に対応する。
 (従来のロボット関節)
 ロボットの関節構造は、第1リンクと第2リンクとの間にモータと差動減速機とを介在させ、モータの駆動力によって第2リンクを第1リンクに対して相対駆動させるものである。
 図5は、比較例として、従来のロボット関節部100を示す図である。
 モータ110は第1リンク101に固定されているとともに、モータ110の出力軸111が内ギア(ウェーブジェネレータ)23に連結されている。また、外ギア(サーキュラスプライン)21が第1リンク101に固定されている。そして、中間ギア(フレクスプライン)22は第2リンク102に連結されている。
 この状態で、図示しない所定のモータ駆動回路から電流がモータ110に印加されると、モータ110が回転駆動する。モータ駆動によってモータ出力軸111が回転するので、出力軸111と一体的に内ギア(ウェーブジェネレータ)22が回転する。内ギア(ウェーブジェネレータ)22が回転すると、外ギア(サーキュラスプライン)21と中間ギア(フレクスプライン)22との噛み合いによって中間ギア(フレクスプライン)22が減速回転する。中間ギア(フレクスプライン)22の回転が出力として第2リンク102に伝達され、第2リンク102が駆動する。
 この従来のロボット関節構造100において、第2リンク102を第1リンク101に対して静止させておくには、当然、モータ駆動を停止させておかなければならない。したがって、第2リンク102の静止時には差動減速機の3要素(内ギア23、中間ギア22、外ギア21)間に大きな静摩擦が働くことになる。すると、静止時に第2リンク側から力がかかったとしても、差動減速機内の大きな摩擦抵抗により第2リンク102は動けない。例えば、仮に人が第2リンク102に接触したとしても、関節部100が動かないので、接触時の力を和らげることができないことになる。
 そこで、本発明では、モータを二つ使用し、差動減速機20の三要素のうちの二つを所定速度差で回転させ続けるようにする。
 これにより、出力軸が静止状態を保つ場合でも静摩擦が働かないようにする。
 (第1実施形態)
 本発明の実施形態としては以下に説明するようなパターンが考えられる。
 (第1パターン)
 第1パターンを図6に示す。
 第1パターンでは、第1モータ210と第2モータ220との二つのモータを有する。第1モータ210は、第1リンク101に固定されているとともに、第1モータ210の出力軸211は差動減速機20の内ギア(ウェーブジェネレータ)23に連結されている。第2モータ220も第1リンク101に固定されているが、第2モータ220の出力軸221は、差動減速機20の外ギア(サーキュラスプライン)21に連結されている。そして、第2リンク102は、差動減速機20の中間ギア(フレクスプライン)22に連結されている。
 この構成において、内ギア(ウェーブジェネレータ)23と外ギア(サーキュラスプライン)21とを同方向にある速度差で回転させることにより、中間ギア(フレクスプライン)22を静止させることができる。これにより、第1リンク101と第2リンク102とは互いに静止状態を保っていても、差動減速機20には静摩擦が働かない状態にすることができる。
 差動減速機20が波動歯車装置10である場合を例に具体的に説明する。
 サーキュラスプライン(外ギア)11の歯数をZcとし、フレクスプライン(中間ギア)12の歯数をZfとする。また、ウェーブジェネレータ(内ギア)13の回転速度をVwとし、フレクスプライン(中間ギア)12の回転速度をVfとし、サーキュラスプライン(外ギア)11の回転速度をVcとする。
 このとき、フレクスプライン(中間ギア)12の回転速度を0とするためには次の式を満たせばよい。
Figure JPOXMLDOC01-appb-M000001
 例えば、フレクスプライン(中間ギア)12の歯数が200枚で、サーキュラスプライン(外ギア)11の歯数が202枚とすると、上記の式は、次のようになる。
Figure JPOXMLDOC01-appb-M000002
 言い換えると、ウェーブジェネレータ(内ギア)13が「360度+歯数2枚分」の回転をする間に、サーキュラスプライン(外ギア)11を歯数二枚分だけ同方向に回転させるとフレクスプライン(中間ギア)12は回転しないようになる。さらに言い換えると、ウェーブジェネレータを20.2rpmで回転させつつ、サーキュラスプライン11を同方向に0.2rpmで回転させると、フレクスプライン12は回転せずに静止する。
 なお、関節を静止させた状態において差動減速機内の摩擦が最も小さくなるようにすることが望ましい。関節静止が実現できる回転速度比であって、かつ、摩擦が最も小さくなるような速度差が生じるようにウェーブジェネレータ(内ギア)13とサーキュラスプライン(外ギア)11とを回転させればよい。
 例えば、図7に示すように摩擦モデルが求められていれば、摩擦が最も小さくなる速度差ΔV1、ΔV2に近いところで、関節静止状態を保てる回転速度を求める。
 なお、ここでいう速度差は、ウェーブジェネレータ(内ギア)13とフレクスプライン(中間ギア)12との回転速度差を意味する。
 求められた回転速度を実現するように第1モータ210と第2モータ220とにそれぞれ指令電流を印加すればよい。
 第1リンク101に対して第2リンク102を相対駆動させて関節動作をさせたい場合、もっとも単純には、第2モータ220は停止させて第1モータ210だけを駆動させればよい。すなわち、外ギア(サーキュラスプライン)21を固定し、内ギア(ウェーブジェネレータ)23を回転させればよい。
 これにより、従来と同じ関節動作になる。
 あるいは、中間ギア(フレクスプライン)22の回転は内ギア(ウェーブジェネレータ)23と外ギア(サーキュラスプライン)21との相対回転で生み出されるので、内ギア(ウェーブジェネレータ)23と外ギア(サーキュラスプライン)21とを反対方向に回転させてもよい。単純に外ギア(サーキュラスプライン)21を固定してしまう場合よりも、中間ギア(フレクスプライン)22の回転動力を第1モータ210と第2モータ220とで分担できるので第1モータ210の負荷を軽減できる。
 このように関節を静止させた状態でも差動減速機内の摩擦が小さくなるので、高いバックドライバビリティが確保できる。
 例えば、人がロボットに接触した場合でも、第2リンク102に掛かった力が差動減速機20の出力軸から入力軸に伝達されやすくなる。
 これにより、人が接触したときでも、その力によって関節が屈曲しやすくなるので、接触時の力を緩和する効果を奏する。つまり、いわゆる柔らかい関節を実現することができる。
 また、人がロボットの手足を動かしてティーチングする場合であっても、大きな力を必要としなくなるという効果を奏する。
 (第2パターン)
 第2パターンを図8に示す。
 第2パターンでは、第1モータ310は、第1リンク101に固定されているとともに、第1モータ310の出力軸311は差動減速機20の内ギア(ウェーブジェネレータ)23に連結されている。第2モータ320も第1リンク101に固定されているが、第2モータ320の出力軸321は、差動減速機20の中間ギア(フレクスプライン)22に連結されている。そして、第2リンクは、差動減速機の外ギアに連結されている。
 この構成において、内ギア(ウェーブジェネレータ)23と中間ギア(フレクスプライン)22とを反対方向に所定相対速度で回転させることにより、外ギア(サーキュラスプライン)21を静止させることができる。これにより、第1リンク101と第2リンク102とは互いに静止状態を保っていても、差動減速機には静摩擦が働かない状態にすることができる。
 この第2パターンの構成において、外ギア(サーキュラスプライン)21の回転速度を0とするためには次の式を満たせばよい。
Figure JPOXMLDOC01-appb-M000003
 差動減速機20が波動歯車装置10であるとし、フレクスプライン12の歯数Zfが200で、サーキュラスプライン11の歯数Zcを202とすると、上記の式は、次のようになる。
Figure JPOXMLDOC01-appb-M000004
 すなわち、ウェーブジェネレータ(内ギア)13が一回転する間に、フレクスプライン(中間ギア)12を歯数2枚分反対方向に回転させると、サーキュラスプライン(外ギア)11は回転しないことになる。
 さらに言い換えると、ウェーブジェネレータ(内ギア)13を20rpmで回転させつつ、フレクスプライン(中間ギア)12を逆方向に0.2rpmで回転させると、サーキュラスプライン(外ギア)11は回転せずに静止する。
 前述のように、関節を静止させた状態において差動減速機内の摩擦が最も小さくなるように摩擦モデルに基づいてウェーブジェネレータ(内ギア)13とフレクスプライン(中間ギア)12との回転速度をそれぞれ求める。
 求められた回転速度を実現するように第1モータ310と第2モータ320とにそれぞれ指令電流を印加すればよい。
 第1リンク101に対して第2リンク102を相対駆動させて関節動作をさせたい場合、もっとも単純には、第2モータ320は停止させて第1モータ310だけを駆動させればよい。すなわち、中間ギア(フレクスプライン)22を固定し、内ギア(ウェーブジェネレータ)23を回転させればよい。
 これにより、外ギア(サーキュラスプライン)21が回転するので第2リンク102が駆動して関節動作を行う。
 あるいは、内ギア(ウェーブジェネレータ)23と中間ギア(フレクスプライン)22とを同方向に回転させてもよい。
 単純に中間ギア(フレクスプライン)22を固定してしまう場合よりも、外ギア(サーキュラスプライン)21の回転動力を第1モータ310と第2モータ320とで分担できるので第1モータ310の負荷を軽減できる。
 (第2実施形態)
 上記第1実施形態の説明では、主として、差動減速機が波動歯車装置(ハーモニックドライブ(登録商標))である場合を例に説明したが、差動減速機としては他のものでもよいのはもちろんである。
 差動減速機として遊星歯車装置を使用した場合を例示する。
 なお、遊星歯車装置30は、図9のように、外輪歯車(outer gear)31と、複数の遊星歯車(planertary gear)32と、遊星歯車32の公転を拾う遊星キャリア(planertary carrier)33と、太陽歯車(sun gear)34と、を有する。
 遊星歯車32は、太陽歯車34と外輪歯車31とに噛合し、自転と公転を行う。
 外輪歯車31が外ギア21に対応し、遊星歯車32と遊星キャリア33とが中間ギア22に対応し、太陽歯車34が内ギア23に対応する。
 遊星歯車装置30においても上記第1パターンおよび第2パターンが可能である。
 (遊星歯車での第2パターン)
 遊星歯車機構でも上記第1パターンおよび第2パターンが可能であるところ、遊星歯車装置30を第2パターンに適用した場合を説明する。すなわち、第1モータ310を第1リンク101に固定するとともに、第1モータ310の出力軸311を差動減速機20の内ギア(太陽歯車)23に連結する。
 第2モータ320を第1リンク101に固定するとともに、第2モータ320の出力軸321を、差動減速機20の中間ギア(遊星歯車、遊星キャリア)22に連結する。そして、第2リンク102は、差動減速機20の外ギア(外輪歯車)21に連結する。
 この構成において、内ギア(太陽歯車)23と中間ギア(遊星歯車、遊星キャリア)22とを同方向に所定相対速度で回転させることにより、外ギア(外輪歯車)21を静止させることができる。
 これにより、第1リンク101と第2リンク102とは互いに静止状態を保っていても、差動減速機20には静摩擦が働かない状態にすることができる。
 ここで、太陽歯車34の歯数をZsとし、遊星歯車32の歯数をZpとし、外輪歯車31の歯数をZoとする。
 また、太陽歯車34の回転速度をVsとし、遊星キャリア33の回転速度(遊星歯車の公転速度)をVpとし、外輪歯車31の回転速度をVoとする。
 このとき、外輪歯車31の回転速度Voを0とするためには次の式を満たせばよい。
Figure JPOXMLDOC01-appb-M000005
 太陽歯車34の歯数Zsを40、外輪歯車31の歯数Zoを80とした場合、上記の式は次のようになる。(遊星歯車の歯数は例えば20とする)
Figure JPOXMLDOC01-appb-M000006
 すなわち、太陽歯車34が3回転する間に、遊星歯車32を一回公転させると(遊星キャリア33を一回転させると)、外輪歯車31は回転しないことになる。
 さらに言い換えると、太陽歯車34を3rpmで回転させつつ、遊星歯車32を同方向に1rpmで回転(公転)させると、外輪歯車31は回転せずに静止する。
 このようにして、関節動作は静止させつつも、差動減速機(遊星歯車機構)内の摩擦を小さくすることができる。
 (第3パターン)
 次に第3パターンについて説明する。
 第3パターンを図10に示す。
 第3パターンでは、第1モータ410は、第1リンク101に固定されているとともに、第1モータ410の出力軸411は差動減速機20の中間ギア(遊星歯車、遊星キャリア)22に連結されている。
 第2モータ420も第1リンク101に固定されているが、第2モータ420の出力軸421は、差動減速機20の外ギア(外輪歯車)21に連結されている。そして、第2リンク102は、差動減速機20の内ギア(太陽歯車)23に連結されている。
 この構成において、中間ギア(遊星歯車、遊星キャリア)22と外ギア(外輪歯車)21とを同方向に所定相対速度で回転させることにより、内ギア(太陽歯車)23を静止させることができる。これにより、第1リンク101と第2リンク102とは互いに静止状態を保っていても、差動減速機20には静摩擦が働かない状態とさせることができる。
 この第3パターンの構成において、内ギア(太陽歯車)23の回転速度を0とするためには次の式を満たせばよい。
Figure JPOXMLDOC01-appb-M000007
 太陽歯車(内ギア)34の歯数を40、外輪歯車(外ギア)31の歯数を80とした場合、上記の式は次のようになる。(遊星歯車の歯数は例えば20とする)
Figure JPOXMLDOC01-appb-M000008
 すなわち、外輪歯車(外ギア)31が3回転する間に、遊星歯車(中間ギア)32を同方向に2回公転させると(遊星キャリア33を2回転させると)、太陽歯車(内ギア)34は回転しないことになる。
 さらに言い換えると、外輪歯車31を3rpmで回転させつつ、遊星歯車32を同方向に2rpmで回転(公転)させると、太陽歯車34は回転せずに静止する。
 このようにして、関節動作は静止させつつも、差動減速機(遊星歯車機構)内の摩擦を小さくすることができる。
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
 差動減速機としては、波動歯車装置と遊星歯車装置とを例示したが、差動減速機としてはこれら以外でも適用可能である。
 また、前記第1パターン、第2パターン、第3パターンのすべてが波動歯車装置に適用でき、さらに、前記第1パターン、第2パターン、第3パターンのすべてが遊星歯車装置に適用できることはもちろんである。
10…波動歯車装置、11…サーキュラスプライン、12…フレクスプライン、13…ウェーブジェネレータ、20…差動減速機、21…外ギア、22…中間ギア、23…内ギア、30…遊星歯車装置、31…外輪歯車、32…遊星歯車、33…遊星キャリア、34…太陽歯車、100…ロボット関節部、101…第1リンク、102…第2リンク、110…モータ、111…出力軸、200…ロボット関節部、210…第1モータ、211…出力軸、220…第2モータ、221…出力軸、310…第1モータ、311…出力軸、320…第2モータ、321…出力軸、410…第1モータ、411…出力軸、420…第2モータ、421…出力軸。

Claims (4)

  1.  第1リンクと第2リンクとの間に駆動部と差動減速機とを備え、前記第1リンクと前記第2リンクとを関節として駆動制御する関節装置の駆動方法であって、
     前記差動減速機は内ギア、中間ギアおよび外ギアを有し、
     前記駆動部は第1モータと第2モータとを有し、
     前記第1モータと第2モータとを前記第1リンクに固定的に設け、
     前記第1モータの出力軸を前記差動減速機の内ギア、中間ギアおよび外ギアのいずれか一つに連結し、
     前記第2モータの出力軸を前記差動減速機の内ギア、中間ギアおよび外ギアのうちで前記第1モータの前記出力軸に連結されたギアと異なるギアのいずれか一つに連結し、
     前記差動減速機の内ギア、中間ギアおよび外ギアのうちで前記第1モータの前記出力軸に連結された前記ギアと前記第2モータの前記出力軸に連結された前記ギアとは異なるギアの一つを前記第2リンクに連結し、
     前記第1リンクと前記第2リンクとを相対的に静止させて関節角を一定に保つ場合に、
     前記第1モータと前記第2モータとを共にゼロより大きい回転速度で回転させ、かつ、前記第1モータと前記第2モータとの回転速度を異ならせて第2リンクを静止させる
     ことを特徴とする関節装置の駆動方法。
  2.  請求項1に記載の関節装置の駆動方法において、
     前記差動減速機は、波動歯車機構または遊星歯車機構である
     ことを特徴とする関節装置の駆動方法。
  3.  請求項1または請求項2に記載の関節装置の駆動方法において、
     前記差動減速機において、内ギア、中間ギアおよび外ギア間の相対速度差と摩擦力との関係を摩擦モデルとして特定し、
     関節静止が実現できる回転速度比であって、かつ、摩擦が最も小さくなる速度差に近くなるように、前記第1モータと第2モータとのそれぞれの回転速度を決定する
     ことを特徴とする関節装置の駆動方法。
  4.  第1リンクと第2リンクとの間に差動減速機を備え、前記第1リンクと前記第2リンクとを関節駆動させる関節装置であって、
     第1リンクに固定的に連結されているとともに、出力軸が前記差動減速機の内ギア、中間ギアおよび外ギアのいずれか一つに連結された第1モータと、
     第1リンクに固定的に連結されているとともに、出力軸が前記差動減速機の内ギア、中間ギアおよび外ギアのうちで前記第1モータの前記出力軸に連結された前記ギアと異なるギアのいずれか一つに連結された第2モータと、を備え、
     前記差動減速機の内ギア、中間ギアおよび外ギアのうちで前記第1モータの前記出力軸に連結された前記ギアと前記第2モータの前記出力軸に連結された前記ギアとは異なるギアの一つが前記第2リンクに連結されている
     ことを特徴とする関節装置。
PCT/JP2011/001704 2011-03-23 2011-03-23 関節装置の駆動方法 WO2012127532A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11852221.8A EP2689900B1 (en) 2011-03-23 2011-03-23 Driving method for joint device
JP2012525781A JP5387775B2 (ja) 2011-03-23 2011-03-23 関節装置の駆動方法
PCT/JP2011/001704 WO2012127532A1 (ja) 2011-03-23 2011-03-23 関節装置の駆動方法
US13/577,416 US8733207B2 (en) 2011-03-23 2011-03-23 Method of driving joint device
CN201180016120.5A CN103153556B (zh) 2011-03-23 2011-03-23 关节装置的驱动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/001704 WO2012127532A1 (ja) 2011-03-23 2011-03-23 関節装置の駆動方法

Publications (1)

Publication Number Publication Date
WO2012127532A1 true WO2012127532A1 (ja) 2012-09-27

Family

ID=46878736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001704 WO2012127532A1 (ja) 2011-03-23 2011-03-23 関節装置の駆動方法

Country Status (5)

Country Link
US (1) US8733207B2 (ja)
EP (1) EP2689900B1 (ja)
JP (1) JP5387775B2 (ja)
CN (1) CN103153556B (ja)
WO (1) WO2012127532A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087170A (ja) * 2012-10-24 2014-05-12 Seiko Epson Corp 電気機械装置、並びに、これを備える移動体およびロボット
WO2023090204A1 (ja) * 2021-11-16 2023-05-25 ソニーグループ株式会社 制御システム、制御装置及びアクチュエータ

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6228837B2 (ja) * 2013-12-25 2017-11-08 富士通周辺機株式会社 マニピュレータ駆動制御装置
US9371899B2 (en) * 2014-05-27 2016-06-21 Hamilton Sundstrand Corporation Harmonic drive assembly with selective disconnect and reconnect
DE102015200374A1 (de) * 2015-01-13 2016-07-14 Kuka Roboter Gmbh Getriebe, elektrische Antriebsvorrichtung und Industrieroboter
CN104712711B (zh) * 2015-02-09 2018-05-11 陈志同 一种可用于机器人关节减速器的余弦渐开线少齿差传动装置
KR102303733B1 (ko) * 2017-06-16 2021-09-16 가부시키가이샤 하모닉 드라이브 시스템즈 파동기어장치
CN108032328B (zh) * 2017-12-18 2023-08-04 深圳市优必选科技有限公司 一种舵机组件、机器人关节结构及机器人
CN110788847B (zh) * 2019-11-22 2021-01-15 合肥工业大学 一种有辅助驱动单元的节能型工业机器人

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308178A (ja) * 1995-05-08 1996-11-22 Shigeto Suzuki モーター装置
JPH1149013A (ja) 1997-08-07 1999-02-23 Mitsubishi Electric Corp 電動式パワーステアリング装置
JP2009291874A (ja) * 2008-06-04 2009-12-17 Kansai Electric Power Co Inc:The 関節装置、ロボットアーム、及び、フィンガーユニット

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147407U (ja) 1985-02-27 1986-09-11
JP2606236B2 (ja) 1987-10-13 1997-04-30 株式会社安川電機 非線形摩擦補償を行った高速位置決め制御方法
JP2681969B2 (ja) 1988-02-17 1997-11-26 株式会社安川電機 可変構造系によるクーロン摩擦の補償方法
JPH0248710A (ja) 1988-08-11 1990-02-19 Fanuc Ltd ソフトウェアサーボにおける静摩擦補償方法
JPH04257001A (ja) 1991-02-08 1992-09-11 Fanuc Ltd ゲインスケジューリング
US5222409A (en) * 1991-09-25 1993-06-29 Dalakian Sergei V Industrial robot arms
DE69315318D1 (de) 1992-12-07 1998-01-02 Koninkl Philips Electronics Nv Steuerungseinrichtung
JPH06309008A (ja) 1993-04-20 1994-11-04 Mitsubishi Heavy Ind Ltd サーボ制御装置
JP3463355B2 (ja) 1994-06-03 2003-11-05 株式会社安川電機 制御対象の特性を表す関数の定数の同定・補償方法
JP2619227B2 (ja) 1994-11-30 1997-06-11 川崎重工業株式会社 ロボットの制御方法および装置
JPH08286759A (ja) 1995-04-14 1996-11-01 Fanuc Ltd 静摩擦を補償するロボット駆動制御方法
JPH09231701A (ja) 1996-02-21 1997-09-05 Hitachi Ltd ヘッド位置決め制御方法
JP3552076B2 (ja) 1996-06-20 2004-08-11 株式会社安川電機 ロボット制御方法
JPH11123690A (ja) 1997-10-24 1999-05-11 Denso Corp 多関節形ロボット
JP4038805B2 (ja) 1997-11-11 2008-01-30 株式会社安川電機 電動機の摩擦補償方法
CN2389046Y (zh) * 1999-09-30 2000-07-26 上海交通大学 Sma丝差动驱动的转动关节臂
JP2002046632A (ja) 2000-08-07 2002-02-12 Nsk Ltd 電動パワーステアリング装置の制御装置
JP3949470B2 (ja) 2002-02-27 2007-07-25 本田技研工業株式会社 プラントの制御装置
JP2004195576A (ja) 2002-12-17 2004-07-15 Japan Science & Technology Agency 機能性流体を用いた柔軟関節マニピュレータ
JP4614427B2 (ja) 2003-08-06 2011-01-19 日産自動車株式会社 低摩擦摺動機構、手動変速機及び終減速機
JP2005186258A (ja) * 2003-12-26 2005-07-14 Daihen Corp 作業用ロボット
JP4148189B2 (ja) 2004-06-14 2008-09-10 トヨタ自動車株式会社 柔軟関節ロボットアームの制御装置
JP4453526B2 (ja) 2004-11-19 2010-04-21 株式会社安川電機 サーボ制御装置
JP2007001444A (ja) 2005-06-24 2007-01-11 Toyota Motor Corp 車両用駆動装置
JP2007085530A (ja) * 2005-09-26 2007-04-05 Nabtesco Corp 中空減速機
WO2007072546A1 (ja) * 2005-12-20 2007-06-28 Harmonic Drive Systems Inc. 指関節機構
US7891272B2 (en) * 2006-11-14 2011-02-22 Schonlau William J Robotic harmonic flex-drive
JP5135031B2 (ja) * 2007-10-05 2013-01-30 株式会社リコー 連結装置および画像形成装置
JP2009166219A (ja) * 2008-01-21 2009-07-30 Toyota Motor Corp ロボットアームの関節機構
JP2010266008A (ja) * 2009-05-15 2010-11-25 Denso Wave Inc ロボット用ハーモニック減速機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308178A (ja) * 1995-05-08 1996-11-22 Shigeto Suzuki モーター装置
JPH1149013A (ja) 1997-08-07 1999-02-23 Mitsubishi Electric Corp 電動式パワーステアリング装置
JP2009291874A (ja) * 2008-06-04 2009-12-17 Kansai Electric Power Co Inc:The 関節装置、ロボットアーム、及び、フィンガーユニット

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE ROBOTICS SOCIETY OF JAPAN, vol. 13, no. 8, pages 1078 - 1083
JOURNAL OF THE ROBOTICS SOCIETY OF JAPAN, vol. 22, no. 3, pages 353 - 360
See also references of EP2689900A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087170A (ja) * 2012-10-24 2014-05-12 Seiko Epson Corp 電気機械装置、並びに、これを備える移動体およびロボット
WO2023090204A1 (ja) * 2021-11-16 2023-05-25 ソニーグループ株式会社 制御システム、制御装置及びアクチュエータ

Also Published As

Publication number Publication date
US20130074636A1 (en) 2013-03-28
CN103153556A (zh) 2013-06-12
EP2689900B1 (en) 2015-07-08
JPWO2012127532A1 (ja) 2014-07-24
EP2689900A1 (en) 2014-01-29
JP5387775B2 (ja) 2014-01-15
EP2689900A4 (en) 2014-05-07
CN103153556B (zh) 2014-08-20
US8733207B2 (en) 2014-05-27

Similar Documents

Publication Publication Date Title
JP5387775B2 (ja) 関節装置の駆動方法
JP6621062B2 (ja) 干渉駆動式変速機及びこれを用いた干渉駆動式変速駆動装置
JP2007127273A (ja) 非対称ウェーブジェネレータとそれに関連したフレクスプラインとを有する波動歯車装置
KR200450505Y1 (ko) 감속기
WO2021015165A1 (ja) 波動歯車装置
JP2001310287A (ja) ロボット用アーム装置
WO2011049013A1 (ja) 非平行軸伝動機構及びロボット
JPH066786U (ja) 偏心差動方式減速機
WO2014147734A1 (ja) 複合駆動装置およびロボット
US10975946B1 (en) Differential reducer with high ratio
JPS6362934A (ja) 動力伝達装置
JPS63289366A (ja) 運動変換装置
JPS6334344B2 (ja)
JP6687928B2 (ja) 関節駆動装置及び多軸マニュピレータ
JP5158710B2 (ja) 干渉駆動関節機構
JPH0328612B2 (ja)
JP2742912B2 (ja) 産業ロボットの関節装置
JP2005061529A (ja) 二方向運動装置
JP2590404B2 (ja) 産業ロボットの関節装置
JPS6325108Y2 (ja)
JPS6275152A (ja) 差動遊星歯車装置
JPH0349715B2 (ja)
JP2016525657A (ja) 湾曲軸受接触システム
WO2021059404A1 (ja) 垂直多関節ロボットおよび2軸ロボット
JPH01247844A (ja) 駆動機構

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016120.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012525781

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011852221

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13577416

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE