WO2012124489A1 - 車両の充電制御装置 - Google Patents

車両の充電制御装置 Download PDF

Info

Publication number
WO2012124489A1
WO2012124489A1 PCT/JP2012/055208 JP2012055208W WO2012124489A1 WO 2012124489 A1 WO2012124489 A1 WO 2012124489A1 JP 2012055208 W JP2012055208 W JP 2012055208W WO 2012124489 A1 WO2012124489 A1 WO 2012124489A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
time
temperature
heater
Prior art date
Application number
PCT/JP2012/055208
Other languages
English (en)
French (fr)
Inventor
山本 直樹
一彦 沖野
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201280006093.8A priority Critical patent/CN103329395B/zh
Priority to EP12758060.3A priority patent/EP2685597B1/en
Priority to KR1020137021863A priority patent/KR101437804B1/ko
Priority to US14/004,096 priority patent/US9162580B2/en
Publication of WO2012124489A1 publication Critical patent/WO2012124489A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • the present invention relates to a charging control device for a vehicle capable of traveling using battery power.
  • Patent Document 1 discloses a technique for performing battery charge control in a vehicle that can travel using battery power.
  • a pre-designated charging is performed so that the charging is completed within the predetermined time.
  • the battery is heated by the heater before the start time.
  • the present invention has been made paying attention to the above problem, and an object of the present invention is to provide a vehicle charging control device capable of completing charging of a battery at a predetermined time without increasing the required capacity of a heater.
  • the timer charging time zone is set by the timer charging reservation means that allows the user to arbitrarily specify the predetermined charging time zone and the target charge amount, When performing timer charging from a timer charging start time specified in advance, it is determined whether or not to advance the timer charging start time a predetermined time before the timer charging start time.
  • the charging power is reduced by performing timer charging and battery heating at the same time by determining whether to advance the charging start time a predetermined time before the timer charging start time, charge for that amount The time can be extended, and a shortage of charge at the charging stop time can be avoided. Further, since the battery can be heated during the timer charging, it is not necessary to increase the required capacity of the heater, and an increase in cost can be avoided.
  • FIG. 1 is an overall system diagram illustrating a charge control device for a vehicle according to a first embodiment. It is a time chart which shows the battery temperature during the battery heater operation
  • 4 is a flowchart illustrating a control process at the time of timer charging that is performed in the charging control apparatus according to the first embodiment.
  • 3 is a time chart illustrating a control process during timer charging according to the first embodiment. It is a flowchart showing the control process at the time of timer charge implemented in the charge control apparatus of Example 2.
  • FIG. 10 is a time chart illustrating a control process during timer charging according to the second embodiment.
  • 10 is a flowchart illustrating a control process at the time of timer charging performed in the charging control apparatus according to the third embodiment.
  • 12 is a time chart illustrating a control process during timer charging according to the third embodiment.
  • 10 is a flowchart illustrating a control process at the time of timer charging performed in the charge control device of the fourth embodiment.
  • 14 is a flowchart illustrating a control process during timer charging that is performed in the charging control apparatus according to the fifth embodiment.
  • 10 is a time chart illustrating a timer charge control process according to a fifth embodiment.
  • FIG. 1 is an overall system diagram showing a vehicle charging control apparatus according to a first embodiment.
  • the vehicle of the first embodiment is an electric vehicle that travels using only a battery as energy.
  • the electric vehicle 100 has a chargeable / dischargeable battery 11, converts the DC power stored in the battery 11 into AC power by the inverter 32, and drives the vehicle by supplying it to the drive motor 31. Further, the battery 11 is charged by receiving the external power supply power by connecting the external power supply 50 and the electric vehicle 100 with the charging cable 40.
  • the type of the external power source 50 is generally a commercial power source in the case of normal charging, and is a quick charger in the case of quick charging, but FIG. 1 shows a form of normal charging.
  • the commercial power source 52 is generally fed by a power outlet 51.
  • the charging cable 40 includes a power plug 43 that can be connected to a power outlet 51, a control box 42 having a function of detecting a system leakage during charging and cutting off wiring, a function of sending a current capacity signal to the vehicle, and the like.
  • the charging connector 41 is connectable to the charging port 23 of the vehicle 100.
  • the charging control device 21 is activated and determines whether to start charging based on the set charging mode.
  • the charging mode includes an immediate charging mode in which charging is immediately started, a timer charging mode in which charging is started / stopped based on a preset charging start time and / or charge stop time, and the like.
  • the battery relay 13 and the charging relay 24 are connected to each other, and the charger 22 recognizes the current capacity of the charging cable 40 based on the current capacity signal output from the control box 42 and then the range of the current capacity.
  • the input current from the external power source 50 is controlled in the inside.
  • the AC power (voltage ⁇ current) input to the charger 22 is converted into DC power by the charger 22 and output after boosting the voltage.
  • the power output by the charger 22 is controlled in real time by the charge control device 21, the charge power to the battery 11 requested by the battery control device 12, the output power that can be output by the charger 22, and the high voltage auxiliary device It is determined by the auxiliary machine power consumption consumed by the system 33, the DCDC converter 34, and the weak electric auxiliary machine system 35.
  • the DCDC converter 34 steps down the voltage and supplies DC power to the weak electric auxiliary system 35.
  • the battery control device 12 (corresponding to battery control means) monitors the state of the battery 11 such as the SOC, voltage, temperature, etc., determines the required charging power based on these, and sends it to the charging control device 21.
  • the power supply to the battery 11 is continued until the battery is fully charged unless a charge stop time or a charge amount is specified.
  • the battery control device 12 makes a full charge determination based on the SOC and voltage of the battery 11, requests the charge control device 21 to stop charging, and the charge control device 21 stops charging.
  • the charging power input / output by the charger 22 is set to zero, and then the battery relay 13 and the charging relay 24 are disconnected.
  • the charge control device 21 determines the charge start time and / or the charge stop time based on the preset charge start time and / or charge stop time information. If the determined charging start time is later than the current time, the system is stopped until the charging start time even if the charging cable 40 is connected.
  • the charging start time and charging stop time information of the timer charging is directly input by the user through the interface device 25 (corresponding to the timer charging reservation means) and stored in the charging control device 21 or set in advance.
  • a vehicle determines a charging start time / stop time by selecting an arbitrary mode from among a plurality of charging modes.
  • it has the outside temperature sensor 26 which detects outside temperature.
  • the battery 11 has a characteristic that when the temperature is lowered, the charging time becomes longer due to a decrease in chargeable capacity and a decrease in allowable charging current. Moreover, when the battery 11 falls to freezing temperature, there exists a characteristic that it becomes impossible to charge / discharge. For this reason, a battery heater 15 is mounted in order to heat and keep the battery 11 at a predetermined temperature or higher.
  • the battery 11 has a battery temperature sensor 14 for monitoring the battery temperature. When the battery temperature becomes a predetermined temperature or lower, the battery heater 15 is operated so as to be higher than the target temperature to heat the battery 11. .
  • the battery heater 15 operates by receiving power supply from the battery 11 or the charger 22.
  • FIG. 2 is a time chart showing the battery temperature and the power consumption behavior of the battery heater during operation of the battery heater of the first embodiment.
  • the temperature of the battery 11 becomes higher than the outside air temperature due to heat generated by the battery 11 due to discharge during traveling. Thereafter, while the vehicle is left unattended, the temperature of the battery 11 gradually decreases toward the outside air temperature.
  • the outside air temperature is extremely low, battery heating is performed by the battery heater 15 in order to prevent reaching the battery performance guarantee limit temperature corresponding to the performance degradation temperature of the battery 11 or the electrolyte freezing temperature in the battery as described above. .
  • the battery heater 15 is usually preset with a heater operation start temperature and a heater operation stop temperature higher than the heater operation start temperature.
  • the operation of the battery heater 15 is started, and the operation of the battery heater 15 is stopped when the temperature is raised to the operation stop temperature. Thereby, the battery 11 is held at a predetermined temperature or higher.
  • the battery heater 15 is a small output type, it usually takes several hours to increase from the battery heater operation start temperature to the operation stop temperature, and usually several hours until the battery temperature cools from the operation stop temperature to the operation start temperature. Cost.
  • the operation of the battery heater 15 is performed based on the battery temperature, and is performed independently of the state of charge of the battery 11 and the like. Therefore, on the charging system side, it is necessary to check the operating state of the battery heater 15 regularly or irregularly even in the sleep state of the charging system.
  • FIG. 3 is a flowchart showing a timer charging control process performed in the charging control apparatus according to the first embodiment.
  • step S1 it is determined whether or not there is a reservation for the timer charging time zone. If there is no reservation, this control flow is terminated, and if there is a reservation, the process proceeds to step S2.
  • step S2 the amount of charging power shortage when the battery heater is activated is calculated. Specifically, the power consumption obtained by the power consumption of the battery heater 15 ⁇ the charging time is calculated.
  • a required charge time extension amount that is a time for charging the calculated power consumption is determined.
  • step S ⁇ b> 4 a time obtained by advancing the preset charging start time by the required charging time extension amount is set as the operating state check time of the battery heater 15.
  • step S5 it is determined whether or not the operating state check time of the battery heater 15 has been reached.
  • the process proceeds to step S6, and in other cases, this step is repeated.
  • the charging system is in a sleep state, and when the check time is reached, the charging system is activated to perform various checks.
  • step S6 the charging system is activated to check the operating state of the battery heater 15. If the battery heater 15 is in operation, the process proceeds to step S8 to start charging, and if it is stopped, the process proceeds to step S7. In other words, in the sleep state before starting the charging system, it is determined whether the check time has been reached by counting the timer, and the main charging system that performs various state checks is not started.
  • step S7 it is determined whether or not a preset charging start time has been reached. If it is determined that the charging has started, the process proceeds to step S8 to start charging, and if not reached, this step is repeated.
  • FIG. 4 is a time chart showing the control process during timer charging according to the first embodiment.
  • the initial state of this time chart shows a case where the user connects the external power supply 50 and the electric vehicle 100 with the charging cable 40 and the user sets the charging start time and the charging stop time with the interface device 25. Further, there is a limit to the power that can be supplied by the external power supply 50, and power is supplied within this limit. At this time, the outside air temperature is lower than the battery performance guarantee limit temperature, in other words, the temperature of the battery 11 is lower than the heater operation start temperature when left unattended.
  • the battery heater 15 operates to start warming the battery 11. At this time, it is still a stage before the charging start time.
  • the charge control device 21 calculates a necessary charge time extension amount required when the battery heater 15 is operated all the time when the charge start time and the charge stop time are set by the user, and is set in advance.
  • the operation state check time of the battery heater 15 that is moved forward from the charging start time is set.
  • the operation state check time is, in other words, the charge start time that is advanced. As a result, the amount of charging power that is insufficient due to the operation of the battery heater 15 can be supplemented.
  • Example 1 can obtain the following effects. (1) A battery 11 that charges and discharges electricity, a battery heater 15 that heats the battery 11, a battery temperature sensor 14 that detects the temperature of the battery 11, and a temperature state of the battery 11 are monitored. A battery control device 12 (battery control means) that controls the battery heater 15 to heat the battery, a charger 22 that supplies power to the battery 11 and the battery heater 15, and a user sets a predetermined charging time zone and a target charging amount.
  • An interface device 25 timer charge reservation means
  • a charge control device 21 charge control means that performs timer charging based on a timer charge start time designated in advance by the interface device 25, are provided. Whether the control device 21 advances the timer charging start time a predetermined time before the timer charging start time Determines whether or not.
  • the charging power is reduced by performing the timer charging and the battery heating at the same time, in order to further charge, there is no means other than continuing the charging until after the charging stop time.
  • the charging time can be increased by advancing the charging start time. The charging amount can be avoided at the charging stop time. Further, since the battery can be heated during the timer charging, it is not necessary to increase the required capacity of the battery heater 15, and an increase in cost can be avoided. Further, since charging is performed while operating the battery heater 15 during charging, it is possible to avoid a decrease in charging efficiency.
  • the predetermined time to be checked by the charging control device 21 is necessary to calculate the power consumption when the heating by the battery heater is continuously performed in the timer charging time zone and to charge the power consumption amount.
  • This is the required charge time extension amount (predetermined time) which is time. Therefore, even if the battery heater 15 operates in the entire charging time zone and the amount of power consumption increases, it is possible to secure a charging time that complements it, and to reduce the charging amount at the charging stop time. It can be avoided with higher accuracy.
  • FIG. 5 is a flowchart showing a timer charging control process performed in the charge control device of the second embodiment.
  • it is determined whether or not the timer charging start time is advanced based on whether or not the battery heater 15 is operated.
  • step S1 it is determined whether or not there is a reservation for the timer charging time zone. If there is no reservation, this control flow is terminated, and if there is a reservation, the process proceeds to step S2.
  • step S2 the amount of charging power shortage when the battery heater is activated is calculated. Specifically, the power consumption obtained by the power consumption of the battery heater 15 ⁇ the charging time is calculated.
  • step S3 a required charge time extension amount that is a time for charging the calculated power consumption is determined.
  • step S41 a time obtained by advancing the preset charging start time by the required charging time extension amount is set as the battery temperature check time.
  • step S51 it is determined whether or not the battery temperature check time has been reached.
  • step S61 the charging system is in a sleep state, and when the check time is reached, the charging system is activated to perform various checks.
  • step S61 the battery temperature is checked. If the battery temperature is equal to or lower than the heater operation stop temperature that is the threshold value, the process proceeds to step S8 to start charging, and if it is stopped, the process proceeds to step S7.
  • step S7 it is determined whether or not a preset charging start time has been reached. If it is determined that the charging has started, the process proceeds to step S8 to start charging, and if not reached, this step is repeated.
  • FIG. 6 is a time chart showing the control process during timer charging according to the second embodiment.
  • the initial state of this time chart shows a case where the user connects the external power supply 50 and the electric vehicle 100 by the charging cable 40 and the user sets the charging start time and the charging stop time of the interface device 25. Further, there is a limit to the power that can be supplied by the external power supply 50, and power is supplied within this limit. At this time, the outside air temperature is lower than the battery performance guarantee limit temperature, in other words, the temperature of the battery 11 is lower than the heater operation start temperature when left unattended.
  • the required charge time extension amount required when the battery heater 15 is operated all the time is calculated and set in advance.
  • the battery temperature check time is set to the front of the charging start time.
  • the check time of the battery temperature is, in other words, the charge start time brought forward. As a result, the amount of charging power that is insufficient due to the operation of the battery heater 15 can be supplemented.
  • the battery temperature is naturally the heater operation stop temperature. There is a high probability that the battery heater 15 will continue to operate after that.
  • the battery heater 15 operates. Therefore, if it is determined that timer charging and battery heating are performed at the same time, even if there is a situation where the battery heater 15 is not operating, the amount of charge will not be insufficient. Therefore, it is possible to avoid a shortage of the charge amount at the charge stop time.
  • FIG. 7 is a flowchart showing a timer charging control process performed in the charging control apparatus according to the third embodiment.
  • the required charge time extension amount which is a time that is advanced from the timer charging start time, is set based on the case where the battery heater 15 is continuously operated during charging. That is, the time when the advance of the necessary charging time is advanced coincides with the check time of the operating state and the battery temperature.
  • the third embodiment is different in that the operation of the battery heater 15 is accurately estimated and the required charging time extension amount is calculated based on the estimated operation state.
  • step S1 it is determined whether or not there is a reservation for the timer charging time zone. If there is no reservation, this control flow is terminated, and if there is a reservation, the process proceeds to step S22.
  • step S22 a check time for checking the battery temperature, the outside air temperature, and the battery heater operating state is set. This check time is a timing that is earlier than the timer charging start time by a time for calculating the power consumption obtained by the power consumption of the battery heater 15 ⁇ the charging time and charging the calculated power consumption.
  • step S32 it is determined whether or not the check time has been reached. If it is determined that the check time has been reached, the process proceeds to step S42, and if not, this step is repeated.
  • step S42 battery temperature transition is predicted. Specifically, the battery temperature at the check time is set as an initial value, and an equation for calculating a temperature drop characteristic when the battery temperature falls to the outside air temperature is set. Then, how many hours later the battery temperature is reduced to the heater operation start temperature is predicted. On the other hand, after the battery heater 15 is activated, a prediction calculation is made as to how many hours later the battery temperature rises to the heater operation stop temperature. Thereby, it can estimate including the timing in which timer charge and battery heating are performed simultaneously.
  • step S52 it is determined whether or not the battery heater 15 is predicted to operate during the timer charging time period, that is, whether or not the battery temperature estimated during the timer charging time period is equal to or lower than the heater operation start temperature. If it is predicted that this will occur, the process proceeds to step S62. On the other hand, if it is predicted that the following will not occur, the process proceeds to step S102 to determine whether or not the preset timer charging start time has been reached, and if it has been determined, the process proceeds to step S92 to start charging. However, if it is determined that it has not been reached, step S102 is repeated until it is reached.
  • step S62 the shortage of the amount of charging power due to the battery heater operation in the timer charging time zone is calculated. Specifically, a predicted operation time at which the battery heater 15 is predicted to operate is calculated based on the predicted battery temperature. Then, the amount of power consumed obtained by the power consumption of the battery heater 15 multiplied by the estimated operation time is determined as the insufficient amount of charge power.
  • step S72 a necessary charge time extension amount is determined, and a timer charge advance time that is advanced by a necessary charge time extension amount from a preset timer charge start time is set. Specifically, the time that can compensate for the shortage of the charging power amount is determined.
  • step S82 it is determined whether or not the timer charging advance time has been reached. When it is determined that the timer charging has been reached, the process proceeds to step S92 to start charging, and when it is determined that the timer charging has not been reached, this step is repeated.
  • FIG. 8 is a time chart showing the control process during timer charging according to the third embodiment.
  • the initial state of this time chart shows a case where the user connects the external power supply 50 and the electric vehicle 100 by the charging cable 40 and the user sets the charging start time and the charging stop time of the interface device 25. Further, there is a limit to the power that can be supplied by the external power supply 50, and power is supplied within this limit. At this time, the outside air temperature is lower than the battery performance guarantee limit temperature, in other words, the temperature of the battery 11 is lower than the heater operation start temperature when left unattended.
  • the charging time extension amount required when the battery heater 15 is operated all the time is calculated and set in advance. Set the check time for the battery temperature, outside air temperature, and battery heater operating state that are moved forward from the charging start time.
  • the battery temperature transition is predicted when the battery temperature check time is reached.
  • the battery heater 15 can be predicted to operate from the time t3 to the time t4, which is the timer charging time zone, a necessary charge time extension amount corresponding to the power consumed from the time t3 to the time t4 is calculated. .
  • a timer charge advance time that is advanced by a necessary charge time extension amount from a preset charge start time is set. As a result, the amount of charging power that is insufficient due to the operation of the battery heater 15 can be supplemented.
  • time t2 when the timer charge advance time is reached, timer charge is started. And although the battery heater 15 operates at the time t3, the full charge timing does not become after the time t4 which is the charge stop time. In other words, even when the battery heater 15 is activated, the fully charged state can be achieved at the charging stop time t4. Thereafter, when the battery temperature reaches the heater operation stop temperature at time t5, the operation of the battery heater 15 is stopped.
  • the third embodiment includes the outside air temperature sensor 26 (outside air temperature detecting means) that detects the outside air temperature, and the charge control device 21 performs a check that is a predetermined time before the timer charging start time.
  • the battery temperature transition in the timer charging time period is predicted from the battery heater operating state, the battery temperature, and the outside temperature at that time, and the predicted battery temperature is predicted to be within a preset battery heater operating temperature range. In this case, it was determined that timer charging and battery heating were performed simultaneously.
  • the subsequent battery temperature transition is predicted from the output of the battery heater 15, the current battery temperature, and the outside air temperature, and the operation of the battery heater 15 continues even after the timer charging is started. You can decide whether to do it. Further, when the battery is not heated, a change in the battery temperature can be predicted from the current battery temperature and the outside air temperature. Therefore, it can be determined whether or not the battery heater 15 is activated after the timer charging is started.
  • the charging control device 21 predicts and calculates the battery heater operating time and power consumption in the timer charging time zone based on the predicted battery temperature, and determines the required charging time extension amount. That is, when the battery heater 15 is operated only for a part of the timer charging time period, the charging start time is advanced by the amount of power consumption, so that the charging start time is not excessively advanced and the charge stop specified by the user is stopped. Charging can be completed on time.
  • FIG. 9 is a flowchart illustrating a control process at the time of timer charging performed in the charging control apparatus according to the fourth embodiment.
  • the first and second embodiments only the operating state of the battery heater 15 or the battery temperature is checked at a time earlier than the timer charging start time by the required charging time extension amount.
  • the fourth embodiment is different in that both the operating state of the battery heater 15 and the battery temperature are checked.
  • step S1 it is determined whether or not there is a reservation for the timer charging time zone. If there is no reservation, this control flow is terminated, and if there is a reservation, the process proceeds to step S2.
  • step S2 the amount of charging power shortage when the battery heater is activated is calculated. Specifically, the power consumption obtained by the power consumption of the battery heater 15 ⁇ the charging time is calculated.
  • step S3 a required charge time extension amount that is a time for charging the calculated power consumption is determined.
  • step S4 the time when the preset charging start time is advanced by the required charging time extension amount is set as the operating state of the battery heater 15 and the battery temperature check time.
  • step S54 it is determined whether or not the operating state check time of the battery heater 15 has been reached.
  • step S6 the process proceeds to step S6, and in other cases, this step is repeated.
  • the charging system is in a sleep state, and when the check time is reached, the charging system is activated to perform various checks.
  • step S6 the operating state of the battery heater 15 is checked. If the battery heater 15 is operating, the process proceeds to step S602, and if it is stopped, the process proceeds to step S601.
  • step S601 it is determined whether or not the battery temperature is equal to or lower than the first threshold value.
  • the first threshold value is a predetermined value that is higher than the heater operation start temperature and lower than the heater operation stop temperature.
  • step S7 If the battery temperature is higher than the second threshold value, it is determined that there is a high probability that the operation of the battery heater 15 is stopped, and the process proceeds to step S7. On the other hand, when it is equal to or less than the second threshold value, it is determined that the probability that the operation of the battery heater 15 is still continued is high, and the process proceeds to step S8 to start charging.
  • the second threshold value is a predetermined value that is higher than the heater operation start temperature and lower than the heater operation stop temperature, and is set to a value higher than the first threshold value.
  • step S7 it is determined whether or not a preset charging start time has been reached. If it is determined that the charging has started, the process proceeds to step S8 to start charging, and if not reached, this step is repeated.
  • FIG. 10 is a flowchart illustrating a control process at the time of timer charging performed in the charging control apparatus according to the fifth embodiment. Since steps other than step S100 are the same as those in the first embodiment, only different steps will be described.
  • step S100 it is determined whether or not the current battery charge amount is equal to or greater than the target charge amount. When the current charge amount is equal to or greater than the target charge amount, the present control flow ends.
  • FIG. 11 is a time chart showing the timer charging control process of the fifth embodiment. That is, when the timer charging is set to be performed at a predetermined time every day, the charging operation is repeatedly performed at the designated time. At this time, even if the vehicle has not been used for a long time, even if the target charging amount has already been reached, the charging operation is repeatedly performed, which may cause unnecessary power consumption.
  • step S100 when the battery charge amount has already reached the target charge amount, by canceling the system activation prior to the preset charge start time and determining whether to advance the charge start time, The number of activations of the charging system can be reduced, and unnecessary power consumption can be suppressed.
  • the target charge amount is checked between step S1 and step S2.
  • the target charge amount may be checked between step S4 and step S5.
  • the charge control device 21 cancels the determination as to whether or not to advance the timer charge start time. Therefore, useless activation of the charging system can be avoided, and the power consumption while the vehicle is left can be suppressed by reducing the number of system activations.
  • the present invention has been described based on each embodiment.
  • the present invention is not limited to the above-described configuration, and other configurations can be taken without departing from the scope of the present invention.
  • the electric vehicle has been described in the first embodiment, it may be a plug-in hybrid type vehicle.
  • the charging start time is advanced by the calculated required charging time extension amount.
  • the margin may be advanced in consideration of the safety factor. .
  • the battery temperature transition is predicted based on the battery temperature detected at the check time.
  • the battery temperature is sampled a plurality of times at the timing before the check time, and the battery temperature transition is calculated from the temperature transition of the sampling. It is good also as a structure to predict.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 ユーザが所定の充電時間帯と目標充電量を任意に指定可能なタイマ充電予約手段によりタイマ充電時間帯を設定し、予め指定されたタイマ充電開始時刻からタイマ充電を行うとき、タイマ充電開始時刻より所定時間前に、タイマ充電開始時刻を早めるか否かを判定する。これによって、ヒータの要求能力を高めることなくバッテリの充電を所定時刻において完了可能にする。

Description

車両の充電制御装置
 本発明は、バッテリの電力を用いて走行可能な車両の充電制御装置に関する。
 バッテリの電力を用いて走行可能な車両において、バッテリの充電制御を行う技術が特許文献1に開示されている。この公報には、バッテリ温度が低下し充電時間が長くなるために所定時間以内にバッテリの充電が完了できないと判別されたときは、所定時間以内に充電を完了するように、予め指定された充電開始時刻よりも前に、ヒータによりバッテリを加熱するようにしている。
 しかしながら、充電開始前にバッテリの加熱を完了させるためには、短時間でバッテリを所定温度まで加熱する必要があり、走行用の電力源として使用されるような容積の大きなバッテリを加熱する場合、ヒータの要求能力が高くなるため、コストアップを招くという問題があった。
特開平08-115747号公報
 本発明は、上記問題に着目してなされたもので、ヒータの要求能力を高めることなくバッテリの充電を所定時刻において完了可能な車両の充電制御装置を提供することを目的とする。
 上記目的を達成するため、本発明の車両の充電制御装置にあっては、ユーザが所定の充電時間帯と目標充電量を任意に指定可能なタイマ充電予約手段によりタイマ充電時間帯を設定し、予め指定されたタイマ充電開始時刻からタイマ充電を行うとき、タイマ充電開始時刻より所定時間前に、タイマ充電開始時刻を早めるか否かを判定する。
 充電開始時刻を早めるか否かをタイマ充電開始時刻より所定時間前に判定することで、タイマ充電とバッテリ加熱とが同時に行われることにより充電電力が低下する場合にあっては、その分の充電時間を延長することができ、充電停止時刻における充電量不足を回避することができる。また、タイマ充電中にバッテリ加熱を行えるため、ヒータの要求能力を高くする必要がなく、コストアップを回避することができる。
実施例1の車両の充電制御装置を表す全体システム図である。 実施例1のバッテリヒータ作動中におけるバッテリ温度とバッテリヒータの消費電力挙動を示すタイムチャートである。 実施例1の充電制御装置において実施されるタイマ充電時制御処理を表すフローチャートである。 実施例1のタイマ充電時制御処理を表すタイムチャートである。 実施例2の充電制御装置において実施されるタイマ充電時制御処理を表すフローチャートである。 実施例2のタイマ充電時制御処理を表すタイムチャートである。 実施例3の充電制御装置において実施されるタイマ充電時制御処理を表すフローチャートである。 実施例3のタイマ充電時制御処理を表すタイムチャートである。 実施例4の充電制御装置において実施されるタイマ充電時制御処理を表すフローチャートである。 実施例5の充電制御装置において実施されるタイマ充電時制御処理を表すフローチャートである。 実施例5のタイマ充電制御処理を表すタイムチャートである。
 図1は実施例1の車両の充電制御装置を表す全体システム図である。実施例1の車両はバッテリのみをエネルギとして走行する電気自動車である。電動車両100は、充放電可能なバッテリ11を有し、バッテリ11に蓄えられた直流電力をインバータ32にて交流電力に変換し、駆動モータ31に供給することで車両を駆動する。また、バッテリ11は、充電ケーブル40で外部電源50と電動車両100とを接続することにより、外部電源電力を受電して充電される。外部電源50の種類は、一般的に普通充電の場合は商用電源であり、急速充電の場合は急速充電器であるが、図1では普通充電の形態を示す。商用電源52は一般的に電源コンセント51により給電される。
 充電ケーブル40は、電源コンセント51に接続可能な電源プラグ43と、充電中のシステム漏電を検知して配線を遮断する機能や、電流容量信号を車両に送る機能等を持つコントロールボックス42と、電動車両100の充電ポート23に接続可能な充電コネクタ41から構成されている。充電ケーブル40により外部電源50と電動車両100とが接続されると、充電制御装置21が起動し、設定されている充電モードに基づき、充電を開始するかどうかを決定する。充電モードは、すぐに充電を開始する即充電モードと、予め設定されている充電開始時刻及び/又は充電停止時刻に基づき充電開始/停止を行うタイマ充電モードと、等を有する。
 充電開始にあたっては、バッテリリレー13と充電リレー24とをそれぞれ繋げ、充電器22がコントロールボックス42の出力する電流容量信号に基づいて充電ケーブル40の電流容量を認識した上で、その電流容量の範囲内で外部電源50からの入力電流を制御する。充電器22に入力された交流電力(電圧×電流)は、充電器22において直流電力に変換し、電圧を昇圧した上で出力される。充電器22が出力する電力については、充電制御装置21によってリアルタイムに制御され、バッテリ制御装置12が要求するバッテリ11への充電電力と、充電器22が出力可能な出力可能電力と、強電補機系33とDCDCコンバータ34と弱電補機系35とが消費する補機消費電力により決定される。尚、DCDCコンバータ34は、電圧を降圧して弱電補機系35へ直流電力を供給する。
 充電中は、バッテリ制御装置12(バッテリ制御手段に相当)がバッテリ11のSOC、電圧、温度などの状態を監視し、これらに基づいて充電要求電力を決定し、充電制御装置21へ送る。バッテリ11への電力供給は、特に充電停止時刻や充電量の指定がない限り、満充電まで継続される。満充電時においては、バッテリ制御装置12が、バッテリ11のSOCや電圧により満充電判定を行い、充電制御装置21へ充電停止を要求し、充電制御装置21が充電停止する。充電停止にあたっては、充電器22が入出力する充電電力をゼロにした上で、バッテリリレー13と充電リレー24とを夫々遮断する。
 また、タイマ充電の場合は、予め設定されている充電開始時刻及び/又は充電停止時刻情報に基づいて充電制御装置21(充電制御手段に相当)が充電開始時刻及び/又は充電停止時刻を決定し、決定された充電開始時刻が現在時刻よりも後である場合は、充電ケーブル40が接続されても充電開始時刻までシステムを停止しておく。尚、タイマ充電の充電開始時刻や充電停止時刻情報については、ユーザがインターフェース装置25(タイマ充電予約手段に相当)によって直接入力して充電制御装置21が記憶するか、又は、予め設定してある複数の充電モードの中からユーザが任意のモードを選択することにより、車両が充電開始時刻/停止時刻を決定する方法がある。また、外気温を検出する外気温度センサ26を有する。
 また、バッテリ11は、温度が低くなると、充電可能容量の低下や、許容充電電流の低下により充電時間が長くなる特性がある。また、バッテリ11が凍結温度まで下がった場合は、充放電できなくなるという特性がある。このため、バッテリ11を所定温度以上に加熱及び保温するために、バッテリヒータ15を搭載している。バッテリ11には、バッテリ温度をモニタするバッテリ温度センサ14を有し、バッテリ温度が所定温度以下になった場合には、目標温度以上となるようにバッテリヒータ15を作動させ、バッテリ11を加熱する。バッテリヒータ15はバッテリ11または充電器22から電力供給を受けて作動する。
 尚、車両コスト低減のためには、バッテリ11を目標温度以上に保温できるだけの、必要最小限のヒータ出力を有する小出力型のヒータとする必要がある。この場合、バッテリ11を昇温する際のヒータ作動時間が長くなるため、充電とバッテリ加熱が同時に作動する機会が多くなる。特に、タイマ充電のように主にコストの安い夜間電力時間帯で使われる充電モードにおいては、バッテリ温度が低下している場合が多く、充電とバッテリ加熱が同時に作動することが予測される。ここで、充電とバッテリ加熱とが同時に作動した場合、充電器22の出力は外部電源電力により上限が決まるため、バッテリヒータ15の電力分だけ充電電力が不足してしまうことになる。このため、実施例1では、充電制御装置21において、充電中にバッテリ加熱が行われることが予測された場合には、現在設定されている充電開始時刻を早め、充電停止時刻における充電量不足を防止するものである。
 図2は実施例1のバッテリヒータ作動中におけるバッテリ温度とバッテリヒータの消費電力挙動を示すタイムチャートである。走行終了時点では、走行中の放電によるバッテリ11の発熱によって外気温度よりもバッテリ11の温度が高くなる。その後、車両を放置している間は、バッテリ11の温度は、外気温度に向かって次第に低下していく。外気温度が極低温の場合は、前述したようにバッテリ11の性能低下温度やバッテリ内の電解質凍結温度に相当するバッテリ性能保証限界温度に達するのを防止するため、バッテリヒータ15によりバッテリ加熱を行う。
 バッテリヒータ15は、通常、ヒータ作動開始温度と、このヒータ作動開始温度よりも高いヒータ作動停止温度が予め設定されている。バッテリ温度センサ14により検知されたバッテリ11の温度が作動開始温度に達すると、バッテリヒータ15を作動開始し、作動停止温度まで昇温した時点でバッテリヒータ15の作動を停止する。これにより、バッテリ11を所定温度以上に保持する。バッテリヒータ15が小出力型の場合、バッテリヒータ作動開始温度から作動停止温度に上昇するまで、通常は数時間かかり、また、バッテリ温度が作動停止温度から作動開始温度に冷えるまで通常は数時間を要する。また、バッテリヒータ15の作動は、バッテリ温度に基づいて行われるものであり、バッテリ11の充電状態等とは独立して行われる。よって、充電システム側では、充電システムのスリープ状態であっても、定期的に、又は不定期的にバッテリヒータ15の作動状態をチェックする必要がある。
 図3は実施例1の充電制御装置において実施されるタイマ充電時制御処理を表すフローチャートである。
 ステップS1では、タイマ充電時間帯の予約の有無を判断し、予約がないときは本制御フローを終了し、予約があるときはステップS2へ進む。
 ステップS2では、バッテリヒータ作動時の充電電力量不足分を計算する。具体的には、バッテリヒータ15の消費電力×充電時間で得られる消費電力量を計算する。
 ステップS3では、計算された消費電力量を充電するための時間である必要充電時間延長量を決定する。
 ステップS4では、予め設定されていた充電開始時刻を必要充電時間延長量分だけ早めた時刻を、バッテリヒータ15の作動状態チェック時刻として設定する。
 ステップS5では、バッテリヒータ15の作動状態チェック時刻に到達したか否かを判断し、到達したと判断したときはステップS6に進み、それ以外のときは本ステップを繰り返す。尚、このとき、充電システムはスリープ状態であり、チェック時刻に到達すると、充電システムを起動して各種チェックを行う。
 ステップS6では、充電システムを起動してバッテリヒータ15の作動状態をチェックし、バッテリヒータ15が作動中であればステップS8に進んで充電を開始し、停止中であればステップS7に進む。言い換えると、充電システムを起動する前のスリープ状態では、タイマのカウントによってチェック時刻に到達したか否かを判定しており、種々の状態チェックを行うメインの充電システムは起動していない。よって、充電システムのスリープ状態では、消費電力が極めて小さな状態とされる。
 ステップS7では、予め設定されていた充電開始時刻に到達したか否かを判断し、到達したと判断したときはステップS8に進んで充電を開始し、到達していないときは本ステップを繰り返す。
 図4は実施例1のタイマ充電時制御処理を表すタイムチャートである。このタイムチャートの最初の状態は、ユーザが外部電源50と電動車両100とを充電ケーブル40により接続し、ユーザがインターフェース装置25により充電開始時刻と充電停止時刻とを設定した場合を示す。また、外部電源50により供給可能な電力には制限があり、この制限内で電力供給を行うものである。このとき、外気温はバッテリ性能保障限界温度よりも低く、言い換えると、バッテリ11の温度は放置によりヒータ作動開始温度を下回る。
 時刻t1において、バッテリ温度がヒータ作動開始温度を下回ると、バッテリヒータ15が作動し、バッテリ11を暖め始める。このときは、まだ充電開始時刻よりも前の段階である。尚、充電制御装置21では、ユーザにより充電開始時刻と充電停止時刻が設定された段階で、仮に、その間ずっとバッテリヒータ15が作動した場合に必要な必要充電時間延長量を計算し、予め設定されていた充電開始時刻よりも手前側に前倒ししたバッテリヒータ15の作動状態チェック時刻を設定する。
 時刻t2において、作動状態チェック時刻に到達したときにバッテリヒータ15が作動している場合には、即座に充電を開始する。よって、作動状態チェック時刻は、言い換えると前倒しした充電開始時刻である。これにより、バッテリヒータ15の作動により不足する充電電力量を補完することができる。
 時刻t3において、時刻t2から既に充電が開始されているため、充電開始時刻以降も継続的にバッテリヒータ15が作動したとしても、満充電となるタイミングが充電停止時刻以降となることがない。言い換えると、バッテリヒータ15が作動したとしても、充電停止時刻において満充電状態を達成することができる。
 以上、実施例1は、下記に列挙する作用効果を得ることができる。
 (1)電気を充放電するバッテリ11と、バッテリ11を加熱するバッテリヒータ15と、バッテリ11の温度を検知するバッテリ温度センサ14(バッテリ温度検出手段)と、バッテリ11の温度状態を監視してバッテリヒータ15を制御してバッテリ加熱を行うバッテリ制御装置12(バッテリ制御手段)と、バッテリ11及びバッテリヒータ15に電力を供給する充電器22と、ユーザが所定の充電時間帯と目標充電量を任意に指定可能なインターフェース装置25(タイマ充電予約手段)と、インターフェース装置25により予め指定されたタイマ充電開始時刻に基づいてタイマ充電を行う充電制御装置21(充電制御手段)と、を備え、充電制御装置21は、タイマ充電開始時刻より所定時間前に、タイマ充電開始時刻を早めるか否かを判定する。
 すなわち、タイマ充電とバッテリ加熱とが同時に行われることにより充電電力が低下した場合、更に充電するには、充電停止時刻以降まで充電を継続する以外に手立てがない。これに対し、充電開始時刻よりも所定時間前に充電量不足が生じるか否かをチェックすることで、タイマ充電時間帯以外の充電が必要な場合には、充電開始時刻を早めることで充電時間を延長することができ、充電停止時刻において充電量不足を回避することができる。また、タイマ充電中にバッテリ加熱を行えるため、バッテリヒータ15の要求能力を高くする必要がなく、コストアップを回避することができる。また、充電中にバッテリヒータ15を作動させつつ充電を行うため、充電効率の低下を回避することができる。
 (2)充電制御装置21でチェックする所定時間は、タイマ充電時間帯において継続して前記バッテリヒータによる加熱が行われた場合の消費電力を演算し、その消費電力量を充電するのに必要な時間である必要充電時間延長量(所定時間)である。
 よって、仮に、充電時間帯全域においてバッテリヒータ15が作動し、消費電力量が多くなった場合であっても、それを補完する充電時間を確保することができ、充電停止時刻における充電量不足を更に高い精度で回避することができる。
 次に、実施例2について説明する。基本的な構成は実施例1と同じであるため、異なる点についてのみ説明する。図5は実施例2の充電制御装置において実施されるタイマ充電時制御処理を表すフローチャートである。実施例1ではバッテリヒータ15の作動の有無に基づいてタイマ充電開始時刻を早めるか否かを判断したが、実施例2ではバッテリ温度に基づいてタイマ充電開始時刻を早めるか否かを判断する点が異なる。
 ステップS1では、タイマ充電時間帯の予約の有無を判断し、予約がないときは本制御フローを終了し、予約があるときはステップS2へ進む。
 ステップS2では、バッテリヒータ作動時の充電電力量不足分を計算する。具体的には、バッテリヒータ15の消費電力×充電時間で得られる消費電力量を計算する。
 ステップS3では、計算された消費電力量を充電するための時間である必要充電時間延長量を決定する。
 ステップS41では、予め設定されていた充電開始時刻を必要充電時間延長量分だけ早めた時刻を、バッテリ温度のチェック時刻として設定する。
 ステップS51では、バッテリ温度のチェック時刻に到達したか否かを判断し、到達したと判断したときはステップS61に進み、それ以外のときは本ステップを繰り返す。尚、このとき、充電システムはスリープ状態であり、チェック時刻に到達すると、充電システムを起動して各種チェックを行う。
 ステップS61では、バッテリ温度をチェックし、バッテリ温度が閾値であるヒータ作動停止温度以下であればステップS8に進んで充電を開始し、停止中であればステップS7に進む。
 ステップS7では、予め設定されていた充電開始時刻に到達したか否かを判断し、到達したと判断したときはステップS8に進んで充電を開始し、到達していないときは本ステップを繰り返す。
 図6は実施例2のタイマ充電時制御処理を表すタイムチャートである。このタイムチャートの最初の状態は、ユーザが外部電源50と電動車両100とを充電ケーブル40により接続し、ユーザがインターフェース装置25充電開始時刻と充電停止時刻とを設定した場合を示す。また、外部電源50により供給可能な電力には制限があり、この制限内で電力供給を行うものである。このとき、外気温はバッテリ性能保障限界温度よりも低く、言い換えると、バッテリ11の温度は放置によりヒータ作動開始温度を下回る。
 まず、充電制御装置21では、ユーザにより充電開始時刻と充電停止時刻が設定された段階で、仮に、その間ずっとバッテリヒータ15が作動した場合に必要な必要充電時間延長量を計算し、予め設定されていた充電開始時刻よりも手前側に前倒ししたバッテリ温度のチェック時刻を設定する。
 時刻t1において、バッテリ温度のチェック時刻に到達したときにバッテリ温度がヒータ作動停止温度以下の場合には、充電中にバッテリヒータ15が作動する可能性が高いと判断し、即座に充電を開始する。よって、バッテリ温度のチェック時刻は、言い換えると前倒しした充電開始時刻である。これにより、バッテリヒータ15の作動により不足する充電電力量を補完することができる。
 時刻t2において、時刻t1から既に充電が開始されているため、充電開始時刻以降も継続的にバッテリヒータ15が作動したとしても、満充電となるタイミングが充電停止時刻以降となることがない。言い換えると、バッテリヒータ15が作動したとしても、充電停止時刻において満充電状態を達成することができる。その後、時刻t3において、バッテリ温度がヒータ作動停止温度に到達すると、バッテリヒータ15の作動が停止する。
 以上説明したように、実施例2にあっては、タイマ充電開始時刻より必要充電時間延長量だけ前の段階において、既にバッテリ加熱が行われていた場合には、当然バッテリ温度はヒータ作動停止温度以下の状態であり、その後もバッテリヒータ15が作動する蓋然性が高い。一方、バッテリ加熱が行われていなくても、バッテリ温度がヒータ作動停止温度以下のときは、その後、ヒータ作動開始温度まで低下する可能性が高く、その場合にはバッテリヒータ15が作動する。そこで、タイマ充電とバッテリ加熱が同時に行われると判断しておけば、仮にバッテリヒータ15が作動していない状況があったとしても充電量が不足することがない。よって、充電停止時刻において充電量が不足することを回避することができる。
 次に、実施例3について説明する。基本的な構成は実施例1と同じであるため、異なる点についてのみ説明する。図7は実施例3の充電制御装置において実施されるタイマ充電時制御処理を表すフローチャートである。実施例1,2では、タイマ充電開始時刻から早める時間である必要充電時間延長量を充電中に継続的にバッテリヒータ15が作動した場合に基づいて設定した。すなわち、必要充電時間延長量だけ前倒しした時刻と作動状態やバッテリ温度のチェック時刻とは一致していた。これに対し、実施例3では、バッテリヒータ15の作動を精度よく推定し、この推定される作動状態に基づいて必要充電時間延長量を演算する点が異なる。
 ステップS1では、タイマ充電時間帯の予約の有無を判断し、予約がないときは本制御フローを終了し、予約があるときはステップS22へ進む。
 ステップS22では、バッテリ温度と、外気温度と、バッテリヒータ作動状態とをチェックするチェック時刻を設定する。このチェック時刻は、バッテリヒータ15の消費電力×充電時間で得られる消費電力量を計算し、計算された消費電力量を充電するための時間だけ、タイマ充電開始時刻よりも早めたタイミングである。
 ステップS32では、チェック時刻に到達したか否かを判断し、到達したと判断したときはステップS42に進み、それ以外のときは本ステップを繰り返す。尚、このとき、充電システムはスリープ状態であり、チェック時刻に到達すると、充電システムを起動して各種チェックを行う。
 ステップS42では、バッテリ温度推移を予測する。具体的には、チェック時刻におけるバッテリ温度を初期値とし、外気温度相当まで低下するときの温度低下特性演算式等を設定しておく。そして、何時間後にバッテリ温度がヒータ作動開始温度まで低下するかを予測演算する。逆に、バッテリヒータ15が作動した後は、更に何時間後にバッテリ温度がヒータ作動停止温度まで上昇するかを予測演算する。これにより、タイマ充電とバッテリ加熱が同時に行われるタイミングを含めて予測することができる。
 ステップS52では、タイマ充電時間帯にバッテリヒータ15が作動すると予測したか否か、すなわち、タイマ充電時間帯に推定されたバッテリ温度がヒータ作動開始温度以下となるか否かを判断し、以下となると予測した場合にはステップS62に進む。一方、以下とならないと予測した場合にはステップS102に進んで予め設定されていたタイマ充電開始時刻に到達したか否かを判断し、到達したと判断したときはステップS92に進んで充電を開始し、到達していないと判断したときは到達するまでステップS102を繰り返す。
 ステップS62では、タイマ充電時間帯のバッテリヒータ作動による充電電力量不足分を計算する。具体的には、予測されたバッテリ温度に基づいてバッテリヒータ15が作動すると予測される作動予測時間を演算する。そして、バッテリヒータ15の消費電力×作動予測時間で得られる消費電力量を充電電力量不足分として決定する。
 ステップS72では、必要充電時間延長量を決定し、予め設定されたタイマ充電開始時刻から必要充電時間延長量だけ前倒ししたタイマ充電前倒し時刻を設定する。具体的には、充電電力量不足分を補うことができる時間を決定する。
 ステップS82では、タイマ充電前倒し時刻に到達したか否かを判断し、到達したと判断したときはステップS92に進んで充電を開始し、到達していないと判断したときは本ステップを繰り返す。
 図8は実施例3のタイマ充電時制御処理を表すタイムチャートである。このタイムチャートの最初の状態は、ユーザが外部電源50と電動車両100とを充電ケーブル40により接続し、ユーザがインターフェース装置25充電開始時刻と充電停止時刻とを設定した場合を示す。また、外部電源50により供給可能な電力には制限があり、この制限内で電力供給を行うものである。このとき、外気温はバッテリ性能保障限界温度よりも低く、言い換えると、バッテリ11の温度は放置によりヒータ作動開始温度を下回る。
 まず、充電制御装置21では、ユーザにより充電開始時刻と充電停止時刻が設定された段階で、仮に、その間ずっとバッテリヒータ15が作動した場合に必要な充電時間延長量を計算し、予め設定されていた充電開始時刻よりも手前側に前倒ししたバッテリ温度,外気温度,バッテリヒータ作動状態のチェック時刻を設定する。
 時刻t1において、バッテリ温度のチェック時刻に到達したときにバッテリ温度推移を予測する。このとき、タイマ充電時間帯である時刻t3から時刻t4においてバッテリヒータ15が作動すると予測できるため、この時刻t3から時刻t4までの間に消費される電力に相当する必要充電時間延長量を演算する。そして、予め設定されていた充電開始時刻から必要充電時間延長量だけ前倒ししたタイマ充電前倒し時刻を設定する。これにより、バッテリヒータ15の作動により不足する充電電力量を補完することができる。
 時刻t2において、タイマ充電前倒し時刻に到達すると、タイマ充電を開始する。そして、時刻t3においてバッテリヒータ15が作動するものの、満充電となるタイミングが充電停止時刻である時刻t4以降となることがない。言い換えると、バッテリヒータ15が作動したとしても、充電停止時刻t4において満充電状態を達成することができる。その後、時刻t5において、バッテリ温度がヒータ作動停止温度に到達すると、バッテリヒータ15の作動が停止する。
 以上説明したように、実施例3にあっては、外気温度を検知する外気温度センサ26(外気温度検出手段)を有し、充電制御装置21は、タイマ充電開始時刻より所定時間前であるチェック時刻において、その時点のバッテリヒータ作動状態とバッテリ温度と外気温度とから、タイマ充電時間帯におけるバッテリ温度推移を予測し、予測されたバッテリ温度が予め設定されたバッテリヒータ作動温度範囲にあると予測した場合、タイマ充電とバッテリ加熱とが同時に行われると判断することとした。
 すなわち、既にバッテリ加熱が行われているときは、バッテリヒータ15の出力と現在のバッテリ温度と外気温度とから、その後のバッテリ温度推移を予測し、タイマ充電開始後もバッテリヒータ15の作動が継続するかどうかを判断できる。また、バッテリ加熱が行われていないときは、現在のバッテリ温度と外気温度とからバッテリ温度変化を予測できるため、タイマ充電開始後にバッテリヒータ15が作動するかどうかを判断できる。
 充電制御装置21は、予測されたバッテリ温度に基づいてタイマ充電時間帯におけるバッテリヒータ作動時間及び消費電力を予測演算し、必要充電時間延長量を決定する。すなわち、バッテリヒータ15がタイマ充電時間帯の一部だけ作動した場合、その分の消費電力量だけ充電開始時刻を前倒しするため、充電開始時刻を前倒ししすぎることがなく、ユーザが指定した充電停止時刻通りに充電を完了することができる。
 次に、実施例4について説明する。基本的な構成は実施例1,2と同じであるため異なる点についてのみ説明する。図9は実施例4の充電制御装置において実施されるタイマ充電時制御処理を表すフローチャートである。実施例1,2では、タイマ充電開始時刻から必要充電時間延長量だけ早めた時刻において、バッテリヒータ15の作動状態もしくはバッテリ温度の一方のみをチェックしていた。これに対し、実施例4では、バッテリヒータ15の作動状態及びバッテリ温度の両方をチェックする点が異なる。
 ステップS1では、タイマ充電時間帯の予約の有無を判断し、予約がないときは本制御フローを終了し、予約があるときはステップS2へ進む。
 ステップS2では、バッテリヒータ作動時の充電電力量不足分を計算する。具体的には、バッテリヒータ15の消費電力×充電時間で得られる消費電力量を計算する。
 ステップS3では、計算された消費電力量を充電するための時間である必要充電時間延長量を決定する。
 ステップS4では、予め設定されていた充電開始時刻を必要充電時間延長量分だけ早めた時刻を、バッテリヒータ15の作動状態及びバッテリ温度のチェック時刻として設定する。
 ステップS54では、バッテリヒータ15の作動状態チェック時刻に到達したか否かを判断し、到達したと判断したときはステップS6に進み、それ以外のときは本ステップを繰り返す。尚、このとき、充電システムはスリープ状態であり、チェック時刻に到達すると、充電システムを起動して各種チェックを行う。
 ステップS6では、バッテリヒータ15の作動状態をチェックし、バッテリヒータ15が作動中であればステップS602に進み、停止中の時はステップS601に進む。
 ステップS601では、バッテリ温度が第1閾値以下か否かを判断し、第1閾値以下のときは、これからバッテリヒータ15が作動する蓋然性が高いと判断し、ステップS8に進んで充電を開始する。一方、第1閾値よりも大きいときは、まだバッテリヒータ15が作動する蓋然性は低いと判断してステップS7に進む。ここで、第1閾値は、ヒータ作動開始温度よりも高く、ヒータ作動停止温度よりも低い所定値である。
 ステップS602では、バッテリ温度が第2閾値以下か否かを判断し、第2閾値より高いときはバッテリヒータ15の作動が停止する蓋然性が高いと判断してステップS7に進む。一方、第2閾値以下のときは、まだバッテリヒータ15の作動が継続する蓋然性が高いと判断し、ステップS8に進んで充電を開始する。ここで、第2閾値は、ヒータ作動開始温度よりも高く、ヒータ作動停止温度よりも低い所定値であり、第1閾値よりも高い値に設定されている。
 ステップS7では、予め設定されていた充電開始時刻に到達したか否かを判断し、到達したと判断したときはステップS8に進んで充電を開始し、到達していないときは本ステップを繰り返す。
 以上説明したように、実施例4にあっては、バッテリヒータ15の停止中であっても、バッテリ温度が第1閾値以下のときは充電を開始することで、より確実に充電量不足を回避することができる。また、バッテリヒータ15の作動中であっても、バッテリ温度が第2閾値より高いときは充電を開始しないため、不要な充電を回避することができる。
 次に、実施例5について説明する。基本的な構成は実施例1と同じであるため、異なる点についてのみ説明する。図10は実施例5の充電制御装置において実施されるタイマ充電時制御処理を表すフローチャートである。ステップS100以外は実施例1と同じであるため、異なるステップのみについて説明する。
 ステップS100では、現在のバッテリ充電量が目標充電量以上か否かを判断し、目標充電量以上のときは、本制御フローを終了し、目標充電量未満のときはステップS2に進む。
 図11は実施例5のタイマ充電制御処理を表すタイムチャートである。すなわち、タイマ充電が毎日決まった時間帯に行われるように設定されている場合、指定時刻になると繰り返し充電動作を実施する。このとき、車両を使わない日が続いた場合など、既に目標充電量に達していても、繰り返し充電動作を行うため、不要な電力消費を招くおそれがある。
 そこで、ステップS100において、バッテリ充電量が既に目標充電量に到達しているときは、予め設定されている充電開始時刻より前のシステム起動と充電開始時刻の前倒し要否判定をキャンセルすることで、充電システムの起動回数を低減でき、不要な電力消費を抑制することができる。尚、実施例5では、ステップS1とステップS2との間で目標充電量のチェックを行う構成としたが、ステップS4とステップS5との間で目標充電量のチェックを行うようにしてもよい。
 以上説明したように、実施例5にあっては、下記の作用効果を得ることができる。
 充電制御装置21は、バッテリの充電量が目標充電量に到達しているときは、タイマ充電開始時刻を早めるか否かの判定を取り消すこととした。よって、無駄な充電システムの起動を回避することができ、これによりシステム起動回数が低減することで車両放置中の消費電力を抑制することができる。
 以上、各実施例に基づいて本発明を説明したが、上記構成に限られず本発明の範囲を逸脱しない範囲で他の構成を取り得る。実施例1では、電動車両について説明したが、プラグインハイブリッド型の車両であってもよい。また、実施例では演算された必要充電時間延長量だけ充電開始時刻を早める構成としたが、更に確実に充電を完了するために安全率を考慮してマージンを加算した時間だけ前倒ししてもよい。
 実施例3では、チェック時刻において検出されたバッテリ温度に基づいてバッテリ温度推移を予測したが、チェック時刻より前のタイミングで複数回バッテリ温度のサンプリングを取り、このサンプリングの温度推移からバッテリ温度推移を予測する構成としてもよい。

Claims (3)

  1.  電気を充放電するバッテリと、
     前記バッテリを加熱するバッテリヒータと、
     前記バッテリの温度を検知するバッテリ温度検出手段と、
     前記バッテリの温度状態を監視して前記バッテリヒータを制御してバッテリ加熱を行うバッテリ制御手段と、
     前記バッテリ及び前記バッテリヒータに電力を供給する充電器と、
     ユーザが所定のタイマ充電時間帯と目標充電量を任意に指定可能なタイマ充電予約手段と、
     前記タイマ充電予約手段により予め指定されたタイマ充電開始時刻に基づいてタイマ充電を行う充電制御手段と、
     を備え、
     前記充電制御手段は、前記タイマ充電開始時刻より所定時間前に、前記タイマ充電開始時刻を早めるか否かを判定するものである車両の充電制御装置。
  2.  請求項1に記載の車両の充電制御装置において、
     前記所定時間は、前記タイマ充電時間帯において継続して前記バッテリヒータによる加熱が行われた場合の消費電力を演算し、その消費電力量を充電するのに必要な時間としての必要充電時間延長量である車両の充電制御装置。
  3.  請求項1又は2に記載の車両の充電制御装置において、
     前記充電制御手段は、バッテリの充電量が目標充電量に到達しているときは、前記タイマ充電開始時刻を早めるか否かの判定を取り消すものである車両の充電制御装置。
PCT/JP2012/055208 2011-03-11 2012-03-01 車両の充電制御装置 WO2012124489A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280006093.8A CN103329395B (zh) 2011-03-11 2012-03-01 车辆的充电控制装置
EP12758060.3A EP2685597B1 (en) 2011-03-11 2012-03-01 Charge control apparatus for vehicle
KR1020137021863A KR101437804B1 (ko) 2011-03-11 2012-03-01 차량의 충전 제어 장치
US14/004,096 US9162580B2 (en) 2011-03-11 2012-03-01 Charge control apparatus for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-054093 2011-03-11
JP2011054093A JP5699702B2 (ja) 2011-03-11 2011-03-11 車両の充電制御装置

Publications (1)

Publication Number Publication Date
WO2012124489A1 true WO2012124489A1 (ja) 2012-09-20

Family

ID=46830564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055208 WO2012124489A1 (ja) 2011-03-11 2012-03-01 車両の充電制御装置

Country Status (6)

Country Link
US (1) US9162580B2 (ja)
EP (1) EP2685597B1 (ja)
JP (1) JP5699702B2 (ja)
KR (1) KR101437804B1 (ja)
CN (1) CN103329395B (ja)
WO (1) WO2012124489A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106794771A (zh) * 2014-08-06 2017-05-31 大众汽车有限公司 车载电路组件和用于使可利用燃料电池电驱动的交通工具的车载电路运行的方法
CN113306425A (zh) * 2021-07-09 2021-08-27 长春汽车工业高等专科学校 一种电动汽车充电组件的温度监控系统和方法
JP7468109B2 (ja) 2020-04-17 2024-04-16 マツダ株式会社 車両用バッテリ制御システム

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736860B2 (ja) * 2011-03-11 2015-06-17 日産自動車株式会社 バッテリ充電制御装置
JP5668542B2 (ja) 2011-03-11 2015-02-12 日産自動車株式会社 車両の充電制御装置
JP5668541B2 (ja) * 2011-03-11 2015-02-12 日産自動車株式会社 車両の充電制御装置
US9225185B2 (en) * 2011-10-21 2015-12-29 Samsung Electronics Co., Ltd. Method and apparatus for controlling charging in electronic device
US10193358B2 (en) * 2012-04-23 2019-01-29 Hewlett Packard Enterprise Development Lp Deep-charging power resources of power resource group having identifier corresponding to range within which modulo falls based on charging time
US10044214B2 (en) * 2013-03-08 2018-08-07 Texas Instruments Incorporated Battery charger
JP6108897B2 (ja) * 2013-03-19 2017-04-05 住友重機械工業株式会社 機械式駐車場
KR20140115501A (ko) * 2013-03-20 2014-10-01 삼성에스디아이 주식회사 배터리 가온 기능을 갖는 전원 변환 장치
JP6127855B2 (ja) * 2013-09-17 2017-05-17 トヨタ自動車株式会社 充電システムの制御装置および充電システムの制御方法
JP6024632B2 (ja) * 2013-09-19 2016-11-16 トヨタ自動車株式会社 車両の充電システムおよび車両の充電制御方法
US20150188324A1 (en) * 2013-12-30 2015-07-02 Lenovo (Singapore) Pte. Ltd. Systems and methods to increase and decrease charging current to battery
JP6028756B2 (ja) * 2014-03-19 2016-11-16 トヨタ自動車株式会社 電池温度調節装置
US11038361B2 (en) 2015-03-16 2021-06-15 Lenovo (Singapore) Pte. Ltd. Battery with cathode materials for charging at different rates
JP2016208639A (ja) * 2015-04-21 2016-12-08 トヨタ自動車株式会社 車両
JP6183411B2 (ja) * 2015-05-26 2017-08-23 トヨタ自動車株式会社 車両
CN108028442B (zh) * 2015-09-28 2020-12-15 本田技研工业株式会社 蓄电池的加温控制装置
CN108028443B (zh) * 2015-09-28 2021-01-22 本田技研工业株式会社 电力消耗控制装置
JP6414038B2 (ja) * 2015-12-10 2018-10-31 トヨタ自動車株式会社 バッテリシステム
JP6524936B2 (ja) * 2016-02-22 2019-06-05 トヨタ自動車株式会社 充電装置
US10283985B2 (en) 2016-05-25 2019-05-07 Lenovo (Singapore) Pte. Ltd. Systems and methods to determine time at which battery is to be charged
US10439418B2 (en) 2016-07-29 2019-10-08 Lenovo (Singapore) Pte. Ltd. Systems and methods to charge a battery at different charge rates and indicate when charging at a faster rate is available
KR102046608B1 (ko) * 2016-08-12 2019-11-19 주식회사 엘지화학 배터리 팩을 위한 온도 모니터링 장치 및 방법
KR101987527B1 (ko) * 2016-09-05 2019-06-10 현대자동차주식회사 전기자동차 예약충전 제어방법
JP6493344B2 (ja) * 2016-09-12 2019-04-03 トヨタ自動車株式会社 自動車
CN106602160B (zh) * 2016-12-22 2019-06-04 惠州Tcl移动通信有限公司 一种提高充电电流切换响应的方法及系统
CN107487205B (zh) * 2016-12-26 2019-09-20 宝沃汽车(中国)有限公司 控制电池系统加热的方法及装置
JP2018207558A (ja) * 2017-05-30 2018-12-27 本田技研工業株式会社 車両
DE102017121931A1 (de) * 2017-09-21 2019-03-21 Borgward Trademark Holdings Gmbh Verfahren und Vorrichtung zum Steuern des Aufladens eines Elektrofahrzeugs und ein Elektrofahrzeug
CN108878997B (zh) * 2018-06-04 2023-09-26 四川野马汽车股份有限公司 一种基于移动客户端的电动汽车动力电池预热系统及其预热方法
US10604028B1 (en) * 2019-02-15 2020-03-31 Wisk Aero Llc Desired departure temperature for a battery in a vehicle
KR102224076B1 (ko) * 2019-02-27 2021-03-09 비테스코 테크놀로지스 코리아 주식회사 배터리의 예약 충전 기능 진단 장치 및 방법
JP7314666B2 (ja) * 2019-07-09 2023-07-26 トヨタ自動車株式会社 充電制御装置
KR20210023192A (ko) * 2019-08-22 2021-03-04 현대자동차주식회사 예약 충전 제어 방법 및 장치
CN112563622A (zh) * 2019-09-26 2021-03-26 北汽福田汽车股份有限公司 动力电池加热系统、方法及车辆
JP7426332B2 (ja) * 2020-11-20 2024-02-01 プライムプラネットエナジー&ソリューションズ株式会社 充電制御装置
KR102384671B1 (ko) * 2021-08-10 2022-04-21 주식회사 퀀텀캣 배터리 제어 방법 및 시스템
DE102022206324A1 (de) 2022-06-23 2023-12-28 Volkswagen Aktiengesellschaft Verfahren zum Laden eines Kraftfahrzeugs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08115747A (ja) 1994-10-17 1996-05-07 Nissan Motor Co Ltd 充電システム
US5650710A (en) * 1995-02-06 1997-07-22 Honda Giken Kogyo Kabushiki Kaisha Apparatus for controlling a charging start time and charging period for a storage battery in an electric vehicle to complete charging at a scheduled boarding time
WO2010038682A1 (ja) * 2008-09-30 2010-04-08 日産自動車株式会社 電気駆動車両のバッテリ充電制御
JP2012029491A (ja) * 2010-07-26 2012-02-09 Nissan Motor Co Ltd 電動車両システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773906A (ja) * 1993-09-06 1995-03-17 Kojima Press Co Ltd 電気自動車用充電装置
JPH11150885A (ja) 1997-11-17 1999-06-02 Ricoh Co Ltd 2次電池の充電方法
JP2000040536A (ja) 1998-07-23 2000-02-08 Toyota Motor Corp バッテリ暖機装置
JP2001076764A (ja) * 1999-09-07 2001-03-23 Tokyo R & D Co Ltd 時計手段を有する電動装置
JP4019734B2 (ja) * 2001-03-28 2007-12-12 株式会社ジーエス・ユアサコーポレーション 二次電池の運用方法及び二次電池装置
JP4020650B2 (ja) * 2002-01-30 2007-12-12 三洋電機株式会社 車両用のバッテリー装置
JP5314235B2 (ja) * 2006-03-07 2013-10-16 プライムアースEvエナジー株式会社 二次電池の温度制御装置、二次電池の加温システム、およびプログラム
JP4386057B2 (ja) * 2006-08-10 2009-12-16 ソニー株式会社 バッテリー装置
US7741816B2 (en) * 2008-03-28 2010-06-22 Tesla Motors, Inc. System and method for battery preheating
JP4353283B2 (ja) * 2007-06-18 2009-10-28 トヨタ自動車株式会社 車両の空調制御装置
JP4333798B2 (ja) 2007-11-30 2009-09-16 トヨタ自動車株式会社 充電制御装置および充電制御方法
JP2011238428A (ja) * 2010-05-10 2011-11-24 Kansai Electric Power Co Inc:The 二次電池の充電システム及び充電方法
JP2012044813A (ja) * 2010-08-20 2012-03-01 Denso Corp 車両用電源装置
JP5668541B2 (ja) * 2011-03-11 2015-02-12 日産自動車株式会社 車両の充電制御装置
JP5668542B2 (ja) 2011-03-11 2015-02-12 日産自動車株式会社 車両の充電制御装置
US8890467B2 (en) * 2011-03-28 2014-11-18 Continental Automotive Systems, Inc. System for controlling battery conditions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08115747A (ja) 1994-10-17 1996-05-07 Nissan Motor Co Ltd 充電システム
US5650710A (en) * 1995-02-06 1997-07-22 Honda Giken Kogyo Kabushiki Kaisha Apparatus for controlling a charging start time and charging period for a storage battery in an electric vehicle to complete charging at a scheduled boarding time
WO2010038682A1 (ja) * 2008-09-30 2010-04-08 日産自動車株式会社 電気駆動車両のバッテリ充電制御
JP2012029491A (ja) * 2010-07-26 2012-02-09 Nissan Motor Co Ltd 電動車両システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2685597A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106794771A (zh) * 2014-08-06 2017-05-31 大众汽车有限公司 车载电路组件和用于使可利用燃料电池电驱动的交通工具的车载电路运行的方法
CN106794771B (zh) * 2014-08-06 2020-12-11 大众汽车有限公司 车载电路组件和用于使可利用燃料电池电驱动的交通工具的车载电路运行的方法
JP7468109B2 (ja) 2020-04-17 2024-04-16 マツダ株式会社 車両用バッテリ制御システム
CN113306425A (zh) * 2021-07-09 2021-08-27 长春汽车工业高等专科学校 一种电动汽车充电组件的温度监控系统和方法
CN113306425B (zh) * 2021-07-09 2022-07-26 长春汽车工业高等专科学校 一种电动汽车充电组件的温度监控系统和方法

Also Published As

Publication number Publication date
EP2685597A4 (en) 2016-03-09
EP2685597B1 (en) 2017-09-13
US9162580B2 (en) 2015-10-20
JP2012191784A (ja) 2012-10-04
EP2685597A1 (en) 2014-01-15
CN103329395B (zh) 2016-04-20
KR101437804B1 (ko) 2014-09-03
CN103329395A (zh) 2013-09-25
KR20130116338A (ko) 2013-10-23
JP5699702B2 (ja) 2015-04-15
US20140002025A1 (en) 2014-01-02

Similar Documents

Publication Publication Date Title
JP5699702B2 (ja) 車両の充電制御装置
JP5668541B2 (ja) 車両の充電制御装置
JP5668542B2 (ja) 車両の充電制御装置
US20160126760A1 (en) Battery system
US9487102B2 (en) Charging method of green car
CN105555585A (zh) 蓄电系统
JP2009254097A (ja) 充電システム及び充電制御方法
JP5835136B2 (ja) 車載充電制御装置
JP2010246320A (ja) 制御装置及び制御方法
JP5302945B2 (ja) 車両用電源装置
JP5880394B2 (ja) 車両の電源装置
JP2009005450A (ja) 車両用バッテリの制御装置
KR101390911B1 (ko) 전기자동차 충전 제어 시스템 및 그 방법
JP4758407B2 (ja) 電気自動車
JP6402687B2 (ja) 車両電池システム
JP6001364B2 (ja) 充電装置
JP2013141380A (ja) 充放電制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280006093.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758060

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012758060

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137021863

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14004096

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE