WO2012120895A1 - 端子付電池 - Google Patents

端子付電池 Download PDF

Info

Publication number
WO2012120895A1
WO2012120895A1 PCT/JP2012/001637 JP2012001637W WO2012120895A1 WO 2012120895 A1 WO2012120895 A1 WO 2012120895A1 JP 2012001637 W JP2012001637 W JP 2012001637W WO 2012120895 A1 WO2012120895 A1 WO 2012120895A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
battery
active material
amorphous
phase
Prior art date
Application number
PCT/JP2012/001637
Other languages
English (en)
French (fr)
Inventor
とし惠 綿
忠義 ▲高▼橋
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/704,558 priority Critical patent/US8778544B2/en
Priority to JP2013503401A priority patent/JP5583265B2/ja
Priority to CN201280001605.1A priority patent/CN102959786B/zh
Publication of WO2012120895A1 publication Critical patent/WO2012120895A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery with a terminal, in which the negative electrode active material includes an amorphous Si phase having a high energy density.
  • Nonaqueous electrolyte batteries are widely used as main power sources and memory backup power sources for various electronic devices.
  • the demand for non-aqueous electrolyte batteries continues to increase.
  • both the main power source and the backup power source are required to be small and have a high capacity. Therefore, in recent years, studies are being made to use a material having a high energy density such as silicon (Si) or tin (Sn) as the battery reaction active material.
  • silicon can be alloyed up to the composition of lithium and Li 4.4 Si, and its theoretical capacity is as large as 4199 mAh / g, and a high-capacity battery can be obtained.
  • Patent Document 2 it has been proposed to suppress swelling of the battery due to decomposition of the non-aqueous electrolyte by including fluoroethylene carbonate in a certain ratio in the non-aqueous electrolyte containing the carbonate ester.
  • non-aqueous electrolyte batteries using silicon as a reaction active material charge / discharge cycle characteristics may be significantly reduced in a battery with a terminal mounted on a circuit board or the like.
  • the negative electrode mainly composed of an active material containing silicon is activated by heat during welding. For example, when a metal piece is welded to a flat surface of a coin-shaped battery as a lead terminal, a part of the electrode connected to face the flat surface is locally exposed to high temperature, and thus contains silicon. This is presumably because the negative electrode mainly composed of the active material causes an exothermic reaction with the non-aqueous electrolyte, and the binder that binds the particles constituting the negative electrode is decomposed due to a rapid temperature rise.
  • Patent Documents 1 and 2 there are many proposals for suppressing the decomposition of the nonaqueous electrolyte during normal use of the battery, but the lead terminals are exposed to temporary and abnormal high temperatures when welding the lead terminals to the battery. There are no effective proposals for the suppression of side reactions.
  • the welding of the lead terminal to the battery is performed by resistance welding or laser welding.
  • any welding method when the lead terminal is welded to the battery, it is necessary to thermally weld the battery outer can and the terminal in a minute region. At this time, although inside the battery, although the inside of the battery is exposed to a considerably high temperature, an exothermic reaction involving the active material can be induced.
  • silicon Since silicon has a high energy density, it is very active against heat. Thus, the exothermic reaction induced is significant and side reactions can be extended in a chain fashion across the electrode. As a result, it is considered that the binder is partially decomposed and the electrode is deteriorated. Changes in static characteristics due to such deterioration (such as an increase in internal resistance) are often not observed immediately after welding the lead terminals, and when the battery is used, the characteristics deteriorate significantly. There is.
  • An object of the present invention is to provide a battery with a terminal having good long-term reliability after welding a lead terminal when the negative electrode active material contains an amorphous Si phase having a high energy density.
  • the present invention includes a power generation element and an outer can that houses the power generation element.
  • the power generation element includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, A negative electrode active material and a binder, the negative electrode active material includes an amorphous Si phase, and the binder is polyacrylic.
  • the non-aqueous electrolyte includes a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent, the non-aqueous solvent includes vinyl ethylene carbonate, and the outer can includes at least one
  • the present invention relates to a battery with a terminal, wherein a lead terminal is welded, and the molar ratio of the vinyl ethylene carbonate to the amorphous Si phase contained in the negative electrode active material is 0.09 to 0.17.
  • Another aspect of the present invention includes a power generation element and an outer can that houses the power generation element, and the power generation element includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the negative electrode includes a mixture containing a negative electrode active material and a binder, the negative electrode active material includes an amorphous Si phase, and the binder includes Acrylic acid is included, the nonaqueous electrolyte includes a nonaqueous solvent and a lithium salt dissolved in the nonaqueous solvent, the nonaqueous solvent includes vinyl ethylene carbonate, and the outer can has at least 1 Two lead terminals are welded, and 90% or more of the interface between the amorphous Si phase and the non-aqueous electrolyte is covered with a coating containing a component generated by decomposition of vinyl ethylene carbonate.
  • the negative electrode includes a mixture containing a negative electrode active material and a binder, the negative electrode active material includes an amorphous Si phase, and the binder includes
  • the present invention it is possible to impart good long-term reliability to a battery with a terminal in which the negative electrode active material contains an amorphous Si phase and the lead terminal is welded to the outer can.
  • the battery with a terminal of the present invention includes a power generation element, an outer can containing the power generation element, and a lead terminal welded to the outer can.
  • the power generation element and the outer can that houses the power generation element constitute a sealed battery.
  • the shape of such a sealed battery is not particularly limited, but is a coin shape, a cylindrical shape, a chip shape, or the like.
  • the lead terminal is composed of a plate-like member (for example, a metal piece) made of a conductive material, and has a fixed end welded to the battery outer can and a free end.
  • the free end functions as an electrode to be soldered when fixed to a circuit board or the like.
  • the outer can includes a negative electrode can and a positive electrode can that are fitted into each other to form a space for accommodating the power generation element.
  • One lead terminal can be fixed to each of the positive electrode can and the negative electrode can by welding.
  • the power generation element includes a positive electrode, a negative electrode, a separator interposed therebetween, and a nonaqueous electrolyte.
  • the positive electrode and the negative electrode are arranged to face each other with a separator interposed therebetween.
  • the positive electrode and the negative electrode are each formed of a mixture (mixture) containing a positive electrode active material or a negative electrode active material.
  • the mixture is formed into a predetermined shape (for example, a pellet shape) by, for example, pressure molding, and the obtained molded body is used as an electrode.
  • the electrode having the mixture layer may be formed by preparing a slurry by dispersing the mixture in a liquid component, applying the slurry to a current collector, drying the coating film, and rolling the mixture.
  • the negative electrode includes a mixture containing a negative electrode active material containing Si and a binder, the negative electrode active material containing Si contains an amorphous Si phase, and the binder is polyacrylic acid.
  • the non-aqueous electrolyte contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent, the non-aqueous solvent contains vinyl ethylene carbonate, and the amorphous Si phase contained in the negative electrode active material, The molar ratio of vinyl ethylene carbonate is controlled to 0.09 to 0.17.
  • the negative electrode mixture includes a negative electrode active material containing Si and a binder, and the negative electrode active material containing Si includes an electrochemically active amorphous Si phase.
  • the amorphous Si phase can occlude and release lithium electrochemically.
  • the binder includes polyacrylic acid. Since polyacrylic acid is excellent in binding properties, it is suitable as a binder for a negative electrode active material containing Si that has large expansion and contraction due to charge and discharge. Further, the presence of the binder makes it possible to form a mixture containing a negative electrode active material and a binder into a negative electrode having a predetermined shape.
  • the negative electrode When the binder is deteriorated or decomposed, the negative electrode cannot maintain a predetermined shape, the current collecting property of the negative electrode is deteriorated, and charge / discharge characteristics are deteriorated.
  • the negative electrode may include a conductive agent in addition to the active material and the binder.
  • the negative electrode includes an amorphous Si phase having a relatively large irreversible capacity
  • lithium may be occluded in advance in the negative electrode before assembling the battery.
  • the method for alloying the active material containing the amorphous Si phase with lithium is not particularly limited. For example, by bringing the lithium foil into pressure contact with the surface of the negative electrode, the negative electrode and the lithium foil are brought into contact with the nonaqueous electrolyte. The lithium can be occluded electrochemically in the negative electrode active material.
  • the polyacrylic acid may be a crosslinked type or a non-crosslinked type.
  • the weight average molecular weight of the non-crosslinked polyacrylic acid is preferably 300,000 to 3,000,000 because high binding properties can be obtained. From the viewpoint of binding strength and dispersibility in the mixture, More preferably, it is 500,000 to 2,000,000.
  • the polyacrylic acid is preferably contained in the mixture at 4 to 15% by mass. This is because, with such an amount, a negative electrode having a high energy density can be obtained and good binding properties can be achieved.
  • a carbon material is preferable.
  • graphites, carbon blacks, carbon fibers and the like can be used. These may be used independently and may use multiple types together. From the viewpoint of obtaining high electrical conductivity, it is preferable to use low-volume graphites.
  • the conductive agent is preferably contained in the mixture at 15 to 23% by mass. This is because, with such an amount, a negative electrode having a high energy density can be obtained and good conductivity can be achieved.
  • the negative electrode active material may be a simple substance of Si, an alloy containing Si, or an oxide containing Si. Among these, an alloy containing Si is preferable in terms of excellent conductivity.
  • an alloy of Si and a transition metal such as a Ti—Si alloy, a Ni—Si alloy, a W—Si alloy, or a Co—Si alloy can be used.
  • a transition metal such as a Ti—Si alloy, a Ni—Si alloy, a W—Si alloy, or a Co—Si alloy
  • an electrochemically active amorphous Si phase and an electrochemically inactive phase can be mixed.
  • the inactive phase has a role of relieving the stress of expansion and contraction of the amorphous Si phase that accompanies charge / discharge, and at the same time plays a role of providing conductivity to the negative electrode active material.
  • a Ti—Si alloy is particularly preferable in terms of excellent conductivity.
  • the mass ratio of Ti: Si in the Ti—Si alloy is preferably 30:70 to 45:55 from the viewpoints of securing capacity and sufficiently obtaining effects of stress relaxation and conductivity imparting.
  • the Si phase that is the active phase is required to be amorphous. If crystalline Si is used as the negative electrode active material, Si tends to be pulverized due to stress associated with charge and discharge. When such pulverization occurs, the current collecting property of the negative electrode is lowered, and it becomes difficult to maintain the shape of the negative electrode. On the other hand, such pulverization can be suppressed by using amorphous Si.
  • Si is amorphous by, for example, analyzing an X-ray diffraction image of the negative electrode active material. More specifically, the X-ray diffraction pattern of the negative electrode active material is measured by a wide-angle X-ray diffraction method, and the crystallite size is calculated according to Scherrer's formula from the half-value width of the peak attributed to the crystal plane of the Si phase. calculate. At that time, if the calculated crystallite size is 30 nm or less, it can be determined that the Si phase is amorphous.
  • the Si phase alloyed with a transition metal such as Ti and amorphized is homogeneous because the crystallite size is controlled to be, for example, 30 nm or less. Therefore, the required amount of VEC covering the amorphous Si greatly depends on the number of moles of Si rather than the particle diameter of the alloy.
  • the maximum particle size of the alloy containing Si is preferably 100 ⁇ m or less from the viewpoint of ensuring a good pellet shape.
  • the average particle size (D50) in the volume-based particle size distribution may be, for example, 1 ⁇ m to 50 ⁇ m.
  • the manufacturing method of the alloy containing the amorphous Si phase is not particularly limited, and an appropriate method such as a mechanical alloying method, a vacuum deposition method, a plating method, a gas phase chemical reaction method, a liquid quenching method, or an ion beam sputtering method is used. Just choose.
  • the mechanical alloying method is preferable in that it easily forms an amorphous phase and can suppress segregation of the alloy composition.
  • a raw material of silicon (for example, silicon alone) and a raw material of transition metal (for example, Ti alone) are mixed in a predetermined composition, and mechanical shearing force is applied to the obtained mixture. Agitation is performed.
  • an alloy of Si and a transition metal may be synthesized in advance by another method such as a melting method, the obtained alloy may be pulverized, and the pulverized alloy may be stirred while applying a mechanical shearing force. Stirring can be performed by a vibration ball mill device, a bead mill device, or the like.
  • the non-aqueous electrolyte includes a non-aqueous solvent and a lithium salt (supporting electrolyte) dissolved in the non-aqueous solvent.
  • Main components of the non-aqueous solvent include carbonate esters such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate and diethyl carbonate, ethers such as dimethoxyethane and diethoxyethane, and cyclic carboxylic acid esters such as ⁇ -butyllactone.
  • Preferably used Preferably used.
  • 10% by mass or more of the non-aqueous solvent is occupied by at least one of carbonate ester, ether and cyclic carboxylic acid ester.
  • tetraglyme, sulfolane, tetrahydrofuran, dioxolane and the like are also used as the non-aqueous solvent.
  • the above solvent components may be used singly or in admixture of two or more. In general, a mixture of a high dielectric constant component and a low viscosity component is used.
  • 10% by mass or more of the nonaqueous solvent is selected from the group consisting of propylene carbonate, ethylene carbonate, and dimethoethane. It is preferably at least one kind, and more preferably a three-component mixture of propylene carbonate, ethylene carbonate, and dimethoxyethane. This is because these solvent components are relatively stable with respect to the amorphous Si phase and polyacrylic acid, and good characteristics can be expected.
  • the mass ratio of each component may be, for example, 10 to 50% by mass.
  • the non-aqueous solvent needs to contain at least vinyl ethylene carbonate (VEC).
  • VEC has a role of decomposing on the surface of the negative electrode active material to form a chemically stable film.
  • the solute of the non-aqueous electrolyte is not particularly limited, but LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiClO 4 and the like can be used. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the non-aqueous electrolyte may be a gel.
  • the gel-like non-aqueous electrolyte can be obtained by holding a liquid non-aqueous electrolyte in a polymer material.
  • a polymer material polyvinylidene fluoride, polyacrylonitrile, polyethylene oxide, polyvinyl chloride, polyacrylate, vinylidene fluoride-hexafluoropropylene copolymer, or the like can be used.
  • FIG. 2 shows the result of differential scanning calorimetry (hereinafter referred to as DSC measurement) of the negative electrode when a non-aqueous electrolyte containing no VEC is used.
  • DSC measurement differential scanning calorimetry
  • the negative electrode rarely reaches the threshold temperature due to the thermal load when welding the lead terminals. In that case, a remarkable exothermic reaction occurs in the negative electrode, causing a rapid temperature rise. And it is thought that the negative electrode temperature reaches 200 degreeC or more which is a decomposition temperature of polyacrylic acid, and polyacrylic acid can decompose. When polyacrylic acid is decomposed, the function as a binder is lowered. In some cases, polyacrylic acid may be lost. Therefore, when the battery after welding of the lead terminals is used, battery characteristics such as charge / discharge characteristics are significantly deteriorated.
  • FIG. 3 shows the results of DSC measurement of the negative electrode when a nonaqueous electrolyte containing VEC was used. Again, the completed battery with terminal was disassembled, the negative electrode was taken out, and the change in heat flow was measured when the temperature was raised to 400 ° C. at a scanning rate of 10 ° C./min.
  • the exothermic peak occurs in a temperature range exceeding 250 ° C. This is presumably because the coating derived from VEC covered the negative electrode and the exothermic reaction that could occur in the vicinity of 180 to 190 ° C. as seen in FIG. 2 was suppressed.
  • the molar ratio of VEC to the amorphous Si phase contained in the negative electrode active material it is necessary to control the molar ratio of VEC to the amorphous Si phase contained in the negative electrode active material to be 0.09 to 0.17.
  • VEC is included in the nonaqueous electrolyte so as to be out of this range, good battery characteristics cannot be obtained.
  • the molar ratio of VEC to the amorphous Si phase is less than 0.09, the amount of VEC to the amorphous Si phase is insufficient, and the coating derived from VEC is amorphous Si. It is difficult to cover almost the entire phase.
  • a negative load not covered with the coating is subjected to a thermal load during welding of the lead terminal, a remarkable exothermic reaction may occur. As a result, it is considered that the temperature of the negative electrode is rapidly increased, polyacrylic acid is decomposed, and the battery characteristics are deteriorated.
  • FIG. 1 is a cross-sectional view of a coin-shaped lithium secondary battery with terminal according to an embodiment of the present invention.
  • This battery includes a positive electrode 4 including a positive electrode active material, a conductive agent, and a binder, a negative electrode active material including an amorphous Si phase, a conductive agent, and the negative electrode 3 including a binder.
  • a power generation element composed of a separator 5 interposed between the positive electrode 4 and the negative electrode 3 and a nonaqueous electrolyte (not shown) containing VEC.
  • the power generation element is a space formed by the battery case (positive electrode can) 2 and the sealing plate (negative electrode can) 1 while being pressed in the stacking direction by the battery case (positive electrode can) 2 and the sealing plate (negative electrode can) 1. Is housed in.
  • a sealing gasket (negative electrode can) 1 is provided with a resin gasket 6 that is annularly injection-molded along the opening.
  • the sealing plate 1 is disposed so as to be fitted with the battery case (positive electrode can) 2 via the gasket 6.
  • the battery is hermetically sealed by crimping the opening end of the battery case 2 inward.
  • the positive electrode lead terminal 7a and the negative electrode lead terminal 7b are thermally welded to the positive electrode can 2 and the negative electrode can 1 by resistance welding or laser welding, respectively, and the fixed ends 8a and 8b are welded points between the outer can and the lead terminals. It is formed.
  • the positive electrode can, the negative electrode can, the positive electrode lead terminal and the negative electrode lead terminal, for example, a metal material such as stainless steel is used.
  • the positive electrode active material contained in the positive electrode 4 is not particularly limited as long as it can electrochemically occlude and release lithium and can function as a positive electrode in combination with a negative electrode active material containing Si.
  • a negative electrode active material containing Si LiMnO 2 , LiMn 2 O 4 , Li 4 Mn 5 O 12 , Li 2 Mn 4 O 9 , MnO 2 , LiCoO 2 , LiNiO 2 , V 2 O 5 , V 6 O 13 , WO 3 , Nb 2 O 5 , Li 4/3 Ti 5/3 O 4 and other complex oxides, conductive polymers, and the like can be used. These may be used alone or in combination of two or more.
  • the conductive agent contained in the positive electrode 4 is not particularly limited as long as it is an electronic conductor that is chemically stable within the range of potential used when charging and discharging the battery.
  • graphites, carbon blacks, carbon fibers and the like can be used. These may be used alone or in combination of two or more.
  • the binder contained in the positive electrode 4 is not particularly limited, but fluorine such as polyolefin such as polyethylene and polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and tetrafluoroethylene-hexafluoropropylene copolymer. Resin, styrene butadiene rubber, acrylic acid-methacrylic acid copolymer and the like can be used.
  • fluorine such as polyolefin such as polyethylene and polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and tetrafluoroethylene-hexafluoropropylene copolymer.
  • Resin, styrene butadiene rubber, acrylic acid-methacrylic acid copolymer and the like can be used.
  • a resin nonwoven fabric or a microporous film can be used as the separator 5. These porous materials may be punched into a circle and used as a separator.
  • the battery with a terminal shown in Embodiment 1 was produced in the following manner.
  • (1) Examination of molar ratio of VEC to amorphous Si phase (preparation of negative electrode) A Ti35-Si65 alloy having a mass ratio of Ti: Si of 35:65 was formed as the negative electrode active material. Specifically, Ti and Si were introduced into a vibrating ball mill device at the above mass ratio, and a stainless steel ball having a diameter of 15 mm was further introduced, and Si and Ti were alloyed by a mechanical alloying method. The air inside the apparatus was replaced with argon and maintained at 1 atmosphere. The vibrating ball mill device was driven under the conditions of an amplitude of 8 mm and a rotation speed of 1200 rpm.
  • the obtained Ti—Si alloy powder was classified, sized to 100 ⁇ m or less, and used as a negative electrode active material.
  • the crystallite size of the obtained Ti—Si alloy was confirmed, it was 30 nm or less. According to the calculation, the proportion of the amorphous Si phase in the Ti—Si alloy was 24 mass%.
  • non-crosslinked polyacrylic acid having a weight average molecular weight of 1,000,000 was used as the binder.
  • a non-crosslinked polyacrylic acid aqueous solution manufactured by Toa Gosei Co., Ltd. was used.
  • graphite having an average particle diameter (D50) of 10 ⁇ m (manufactured by Nippon Graphite Co., Ltd.) was used.
  • Lithium manganate was used as the positive electrode active material. Lithium manganate was synthesized by mixing manganese dioxide and lithium hydroxide in a molar ratio of 2: 1 and firing the resulting mixture at 400 ° C. for 12 hours.
  • the positive electrode mixture was prepared by kneading.
  • the obtained positive electrode mixture was pressure-molded into a pellet having a diameter of 4.1 mm and a thickness of 1.2 mm, dried at 250 ° C. for 10 hours, and used as the positive electrode 4.
  • non-aqueous electrolyte As the non-aqueous solvent, a mixed solvent having a volume ratio of 1: 1: 1 of propylene carbonate: ethylene carbonate: dimethoxyethane was used. LiN (CF 3 SO 2 ) 2 as a lithium salt (supporting electrolyte) was dissolved in this mixed solvent so as to have a concentration of 1 M, and VEC was further added to prepare a nonaqueous electrolyte.
  • the amount of VEC in the non-aqueous electrolyte was adjusted to 6.6% by mass. Then, a predetermined amount of nonaqueous electrolyte was injected into the battery so that the molar ratio of VEC to amorphous Si phase was 0.12.
  • a negative electrode 3 and lithium are arranged on the inner bottom surface of a shallow negative electrode can 1 having a polypropylene gasket 6 at the periphery, and a separator 5 is arranged on the negative electrode 3, and then a nonaqueous electrolyte is injected into the negative electrode can 1. As a result, lithium was occluded in the negative electrode. Thereafter, the positive electrode 4 was disposed on the separator 5, and the opening of the negative electrode can 1 was closed with the shallow positive electrode can 2 to obtain a coin-shaped sealed battery.
  • the dimensions of the battery are an outer diameter of 6.8 mm and a height of 2.1 mm.
  • the battery produced by the above manufacturing process was designated as battery A1.
  • the amount of non-aqueous electrolyte added with VEC into the battery is constant, and the amount of VEC in the non-aqueous electrolyte is 1% by mass, 2.9% by mass, 4.8% by mass, 9.1% by mass, and 10. Change to 7% by mass or 12.3% by mass (that is, change the molar ratio of VEC to amorphous Si phase to 0.02, 0.06, 0.09, 0.17, 0.20 or 0.23) Batteries A2 to A7 were produced in the same manner as the battery A1, except that the above were performed.
  • the positive electrode lead terminal 7a and the negative electrode lead terminal 7b were welded to the central portions of the positive electrode can 2 and the negative electrode can 1 of the batteries A1 to A7 by laser welding, respectively, to prepare batteries with terminals B1 to B7.
  • Table 1 shows the average value of the capacity retention rate after 100 days of storage at 60 ° C., and the average value and the minimum value of the capacity retention rate after 50 charge / discharge cycles, together with the respective specifications.
  • the batteries A1 to A7 are reference examples, the batteries B1, B4 and B5 are examples, and the batteries B2, B3, B6 and B7 are comparative examples.
  • the battery with a terminal of the present invention is excellent in storage characteristics and charge / discharge cycle characteristics, it can be used in a wide variety of applications including main power supply applications and backup power supply applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

 発電要素と、発電要素を収容する外装缶とを具備し、発電要素は、正極と、負極と、これらの間に介在するセパレータと、非水電解質とを具備し、負極は、Siを含む負極活物質と、結着剤と、を含む合剤を含み、負極活物質は、非晶質Si相を含み、結着剤は、ポリアクリル酸を含み、非水電解質は、非水溶媒と、非水溶媒に溶解させたリチウム塩とを含み、非水溶媒は、ビニルエチレンカーボネートを含み、外装缶には、少なくとも1つのリード端子が溶接されており、前記負極活物質に含まれている非晶質Si相に対する、ビニルエチレンカーボネートのモル比が、0.09~0.17である、端子付電池。

Description

端子付電池
 本発明は、負極活物質がエネルギー密度の大きい非晶質Si相を含む、端子付電池に関する。
 非水電解質電池は、各種電子機器の主電源やメモリーバックアップ電源として広く使用されている。特に近年、携帯電話やデジタルスチルカメラをはじめとする小型携帯機器の増加に伴い、非水電解質電池の需要は増加の一途をたどっている。また、機器の小型化および軽量化が進行する一方、機器の高機能化が要求され、そのメモリー容量も増大する傾向にある。そのため、主電源、バックアップ電源共に、小型でかつ高容量であることが求められている。そこで、近年、ケイ素(Si)、スズ(Sn)などの高エネルギー密度を有する材料を電池反応活物質として用いる検討が進められている。特にケイ素はリチウムとLi4.4Siの組成まで合金化が可能であり、その理論容量は4199mAh/gと大きく、高容量の電池を得ることが可能である。
 一方、高容量化された非水電解質電池の充放電サイクル特性や低温放電特性の改善に関し、多くの研究がなされている。例えば、ケイ素は、リチウムを吸蔵すると活性が高くなり、非水電解質の副反応を誘発する傾向がある。そこで、電池中にアシル化された環状カルボン酸エステル化合物を含有させることで、非水電解液に含まれる炭酸エステルの分解反応を抑制し、充放電サイクル特性を向上させることが提案されている(特許文献1)。また、炭酸エステルを含む非水電解質中にフルオロエチレンカーボネートを一定割合で含ませることで、非水電解質の分解による電池の膨れを抑制することが提案されている(特許文献2)。 
特開2009-218191号公報 特開2008-16422号公報
 ケイ素を反応活物質として使用した非水電解質電池の中でも、回路基板等に実装して使用される端子付電池においては、充放電サイクル特性が著しく低下する場合がある。これは、溶接時の熱により、ケイ素を含む活物質を主体とする負極が活性化することが原因であると考えられる。例えば、コイン形状を有する電池の平坦面に金属片をリード端子として溶接すると、当該平坦面に対向して接続されている電極の一部が、局所的に高温に曝されるため、ケイ素を含む活物質を主体とする負極が非水電解質と発熱反応を生じ、急激な温度上昇により負極を構成する粒子同士を結合させる結着剤が分解されるためと考えられる。
 特許文献1、2のように、電池の通常使用時における非水電解質の分解を抑制する提案は多く見られるが、リード端子を電池に溶接する際の、一時的かつ異常な高温に曝されることによる副反応の抑制については有効な提案が見られない。
 リード端子の電池への溶接は、抵抗溶接またはレーザー溶接により行われる。いずれの溶接方法でもリード端子を電池に溶接する時には、電池の外装缶と端子とを微小領域において熱溶着させる必要がある。このときに微小領域ではあるが、電池内部も相当な高温に曝されるため、活物質が関与する発熱反応が誘発され得る。
 ケイ素は高エネルギー密度を有するため、熱に対して非常に活性である。従って、誘発される発熱反応は著しく、副反応は電極全体に連鎖的に拡大し得る。その結果、結着剤が部分的に分解され、電極が劣化すると考えられる。このような劣化に基づく静特性の変化(内部抵抗の上昇など)は、リード端子を溶接した直後には見られない場合が多く、いざ電池を使用しようとすると、特性が著しく低下している場合がある。
 本発明は、負極活物質がエネルギー密度の大きい非晶質Si相を含む場合に、リード端子を溶接した後に良好な長期信頼性を有する端子付電池を提供することを目的とする。
 本発明の一局面は、発電要素と、前記発電要素を収容する外装缶とを具備し、前記発電要素は、正極と、負極と、前記正極と前記負極との間に介在するセパレータと、非水電解質とを具備し、前記負極は、負極活物質と、結着剤と、を含む合剤を含み、前記負極活物質は、非晶質Si相を含み、前記結着剤は、ポリアクリル酸を含み、前記非水電解質は、非水溶媒と、前記非水溶媒に溶解させたリチウム塩とを含み、前記非水溶媒は、ビニルエチレンカーボネートを含み、前記外装缶には、少なくとも1つのリード端子が溶接されており、前記負極活物質に含まれる非晶質Si相に対する、前記ビニルエチレンカーボネートのモル比が、0.09~0.17である、端子付電池に関する。
 本発明の他の局面は、発電要素と、前記発電要素を収容する外装缶とを具備し、前記発電要素は、正極と、負極と、前記正極と前記負極との間に介在するセパレータと、非水電解質とを具備し、前記負極は、負極活物質と、結着剤と、を含む合剤を含み、前記負極活物質は、非晶質Si相を含み、前記結着剤は、ポリアクリル酸を含み、前記非水電解質は、非水溶媒と、前記非水溶媒に溶解させたリチウム塩とを含み、前記非水溶媒は、ビニルエチレンカーボネートを含み、前記外装缶には、少なくとも1つのリード端子が溶接されており、前記非晶質Si相の前記非水電解質との界面の90%以上が、ビニルエチレンカーボネートの分解により生成する成分を含む被膜で被覆されている、端子付電池に関する。
 本発明によれば、負極活物質が非晶質Si相を含み、かつ外装缶にリード端子が溶接された端子付電池に、良好な長期信頼性を付与することが可能となる。
本発明の一実施形態に係るコイン形状の端子付電池の断面図である。 ビニルエチレンカーボネートを含まない非水電解質を使用した場合の負極の示差走査熱量測定の結果を示す特性図である。 本発明に係る負極の示差走査熱量測定の結果を示す特性図である。
 本発明の端子付電池は、発電要素と、発電要素を収容する外装缶と、外装缶に溶接されたリード端子とを具備する。発電要素と発電要素を収容する外装缶は、密閉電池を構成している。このような密閉電池の形状は、特に限定されないが、コイン形状、筒形状、チップ形状などである。一方、リード端子は、導電性材料の板状部材(例えば金属片)で構成されており、電池の外装缶に溶接される固定端と、自由端とを有する。自由端は、例えば、回路基板などに固定される際に、はんだ付けされる電極として機能する。電池がコイン形状である場合、外装缶は、互いに勘合して発電要素を収容する空間を形成する負極缶と正極缶とを具備する。リード端子は、正極缶および負極缶にそれぞれ1つずつ溶接により固定され得る。
 発電要素は、正極と、負極と、これらの間に介在するセパレータと、非水電解質とを具備する。正極と負極は、セパレータを介して対向配置されている。正極および負極は、それぞれ正極活物質または負極活物質を含む合剤(混合物)で形成されている。合剤は、例えば、加圧成型により所定形状(例えばペレット状)に成形され、得られた成形体が電極として用いられる。また、合剤を液状成分に分散させてスラリーを調製し、スラリーを集電体に塗布し、塗膜を乾燥後、圧延することにより、合剤層を有する電極を形成してもよい。
 ここで、負極は、Siを含む負極活物質と、結着剤と、を含む合剤を含み、Siを含む負極活物質は、非晶質Si相を含み、結着剤は、ポリアクリル酸を含み、非水電解質は、非水溶媒と、非水溶媒に溶解させたリチウム塩とを含み、非水溶媒は、ビニルエチレンカーボネートを含み、負極活物質に含まれる非晶質Si相に対する、ビニルエチレンカーボネートのモル比は、0.09~0.17に制御されている。
<負極>
 以下、負極の構成について、より具体的に説明する。
 負極の合剤は、Siを含む負極活物質と結着剤とを含み、Siを含む負極活物質は、電気化学的に活性な非晶質Si相を含む。非晶質Si相は、電気化学的にリチウムを吸蔵および放出することが可能である。結着剤は、ポリアクリル酸を含む。ポリアクリル酸は、結着性に優れていることから、充放電に伴う膨張および収縮の大きいSiを含む負極活物質の結着剤として好適である。また、結着剤の存在により、負極活物質と結着剤を含む合剤を所定形状の負極に成形することが可能となる。結着剤が劣化したり分解されたりすると、負極は所定形状を維持することができなくなり、負極の集電性が劣化し、充放電特性が低下することになる。なお、負極は、活物質と結着剤の他に、導電剤を含んでもよい。
 負極は、比較的大きな不可逆容量を有する非晶質Si相を含むため、電池を組み立てる前に、予め負極にリチウムを吸蔵させてもよい。非晶質Si相を含む活物質をリチウムと合金化させる方法は、特に限定されないが、例えば、負極の表面にリチウム箔を圧接した状態で、負極とリチウム箔を非水電解質と接触させることにより、電気化学的に負極活物質にリチウムを吸蔵させることができる。
(結着剤)
 ポリアクリル酸は、架橋型でもよく、非架橋型でもよい。非架橋型のポリアクリル酸の重量平均分子量は、高度な結着性が得られることから、30万~300万であることが好ましく、結着強度や合剤中での分散性の観点から、50万~200万であることがより好ましい。ポリアクリル酸は、合剤中に4~15質量%含有させることが好ましい。このような量であれば、高エネルギー密度を有する負極が得られ、かつ良好な結着性を達成できるからである。
(導電剤)
 負極に使用される導電剤としては、炭素材料が好ましい。例えば、黒鉛類、カーボンブラック類、炭素繊維などを用いることができる。これらは単独で用いてもよく、複数種を併用してもよい。高い電導性を得る観点からは、嵩の低い黒鉛類を使用することが好ましい。導電剤は、合剤中に15~23質量%含有させることが好ましい。このような量であれば、高エネルギー密度を有する負極が得られ、かつ良好な導電性を達成できるからである。
(活物質)
 負極活物質は、Si単体でもよく、Siを含む合金やSiを含む酸化物であってもよい。これらのうちでは、導電性に優れる点で、Siを含む合金が好ましい。
 Siを含む合金としては、Ti-Si合金、Ni-Si合金、W-Si合金、Co-Si合金など、Siと遷移金属との合金を用いることができる。このような合金においては、電気化学的に活性な非晶質Si相と、電気化学的に不活性な相とを混在させることができる。不活性な相は、充放電に伴う非晶質Si相の膨張や収縮の応力を緩和する役割を有すると同時に負極活物質に導電性を付与する役割も担う。
 上記合金のうちでは、導電性に優れる点で、特にTi-Si合金が好ましい。Ti-Si合金におけるTi:Siの質量比は、容量を確保するとともに、応力緩和および導電性付与の効果を十分に得る観点から、30:70~45:55が好ましい。
 活性相であるSi相は非晶質であることが要求される。仮に結晶性Siを負極活物質として用いると、充放電に伴う応力により、Siが粉砕される傾向がある。このような粉砕が起こると、負極の集電性が低下したり、負極の形状維持が困難になったりする。一方、非晶質相のSiを用いることにより、このような粉砕を抑制することができる。
 Siが非晶質であることは、例えば、負極活物質のX線回折像を分析することにより、確認することができる。より具体的には、負極活物質のX線回折パターンを広角X線回折法により測定し、Si相の結晶面に帰属されるピークの半価幅からシェラーの式によって結晶子(crystallite)サイズを計算する。その際、算出された結晶子サイズが30nm以下であれば、Si相は非晶質であると判断できる。
 Tiなどの遷移金属と合金化され、非晶質化されているSi相は、結晶子サイズが例えば30nm以下に制御されていることから、均質である。従って、非晶質Siを覆うVECの必要量は、合金の粒子径よりも、Siのモル数により大きく左右される。
 Siを含む合金の最大粒径は、良好な状態のペレット形状を確保する観点から、100μm以下であることが好ましい。また、体積基準の粒度分布における平均粒径(D50)は、例えば1μm~50μmであればよい。
 非晶質Si相を含む合金の製造方法は、特に限定されず、メカニカルアロイング法、真空蒸着法、メッキ法、気相化学反応法、液体急冷法、イオンビームスパッタリング法などから適切な方法を選択すればよい。これらの方法の中では、メカニカルアロイング法が、非晶質相を形成しやすく、かつ合金組成の偏析を抑制できるなどの点で好ましい。
 メカニカルアロイング法では、例えば、ケイ素の原料(例えばケイ素単体)と、遷移金属の原料(例えばTi単体)とを、所定の配合で混合し、得られた混合物に機械的せん断力を付与しながら攪拌が行われる。あるいは、予めSiと遷移金属との合金を溶融法などの他の方法で合成し、得られた合金を粉砕して、粉砕合金を、機械的せん断力を付与しながら攪拌してもよい。攪拌は、振動ボールミル装置、ビーズミル装置などにより行うことができる。
<非水電解質>
 非水電解質は、非水溶媒と、非水溶媒に溶解させたリチウム塩(支持電解質)とを含む。
 非水溶媒の主成分としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどの炭酸エステル、ジメトキシエタン、ジエトキシエタンなどのエーテル、γ‐ブチルラクトンなどの環状カルボン酸エステルなどが好ましく用いられる。一般に、非水溶媒の10質量%以上が、炭酸エステル、エーテルおよび環状カルボン酸エステルの少なくとも1種で占められている。ただし、非水溶媒には、上記の他に、テトラグライム、スルホラン、テトラヒドロフラン、ジオキソランなども用いられる。
 上記の溶媒成分は、1種を単体で用いてもよいが、2種以上を混合して使用することが望ましい場合が多い。一般に、高誘電率成分と低粘度成分との混合物が用いられる。負極活物質が非晶質Si相を含み、結着剤がポリアクリル酸を含む端子付電池においては、非水溶媒の10質量%以上が、プロピレンカーボネート、エチレンカーボネートおよびジメトキエタンよりなる群から選択される少なくとも1種であることが好ましく、プロピレンカーボネート、エチレンカーボネートおよびジメトキエタンの3成分の混合物であることがより好ましい。これらの溶媒成分は、非晶質Si相やポリアクリル酸に対して比較的安定であり、良好な特性が期待できるからである。プロピレンカーボネート、エチレンカーボネートおよびジメトキエタンの3成分の混合物において、各成分の質量割合は、例えば10~50質量%であればよい。
 ただし、端子付電池の長期信頼性を高めるためには、非水溶媒が、少なくとも、ビニルエチレンカーボネート(VEC)を含む必要がある。VECは、負極活物質の表面で分解し、化学的に安定な被膜を形成する役割を有する。また、端子付電池においては、非水溶媒に含まれるVECの添加量を、負極活物質に含まれる非晶質Si相の量に応じて、厳密に制御する必要がある。具体的には、非晶質Si相に対するVECのモル比は、0.09~0.17に制御される。
 非水電解質の溶質としては、特に限定されないが、LiN(CF3SO22、LiN(C25SO22、LiN(CF3SO2)(C49SO2)、LiCF3SO3、LiPF6、LiBF4、LiClO4などを用いることができる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 非水電解質はゲル状であってもよい。ゲル状の非水電解質は、液状の非水電解質を高分子材料に保持させることで得られる。このような高分子材料としては、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリエチレンオキサイド、ポリ塩化ビニル、ポリアクリレート、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体などを用いることができる。
 以上の特徴により、負極活物質に含まれる非晶質Si相の非水電解質との界面のほぼ全体、より具体的には、非晶質Si相の非水電解質との界面の90%以上を、VECに由来する被膜で覆うことが可能となる。このような被膜は、VECの還元分解により生成する成分を含む。当該被膜には、非晶質Si相の発熱反応を抑制する効果があると考えられる。よって、リード端子を電池に溶接する時の熱的負荷に対し、負極の耐性が向上し、端子付電池の充放電サイクル特性も向上する。
<DSC特性>
 次に、負極の示差走査熱量測定を行った場合の特性図について説明する。
図2は、VECを含まない非水電解質を使用した場合の、負極の示差走査熱量測定(以下、DSC測定)の結果を示している。ここでは、完成した端子付電池を分解し、負極を取り出し、走査速度10℃/分で400℃まで昇温させたときの熱流変化を測定した。図2より、非水電解質がVECを含まない場合、負極の発熱ピークは200℃未満、具体的には180~190℃付近に生じている。負極が急激な温度上昇を生じるかどうかは、この温度域(閾値)に達するかどうかに依存するものと考えられる。
 詳細は不明であるが、リード端子を溶接する際の熱的負荷により、負極が閾値温度に達することが稀に生じる。その場合、負極で著しい発熱反応が生じ、急激な温度上昇が起る。そして、負極温度が、ポリアクリル酸の分解温度である200℃以上に達し、ポリアクリル酸の分解が生じ得ると考えられる。ポリアクリル酸が分解すると、結着剤としての機能が低下する。場合によっては、ポリアクリル酸が消失することも考えられる。従って、リード端子の溶接後の電池を使用した場合に、充放電特性などの電池特性に著しい低下が生じる。
 一方、図3は、VECを含む非水電解質を使用した場合の、負極のDSC測定の結果を示している。ここでも、完成した端子付電池を分解し、負極を取り出し、走査速度10℃/分で400℃まで昇温させたときの熱流変化を測定した。図3では、発熱ピークが250℃を上回る温度域で生じていることがわかる。これは、VECに由来する被膜が負極を覆い、図2に見られるような180~190℃付近で生じ得る発熱反応が抑制されたためと考えられる。180~190℃付近の発熱反応が抑制されることで、リード端子の溶接時に、負極の急激な温度上昇が生じず、ポリアクリル酸の分解が防止され、負極の性能が維持されるものと考えられる。従って、リード端子を溶接後の電池においても、良好な充放電サイクル特性が得られると考えられる。
 ただし、負極活物質に含まれる非晶質Si相に対するVECのモル比は、0.09~0.17となるように制御する必要がある。この範囲を外れるように非水電解質にVECを含ませる場合には、良好な電池特性を得ることができなくなる。
 具体的には、上記非晶質Si相に対するVECのモル比が0.09未満である場合には、非晶質Si相に対するVECの量が不足し、VECに由来する被膜で非晶質Si相のほぼ全体を覆うことが困難である。被膜で覆われていない負極部分に、リード端子の溶接時の熱的負荷がかかった場合、著しい発熱反応が生じる場合がある。その結果、負極の急激な温度上昇が生じ、ポリアクリル酸が分解し、電池特性の低下が引き起こされるものと考えられる。
 一方、非晶質Si相に対するVECのモル比が0.17を超える場合、電池反応に影響を及ぼす非水電解質のVEC以外の成分が相対的に少なくなり、その影響が電池特性に顕著に現れることとなる。リード端子の溶接時には、負極のみでなく、正極と非水電解質との反応なども生じており、このような反応によっても非水電解質が消費される。そのため、溶接直後の内部抵抗からは劣化が検出されない場合でも、保存特性のような長期的特性においては、リード端子を溶接しない電池と比較して、劣化が顕著となることがある。
(実施形態1)
 図1は、本発明の一実施形態に係るコイン形状の端子付リチウム二次電池の断面図である。この電池は、正極活物質と、導電剤と、結着剤とを含む正極4と、非晶質Si相を含む負極活物質と、導電剤と、結着剤とを含む上記の負極3と、正極4と負極3との間に介在するセパレータ5と、VECを含む非水電解質(図示せず)とで構成される発電要素を具備する。発電要素は、電池ケース(正極缶)2と封口板(負極缶)1により積層方向に加圧された状態で、電池ケース(正極缶)2と封口板(負極缶)1により形成される空間に収容されている。
 封口板(負極缶)1には、その開口部に沿って環状に射出成型された樹脂製ガスケット6が配置されている。電池を組み立てる際には、封口板1が、ガスケット6を介して電池ケース(正極缶)2と勘合するように配置される。次に、電池ケース2の開口端部を内方に屈曲させるカシメ加工をすることにより、電池が密閉される。その後、正極缶2と負極缶1に、それぞれ正極リード端子7aおよび負極リード端子7bが、抵抗溶接やレーザー溶接により熱溶着され、外装缶と各リード端子との溶接点として固定端8a、8bが形成される。
 正極缶、負極缶、正極リード端子および負極リード端子には、例えばステンレス鋼などの金属材料が用いられる。
 正極4に含まれる正極活物質は、電気化学的にリチウムの吸蔵および放出が可能であり、Siを含む負極活物質との組み合わせで正極として機能し得る材料であれば特に限定されない。例えば、LiMnO2、LiMn24、Li4Mn512、Li2Mn49、MnO2、LiCoO2、LiNiO2、V25、V613、WO3、Nb25、Li4/3Ti5/34等の複合酸化物、導電性高分子などを用いることができる。これらは単独で用いてもよく、複数種を組み合わせて用いてもよい。
 正極4に含まれる導電剤は、電池を充放電する際の使用電位範囲内において化学的に安定な電子伝導体であれば特に限定されない。例えば、黒鉛類、カーボンブラック類、炭素繊維などを用いることができる。これらは単独で用いてもよく、複数種を組み合わせて用いてもよい。
 正極4に含まれる結着剤は、特に限定されないが、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体などのフッ素系樹脂、スチレンブタジエンゴム、アクリル酸-メタクリル酸共重合体などを用いることができる。
 セパレータ5としては、樹脂製の不織布や微多孔性フィルムを用いることができる。これらの多孔質材料を円形に打ち抜いてセパレータとして用いればよい。
 以下の要領で実施形態1に示す端子付電池を作製した。
(1)非晶質Si相に対するVECのモル比の検討
(負極の作製) 
 負極活物質として、Ti:Siの質量比が35:65であるTi35-Si65合金を形成した。具体的には、TiとSiを上記質量比で振動ボールミル装置に投入し、さらに直径15mmのステンレス鋼製ボールを投入し、メカニカルアロイング法によりSiとTiを合金化させた。装置内部の空気はアルゴンで置換し、1気圧に維持した。振動ボールミル装置は、振幅8mm、回転数1200rpmの条件で駆動させた。この条件下でメカニカルアロイング操作を80時間行った。得られたTi-Si合金粉末を分級し、100μm以下に整粒し、負極活物質として使用した。得られたTi-Si合金の結晶子サイズを確認したところ30nm以下であり、計算によるとTi-Si合金中の非晶質Si相の割合は24質量%であった。
 結着剤には、重量平均分子量が100万の非架橋型ポリアクリル酸を使用した。具体的には、非架橋型ポリアクリル酸水溶液(東亜合成(株)製)を用いた。
 導電剤には、平均粒径(D50)が10μmの黒鉛(日本黒鉛(株)製)を使用した。
 負極活物質であるTi35-Si65合金と、導電剤である黒鉛と、結着剤である非架橋ポリアクリル酸とを、固形分の質量比が100:30:10となるように配合し、練合して負極合剤を調製した。得られた負極合剤を、直径4mm、厚さ0.38mmのペレット状に加圧成型し、160℃で12時間乾燥し、負極3として用いた。
(正極の作製) 
 正極活物質には、マンガン酸リチウムを使用した。マンガン酸リチウムは、二酸化マンガンと水酸化リチウムとを、モル比2:1となるように混合し、得られた混合物を、400℃で12時間焼成して合成した。
 正極活物質であるマンガン酸リチウムと、導電剤であるアセチレンブラックと、結着剤であるフッ素樹脂の水性ディスパージョンとを、固形分の質量比が100:5:8となるように配合し、練合して正極合剤を調製した。得られた正極合剤を、直径4.1mm、厚さ1.2mmのペレット状に加圧成型し、250℃で10時間乾燥し、正極4として用いた。
(非水電解質の調製) 
 非水溶媒として、プロピレンカーボネート:エチレンカーボネート:ジメトキシエタンの体積比が1:1:1の混合溶媒を用いた。この混合溶媒に、リチウム塩(支持電解質)としてLiN(CF3SO22を濃度1Mとなるように溶解させ、さらにVECを添加して、非水電解質を調製した。
 非水電解質中のVEC量は6.6質量%となるように調整した。そして、非晶質Si相に対するVECのモル比が0.12となるように、所定量の非水電解質を電池内部に注入した。
(セパレータ)
 ポリプロピレン製の不織布を円形に打ち抜いてセパレータとして用いた。
(電池組み立て)
 周縁部にポリプロピレン製のガスケット6を具備する浅底の負極缶1の内底面に負極3とリチウムを配置し、負極3の上にセパレータ5を配置した後、非水電解質を負極缶1に注入することでリチウムを負極中に吸蔵させた。その後、セパレータ5の上に正極4を配置し、浅底の正極缶2で、負極缶1の開口を塞ぎ、コイン形状の密閉電池を得た。
 電池の寸法は、外径6.8mm、高さ2.1mmである。
 以上の製造プロセスで作製した電池を電池A1とした。
 VECを添加した非水電解質の電池内部への注入量は一定とし、非水電解質中のVEC量を1質量%、2.9質量%、4.8質量%、9.1質量%、10.7質量%または12.3質量%に変化(つまり非晶質Si相に対するVECのモル比を0.02、0.06、0.09、0.17、0.20または0.23に変化)させたこと以外は、電池A1と同様にして、電池A2~A7を作製した。
 電池A1~A7の正極缶2および負極缶1の中央部に、それぞれレーザー溶接で、正極リード端子7aおよび負極リード端子7bを溶着し、端子付電池B1~B7を作製した。
(端子溶接後の60℃保存特性) 
 電池A1~A7および電池B1~B7を、各10個ずつ、60℃環境下に保存し、100日経過後に電池を取り出して放電容量を確認し、容量維持率(保存前を100%とする)を調べた。放電は20kΩの抵抗を介して2.0Vまで行った。
(充放電サイクル特性) 
 電池A1~A7およびB1~B7について、各10個ずつ、20℃の環境下で下記条件での充放電サイクルを行った。充放電を50回繰り返した後の容量維持率(1サイクル目の容量を100%とする)を調べた。ただし、電池B1~B7については、リード端子7a、7bの溶接後に内部抵抗が上昇しなかった電池を使用した。充放電条件は以下のとおりである。
 充電:3.2V-2kΩ-60時間 
 放電:20kΩ-2.0Vカット 
 表1にそれぞれの諸元とともに、60℃保存100日後の容量維持率の平均値と、充放電サイクル50回後の容量維持率の平均値および最小値を示す。
 なお、電池A1~A7は参考例であり、電池B1、B4およびB5は実施例であり、電池B2、B3、B6およびB7は比較例である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、非晶質Si相に対するVECのモル比が0.09以上、0.17以下であれば、60℃保存100日後でも、容量維持率が高く、かつ良好な充放電サイクル特性が得られることが分かる。
 非晶質Si相に対するVECのモル比が0.09より小さいと、リード端子7a、7bの溶接後には、充放電サイクル特性が著しく低下している。これは非晶質Si相に対するVECの量が不十分であるため、VECに由来する被膜が非晶質Si相のほぼ全体を覆うことができず、負極3の被膜で覆われていない部分にリード端子7bの溶接時の熱的負荷がかかったためと考えられる。すなわち、負極3で著しい発熱反応が生じ、負極3の温度が200℃を超える温度まで急激に上昇して、ポリアクリル酸が分解し、負極3の劣化が生じたものと考えられる。その結果、充放電の繰返しによる負極3の崩壊が著しく、ひどい場合にはほとんど充放電を行うことができなくなると考えられる。
 非晶質Si相に対するVECのモル比が0.17を超える場合、非水電解質中のVEC以外の成分が相対的に少なくなるため、リード端子の溶接時における電池内部の副反応による非水電解質の消費の影響が顕著に現れ、保存時の容量劣化が加速したものと考えられる。
 本発明の端子付電池は、保存特性や充放電サイクル特性に優れることから、主電源用途やバックアップ電源用途など、多岐にわたって用いることができる。
 1:封口板(負極缶)、2:電池ケース(正極缶)、3:負極、4:正極、5:セパレータ、6:ガスケット、7a、7b:リード端子、8a、8b:固定端(溶接点)

Claims (5)

  1.  発電要素と、前記発電要素を収容する外装缶とを具備し、
     前記発電要素は、正極と、負極と、前記正極と前記負極との間に介在するセパレータと、非水電解質とを具備し、
     前記負極は、負極活物質と、結着剤と、を含む合剤を含み、
     前記負極活物質は、非晶質Si相を含み、
     前記結着剤は、ポリアクリル酸を含み、
     前記非水電解質は、非水溶媒と、前記非水溶媒に溶解させたリチウム塩とを含み、前記非水溶媒は、ビニルエチレンカーボネートを含み、
     前記外装缶には、少なくとも1つのリード端子が溶接されており、
     前記負極活物質に含まれる非晶質Si相に対する、前記ビニルエチレンカーボネートのモル比が、0.09~0.17である、端子付電池。
  2.  前記負極活物質は、前記非晶質Si相を含むTi-Si合金である、請求項1記載の端子付電池。
  3.  前記ポリアクリル酸は、質量平均分子量が30万~300万の非架橋ポリアクリル酸である、請求項1または2記載の端子付電池。
  4.  前記非水溶媒の10質量%以上が、プロピレンカーボネート、エチレンカーボネートおよびジメトキエタンよりなる群から選択される少なくとも1種である、請求項1~3のいずれか1項に記載の端子付電池。
  5.  発電要素と、前記発電要素を収容する外装缶とを具備し、
     前記発電要素は、正極と、負極と、前記正極と前記負極との間に介在するセパレータと、非水電解質とを具備し、
     前記負極は、負極活物質と、結着剤と、を含む合剤を含み、
     前記負極活物質は、非晶質Si相を含み、
     前記結着剤は、ポリアクリル酸を含み、
     前記非水電解質は、非水溶媒と、前記非水溶媒に溶解させたリチウム塩とを含み、前記非水溶媒は、ビニルエチレンカーボネートを含み、
     前記外装缶には、少なくとも1つのリード端子が溶接されており、
     前記非晶質Si相の前記非水電解質との界面の90%以上が、ビニルエチレンカーボネートの分解により生成する成分を含む被膜で被覆されている、端子付電池。
PCT/JP2012/001637 2011-03-09 2012-03-09 端子付電池 WO2012120895A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/704,558 US8778544B2 (en) 2011-03-09 2012-03-09 Battery with terminal
JP2013503401A JP5583265B2 (ja) 2011-03-09 2012-03-09 端子付電池
CN201280001605.1A CN102959786B (zh) 2011-03-09 2012-03-09 带端子电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-051198 2011-03-09
JP2011051198 2011-03-09

Publications (1)

Publication Number Publication Date
WO2012120895A1 true WO2012120895A1 (ja) 2012-09-13

Family

ID=46797866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001637 WO2012120895A1 (ja) 2011-03-09 2012-03-09 端子付電池

Country Status (4)

Country Link
US (1) US8778544B2 (ja)
JP (1) JP5583265B2 (ja)
CN (1) CN102959786B (ja)
WO (1) WO2012120895A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088462A (ja) * 2013-09-24 2015-05-07 株式会社豊田自動織機 負極活物質及び蓄電装置
JP2017130274A (ja) * 2016-01-18 2017-07-27 東ソー株式会社 リチウム二次電池用負極材およびその製造方法、リチウム二次電池
KR20180035915A (ko) * 2015-08-12 2018-04-06 와커 헤미 아게 리튬 이온 배터리용 실리콘 입자-함유 애노드 재료

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090845A (ja) 2013-11-07 2015-05-11 Tdk株式会社 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP6202217B2 (ja) * 2014-10-21 2017-09-27 株式会社豊田自動織機 高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法
JP6365682B2 (ja) 2014-11-25 2018-08-01 株式会社豊田自動織機 高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法
US20170271672A1 (en) * 2014-11-26 2017-09-21 3M Innovative Properties Company Anode materials for magnesium batteries and method of making same
US20200403221A1 (en) * 2018-02-28 2020-12-24 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319423A (ja) * 2002-06-27 2004-11-11 Hitachi Maxell Ltd 端子板付き電池
WO2006049027A1 (ja) * 2004-11-04 2006-05-11 Matsushita Electric Industrial Co., Ltd. 表面実装用端子付き二次電池
JP2007324103A (ja) * 2006-06-05 2007-12-13 Sony Corp 電解質およびこれを用いた電池
JP2008204885A (ja) * 2007-02-22 2008-09-04 Matsushita Electric Ind Co Ltd 非水電解質電池
JP2010080285A (ja) * 2008-09-26 2010-04-08 Panasonic Corp 扁平型非水電解質二次電池およびその製造方法
JP2011233497A (ja) * 2009-12-24 2011-11-17 Sony Corp リチウムイオン二次電池、リチウムイオン二次電池用負極、電動工具、電気自動車および電力貯蔵システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7112388B2 (en) 2002-06-27 2006-09-26 Hitachi Maxwell Ltd. Battery provided with terminals
JP4088957B2 (ja) * 2002-11-19 2008-05-21 ソニー株式会社 リチウム二次電池
US7635540B2 (en) * 2004-11-15 2009-12-22 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
US20070281217A1 (en) 2006-06-05 2007-12-06 Sony Corporation Electrolyte and battery using the same
US20080085454A1 (en) 2006-06-05 2008-04-10 Sony Corporation Electrolyte and battery using the same
JP5211446B2 (ja) 2006-06-07 2013-06-12 ソニー株式会社 非水電解質電池用電解質およびこれを用いた電池
US20090068567A1 (en) * 2007-09-12 2009-03-12 Sony Corporation Anode for secondary battery, method of manufacturing it, and secondary battery
JP5169435B2 (ja) 2008-02-14 2013-03-27 ソニー株式会社 二次電池およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319423A (ja) * 2002-06-27 2004-11-11 Hitachi Maxell Ltd 端子板付き電池
WO2006049027A1 (ja) * 2004-11-04 2006-05-11 Matsushita Electric Industrial Co., Ltd. 表面実装用端子付き二次電池
JP2007324103A (ja) * 2006-06-05 2007-12-13 Sony Corp 電解質およびこれを用いた電池
JP2008204885A (ja) * 2007-02-22 2008-09-04 Matsushita Electric Ind Co Ltd 非水電解質電池
JP2010080285A (ja) * 2008-09-26 2010-04-08 Panasonic Corp 扁平型非水電解質二次電池およびその製造方法
JP2011233497A (ja) * 2009-12-24 2011-11-17 Sony Corp リチウムイオン二次電池、リチウムイオン二次電池用負極、電動工具、電気自動車および電力貯蔵システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088462A (ja) * 2013-09-24 2015-05-07 株式会社豊田自動織機 負極活物質及び蓄電装置
KR20180035915A (ko) * 2015-08-12 2018-04-06 와커 헤미 아게 리튬 이온 배터리용 실리콘 입자-함유 애노드 재료
JP2018530859A (ja) * 2015-08-12 2018-10-18 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG リチウムイオン電池用のシリコン粒子含有アノード材料
US10777807B2 (en) 2015-08-12 2020-09-15 Wacker Chemie Ag Silicon particle-containing anode materials for lithium ion batteries
KR102200190B1 (ko) 2015-08-12 2021-01-11 와커 헤미 아게 리튬 이온 배터리용 실리콘 입자-함유 애노드 재료
JP2017130274A (ja) * 2016-01-18 2017-07-27 東ソー株式会社 リチウム二次電池用負極材およびその製造方法、リチウム二次電池

Also Published As

Publication number Publication date
US8778544B2 (en) 2014-07-15
JP5583265B2 (ja) 2014-09-03
JPWO2012120895A1 (ja) 2014-07-17
CN102959786B (zh) 2015-04-22
CN102959786A (zh) 2013-03-06
US20130089776A1 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5882516B2 (ja) リチウム二次電池
US11183714B2 (en) Hybrid metal-organic framework separators for electrochemical cells
JP5583265B2 (ja) 端子付電池
US7955735B2 (en) Non-aqueous electrolyte secondary battery
JP4915390B2 (ja) 非水電解質電池
US8586246B2 (en) Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
US9508984B2 (en) Coin-type lithium secondary battery
JP2009252348A (ja) 非水電解質電池
US9343745B1 (en) Surface passivation of active material particles for use in electrochemical cells
KR19990028804A (ko) 비수전해액 2차 전지
JP5995014B2 (ja) 非水電解質二次電池
WO2015001411A1 (en) Non-aqueous electrolyte secondary battery
CN112424976A (zh) 正极活性物质和二次电池
JP2007103246A (ja) 非水電解質二次電池
JPWO2004054017A1 (ja) 非水電解質二次電池
EP2157639B1 (en) Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
JP2005302382A (ja) 非水電解液二次電池パック
JP2005293960A (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2014053154A (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP2005093238A (ja) 電解質およびそれを用いた電池
JP5034287B2 (ja) 電池
JP2002222651A (ja) 非水電解質二次電池
JP2004186035A (ja) 非水電解質電池
WO2014115322A1 (ja) リチウムイオン二次電池用負極活物質及びそれらを用いたリチウムイオン二次電池
JP2010135115A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001605.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755248

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013503401

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13704558

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12755248

Country of ref document: EP

Kind code of ref document: A1