WO2012120826A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2012120826A1
WO2012120826A1 PCT/JP2012/001324 JP2012001324W WO2012120826A1 WO 2012120826 A1 WO2012120826 A1 WO 2012120826A1 JP 2012001324 W JP2012001324 W JP 2012001324W WO 2012120826 A1 WO2012120826 A1 WO 2012120826A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
vehicle
bead
pneumatic tire
distance
Prior art date
Application number
PCT/JP2012/001324
Other languages
English (en)
French (fr)
Inventor
廉明 大野
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN201280011506.1A priority Critical patent/CN103415405B/zh
Priority to JP2013503375A priority patent/JP5887338B2/ja
Priority to EP12754996.2A priority patent/EP2682286B1/en
Priority to US14/000,552 priority patent/US9499013B2/en
Publication of WO2012120826A1 publication Critical patent/WO2012120826A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/0009Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C11/033Tread patterns characterised by special properties of the tread pattern by the void or net-to-gross ratios of the patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C11/0332Tread patterns characterised by special properties of the tread pattern by the footprint-ground contacting area of the tyre tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/02Seating or securing beads on rims
    • B60C15/0236Asymmetric bead seats, e.g. different bead diameter or inclination angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C3/00Tyres characterised by the transverse section
    • B60C3/06Tyres characterised by the transverse section asymmetric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/0292Carcass ply curvature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/17Carcasses asymmetric to the midcircumferential plane of the tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/0009Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion
    • B60C2015/009Height of the carcass terminal portion defined in terms of a numerical value or ratio in proportion to section height
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • B60C15/0603Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead characterised by features of the bead filler or apex
    • B60C2015/061Dimensions of the bead filler in terms of numerical values or ratio in proportion to section height
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a pneumatic tire, and more particularly to a technique for reducing rolling resistance while ensuring sufficient durability and steering stability.
  • Patent Documents 1 and 2 There are technologies disclosed in Patent Documents 1 and 2 as techniques for reducing rolling resistance of tires.
  • the invention described in Patent Document 1 is provided with a carcass folded end and a tire cross-section height SH.
  • Short fiber having a thickness of 0.3 mm or more and 1.0 mm or less in the side wall portion region between the belt end and the carcass folded end and on the outer surface of the carcass.
  • a reinforcing layer is provided.
  • the short fiber reinforcing layer is made to contain a short fiber and carbon black in a rubber component in which 30 to 60 parts by weight of natural rubber and / or isoprene rubber is blended with 40 to 70 parts by weight of butadiene rubber, and 90% or more of the short fibers are oriented at an angle in the range of ⁇ 20 ° with respect to the tire circumferential direction, and the complex elastic modulus E * a in the orientation direction and the complex elastic modulus E * in the direction perpendicular to the orientation direction.
  • the ratio (E * a / E * b) to b is 5 or more.
  • Patent Document 2 aims to provide a pneumatic tire in which the weight reduction of the tire and the steering stability are made compatible without causing a decrease in ride comfort.
  • both ends of the bead filler are folded from the inside to the outside of the tire so that the bead filler is sandwiched between the inside and outside of the tire and the position where it does not reach the belt layer.
  • the height from the bead heel is 15 to 30% of the tire cross-section height SH
  • the rubber thickness of the sidewall is 3.5 to 5.0 mm
  • the inner liner has a Young's modulus of 5 to 50 MPa
  • the thickness Is composed of a thermoplastic elastomer composition having a thickness of 0.05 to 0.25 mm
  • the sidewall portion is composed of a rubber composition containing 70% by weight or more of natural rubber. It is characterized in.
  • Patent Document 1 reduces the rolling resistance by reducing the respective radial dimensions of the carcass folded portion and the bead filler, thereby reducing the rolling resistance.
  • a decrease in performance is dealt with by disposing a separate reinforcing layer on the sidewall portion, there is still a problem that a decrease in steering stability cannot be denied.
  • Patent Document 2 can reduce the tire weight by reducing the height of the bead filler to a low size, this also reduces the rigidity of the tire side portion.
  • the inner liner is made of a thermoplastic resin or a thermoplastic elastomer composition having a Young's modulus higher than that of rubber while having a smaller specific gravity than rubber, thereby increasing the rigidity of the side portion.
  • the steering stability cannot be sufficiently prevented from being lowered.
  • the radial height of the folded portion is 40 to 50% of the tire cross-section height SH
  • the tire radial height of the bead filler is 25 mm or more
  • the sidewall rubber When the thickness of the tire is 2.5 mm or more, for the purpose of reducing the rolling resistance of the tire, for example, the radial height of the folded portion is 10 to 40% of the tire cross-section height SH, and the radial height of the bead filler is 10 to 20 mm, and the thickness of the sidewall rubber is 1 to 2.6 mm, it is possible to reduce the rolling resistance in combination with the reduction of the eccentricity of the tire. It is still difficult to ensure sufficient durability and required handling stability even after compensating for the decrease in the rigidity of the side part by increasing the thickness of the sidewall rubber. It was.
  • an object of the present invention is to provide a pneumatic tire in which rolling resistance is effectively reduced while ensuring sufficient durability and excellent steering stability.
  • a pneumatic tire according to the present invention includes a main body portion extending in a toroidal manner between each bead core embedded in a pair of bead portions, and the bead core from the main body portion.
  • a pneumatic tire comprising a bead filler extending outward in a tire radial direction, wherein a portion of the folded portion extending radially outward from a radially outer end of the bead filler has a distance of 1 mm or less from the main body portion.
  • the bead filler extends to a position where the distance from the outer end in the radial direction is 5 mm or more, and the folded portion
  • the folded end which is the radially outer end of the tire, is in the tire width direction inner side than the neutral axis of bending of the bead portion and the sidewall portion, and in the range of 10% to 40% of the tire cross-section height from the radially innermost end.
  • a side rubber that is positioned outside the main body portion and the folded portion in the width direction and that forms part of the outer surface of the tire while covering the folded end.
  • tire cross-section height SH refers to 1 ⁇ 2 of the difference between the outer diameter of the tire and the rim diameter in a no-load state with a specified internal pressure as specified by JATMA.
  • the “bending neutral axis” refers to the boundary between the portion that receives tensile stress and the portion that receives compressive stress when the bead portion and the sidewall portion undergo bending deformation, and uses the finite element method (FEM) to Further, the strain of the sidewall portion is calculated, and the boundary point between the tensile strain and the compressive strain is continuously connected.
  • FEM finite element method
  • the carcass ply main body portion and the folded portion in the radially outer region from the bead filler are placed at a distance of 1 mm or less, and the folded end is set inward in the width direction from the bending neutral axis.
  • the folded end of the carcass ply is disposed within a range of 10% to 40% of the tire cross-section height SH from the innermost end (rim diameter line) in the tire radial direction, and the size is reduced and the tire is reduced. The eccentricity is improved and the rolling resistance can be reduced.
  • the separation between the end of the carcass and the bead filler is prevented by preventing the formation of a large rigidity step in one place by setting the distance between the turn-up end and the bead filler end to 5 mm or more and dispersing the stress. Failure can be suppressed.
  • the cross-sectional orientation in the width direction of the tire that is assembled to the applicable rim, filled with a predetermined air pressure, mounted on the vehicle, and applied with a predetermined load.
  • the tire extends between the tire equatorial plane and extends between the imaginary line passing through the maximum width position from the tire equatorial plane on the outer side wall of the vehicle and the tread grounding end on the outside of the vehicle.
  • Radial distance (Hout) extends perpendicular to the tire equator plane, the imaginary line passing through the maximum width position from the tire equator plane on the inner side of the vehicle and the tread grounding inside the vehicle
  • the radius of curvature (Rout) of the maximum width position from the tire equatorial plane of the side wall portion outside the tire mounted on the vehicle is smaller than the distance in the tire radial direction (Hin) from the end.
  • the “curvature radius at the maximum width position” herein refers to the curvature radius of an arc centered on the maximum width position from the tire equatorial plane of the sidewall portion.
  • the tread circumferential contact length of the tread ground contact surface portion that is located inside the tire in the vehicle mounting posture is increased.
  • the tread contact surface in the tread contact surface portion that will be located on the outside in the mounting posture on the vehicle becomes extremely short in the tread circumferential direction, and the footprint outline becomes a substantially triangular shape.
  • the contact length in the tread circumferential direction of the tread contact surface portion that will be positioned outside in the mounting posture to the vehicle in the load rolling of the tire will be positioned inside the vehicle.
  • the contact length of the tread contact surface part By making the contact length of the tread contact surface part as long as possible and ensuring a large contact area, the weight of the tire is reduced, and excellent maneuvering stability is achieved in both straight running and turning It can be exhibited.
  • the negative rate of the tread ground contact surface that is, the groove area ratio smaller in the outer half of the vehicle than in the inner half of the mounting, the drainage performance of the inner tread ground surface can be demonstrated.
  • the land portion rigidity on the outside of the mounting can be increased, and cornering force can be effectively generated to improve the turning ability.
  • the side rigidity on the outside of the vehicle is lowered, and the grounding property is reduced. improves.
  • the curvature radius (Rout) of the sidewall portion outside the vehicle is further reduced, and the ground contact Sufficient area is secured and driving stability is improved.
  • apprable rim refers to the rim specified in the following standards according to the tire size
  • predetermined air pressure refers to the maximum load capacity in the applicable sizes described in the following standards.
  • predetermined load is a load corresponding to the maximum load capacity in the applicable size described in the following standard.
  • the standard is an industrial standard that is valid in the region where tires are produced or used.
  • the “maximum width position of the sidewall portion from the tire equator plane” herein refers to a tire that has been filled with a predetermined air pressure and subjected to a predetermined load at each side portion at a position immediately below the load.
  • the outer surface position that is located farthest from the tire equatorial plane shall be said.
  • the tire radial distance (Hin) is preferably in the range of 1.1 to 1.3 times the tire radial distance (Hout). According to this, it is possible to improve the tire contact property on the outer side of the mounting more reliably and obtain the desired steering stability. Also, when the tire radial distance (Hin) is less than 1.1 times the tire radial distance (Hout), the effect of improving the ground contact on the outside of the mounting cannot be obtained, and the tire radial distance (Hout) exceeds 1.3 times. In this case, since the right and left ground contact characteristics are too uneven, the overall ground contact characteristics are deteriorated.
  • the thickness of the side rubber is in the range of 1 mm to 2.6 mm. According to this, it is possible to reduce rolling resistance and improve steering stability. Can be obtained. When the thickness of the side rubber is less than 1 mm, the durability is deteriorated, and when it exceeds 2.6 mm, the fuel consumption may be deteriorated.
  • one annular circumferential main groove is formed on the outer half of the tread contact surface on the mounting side of the vehicle, and two annular circumferential grooves are mounted on the inner half of the mounting.
  • a land portion row having a directional main groove and defined between one annular circumferential main groove of the outer half and an annular circumferential main groove adjacent to the inside of the vehicle of the annular circumferential main groove
  • the average width of the vehicle is preferably at least 1.5 times the average width of the land section row defined between the two annular circumferential main grooves in the inner half of the vehicle.
  • the radial dimension of the bead filler is preferably in the range of 10 mm to 20 mm. According to this, the volume of the bead filler and thus the tire weight is reduced. Thus, rolling resistance can be effectively suppressed.
  • the rolling resistance of the tire can be effectively reduced by reducing the weight while ensuring sufficient durability and excellent steering stability.
  • FIG. 1 is a cross-sectional view in the tire width direction showing a state in which a tire according to the present invention is assembled to an applicable rim, filled with a predetermined air pressure, mounted on a vehicle, and applied with a predetermined load. It is a partial expansion
  • (A) is the outline which shows the example of the footprint at the time of the straight running of the vehicle of the conventional tire
  • (b) is the outline which shows the example of the footprint at the time of the straight running of the vehicle based on this invention.
  • FIG. 3 is a cross-sectional view in the width direction of a tire illustrating a manner of generating a lateral force when the vehicle having a tread pattern illustrated in FIG. 2 is turned.
  • a tire 1 according to this embodiment shown in FIG. 1 is assembled to an applicable rim R, is filled with a predetermined air pressure, is mounted on a vehicle, and is subjected to a predetermined load.
  • the right half of the figure is located outside the vehicle, and the left half of the figure is located inside the vehicle.
  • the vehicle mounting direction follows a display unit (not shown) indicating the mounting direction or the rotation direction provided on the tire surface.
  • 3 is a tread portion
  • 5 is a side wall portion extending radially inward continuously to each side portion of the tread portion
  • 7 is a radius inside of each side wall portion 5 being continuous.
  • a carcass 11 main body portion 11a consisting of one carcass ply extends in a toroidal manner.
  • a folded portion 11b that extends from the main body portion 11a around the bead core 9 and extends from the inner side to the outer side in the tire width direction.
  • a bead filler 13 extending from the position adjacent to the outer peripheral surface of the bead core 9 to the outer side in the radial direction is disposed between the main body portion 11 a and the turned-up portion 11 b of the carcass 11.
  • the carcass folded portion 11b is disposed in a region radially outward from the main body portion 11a while maintaining a distance of 1 mm or less.
  • the folded portion 11b is in contact with the main body portion 11a, but may be separated.
  • the distance is defined as 1 mm or less, and the distance of the perpendicular drawn from the folded portion 11b to the main body portion 11a is 1 mm or less. It means that.
  • a radially outer end (also referred to as a folded end) 11c of the turned-up portion 11b and a radially outer end 13a of the bead filler 13 have a distance of 5 mm or more at the shortest distance, and are further outside in the radial direction of the turned-up portion.
  • the end 11c is a neutral axis of bending of the bead portion and the sidewall portion (in this example, not shown, but inside the bead portion and the sidewall portion, the carcass main body portion is substantially constant between the tire outer surface and the carcass. It is arranged in the range of 10% to 40% of the cross-sectional height SH in the radial direction on the inner side in the width direction than the carcass main body portion while maintaining the distance.
  • a side rubber 5a forming a part of the outer surface of the tire is disposed outside the carcass while covering the folded end 11c.
  • a belt 15 is disposed on the outer peripheral side of the crown area of the carcass 11. Rigidity is increased by extending the carcass main body portion 11a and the folded portion 11b, the folded end 11c is set to the inner side in the width direction than the neutral axis of bending, and the side rubber 5a is disposed on the outer side in the width direction of the folded end 11c. By doing so, it is possible to prevent a crack starting from the folded end 11c and to ensure durability.
  • the turn-back end 11c is disposed within a range of 10% to 40% of the tire cross-section height SH from the innermost end (rim diameter line) in the tire radial direction to reduce the weight and reduce the tire eccentricity. As a result, the rolling resistance can be reduced. Further, it is preferable that the turning end 11c is disposed within a range of 10% to 30% of the tire cross-section height SH from the innermost end (rim diameter line) in the tire radial direction. According to this, the rolling resistance is reduced. The effect can be obtained more effectively. Furthermore, by setting the distance between the turned-back end 11c and the bead filler end 13a to 5 mm or more, the failure can be suppressed by dividing the rigid end in two places and dispersing the stress.
  • the thickness of the side rubber 5a is in the range of 1 mm to 2.6 mm, more preferably 1.5 mm to 2.0 mm, and the bead filler 13 has a tire radial dimension in the range of 10 to 20 mm, particularly preferably. In the range of 10 mm to 15 mm, the tire weight is reduced, and according to this, the rolling resistance can be further reduced.
  • a plurality of annular circumferential main grooves extending continuously in a required form such as a linear shape or a zigzag shape in the tread circumferential direction. 19 is provided on the tread ground contact surface 17 of the pneumatic tire 1 having such an internal reinforcement structure.
  • the tread grounding surface 17 may be provided with a lateral groove or an inclined groove extending across the annular circumferential main groove 19.
  • the tire side portion 21a that extends perpendicular to the tire equatorial plane E and is located outside the vehicle in the cross section in the tire width direction as shown in the figure, and the vehicle Imaginary line segments 25a and 25b passing through the maximum width positions 23a and 23b from the tire equatorial plane E, and the tread grounding end 27a on the outer side of the vehicle.
  • the radial distance (Hout) between the tire and the tire is smaller than the radial distance (Hin) between the tire and the tread grounding end 27b on the inner side of the vehicle.
  • the range is 1.1 to 1.3 times the distance (Hout) in the tire radial direction.
  • the negative rate of the tread contact surface 17, that is, the groove area ratio is set to be smaller in the outer half of the mounting on the vehicle than in the inner half of the mounting.
  • the negative rate on the inner side of the wearing is in a range of 1.5 to 2.0 times the negative rate on the outer side of the wearing.
  • the tire equator line e of the tread grounding surface 17 of the tire 1 in the mounting position on the vehicle is closer to the inner side of the vehicle.
  • annular circumferential main grooves 19 that form a straight line in the figure, which allow an extended form such as a straight line or a zigzag shape, are provided, and in the half part on the outer side of the vehicle in a required form
  • One annular circumferential main groove 19 extending to provide the negative rate to the tread ground surface 17 as expected, and one annular circumferential main groove 19 on the outer half
  • the average width w 1 of the land portion row 29 defined between the annular circumferential main groove 19 and the annular circumferential main groove 19 adjacent to the inside of the vehicle is defined as the two annular portions of the inner half of the vehicle.
  • Each of the land portion rows 35 defined between the groove 19 and the inner tread grounding end 27b can be in a range of 25 to 30% of the tread grounding surface width W.
  • the virtual line in FIG. 2 illustrates the outline of the footprint.
  • the radius of curvature (Rout) of the maximum width position 23a of the tire side portion 21a outside the vehicle is set to the maximum width position 23b of the tire side portion 21b inside the vehicle.
  • the cross-sectional shape in the tire width direction is symmetric with respect to the tire equator line e.
  • the outline of the footprint of the tire when the vehicle is traveling straight is substantially rectangular as shown in FIG. 3 (b).
  • the negative rate of the tread ground contact surface 17 is set to be smaller at the outer half of the vehicle than the inner half of the vehicle to increase the rigidity of the outer land of the vehicle.
  • a sufficiently large lateral force against the centrifugal force can be generated by the land portion located outside the turn when the vehicle is turning, in particular, by the land portion on the outside of the vehicle.
  • the turn-back ends are on the inner side in the tire width direction with respect to the neutral axis of the bead portion and the sidewall portion, and the tire is assembled to the applicable rim and filled with a predetermined air pressure.
  • the radius of curvature (Rout) of the maximum width position from the tire equatorial plane of the sidewall portion outside the vehicle is 60 mm, with the cross-sectional posture in the width direction of the tire applied to the vehicle and applied with a predetermined load.
  • the radius of curvature (Rin) of the maximum width position from the tire equatorial plane on the inner sidewall of the tire is 80mm, and the negative rate of the tread ground contact surface is 30% in the outer half of the vehicle. The other half is 35%.
  • the turn-up ends are inward in the tire width direction with respect to the neutral axis of the bead portion and the sidewall portion, and the tire is assembled to the applicable rim and filled with a predetermined air pressure.
  • the radius of curvature (Rout) at the maximum width position from the tire equatorial plane of the sidewall portion outside the vehicle is 70 mm
  • the radius of curvature (Rin) of the maximum width position from the tire equatorial plane of the inner sidewall of the tire is 70 mm
  • the negative rate of the tread ground surface is 30% in the outer half of the vehicle, and the inner half 35%.
  • Carcass folding height (%)” shown in Table 1 represents the radial distance from the innermost end (rim line) in the radial direction of the tire to the folding end of the carcass as a ratio (%) to the tire cross-section height.
  • “Hin / Hout” represents the magnification of the tire radial direction distance (Hin) at the maximum width position on the vehicle mounting inner side with respect to the tire radial direction distance (Hout) at the maximum width position on the vehicle mounting outer side.
  • the “bead filler height (mm)” represents the tire radial dimension (mm) of the bead filler.
  • the portion of the carcass folded portion that extends radially outward from the radially outer end of the bead filler has a distance of 1 mm from the carcass main body portion.
  • the portion of the carcass folded portion that extends radially outward from the radially outer end of the bead filler maintains a distance of 1.2 mm from the carcass main body portion.
  • a portion of the folded portion of the carcass that extends radially outward from the radially outer end of the bead filler is disposed with a distance of 0.8 mm from the main portion of the carcass.
  • the distance from the radially outer end of the bead filler to the carcass folded end is less than 5 mm, and the tires of Examples 1 to 13 and Comparative Examples 1 and 3 are radially outer ends of the bead filler. The distance from the turning end of the carcass to 5 mm or more.
  • the rolling resistance is determined by assembling the tire to a standard rim (4.5 J ⁇ 13) specified by JATMA, filling the air pressure of 210 KPa, and loading 73% of the maximum load capacity specified by JATMA (2. 81 kN) is applied and the resistance in the traveling direction generated on the ground contact surface when rolling at a speed of 80 km / h using an indoor drum tester is determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 すぐれた操縦安定性と耐久性を確保しつつ、転がり抵抗を有効に低減させる。 ビードコア9間に延びる本体部分11aと、本体部分11aからビードコア9の周りで折返される折返し部分11bとを有するカーカスプライと、ビードフィラー13と、を備える空気入りタイヤ1において、折返し部分11bの、ビードフィラー13の半径方向外端13aよりも半径方向外側に延在する部分が、本体部分11aと1mm以下の距離を保持しながら、ビードフィラーの半径方向外端13aからの距離が5mm以上となる位置まで延び、折返し端11cが、ビード部7およびサイドウォール部5の曲げの中立軸よりもタイヤ幅方向内側で、かつ半径方向の最内端からタイヤ断面高さSHの10%~40%の範囲に位置するとともに、折返し端11cを覆いながら、本体部分11aおよび折返し部分11bの幅方向外側に位置し、タイヤ外面の一部をなすサイドゴム5aを備えてなる。

Description

空気入りタイヤ
 この発明は、空気入りタイヤに関するものであり、とくには、充分な耐久性と操縦安定性を確保しながらも、転がり抵抗を低減させる技術に関する。
 タイヤの転がり抵抗の低減を図る技術としては、特許文献1,2等に開示されたものがある。特許文献1に記載された発明は、操縦安定性と乗り心地性能を犠牲にすることなく、転がり抵抗を減じうる空気入りタイヤを提供することを目的として、カーカス折返し端を、タイヤ断面高さSHの0.15倍以下の高さに位置させ、ベルト端とカーカス折返し端との間のサイドウォール部領域内であってカーカスの外面に、厚さが0.3mm以上1.0mm以下の短繊維補強層を配するものである。また、その短繊維補強層を、ブタジエンゴム40~70重量部に対して、天然ゴムおよび/又はイソプレンゴム30~60重量部を配合したゴム成分に、短繊維およびカーボンブラックを含有させ、かつ、短繊維の90%以上を、タイヤ周方向に対して±20°の範囲の角度で配向し、しかもこの配向方向の複素弾性率E*aと、配向方向に直角な方向の複素弾性率E*bとの比(E*a/E*b)を5以上としたものである。
 また、特許文献2に記載された発明は、タイヤの軽量化と操縦安定性とを乗り心地性の低下をもたらすことなく両立するようにした空気入りタイヤを提供することを課題として、カーカス層を単層構造にすると共に、その両端部を左右のビードコアの周りにビードフィラーを挟むようにタイヤ内側から外側へタイヤ最大幅位置を超え、かつベルト層に到達しない位置まで折り返した構成にし、ビードフィラーの、ビードヒールからの高さをタイヤ断面高さSHの15~30%とし、サイドウォール部のゴム厚さを3.5~5.0mmとし、インナーライナーをヤング率が5~50MPaで、厚さが0.05~0.25mmの熱可塑性エラストマー組成物で構成し、サイドウォール部を天然ゴムを70重量%以上配合したゴム組成物で構成したことを特徴とするものである。
特開平8-175119号公報 特開2009-1228号公報
 しかるに、特許文献1の発明は、カーカス折返し部分およびビードフィラーのそれぞれの半径方向寸法を小さくし、軽量化することにより転がり抵抗を低減するものであり、タイヤサイド部の剛性低下に起因する操縦安定性の低下に対しては、サイドウォール部に別個の補強層を配設することで対処しているものの、これによってなお操縦安定性の低下が否めないという問題があった。
 特許文献2の発明は、ビードフィラーの高さを低く抑えて小型化することで、タイヤの軽量化を実現することはできるものの、これもまたタイヤサイド部の剛性低下の故に、サイドウォール部のゴム厚みを厚く確保し、そして、インナーライナーをゴムより比重が小さい一方で、ゴムよりヤング率の高い熱可塑性樹脂又は熱可塑性エラストマー組成物で形成することで、サイド部剛性の増加を図っているものの、操縦安定性の低下を充分に防ぐことができないという問題があった。
 すなわち、一般的な乗用車用空気入りラジアルタイヤでは、折返し部分の半径方向高さが、タイヤ断面高さSHの40~50%、ビードフィラーのタイヤ半径方向高さが25mm以上、また、サイドウォールゴムの厚みが2.5mm以上であるところ、タイヤの転がり抵抗の低減を目的として、たとえば、折返し部分の半径方向高さを、タイヤ断面高さSHの10~40%、ビードフィラーの半径方向高さを10~20mm、そしてサイドウォールゴムの厚みを1~2.6mmとしたときは、タイヤの偏芯が低減されることも相俟って、転がり抵抗を低減させることは可能となるが、タイヤサイド部の剛性の低下を、サイドウォールゴムの厚み等の増加をもって補ってなお、充分な耐久性と所要の操縦安定性を確保することは甚だ困難であった。
 それゆえこの発明は、充分な耐久性とすぐれた操縦安定性を確保しつつ、転がり抵抗を有効に低減した空気入りタイヤを提供することをその目的とする。
 この発明は、上記課題を解決するためになされたものであり、この発明の空気入りタイヤは、一対のビード部内に埋設したそれぞれのビードコア間にトロイダルに延びる本体部分と、該本体部分から前記ビードコアの周りで折返されタイヤ半径方向外側に延びる折返し部分とを有する、プライコードのゴム被覆になる一枚以上のカーカスプライと、前記本体部分と折返し部分との間に配設されて、前記ビードコアからタイヤ半径方向外側に延びるビードフィラーと、を備える空気入りタイヤにおいて、前記折返し部分の、ビードフィラーの半径方向外端よりも半径方向外側に延在する部分が、前記本体部分と1mm以下の距離を保持しながら、前記ビードフィラーの半径方向外端からの距離が5mm以上となる位置まで延び、前記折返し部分の半径方向外端である折返し端が、ビード部およびサイドウォール部の曲げの中立軸よりもタイヤ幅方向内側で、かつ半径方向の最内端からタイヤ断面高さの10%~40%の範囲に位置するとともに、前記折返し端を覆いながら、前記本体部分および前記折返し部分の幅方向外側に位置し、タイヤ外面の一部をなすサイドゴムを備えることを特徴とするものである。ここで、左右でタイヤ断面高さSHが異なる場合、「タイヤ断面高さSHの10%~40%の範囲」とは、タイヤ幅方向の一方側は一方のSHに従い、他方側は他方のSHに従うものとする。なお、ここでいう「タイヤ断面高さSH」とは、JATMAで規定される通り、規定内圧を充填し無負荷状態でのタイヤの外径とリム径の差の1/2を指す。そして「曲げの中立軸」とは、ビード部およびサイドウォール部が曲げ変形する際に引張応力を受ける部分と圧縮応力を受ける部分の境界を指し、有限要素法(FEM)を用いて、ビード部およびサイドウォール部の歪を算出し、引張歪と圧縮歪の境界点を連続的に結ぶことにより得られる。
 かかる空気入りタイヤにあっては、ビードフィラーよりも半径方向外側領域のカーカスプライの本体部分と折返し部分を1mm以下の距離で沿わせ、折り返し端を、曲げの中立軸よりも幅方向内側に設定し、さらに折返し端の幅方向外側にサイドゴムを配設することにより、耐亀裂進展性を高めて、耐久性能を確保することができる。また、カーカスプライの折返し端部を、タイヤ半径方向最内端(リム径ライン)からタイヤ断面高さSHの10%~40%の範囲内に配置し、小型化することにより軽量化するとともにタイヤ偏芯性が向上して、転がり抵抗を低減することができる。さらに折返し端とビードフィラー端の距離を5mm以上としたことにより、1箇所に大きな剛性の段差ができるのを防止し、応力を分散させることで、カーカスおよびビードフィラーの端部を起点としたセパレーション故障を抑制することができる。
 なお、この発明の空気入りタイヤにあっては、空気入りタイヤを適用リムに組み付け、所定の空気圧を充填して車輌に装着するとともに、所定の負荷を作用させたタイヤの、幅方向の断面姿勢で、タイヤ赤道面に直交して延びて、車輌への装着外側のサイドウォール部のタイヤ赤道面からの最大幅位置を通る仮想線分と、車輌の外側となるトレッド接地端との間のタイヤ半径方向距離(Hout)が、タイヤ赤道面に直交して延びて、車輌への装着内側のサイドウォール部のタイヤ赤道面からの最大幅位置を通る仮想線分と、車輌の内側となるトレッド接地端との間のタイヤ半径方向距離(Hin)より小さく、車輌への装着外側のサイドウォール部のタイヤ赤道面からの最大幅位置の曲率半径(Rout)が、前記車輌への装着内側のサイドウォール部のタイヤ赤道面からの最大幅位置の曲率半径(Rin)より小さく、トレッド接地面のネガティブ率が、車輌への装着外側の半部で、装着内側の半部より小さくなることが好ましい。なお、ここでいう「最大幅位置の曲率半径」とは、サイドウォール部のタイヤ赤道面からの最大幅位置を中心とする円弧の曲率半径を指す。
 タイヤを装着した車輌の直進走行状態の下では、多くの場合は、タイヤの、車輌への装着姿勢で内側に位置することとなるトレッド接地面部分のトレッド周方向の接地長さが長くなる一方で、車輌への装着姿勢で外側に位置することとなるトレッド接地面部分のトレッド周方向の接地長さが極端に短くなって、フットプリント輪郭線がほぼ三角形状になるが、かかる空気入りタイヤにあっては、タイヤの負荷転動に当って、車輌への装着姿勢で外側に位置することになるトレッド接地面部分のトレッド周方向の接地長さを、車輌の内側に位置することになるトレッド接地面部分の接地長さと同等にまで長くして、大きな接地面積を確保することで、タイヤを軽量化しながらも、直進走行および旋回走行のいずれにおいてもすぐれた操縦安定性を発揮させることができる。また、トレッド接地面のネガティブ率、すなわち、溝面積比率を、車輌への装着外側の半部で、装着内側の半部より小さくすることで、装着内側のトレッド接地面の排水性能を発揮させるとともに、装着外側の陸部剛性を高めて、効果的にコーナリングフォースを発生し旋回能力を向上させることができる。
 しかもこのタイヤでは、車輌の外側でのタイヤ半径方向距離(Hout)を、車輌の内側でのタイヤ半径方向距離(Hin)より小さくすることによって、車輌の外側のサイド剛性が低くなり、接地性が向上する。また、車輌の外側でのサイドウォール部の曲率半径(Rout)を、車輌の内側でのサイドウォール部の曲率半径(Rin)より小さくすることによって、さらに車輌の外側のサイド剛性が低くなり、接地面積が充分に確保され、操縦安定性が向上する。
 ここで、「適用リム」とは、タイヤのサイズに応じて下記の規格に規定されたリムをいい、「所定の空気圧」とは、下記の規格に記載されている、適用サイズにおける最大負荷能力に対応する空気圧をいい、「所定の負荷」とは、下記の規格に記載されている、適用サイズにおける最大負荷能力に相当する荷重をいうものとする。
そして規格とは、タイヤが生産または使用される地域に有効な産業規格であって、たとえば、アメリカ合衆国では“THE TIRE AND RIM ASSOCIATION INC.”の“YEAR BOOK”であり、欧州では、“The European Tyre and Rim Technical Organisation”の“STANDARDS MANUAL”であり、日本では日本自動車タイヤ協会の“JATMA YEAR BOOK”である。
 またここで、「サイドウォール部のタイヤ赤道面からの最大幅位置」とは、所定の空気圧を充填するとともに、所定の負荷を作用させたタイヤの、負荷の直下位置での、各サイド部の、タイヤ赤道面から最も離隔して位置する外表面位置をいうものとする。
 なお、この発明の空気入りタイヤにあっては、前記タイヤ半径方向距離(Hin)が、前記タイヤ半径方向距離(Hout)の1.1~1.3倍の範囲であることが好ましく、これによれば、より確実に、装着外側のタイヤ接地性を向上させて、所望の操縦安定性を得ることができる。また、タイヤ半径方向距離(Hin)が、タイヤ半径方向距離(Hout)の1.1倍未満である場合には、装着外側の接地性向上効果が得られず、1.3倍を超えた場合には、左右接地性が不均一になりすぎるため、全体の接地性が悪化する。
 また、この発明の空気入りタイヤにあっては、前記サイドゴムの厚さが、1mm~2.6mmの範囲であることが好ましく、これによれば、転がり抵抗の低減と操縦安定性の改善を効果的に得ることができる。サイドゴムの厚さが1mm未満の場合には耐久性が悪化し、2.6mmを超えると燃費が悪化してしまうおそれがある。
 また、この発明の空気入りタイヤにあっては、前記トレッド接地面の、前記車輌への装着外側の半部に一本の環状周方向主溝を、装着内側の半部に二本の環状周方向主溝を備え、前記外側の半部の一本の環状周方向主溝と、該環状周方向主溝の車輌の内側に隣接する環状周方向主溝との間に区画される陸部列の平均幅が、車輌の内側半部の二本の環状周方向主溝間に区画される陸部列の平均幅の1.5倍以上であることが好ましく、これによれば、所期した排水性能を発揮させるとともに、旋回走行時の発生横力を高めて旋回性能を向上させることができる。
 さらに、この発明の空気入りタイヤにあっては、前記ビードフィラーのタイヤ半径方向寸法が、10mm~20mmの範囲であることが好ましく、これによれば、ビードフィラーの体積、ひいては、タイヤ重量を低減させて、転がり抵抗を有効に抑制することができる。
 この発明によれば、充分な耐久性とすぐれた操縦安定性を確保しつつ、軽量化によってタイヤの転がり抵抗を有効に低減させることができる。
この発明にしたがうタイヤを、適用リムに組み付けて、所定の空気圧を充填し、車輌に装着するとともに、所定の負荷を作用させた状態を示すタイヤ幅方向断面図である。 トレッド接地面への周方向主溝の形成例を示すトレッドパターンの部分展開平面図である。 (a)は従来タイヤの車輌の直進走行時のフットプリントの例を示す輪郭線であり、(b)はこの発明に基づく車輌の直進走行時のフットプリントの例を示す輪郭線である。 図2に示すトレッドパターンを有するタイヤの、車輌の旋回走行時の横力の発生態様を例示するタイヤの幅方向断面図である。
 以下、この発明の実施の形態を図面に基づき詳細に説明する。
 図1に示すこの実施形態のタイヤ1は、適用リムRに組みつけられ、所定の空気圧を充填して車輌に装着するとともに、所定の負荷を作用させた状態であり、タイヤ赤道面Eに対し、図の右半部が車輌の外側に位置し、図の左半部が車輌の内側に位置することになる。なお、車輌の装着方向は、タイヤ表面に設けられた、装着方向あるいは回転方向を示す表示部(図示省略)に従うものとする。
 また、図中3はトレッド部を、5はトレッド部の各側部に連続して半径方向内側へ延びる各サイドウォール部を、そして7は、各サイドウォール部5の半径方向内側に連続させて設けた各ビード部をそれぞれ示す。
 図1に示すところでは、それぞれのビード部7に埋設配置した一対のビードコア9間に、一枚以上のカーカスプライ、図では一枚のカーカスプライからなるカーカス11の本体部分11aをトロイダルに延在させるとともに、その本体部分11aからビードコア9の周りで、タイヤ幅方向の内側から外側へ巻上げて延びる折返し部分11bを有する。また、カーカス11の本体部分11aと折返し部分11bとの間には、ビードコア9の外周面と隣接する位置から、半径方向外方に向けて先細りに延びるビードフィラー13を配設し、ビードフィラー13よりも半径方向外側の領域において、カーカスの折返し部分11bを、本体部分11aと1mm以下の距離を保ちながら配設する。図示の例では、折返し部分11bは本体部分11aと接触しているが、離れていてもよく、この場合は1mm以下で定義し、折返し部分11bから本体部分11aまで下ろした垂線の距離が1mm以下であることを指す。また、折返し部分11bの半径方向外側端部(折返し端とも言う。)11cと、ビードフィラー13の半径方向外端13aとは最短距離で5mm以上の距離を有し、さらに折返し部分の半径方向外端11cを、ビード部およびサイドウォール部の曲げの中立軸(この例では、図示はしないが、ビード部およびサイドウォール部の内部において、タイヤ外表面とカーカスの間でカーカス本体部とほぼ一定の距離を保ちながらカーカス本体部に沿うように位置している)よりも幅方向内側で、半径方向には、断面高さSHの10%~40%の範囲に配置する。また、タイヤ外面の一部をなすサイドゴム5aを、折返し端11cを覆いながらカーカスの外側に配設する。カーカス11のクラウン域の外周側には、ベルト15を配設する。カーカスの本体部分11aと折返し部分11bを沿わせることで剛性を高め、折り返し端11cを、曲げの中立軸よりも幅方向内側に設定し、さらに折返し端11cの幅方向外側にサイドゴム5aを配設することにより、折返し端11cを起点とした亀裂を防止し、耐久性能を確保することができる。また、折返し端11cを、タイヤ半径方向最内端(リム径ライン)からタイヤ断面高さSHの10%~40%の範囲内に配置し、小型化することにより軽量化するとともにタイヤ偏芯性が向上して、転がり抵抗を低減することができる。また好ましくは、折返し端11cをタイヤ半径方向最内端(リム径ライン)からタイヤ断面高さSHの10%~30%の範囲内に配置することが望ましく、これによれば、転がり抵抗の低減効果をより効果的に得ることができる。さらに折返し端11cとビードフィラー端13aの距離を5mm以上としたことにより、剛性端を2箇所に分け、応力を分散させることで、故障を抑制することができる。
 好ましくは、サイドゴム5aの厚さを1mm~2.6mmの範囲、より好適には1.5mm~2.0mmとして、ビードフィラー13の、タイヤ半径方向寸法を10~20mmの範囲、なかでも好適には10mm~15mmの範囲として、タイヤ重量の低減を図り、これによれば、転がり抵抗をより低減することができる。
 このような内部補強構造の空気入りタイヤ1のトレッド接地面17には、たとえば、トレッド周方向へ直線状、ジグザグ状等の所要の形態で連続して延在する複数本の環状周方向主溝19を設ける。なお図示はしないが、トレッド接地面17には、環状周方向主溝19に交差して延びる、横溝ないしは傾斜溝を設けることもできる。
 ところで、この発明に係るタイヤ1では、図示のような、タイヤ幅方向の断面内で、タイヤ赤道面Eに直交して延びて、車輌の外側に位置することになるタイヤサイド部21aおよび、車輌の内側に位置することになるタイヤサイド部21bのそれぞれの、タイヤ赤道面Eからの最大幅位置23a,23bを通るそれぞれの仮想線分25a,25bと、車輌の外側となるトレッドの接地端27aとの間のタイヤ半径方向距離(Hout)を、車輌の内側となるトレッド接地端27bとの間のタイヤ半径方向距離(Hin)より小さくし、好ましくは、後者のタイヤ半径方向距離(Hin)を、前者のタイヤ半径方向距離(Hout)の1.1~1.3倍の範囲とする。
 そしてここでは、トレッド接地面17のネガティブ率、すなわち溝面積比率を、車輌への装着外側の半部で装着内側の半部より小さくしている。また好適には、装着内側のネガティブ率を、装着外側のネガティブ率の1.5~2.0倍の範囲であることが望ましい。
 以上のようなタイヤ1においてより好ましくは、図2にトレッドパターンを展開図で例示するように、車輌への装着姿勢のタイヤ1のトレッド接地面17の、タイヤ赤道線eより、車輌の内側の半部に、直線状、ジグザグ状等の延在形態を可とする、図では直線状をなす二本の環状周方向主溝19を設けるとともに、車輌の外側の半部に、所要の形態で延在する一本の環状周方向主溝19を設けて、トレッド接地面17に、所期した通りのネガティブ率を付与するとともに、前記外側の半部の一本の環状周方向主溝19と、該環状周方向主溝19の車輌の内側に隣接する環状周方向主溝19との間に区画される陸部列29の平均幅wを、車輌の内側の半部の二本の環状周方向主溝19間に区画される陸部列31の平均幅wの1.5倍以上として、所期した排水性能を発揮させるとともに、車輌の外側の半部に所要に応じた陸部剛性を付与して、旋回走行時の発生横力を高めて旋回性能を向上させることができる。
 ここで、車輌の外側半部の一本の環状周方向主溝19と、外側トレッド接地端27aとの間に区画される陸部列33および、車輌の内側半部のショルダー側環状周方向主溝19と内側トレッド接地端27bとの間に区画される陸部列35のそれぞれはいずれも、トレッド接地面幅Wの25~30%の範囲とすることができる。なお、図2中の仮想線は、フットプリントの輪郭線を例示する。
 このように構成してなるタイヤ1によれば、車輌の外側のタイヤサイド部21aの、最大幅位置23aの曲率半径(Rout)を、車輌の内側のタイヤサイド部21bの、最大幅位置23bの曲率半径(Rin)より小さくして、負荷の作用時のタイヤサイド部21aの、膨出方向の撓み変形量を十分大きくすることで、タイヤ幅方向の断面形状をタイヤ赤道線eに対して対称となる従来タイヤでは、図3(a)に示すような、略三角形状であった、車輌の直進走行時のタイヤのフットプリント輪郭線を、図3(b)に示すような、ほぼ方形形状に改善して、車輌の外側のトレッド接地面の、トレッド周方向の接地長さを十分長く確保することができ、これにより、タイヤの軽量化を図ってなお、大きな接地面積の下での、高い路面グリップ力に基づいて、直進走行時および旋回走行時のそれぞれで、すぐれた操縦安定性を発揮させることができる。
 しかもこのタイヤ1では、トレッド接地面17のネガティブ率を、車輌への装着外側の半部で、装着内側の半部より小さくして、装着外側の陸部の剛性を高めることで、図4に例示するように、車輌の旋回走行時に旋回の外側に位置することになる、とくに、その装着外側の陸部により、遠心力に対抗する、十分大きな横力を発生させることができる。
 サイズが155/65R13の、実施例1~13および比較例1~3のタイヤそれぞれにつき、転がり抵抗試験操縦安定性試験、および耐久性試験を行って、比較例1のタイヤの測定値をコントロールとして指数評価したところ、表1に示す結果を得た。
 なおここで、実施例1~13のタイヤは折返し端が、ビード部およびサイドウォール部の曲げの中立軸よりもタイヤ幅方向内側であり、タイヤを適用リムに組み付け、所定の空気圧を充填して車輌に装着するとともに、所定の負荷を作用させたタイヤの幅方向の断面姿勢で、車輌への装着外側のサイドウォール部のタイヤ赤道面からの最大幅位置の曲率半径(Rout)が60mm、車輌への装着内側のサイドウォール部のタイヤ赤道面からの最大幅位置の曲率半径(Rin)が80mmであり、トレッド接地面のネガティブ率が、車輌への装着外側の半部で30%、装着内側の半部で35%である。
 また、比較例1~3のタイヤは折返し端が、ビード部およびサイドウォール部の曲げの中立軸よりもタイヤ幅方向内側であり、タイヤを適用リムに組み付け、所定の空気圧を充填して車輌に装着するとともに、所定の負荷を作用させたタイヤの幅方向の断面姿勢で、車輌への装着外側のサイドウォール部のタイヤ赤道面からの最大幅位置の曲率半径(Rout)が70mm、車輌への装着内側のサイドウォール部のタイヤ赤道面からの最大幅位置の曲率半径(Rin)が70mmであり、トレッド接地面のネガティブ率が、車輌への装着外側の半部で30%、装着内側の半部で35%である。
 表1に示す「カーカス折返し高さ(%)」とは、タイヤの半径方向の最内端(リムライン)からカーカスの折返し端までの半径方向距離をタイヤ断面高さに対する割合(%)で表したものであり、「Hin/Hout」とは、車輌装着内側における最大幅位置のタイヤ半径方向距離(Hin)の、車輌装着外側における最大幅位置のタイヤ半径方向距離(Hout)に対する倍率を表す。また「ビードフィラー高さ(mm)」とは、ビードフィラーのタイヤ半径方向寸法(mm)を表す。
 実施例1~12、および比較例1,2のタイヤは、カーカスの折返し部分の、ビードフィラーの半径方向外端よりも半径方向外側に延在する部分が、カーカスの本体部分と1mmの距離を保持し、比較例3のタイヤは、カーカスの折返し部分の、ビードフィラーの半径方向外端よりも半径方向外側に延在する部分が、カーカスの本体部分と1.2mmの距離を保持し、実施例13のタイヤは、カーカスの折返し部分の、ビードフィラーの半径方向外端よりも半径方向外側に延在する部分が、カーカスの本体部分と0.8mmの距離を保持して配置される。また、比較例2のタイヤはビードフィラーの半径方向外端からカーカスの折返し端までの距離が5mm未満であり、実施例1~13および比較例1,3のタイヤはビードフィラーの半径方向外端からカーカスの折返し端までの距離が5mm以上である。
Figure JPOXMLDOC01-appb-T000001
(性能評価方法)
 ここで、転がり抵抗は、タイヤを、JATMAに規定する標準リム(4.5J×13)に組付けるとともに、210KPaの空気圧を充填し、JATMAに規定する最大負荷能力の73%の負荷(2.81kN)を作用させて、室内ドラム試験機を用いて80km/hの速度で転動させたときの接地面に生じる進行方向の抵抗を測定することにより求め、また、操縦安定性は、タイヤを車輌指定リム(4.5J×13)に組付けるとともに、車輌指定の空気圧(230KPa)を充填して乗用車輌に装着し、2名乗車の荷重条件(1.19~2.7kN)下で、乗用車一般領域の速度(60~120km/h)にて屋外テストコースを実車走行したときのフィーリングによって求めた。また、耐久性は、タイヤを、JATMAに規定する標準リム(4.5J×13)に組付けるとともに、正規内圧を充填し、JATMAに規定する最大負荷能力の100%の負荷を作用させて、室内ドラム試験機を用いて60km/hの速度で転動させたときの、カーカスの折返し端を起点とした故障が発生するまでの走行距離を測定し評価した。なお指数値は大きいほどすぐれた結果を示すものとした。
 上記の評価結果から、実施例のタイヤは比較例のタイヤと比較して、操縦安定性および耐久性は確保しながらも、転がり抵抗を低減していることがわかる。
 かくしてこの発明によって、充分な操縦安定性と耐久性を確保しながらも、転がり抵抗を有効に低減し得る空気入りタイヤを提供することが可能となった。
 1 空気入りタイヤ(タイヤ)
 3 トレッド部
 5 サイドウォール部
 7 ビード部
 9 ビードコア
 11 カーカス
 13 ビードフィラー
 15 ベルト
 17 トレッド接地面
 19 環状周方向主溝

Claims (6)

  1.  一対のビード部内に埋設したそれぞれのビードコア間にトロイダルに延びる本体部分と、該本体部分から前記ビードコアの周りで折返されタイヤ半径方向外側に延びる折返し部分とを有する、プライコードのゴム被覆になる一枚以上のカーカスプライと、前記本体部分と折返し部分との間に配設されて、前記ビードコアからタイヤ半径方向外側に延びるビードフィラーと、を備える空気入りタイヤにおいて、
     前記折返し部分の、ビードフィラーの半径方向外端よりも半径方向外側に延在する部分が、前記本体部分と1mm以下の距離を保持しながら、前記ビードフィラーの半径方向外端からの距離が5mm以上となる位置まで延び、
     前記折返し部分の半径方向外端である折返し端が、ビード部およびサイドウォール部の曲げの中立軸よりもタイヤ幅方向内側で、かつ半径方向の最内端からタイヤ断面高さの10%~40%の範囲に位置するとともに、
     前記折返し端を覆いながら、前記本体部分および前記折返し部分の幅方向外側に位置し、タイヤ外面の一部をなすサイドゴムを備えることを特徴とする空気入りタイヤ。
  2.  空気入りタイヤを適用リムに組み付け、所定の空気圧を充填して車輌に装着するとともに、所定の負荷を作用させたタイヤの、幅方向の断面姿勢で、
     タイヤ赤道面に直交して延びて、車輌への装着外側のサイドウォール部のタイヤ赤道面からの最大幅位置を通る仮想線分と、車輌の外側となるトレッド接地端との間のタイヤ半径方向距離(Hout)が、タイヤ赤道面に直交して延びて、車輌への装着内側のサイドウォール部のタイヤ赤道面からの最大幅位置を通る仮想線分と、車輌の内側となるトレッド接地端との間のタイヤ半径方向距離(Hin)より小さく、
     車輌への装着外側のサイドウォール部のタイヤ赤道面からの最大幅位置の曲率半径(Rout)が、前記車輌への装着内側のサイドウォール部のタイヤ赤道面からの最大幅位置の曲率半径(Rin)より小さく、
     トレッド接地面のネガティブ率が、車輌への装着外側の半部で、装着内側の半部より小さくなる、請求項1に記載の空気入りタイヤ。
  3.  前記タイヤ半径方向距離(Hin)が、前記タイヤ半径方向距離(Hout)の1.1~1.3倍の範囲である、請求項2に記載の空気入りタイヤ。
  4.  前記サイドゴムの厚さが、1mm~2.6mmの範囲である、請求項1~3の何れか一項に記載の空気入りタイヤ。
  5.  前記トレッド接地面の、前記車輌への装着外側の半部に一本の環状周方向主溝を、装着内側の半部に二本の環状周方向主溝を備え、
     前記外側の半部の一本の環状周方向主溝と、該環状周方向主溝の車輌の内側に隣接する環状周方向主溝との間に区画される陸部列の平均幅が、車輌の内側半部の二本の環状周方向主溝間に区画される陸部列の平均幅の1.5倍以上である、請求項2~4の何れか一項に記載の空気入りタイヤ。
  6.  前記ビードフィラーのタイヤ半径方向寸法が、10mm~20mmの範囲である、請求項1~5の何れか一項に記載の空気入りタイヤ。
     
PCT/JP2012/001324 2011-03-04 2012-02-27 空気入りタイヤ WO2012120826A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280011506.1A CN103415405B (zh) 2011-03-04 2012-02-27 充气轮胎
JP2013503375A JP5887338B2 (ja) 2011-03-04 2012-02-27 空気入りタイヤ
EP12754996.2A EP2682286B1 (en) 2011-03-04 2012-02-27 Pneumatic tire
US14/000,552 US9499013B2 (en) 2011-03-04 2012-02-27 Pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011048133 2011-03-04
JP2011-048133 2011-03-04

Publications (1)

Publication Number Publication Date
WO2012120826A1 true WO2012120826A1 (ja) 2012-09-13

Family

ID=46797801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001324 WO2012120826A1 (ja) 2011-03-04 2012-02-27 空気入りタイヤ

Country Status (5)

Country Link
US (1) US9499013B2 (ja)
EP (1) EP2682286B1 (ja)
JP (1) JP5887338B2 (ja)
CN (1) CN103415405B (ja)
WO (1) WO2012120826A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5548793B1 (ja) * 2013-02-28 2014-07-16 株式会社ブリヂストン 乗用車用空気入りラジアルタイヤ
JP2016033009A (ja) * 2014-07-30 2016-03-10 錦湖タイヤ株式会社Kumho Tire Co., Inc. 空気入りタイヤ
JP2016107798A (ja) * 2014-12-05 2016-06-20 株式会社ブリヂストン 空気入りタイヤ
JP2016222163A (ja) * 2015-06-02 2016-12-28 住友ゴム工業株式会社 空気入りタイヤ
JP2017052432A (ja) * 2015-09-10 2017-03-16 横浜ゴム株式会社 空気入りタイヤ

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9823200B2 (en) * 2013-11-06 2017-11-21 Fuji Seiko Co., Ltd. Filler connection part inspection method
JP5771681B2 (ja) * 2013-12-27 2015-09-02 株式会社ブリヂストン 空気入りタイヤ
BE1023520B1 (nl) * 2015-10-15 2017-04-19 Puntgaaf Belgium Bvba Band, daarbijhorende velg en wiel daarmee samengesteld.
US20200331296A1 (en) * 2017-11-28 2020-10-22 The Yokohama Rubber Co., Ltd. Pneumatic tire and method for manufacturing rubber composition for tire used for same
DE112019003766T5 (de) * 2018-09-20 2021-04-08 The Yokohama Rubber Co., Ltd. Luftreifen
CN109835123B (zh) * 2019-01-29 2021-09-03 安徽佳通乘用子午线轮胎有限公司 一种降低滚动阻力的充气轮胎
IT201900005954A1 (it) 2019-04-17 2020-10-17 Bridgestone Europe Nv Sa Pneumatico reversibile provvisto di un doppio battistrada
JP7129950B2 (ja) * 2019-06-14 2022-09-02 株式会社ブリヂストン 空気入りタイヤ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223407A (ja) * 1994-01-21 1995-08-22 Bridgestone Corp 空気入りラジアルタイヤ
JPH08175119A (ja) 1994-12-27 1996-07-09 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2000177308A (ja) * 1998-12-15 2000-06-27 Sumitomo Rubber Ind Ltd チューブレスタイヤ
JP2004535327A (ja) * 2001-07-25 2004-11-25 ソシエテ ド テクノロジー ミシュラン 半半径方向または半径方向カーカス付きのタイヤ
JP2009001228A (ja) 2007-06-25 2009-01-08 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2010125891A (ja) * 2008-11-25 2010-06-10 Yokohama Rubber Co Ltd:The 空気入りタイヤ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2574150B2 (ja) 1986-09-24 1997-01-22 横浜ゴム株式会社 乗用車用ラジアルタイヤ
JP3358985B2 (ja) * 1998-01-07 2002-12-24 住友ゴム工業株式会社 重荷重用ラジアルタイヤ
US6527025B1 (en) * 1998-09-11 2003-03-04 Sumitomo Rubber Industries, Ltd. Tubeless tire
JP3410676B2 (ja) 1999-05-06 2003-05-26 住友ゴム工業株式会社 重荷重用ラジアルタイヤ
JP4593769B2 (ja) 2000-12-26 2010-12-08 株式会社ブリヂストン タイヤ・リムホイール組立体
JP4153224B2 (ja) * 2001-05-11 2008-09-24 不二精工株式会社 空気入りタイヤの製造方法及び空気入りタイヤ
JP2004231057A (ja) * 2003-01-30 2004-08-19 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2004237808A (ja) 2003-02-04 2004-08-26 Yokohama Rubber Co Ltd:The 空気入りタイヤ及びその製造方法
US7278455B2 (en) 2004-12-20 2007-10-09 The Goodyear Tire & Rubber Company Asymmetrical pneumatic run-flat tire
JP4764085B2 (ja) * 2005-07-22 2011-08-31 株式会社ブリヂストン 空気入りタイヤ
CN101341034B (zh) * 2005-12-20 2010-05-12 倍耐力轮胎股份公司 具有非对称胎面轮廓的充气轮胎
JP4420098B2 (ja) * 2006-11-06 2010-02-24 横浜ゴム株式会社 空気入りタイヤ
US7669625B2 (en) * 2006-11-22 2010-03-02 The Goodyear Tire & Rubber Company Asymmetrical pneumatic tire
RU2440249C1 (ru) * 2008-02-04 2012-01-20 Бриджстоун Корпорейшн Нешипованная шина

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223407A (ja) * 1994-01-21 1995-08-22 Bridgestone Corp 空気入りラジアルタイヤ
JPH08175119A (ja) 1994-12-27 1996-07-09 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2000177308A (ja) * 1998-12-15 2000-06-27 Sumitomo Rubber Ind Ltd チューブレスタイヤ
JP2004535327A (ja) * 2001-07-25 2004-11-25 ソシエテ ド テクノロジー ミシュラン 半半径方向または半径方向カーカス付きのタイヤ
JP2009001228A (ja) 2007-06-25 2009-01-08 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2010125891A (ja) * 2008-11-25 2010-06-10 Yokohama Rubber Co Ltd:The 空気入りタイヤ

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5548793B1 (ja) * 2013-02-28 2014-07-16 株式会社ブリヂストン 乗用車用空気入りラジアルタイヤ
WO2014132551A1 (ja) * 2013-02-28 2014-09-04 株式会社ブリヂストン 乗用車用空気入りラジアルタイヤ
CN105026180A (zh) * 2013-02-28 2015-11-04 株式会社普利司通 乘用车用充气子午线轮胎
US10493803B2 (en) 2013-02-28 2019-12-03 Bridgestone Corporation Pneumatic radial tire for passenger vehicles
JP2016033009A (ja) * 2014-07-30 2016-03-10 錦湖タイヤ株式会社Kumho Tire Co., Inc. 空気入りタイヤ
JP2016107798A (ja) * 2014-12-05 2016-06-20 株式会社ブリヂストン 空気入りタイヤ
JP2016222163A (ja) * 2015-06-02 2016-12-28 住友ゴム工業株式会社 空気入りタイヤ
JP2017052432A (ja) * 2015-09-10 2017-03-16 横浜ゴム株式会社 空気入りタイヤ
WO2017043205A1 (ja) * 2015-09-10 2017-03-16 横浜ゴム株式会社 空気入りタイヤ
US10870318B2 (en) 2015-09-10 2020-12-22 The Yokohama Rubber Co., Ltd. Pneumatic tire

Also Published As

Publication number Publication date
US9499013B2 (en) 2016-11-22
CN103415405B (zh) 2015-12-09
EP2682286B1 (en) 2018-01-17
JPWO2012120826A1 (ja) 2014-07-17
EP2682286A1 (en) 2014-01-08
US20130327458A1 (en) 2013-12-12
JP5887338B2 (ja) 2016-03-16
CN103415405A (zh) 2013-11-27
EP2682286A4 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
JP5887338B2 (ja) 空気入りタイヤ
US9987886B2 (en) Tire
CN110062705B (zh) 泄气保用轮胎
JP5887332B2 (ja) 空気入りラジアルタイヤ
JP6173291B2 (ja) 空気入りタイヤ
CN109843608B (zh) 充气轮胎
WO2014084370A1 (ja) 空気入りタイヤ
RU2421343C1 (ru) Шина для мотоцикла и способ ее получения
CN108367635B (zh) 充气轮胎
CN112770919A (zh) 充气轮胎
CN111823779A (zh) 摩托车用轮胎以及摩托车用轮胎组件
JP4383466B2 (ja) 自動二輪車用空気入りタイヤ
CN104470731A (zh) 机动两轮车用充气轮胎
JP2008279820A (ja) 空気入りタイヤ
JP5023602B2 (ja) 空気入りタイヤ
JP2011073648A (ja) 空気入りタイヤ
JP5103081B2 (ja) 自動二輪車用空気入りタイヤ
JP6162023B2 (ja) ランフラットラジアルタイヤ
EP3932695A1 (en) Motorcycle tire
CN114746293A (zh) 充气轮胎
JP6523138B2 (ja) 自動二輪車用空気入りラジアルタイヤ
JP6455095B2 (ja) 空気入りタイヤ
JP7469590B2 (ja) 空気入りタイヤ
WO2023105830A1 (ja) 乗用車用空気入りラジアルタイヤ
WO2023105829A1 (ja) 乗用車用空気入りラジアルタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754996

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013503375

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012754996

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14000552

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE