WO2012117743A1 - 電気推進車両用充電ケーブル - Google Patents

電気推進車両用充電ケーブル Download PDF

Info

Publication number
WO2012117743A1
WO2012117743A1 PCT/JP2012/001465 JP2012001465W WO2012117743A1 WO 2012117743 A1 WO2012117743 A1 WO 2012117743A1 JP 2012001465 W JP2012001465 W JP 2012001465W WO 2012117743 A1 WO2012117743 A1 WO 2012117743A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
electric propulsion
propulsion vehicle
temperature
electric
Prior art date
Application number
PCT/JP2012/001465
Other languages
English (en)
French (fr)
Inventor
徳明 赤井
阿部 憲生
河瀬 知之
貴志 澤
西川 雅徳
孝昭 兵頭
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280011388.4A priority Critical patent/CN103402812B/zh
Priority to EP12752722.4A priority patent/EP2682301B1/en
Priority to CA2827606A priority patent/CA2827606A1/en
Priority to US14/001,822 priority patent/US9211801B2/en
Publication of WO2012117743A1 publication Critical patent/WO2012117743A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a charging cable for an electric propulsion vehicle used for charging a battery of an electric propulsion vehicle such as an electric vehicle or a hybrid vehicle.
  • Charging infrastructure for electric propulsion vehicles includes household charging facilities that use household power sources, which are the end of the power grid, and public charging that assumes unspecified number of uses in urban areas and under the road. There are two types of equipment.
  • an electric propulsion vehicle charging cable is used to charge a battery of an electric propulsion vehicle in order to connect a power outlet of a commercial power source and a connector on the electric propulsion vehicle.
  • This charging cable includes a power plug connected to a power outlet of a commercial power source and a charging coupler connected to a connector on the electric propulsion vehicle, and a power source disposed on the outer wall of a house when charging the battery. Used with the power plug inserted into the outlet.
  • a temperature sensor for detecting the temperature of the power plug is provided, and when the temperature sensor detects that the temperature of the power plug has exceeded a predetermined temperature, a control signal is sent to an open / close circuit that opens and closes the circuit between the power plug and the charging coupler.
  • a charging cable that transmits and stops power supply from the power plug to the connector on the electric propulsion vehicle (see, for example, Patent Document 1).
  • a leakage detection unit for detecting leakage is also provided.
  • the leakage detection unit detects leakage, the connector on the electric propulsion vehicle side from the power plug The power supply to is stopped.
  • the charging cable described in Patent Document 1 is configured so that the temperature sensor detects that the temperature of the power plug or the charging coupler exceeds a predetermined temperature, or if the leakage detection unit detects a leakage, The power supply from the plug to the connector on the electric propulsion vehicle side is stopped. Therefore, when energization for a long time is required as in an electric propulsion vehicle, there is a problem that the charging time becomes long, and there is a problem in durability such as a relay due to ON / OFF control.
  • the present invention has been made in view of such problems of the prior art, and provides a charging cable for an electric propulsion vehicle that can reduce the charging time as much as possible and can improve the durability of a relay or the like.
  • the purpose is that.
  • the present invention provides an electric propulsion vehicle charging cable used for charging a battery of an electric propulsion vehicle, wherein the power plug is detachably connected to a power outlet of a commercial power source.
  • a charging coupler that is detachably connected to the electric propulsion vehicle, a temperature detection unit that detects a temperature of an electric path between the power plug and the charging coupler when charging the battery of the electric propulsion vehicle from a power outlet, and a temperature detection unit
  • a control means for generating a pilot signal indicating a charging current for the battery based on the temperature detected in step S1 and transmitting the pilot signal to the electric propulsion vehicle.
  • the charging current to the built-in battery is controlled based on the pilot signal transmitted from the control means.
  • the charging current of the electric propulsion vehicle is variably set according to the temperature of the power plug of the charging cable, the control means or the charging coupler. For example, the temperature of the power plug, control means or charging coupler is high. Then, it is possible to continue charging the battery with the charging current reduced. Thereby, compared with the conventional ON / OFF control, not only the charging time can be shortened but also the durability of the relay and the like can be improved.
  • the control means outputs from the two temperature detection means.
  • the present invention relates to a charging cable for an electric propulsion vehicle used for charging a battery of an electric propulsion vehicle, the power plug being detachably connected to a power outlet of a commercial power source, and the electric propulsion vehicle being detachable.
  • the temperature detecting means for detecting the temperature of the electric circuit between the power plug and the charging coupler, and the temperature detected by the temperature detecting means
  • a control means for generating a pilot signal indicating a charging current for the battery and transmitting the pilot signal to the electric propulsion vehicle.
  • the temperature detection means is disposed in the vicinity of each of the connection portions in the electric circuit where abnormal heat generation occurs.
  • the charging current to the built-in battery is controlled based on the pilot signal transmitted from the control means.
  • the charging current can be variably set on the electric propulsion vehicle side according to the temperature detected by the temperature detection unit. Therefore, for example, when the temperature of the power plug becomes high, it is possible to continue charging the battery while reducing the charging current and suppressing the temperature increase of the power plug. Thereby, not only the charging time can be shortened, but also the durability of the relay and the like can be improved.
  • the first temperature detection means is arranged in the power plug and / or the charging coupler
  • the second temperature detection means is arranged in the control means, so that the control means can supply power based on the outputs of the two temperature detection means. It is possible to determine the malfunction of the temperature detection means provided in the plug or the charging coupler, leading to an improvement in the reliability of the device.
  • the control means transmits a pilot signal whose waveform has been changed to the electric propulsion vehicle so as to reduce the charging current.
  • the control means transmits a pilot signal with a changed pulse width to the electric propulsion vehicle to notify the electric propulsion vehicle to lower the charging current. The same effect can be produced.
  • control means may notify the electric propulsion vehicle using the pilot signal so as to decrease the charging current stepwise.
  • the control means transmits a pilot signal whose amplitude has been changed to the electric propulsion vehicle so as to notify the electric propulsion vehicle to lower the charging current. It doesn't matter.
  • control means calculates the temperature detected by the temperature detection means, thereby transmitting a pilot signal whose amplitude has been gradually changed in advance so as not to reach the threshold value to the electric propulsion vehicle, thereby reducing the charging current. You may make it notify to this electric propulsion vehicle.
  • FIG. 1 shows a state in which a battery of an electric propulsion vehicle C is charged from a commercial power source of a general household B using the electric propulsion vehicle charging cable A according to the present invention.
  • the electric propulsion vehicle C includes a traveling motor 2, an inverter 4, a battery 6, and a charge control device 8 that are electrically connected to each other.
  • the electric propulsion vehicle charging cable (hereinafter simply referred to as “charging cable”) A according to the present invention is connected through the connected connector 10.
  • the charging cable A is used for charging the battery 6 mounted on the electric propulsion vehicle C by connecting the power outlet 12 provided on the outer wall of the house of the general home B and the electric propulsion vehicle side connector 10. .
  • the power outlet 12 is a waterproof outlet that prevents a short circuit of the electrode due to rain water or the like, and is connected to a commercial power source (not shown) that supplies a single-phase two-wire AC 100V.
  • the charging cable A includes a power plug 14 that can be detachably connected to the power outlet 12, a charging coupler 16 that is connected to the connector 10 of the electric propulsion vehicle C and supplies power, and the power plug 14 and the charging coupler 16.
  • a connection cable 18 to be connected and a charging device 20 provided in the middle of the connection cable 18 and having a control means (for example, a microcomputer) 20a are provided.
  • the power plug 14 has a temperature sensor (for example, a resistance temperature detector) 14a as temperature detecting means for detecting the temperature of the power plug 14 embedded therein, and a temperature signal output from the temperature sensor 14a. Is input to the control means 20 a of the charging device 20.
  • a temperature sensor for example, a resistance temperature detector
  • the charging device 20 further includes an open / close circuit (for example, a relay, not shown) that opens and closes an electric circuit between the power plug 14 and the charging coupler 16, and an electric leakage detection unit (not shown) that monitors electric current flowing through the electric circuit and detects electric leakage. )).
  • an open / close circuit for example, a relay, not shown
  • an electric leakage detection unit (not shown) that monitors electric current flowing through the electric circuit and detects electric leakage. )
  • the control means 20a cuts off the electric circuit via the open / close circuit, and stops the power supply from the commercial power source to the electric propulsion vehicle C.
  • FIG. 2 is a schematic block diagram of the charging cable A
  • FIG. 3 is a waveform diagram showing a pilot signal output from the charging device 20 to the charging coupler 16.
  • the temperature sensor 14 a embedded in the power plug 14 detects the temperature of the power plug 14, and sends a temperature signal indicating the temperature of the power plug 14 to the control means 20 a provided in the charging device 20. Output.
  • the control means 20 a receives the temperature signal and outputs a pilot signal corresponding to the temperature signal to the charging control device 8 of the electric propulsion vehicle C via the charging coupler 16.
  • the pilot signal output from the control means 20a is closely related to the charging current. Therefore, when the charging control device 8 of the electric propulsion vehicle C receives the pilot signal indicating the charging current, the charging control device 8 may recognize the charging current that can be supplied from the power outlet 12 via the charging cable A. The charging is performed while controlling the current supplied to the battery 6 in accordance with the pilot signal. The electric power charged in the battery 6 is supplied to the traveling motor 2 via the inverter 4 so that the electric propulsion vehicle C can travel.
  • FIG. 3 shows a waveform of a pilot signal output from the control means 20a to the electric propulsion vehicle C.
  • (a) is a reference waveform
  • (b) is a waveform when the temperature of the power plug 14 is low
  • (c) Respectively show waveforms when the temperature of the power plug 14 is high.
  • This pilot signal will be described in more detail by taking as an example the case where a 100 V commercial power supply is used and the rated current of the power plug 14 is 15 A.
  • the charging current For example, the energization current is set to 12A.
  • the pilot signal indicating the charging current has a reference waveform shown in FIG. 3A, and its duty ratio (D) is set to 20% (pulse width: 20%, pulse width: 80%). .
  • the duty ratio of the pilot signal indicates the charging current itself.
  • the charging current is larger than 12A
  • the duty ratio is smaller than 20%
  • the charging current is smaller than 12A.
  • the power plug 14 is usually made of plastic, and if the heat resistant temperature is 65 ° C., the charging cable A according to the present invention sets a threshold value (for example, 50 ° C.) lower than the heat resistant temperature. 3 is smaller than the threshold value, the duty ratio is increased (D> 20%) to increase the charging current as shown in FIG. 3B, while the power plug 14 temperature exceeds the threshold value. As shown in FIG. 3C, the duty ratio is reduced (D ⁇ 20%) to reduce the charging current.
  • a threshold value for example, 50 ° C.
  • step S ⁇ b> 2 the power plug 14 of the charging cable A is connected to the power outlet 12, and the charging coupler 16 of the charging cable A is connected to the connector 10 of the electric propulsion vehicle C.
  • step S3 the temperature sensor 14a built in the power plug 14 detects the temperature of the power plug 14, and the temperature signal from the temperature sensor 14a is input to the control means 20a of the charging device 20.
  • step S4 the control means 20a compares the temperature input from the temperature sensor 14a with the above-described threshold value.
  • the temperature of the power plug 14 is substantially equal to the outside air temperature.
  • the temperature of the power plug 14 gradually increases. If the temperature detected by the temperature sensor 14a is equal to or lower than the threshold value in step S4, the process proceeds to step S5, and the duty ratio of the pilot signal is increased steplessly. Control is performed to increase the charging current steplessly.
  • step S4 when the temperature detected by the temperature sensor 14a exceeds the threshold value, the process proceeds to step S6, where control is performed to continuously reduce the duty ratio of the pilot signal, and the charging current is decreased steplessly.
  • the duty ratio of the pilot signal is closely related to the charging current, and the charging current is increased when the temperature of the power plug 14 is low. On the other hand, when the temperature of the power plug 14 is high, the charging current is reduced. By doing so, the charging current is not ON / OFF controlled as in the prior art, and both the shortening of the charging time and the safety of the charging cable A can be achieved.
  • step S7 when the charging control device 8 of the electric propulsion vehicle C determines that charging of the battery 6 of the electric propulsion vehicle C has not been completed, Return to step S3.
  • the charging control device 8 determines that the charging of the battery 6 of the electric propulsion vehicle C is complete, a signal indicating the completion of charging is input from the charging control device 8 of the electric propulsion vehicle C to the control means 20a of the charging cable A. Then, the charging of the battery 6 ends.
  • the control means 20a sets the maximum value of the charging current (energization current) according to the duty ratio (pulse width) of the pilot signal output to the electric propulsion vehicle C, and is supplied to the battery 6 of the electric propulsion vehicle C.
  • the charging current to be performed is finally determined by the charging control device 8 of the electric propulsion vehicle C.
  • the charging current is changed by changing the pulse width of the pilot signal output by the control means 20a, but the pulse waveform other than the pulse width (for example, the amplitude (level) of the pulse) is changed. ) May be changed to change the charging current.
  • the pilot signal duty ratio is increased and decreased steplessly to increase and decrease the charging current steplessly.
  • the pilot signal duty ratio is increased and decreased stepwise and the charging current is increased stepwise. The number may be increased or decreased automatically.
  • the duty ratio of the pilot signal is increased and decreased steplessly, and the charging current is increased and decreased stepwise.
  • the pilot signal duty ratio is decreased stepwise and the charging current is increased stepwise.
  • it may be configured to be lowered only.
  • the commercial power source is set to 100 V AC, but it goes without saying that other AC voltages (for example, AC 200 V) can also be used.
  • a second threshold value higher than the above threshold value may be set, and the electric circuit may be interrupted when the control means 20a detects a temperature higher than the second threshold value.
  • FIG. 5 and 6 show a second embodiment of the present invention
  • FIG. 5 is a schematic diagram when charging a battery of an electric propulsion vehicle using the charging cable of the second embodiment of the present invention
  • FIG. FIG. 6 is a schematic block diagram of the charging cable shown in FIG. 5.
  • the temperature sensor 16 a is arranged in the charging coupler 16.
  • the temperature sensor 16 a detects the temperature of the charging coupler 16 and outputs a temperature signal indicating the temperature of the charging coupler 16 to the control means 20 a of the charging device 20.
  • the control means 20 a receives the temperature signal and outputs a pilot signal corresponding to the temperature signal to the charging control device 8 of the electric propulsion vehicle C via the charging coupler 16.
  • the charging control device 8 can recognize the charging current that can be supplied from the power outlet 12 via the charging cable A, and controls the supply current to the battery 6 according to the pilot signal. While charging.
  • FIG. 7 is a schematic block diagram of the charging cable according to the third embodiment of the present invention, in which the temperature sensor 20 b is arranged in the control means 20 a of the charging device 20. It is assumed that the electric propulsion vehicle C is charged in various situations. For example, it is conceivable that the charging device 20 is left in the sun and the control means 20a generates abnormal heat. In addition, it is conceivable that abnormal heat generation occurs due to incomplete connection such as a connection portion between the connection cable 18 of the control means 20a and a terminal or a tracking phenomenon. With the configuration of the third embodiment, by disposing the temperature sensor 20b in the control means 20a, abnormal heat generation of the control means 20a can be prevented, and the same effect as in the first embodiment described above can be achieved.
  • FIG. 8 is a schematic block diagram of the charging cable according to the fourth embodiment of the present invention, in which the first temperature sensor 14a is arranged on the power plug 14 and the second temperature sensor 20b is arranged on the control means 20a.
  • the configuration is shown. Since the power plug 14 and the charging coupler 16 are operated by the user, it is assumed that the handling thereof is messy. Therefore, when the temperature sensor 14a is provided in the power plug 14 or the charging coupler 16, it is assumed that the durability of the temperature sensor is inferior.
  • the control means 20a can easily compare the values of the first temperature sensor 14a and the second temperature sensor 20b provided in the power plug 14 and the charging device 20 with the power plug. The disconnection of the temperature sensor 14a provided in 14 can be detected.
  • a temperature sensor may be disposed in each of the power plug 14, the charging coupler 16, and the charging device 20.
  • the charging cable according to the present invention can reduce the charging time, improve the durability of relays and the like, and improve the reliability of the device. Therefore, the charging cable is a battery charging cable for a vehicle that travels with at least a traveling battery mounted thereon. Useful.
  • a Charging cable for electric propulsion vehicle B General household C Electric propulsion vehicle 2 Motor for traveling 4 Inverter 6 Battery 8 Charge control device 10 Connector 12 Power outlet 14 Power plug 14a Temperature sensor 16 Charging coupler 16a Temperature sensor 18 Connection cable 20 Charging device 20a Control means 20b Temperature sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

 電気推進車両のバッテリに充電するために使用される充電ケーブルAを、商用電源の電源コンセント12に着脱自在に接続される電源プラグ14と、電気推進車両Cに着脱自在に接続される充電カプラ16と、電源プラグ14と充電カプラ16の間の電路の温度を検出する温度センサ14aと、電源プラグ14から充電カプラ16に流れる電流値を制御する制御手段20aを有する充電装置20と、で構成し、充電時間を極力低減できるとともに、充電ケーブルとコンセント間、および充電ケーブルと充電カプラ間の耐久性を向上する。

Description

電気推進車両用充電ケーブル
 本発明は、例えば電気自動車やハイブリッド車のような電気推進車両のバッテリに充電するために使用される電気推進車両用充電ケーブルに関する。
 近年、環境に優しい自動車として電気推進車両の開発が急ピッチで進められている。電気推進車両の充電インフラ(充電インフラストラクチャー)は、電力網の末端である家庭用電源を利用する家庭用充電設備と、市街地や路面下等に設けられる不特定多数の利用を前提とする公共用充電設備の2種類に大きく分類される。
 また、利便性を考慮すると、電気推進車両の普及には家庭用充電設備が必要であることから、一般家庭や事業所等に100Vや200Vの商用電源による緩速充電設備が導入し始められている。
 家庭用充電設備の場合、電気推進車両のバッテリの充電には、商用電源の電源コンセントと電気推進車両側のコネクタとを接続するために電気推進車両用充電ケーブルが用いられる。
 この充電ケーブルは、商用電源の電源コンセントに接続される電源プラグと、電気推進車両側のコネクタに接続される充電カプラとを備え、バッテリへの充電時、住宅の外壁等に配設された電源コンセントに電源プラグを差し込んで使用される。
 しかしながら、電源コンセントと電源プラグの不完全な接続やトラッキング現象による異常発熱を惹起する可能性がある。そのため、電源プラグの温度を検出する温度センサを設け、電源プラグの温度が所定の温度を超えたことを温度センサが検出すると、電源プラグと充電カプラ間の電路を開閉する開閉回路に制御信号を送信して、電源プラグから電気推進車両側のコネクタへの電力供給を停止するようにした充電ケーブルも提案されている(例えば、特許文献1参照)。
 この充電ケーブルの場合、電源プラグの温度を検出する温度センサに加えて、漏電を検出する漏電検出部も設けられており、漏電検出部が漏電を検出すると、電源プラグから電気推進車両側のコネクタへの電力供給を停止するようにしている。
特開2010-110055号公報
 しかしながら、特許文献1に記載の充電ケーブルは、電源プラグ、あるいは充電カプラの温度が所定の温度を超えたことを温度センサが検出するか、あるいは、漏電検出部が漏電を検出した場合に、電源プラグから電気推進車両側のコネクタへの電力供給を停止する構成を有している。そのため、電気推進車両のように長時間の通電を必要とする場合、充電時間が長くなるという問題や、ON/OFF制御に起因するリレー等の耐久性に問題があった。
 本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、充電時間を極力低減できるとともに、リレー等の耐久性を向上することができる電気推進車両用充電ケーブルを提供することを目的としている。
 上記目的を達成するために、本発明は、電気推進車両のバッテリに充電するために使用される電気推進車両用充電ケーブルであって、商用電源の電源コンセントに着脱自在に接続される電源プラグと、電気推進車両に着脱自在に接続される充電カプラと、電源コンセントから電気推進車両のバッテリに充電するに際し、電源プラグと充電カプラの間の電路の温度を検出する温度検出手段と、温度検出手段で検出された温度に基づいて、バッテリへの充電電流を示すパイロット信号を生成し、電気推進車両に送信する制御手段と、を備えている。
 電気推進車両では、制御手段から送信されてくるパイロット信号に基づき、内蔵のバッテリへの充電電流が制御される。本発明によれば、充電ケーブルの電源プラグ、制御手段あるいは充電カプラの温度に応じて、電気推進車両の充電電流が可変設定されるので、例えば、電源プラグ、制御手段あるいは充電カプラの温度が高くなると、充電電流を小さくした状態でバッテリへの充電を継続することができる。これにより、従来のON/OFF制御に比べて、充電時間を短縮できるばかりでなく、リレー等の耐久性を向上することができる。
 また、電源プラグ及び/または充電カプラに第一の温度検出手段を配設するとともに、制御手段に第二の温度検出手段を配設しているので、制御手段が2つの温度検出手段からの出力を比較することによって、電源プラグ、または充電カプラに設けられた温度検出手段の断線等の不具合を容易に判定できるようになり、機器の信頼性を向上することができる。
 本発明のこれらの態様と特徴は、添付された図面についての好ましい実施の形態に関連した次の記述から明らかになる。
本発明の実施の形態1に係る電気推進車両用充電ケーブルを使用して、一般家庭の商用電源から電気推進車両のバッテリに充電する場合の概略図 図1に示される充電ケーブルの概略ブロック図 図2に示される充電装置から出力されるパイロット信号を示しており、電源プラグの温度に応じて変更されるパイロット信号の波形図 充電制御を示すフローチャート 本発明の実施の形態2に係る電気推進車両用充電ケーブルを使用して、一般家庭の商用電源から電気推進車両のバッテリに充電する場合の概略図 図5に示される充電ケーブルの概略ブロック図 本発明の実施の形態3に係る充電ケーブルの概略ブロック図 本発明の実施の形態4に係る充電ケーブルの概略ブロック図
 本発明は、電気推進車両のバッテリに充電するために使用される電気推進車両用充電ケーブルであって、商用電源の電源コンセントに着脱自在に接続される電源プラグと、電気推進車両に着脱自在に接続される充電カプラと、電源コンセントから電気推進車両のバッテリに充電するに際し、電源プラグと充電カプラの間の電路の温度を検出する温度検出手段と、温度検出手段で検出された温度に基づいて、バッテリへの充電電流を示すパイロット信号を生成し、電気推進車両に送信する制御手段と、を備えるようにしている。
 異常発熱は、電源コンセントと電源プラグとの接続部分、充電カプラと電気推進車両のコネクタとの接続部分、制御手段における給電線と端子等との接続部分などにおいて不完全な接触やトラッキング現象により発生する。従って、温度検出手段は、異常発熱が発生する電路における上記各接続部分近傍に配設している。
 周知の通り、電気推進車両では、制御手段から送信されてくるパイロット信号に基づき、内蔵のバッテリへの充電電流が制御される。上記構成によれば、温度検出手段が異常発熱を検出すると、温度検出手段の検出温度に応じて、電気推進車両側で充電電流が可変設定することが可能となる。従って、例えば、電源プラグの温度が高くなった場合には、充電電流を小さくし、電源プラグの温度上昇を抑制した状態で、バッテリへの充電を継続することができる。これにより、充電時間を短縮できるばかりでなく、リレー等の耐久性を向上することができる。
 また、電源プラグ及び/または充電カプラに第一の温度検出手段を配置するとともに、制御手段に第二の温度検出手段を配置することにより、制御手段が2つの温度検出手段の出力に基づいて電源プラグ、あるいは充電カプラに設けられた温度検出手段の不具合を判別することができ、機器の信頼性の向上につながる。
 さらに具体的には、制御手段は、温度検出手段で検出された温度が予め設定されている閾値に到達すると、波形を変更したパイロット信号を電気推進車両に送信して、充電電流を下げるよう該電気推進車両に通知することにより、電源プラグの過熱を防止することができ、安全性が向上する。
 また、制御手段は、温度検出手段で検出した温度が閾値に到達すると、パルス幅を変更したパイロット信号を電気推進車両に送信して、充電電流を下げるよう該電気推進車両に通知することによっても、同様の効果を奏することができる。
 また、制御手段は、前記パイロット信号を用いて、充電電流を段階的に下げるよう電気推進車両に通知してもかまわない。
 また、制御手段は、温度検出手段で検出された温度が閾値に到達すると、振幅を変更したパイロット信号を電気推進車両に送信して、充電電流を下げるよう該電気推進車両に通知するようにしてもかまわない。
 また、制御手段は、温度検出手段で検出された温度を演算することにより、閾値に到達しないように、事前に振幅を徐々に変更したパイロット信号を電気推進車両に送信して、充電電流を下げるよう該電気推進車両に通知するようにしてもかまわない。
 さらに、前述の各制御方法に加えて最終的に電路を遮断する方式としてもかまわない。
 以下、本発明の実施の形態について、図面を参照しながら説明する。尚、この実施の形態によって本発明が限定されるものではない。
 (実施の形態1)
 図1は、本発明に係る電気推進車両用充電ケーブルAを使用して、一般家庭Bの商用電源から電気推進車両Cのバッテリに充電するときの状態を示している。
 図1に示されるように、電気推進車両Cは、電気的に互いに接続された走行用モータ2と、インバータ4と、バッテリ6と、充電制御装置8とを備えており、充電制御装置8に接続されたコネクタ10を介して本発明に係る電気推進車両用充電ケーブル(以下、単に「充電ケーブル」という。)Aと接続される。充電ケーブルAは、一般家庭Bの住宅の外壁等に設けられた電源コンセント12と、電気推進車両側コネクタ10を接続して、電気推進車両Cに搭載されたバッテリ6を充電するために用いられる。
 電源コンセント12は、雨水などによる電極の短絡を防止する防水構造を有するコンセントであり、単相2線式の交流100Vを供給する商用電源(図示せず)に接続されている。
 一方、充電ケーブルAは、電源コンセント12に着脱自在に接続可能な電源プラグ14と、電気推進車両Cのコネクタ10に接続され電力の供給を行う充電カプラ16と、電源プラグ14と充電カプラ16を接続する接続ケーブル18と、接続ケーブル18の途中に設けられ制御手段(例えば、マイクロコンピュータ)20aを有する充電装置20とを備えている。
 また、電源プラグ14は、その内部に、電源プラグ14の温度を検出する温度検出手段としての温度センサ(例えば、測温抵抗体)14aが埋設されており、温度センサ14aから出力された温度信号は充電装置20の制御手段20aに入力される。
 充電装置20はさらに、電源プラグ14と充電カプラ16の間の電路を開閉する開閉回路(例えばリレー、図示せず)と、電路を流れる電流を監視して漏電を検出する漏電検出部(図示せず)を備えている。漏電検出部が漏電を検出すると、制御手段20aは開閉回路を介して電路を遮断し、商用電源から電気推進車両Cへの電力供給を中止する。
 上記構成の電気推進車両の充電システムにおいて、電源プラグ14が電源コンセント12に接続されると、商用電源からの電力が充電ケーブルAの充電装置20に供給される。また、初期状態では開閉回路はオン状態となっているので、商用電源からの電力は充電カプラ16に供給され、充電カプラ16が電気推進車両Cのコネクタ10に接続されることで、充電制御装置8を介してバッテリ6の充電が行われる。
 次に、本発明の主要部である充電制御について図2及び図3を参照しながら説明する。
 図2は充電ケーブルAの概略ブロック図であり、図3は充電装置20から充電カプラ16に出力されるパイロット信号を示す波形図である。
 図2に示されるように、電源プラグ14に埋設された温度センサ14aは、電源プラグ14の温度を検出し、電源プラグ14の温度を示す温度信号を充電装置20に設けられた制御手段20aに出力する。制御手段20aは、温度信号を受けて温度信号に応じたパイロット信号を、充電カプラ16を介して電気推進車両Cの充電制御装置8に出力する。
 後述するように、制御手段20aから出力されるパイロット信号は、充電電流と密接な関係にある。そのため、充電電流を示すパイロット信号を電気推進車両Cの充電制御装置8が受信することで、充電制御装置8は、電源コンセント12から充電ケーブルAを介して供給可能な充電電流を認識することができ、パイロット信号に応じてバッテリ6への供給電流を制御しながら充電を行う。バッテリ6に充電された電力は、インバータ4を介して走行用モータ2に供給され、電気推進車両Cの走行が可能となる。
 図3は制御手段20aが電気推進車両Cに出力するパイロット信号の波形を示しており、(a)は基準波形を、(b)は電源プラグ14の温度が低い場合の波形を、(c)は電源プラグ14の温度が高い場合の波形をそれぞれ示している。
 このパイロット信号について、100Vの商用電源を使用し、電源プラグ14の定格電流が15Aの場合を例にとりさらに詳述すると、商用電源が100Vで、電源プラグの定格電流が15Aの場合、充電電流(通電電流)は、例えば12Aに設定される。この充電電流を示すパイロット信号は、図3(a)に示される基準波形を持ち、そのデューティ比(D)は20%(パルス幅:20%、パルス間幅:80%)に設定されている。
 すなわち、パイロット信号のデューティ比は、充電電流そのものを示しており、デューティ比が20%より大きくなると、充電電流は12Aより大きくなり、デューティ比が20%より小さくなると、充電電流は12Aより小さくなる。
 ここで、電源プラグ14は、通常プラスチック製で、その耐熱温度を65℃とすると、本発明に係る充電ケーブルAにおいては、耐熱温度より低い閾値(例えば、50℃)を設定し、電源プラグ14の温度が閾値より小さい場合には、図3(b)に示されるように、デューティ比を大きくして(D>20%)充電電流を増加する一方、電源プラグ14の温度が閾値を超えると、図3(c)に示されるように、デューティ比を小さくして(D<20%)充電電流を減少させている。
 パイロット信号のデューティ比と充電電流は、SAE J1772(SAE:米国自動車技術者協会)に準拠しており、例えば次のような関係にある。
 デューティ比D=20%:12A
 デューティ比D=30%:18A
 図4の充電制御を示すフローチャートを参照しながら、さらに説明すると、充電ケーブルAを電気推進車両Cに接続する前のステップS1においては、パイロット信号のデューティ比はD=20%に設定されている。ステップS2において、充電ケーブルAの電源プラグ14が電源コンセント12に接続されるとともに、充電ケーブルAの充電カプラ16が電気推進車両Cのコネクタ10に接続される。その後、ステップS3において、電源プラグ14に内蔵された温度センサ14aにより電源プラグ14の温度を検出し、温度センサ14aからの温度信号が充電装置20の制御手段20aに入力される。
 ステップS4において、制御手段20aは、温度センサ14aから入力された温度と上述した閾値を比較する。
 電源コンセント12から充電ケーブルAを介して電気推進車両Cのバッテリ6に充電する前は、電源プラグ14の温度は外気温度に略等しい。充電が開始すると、電源プラグ14の温度は徐々に上昇し、ステップS4において、温度センサ14aが検出した温度が閾値以下の場合は、ステップS5に移行し、パイロット信号のデューティ比を無段階に上げる制御を行って充電電流を無段階に増加させる。
 一方、ステップS4において、温度センサ14aが検出した温度が閾値を超えると、ステップS6に移行し、パイロット信号のデューティ比を無段階に下げる制御を行って充電電流を無段階に減少させる。
 上述したように、パイロット信号のデューティ比は充電電流と密接な関係にあり、電源プラグ14の温度が低い場合は、充電電流を大きくする。一方、電源プラグ14の温度が高い場合には、充電電流を小さくする。このようにすることで、従来のように充電電流をON/OFF制御することがなく、充電時間の短縮と、充電ケーブルAの安全性を両立させることができる。
 ステップ5あるいはステップS6において充電電流の制御を行った後、ステップS7において、電気推進車両Cの充電制御装置8が、電気推進車両Cのバッテリ6への充電はまだ完了していないと判定すると、ステップS3に戻る。一方、充電制御装置8が、電気推進車両Cのバッテリ6への充電は完了したと判定すると、電気推進車両Cの充電制御装置8から充電完了を示す信号が充電ケーブルAの制御手段20aに入力され、バッテリ6への充電は終了する。
 なお、制御手段20aは、電気推進車両Cに出力するパイロット信号のデューティ比(パルス幅)に応じて充電電流(通電電流)の最大値を設定するもので、電気推進車両Cのバッテリ6に供給される充電電流は、電気推進車両Cの充電制御装置8により最終決定される。
 また、上記実施の形態においては、制御手段20aが出力するパイロット信号のパルス幅を変更することにより充電電流を変更するようにしたが、パルス幅以外のパルス波形(例えば、パルスの振幅(レベル))を変更することで、充電電流を変更してもよい。
 さらに、上記実施の形態においては、パイロット信号のデューティ比を無段階に増減して充電電流を無段階に増減するようにしたが、パイロット信号のデューティ比を段階的に増減して充電電流を段階的に増減するようにしてもよい。
 また、上記実施の形態においては、パイロット信号のデューティ比を無段階に増減して充電電流を無段階に増減するようにしたが、パイロット信号のデューティ比を段階的に小さくして充電電流を段階的に下げるのみの構成としてもよい。
 また、上記実施に形態においては、商用電源を交流100Vとしたが、他の交流電圧(例えば、交流200V)も使用できることは言うまでもない。
 制御手段20aにおいて、上述の閾値よりも高い第二の閾値を設定し、制御手段20aが、第二の閾値よりも高い温度を検出した場合に電路を遮断するようにしても良い。
 (実施の形態2)
 図5及び図6は、本発明の実施の形態2を示し、図5は本発明の実施の形態2の充電ケーブルを使用して電気推進車両のバッテリに充電する場合の概略図、図6は図5に示される充電ケーブルの概略ブロック図である。本発明の実施の形態2は、充電カプラ16に温度センサ16aを配置している。温度センサ16aは、充電カプラ16の温度を検出し、充電カプラ16の温度を示す温度信号を充電装置20の制御手段20aに出力する。制御手段20aは、温度信号を受けて温度信号に応じたパイロット信号を、充電カプラ16を介して電気推進車両Cの充電制御装置8に出力する。受信したパイロット信号に基づいて、充電制御装置8は、電源コンセント12から充電ケーブルAを介して供給可能な充電電流を認識することができ、パイロット信号に応じてバッテリ6への供給電流を制御しながら充電を行う。
 この構成であれば、充電カプラ16と電気推進車両Cのコネクタ10との不完全な接続やトラッキング現象による異常発熱が生じた際に、上述した実施の形態1と同様の効果を奏することができる。
 (実施の形態3)
 図7は、本発明の実施の形態3の充電ケーブルの概略ブロック図を示し、温度センサ20bを充電装置20の制御手段20aに配置している。電気推進車両Cへの充電は、様々な状況で行われることが想定され、例えば、充電装置20が炎天下に放置されて、制御手段20aが異常発熱することが考えられる。また、制御手段20aの接続ケーブル18と端子等との接続部分などの不完全な接続やトラッキング現象による異常発熱が生じることが考えられる。実施の形態3の構成とすることにより、温度センサ20bを制御手段20aに配置することにより、制御手段20aの異常発熱を防止でき、上述した実施の形態1と同様の効果を奏することができる。
 (実施の形態4)
 また、図8は、本発明の実施の形態4の充電ケーブルの概略ブロック図を示し、電源プラグ14に第一の温度センサ14aを配置し、制御手段20aに第二の温度センサ20bを配置した構成を示している。電源プラグ14および充電カプラ16は使用者が操作するため、その扱いが乱雑であることが想定される。そのため、電源プラグ14や充電カプラ16の内部に温度センサ14aが設けられた場合は、温度センサの耐久性が劣ることが想定される。実施の形態4の構成とすることにより、制御手段20aは電源プラグ14と充電装置20に設けられた第一の温度センサ14aと第二の温度センサ20bの値を比較することにより容易に電源プラグ14に設けられた温度センサ14aの断線を検出することができる。
 第二の温度センサを充電カプラ16に配置した場合も同様の効果を奏する。また、電源プラグ14と充電カプラ16と充電装置20にそれぞれ温度センサを配置してもよい。
 なお、上記様々な実施の形態のうちの任意の実施の形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
 本発明は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 本発明に係る充電ケーブルは、充電時間を低減でき、リレー等の耐久性、および機器の信頼性を向上することができるので、少なくとも走行用バッテリを搭載して走行する車両のバッテリ充電用ケーブルとして有用である。
 2011年3月3日に出願された日本国特許出願No.2011-046392号の明細書、図面、及び特許請求の範囲の開示内容、並びに、2012年1月27日に出願された日本国特許出願No.2012-015184号の明細書、図面、及び特許請求の範囲の開示内容は、全体として参照されて本明細書の中に取り入れられるものである。
 A 電気推進車両用充電ケーブル
 B 一般家庭
 C 電気推進車両
 2 走行用モータ
 4 インバータ
 6 バッテリ
 8 充電制御装置
 10 コネクタ
 12 電源コンセント
 14 電源プラグ
 14a 温度センサ
 16 充電カプラ
 16a 温度センサ
 18 接続ケーブル
 20 充電装置
 20a 制御手段
 20b 温度センサ

Claims (11)

  1.  電気推進車両のバッテリに充電するために使用される充電ケーブルであって、
     商用電源の電源コンセントに着脱自在に接続される電源プラグと、
     前記電気推進車両に着脱自在に接続される充電カプラと、
     電気推進車両のバッテリに充電するに際し、前記電源コンセントと前記充電カプラの間の電路の温度を検出する温度検出手段と、
     前記温度検出手段で検出された温度に基づいて、前記バッテリへの充電電流を示すパイロット信号を生成し、前記電気推進車両に送信する制御手段と、
    を備える、電気推進車両用充電ケーブル。
  2.  前記温度検出手段を前記電源プラグに配置した、請求項1記載の電気推進車両用充電ケーブル。
  3.  前記温度検出手段を前記充電カプラに配置した、請求項1記載の電気推進車両用充電ケーブル。
  4.  前記温度検出手段を前記制御手段に配置した、請求項1記載の電気推進車両用充電ケーブル。
  5.  前記電源プラグ及び/または前記充電カプラに第一の温度検出手段を配置するとともに、前記制御手段に第二の温度検出手段を配置する、請求項1記載の電気推進車両用充電ケーブル。
  6.  前記制御手段は、前記温度検出手段で検出された温度が予め設定されている閾値に到達すると、波形を変更したパイロット信号を前記電気推進車両に送信して、前記充電電流を下げるよう該電気推進車両に通知する、請求項1に記載の電気推進車両用充電ケーブル。
  7.  前記制御手段は、前記温度検出手段で検出された温度が前記閾値に到達すると、パルス幅を変更したパイロット信号を前記電気推進車両に送信して、前記充電電流を下げるよう該電気推進車両に通知する、請求項6に記載の電気推進車両用充電ケーブル。
  8.  前記制御手段は、前記パイロット信号を用いて、前記充電電流を段階的に下げるよう前記電気推進車両に通知する、請求項7に記載の電気推進車両用充電ケーブル。
  9.  前記温度検出手段で検出された温度が前記閾値に到達すると、前記制御手段は、振幅を変更したパイロット信号を前記電気推進車両に送信して、前記充電電流を下げるよう該電気推進車両に通知する、請求項6に記載の電気推進車両用充電ケーブル。
  10.  前記制御手段は、前記閾値よりも高い第二の閾値を持ち、前記第二の閾値よりも高い温度を検出した場合に電路を遮断する、請求項1から9のいずれか1項に記載の電気推進車両用充電ケーブル。
  11.  前記充電ケーブルは、前記電源プラグと前記充電カプラの間の電路を開閉する開閉回路と、前記電路を流れる電流を監視して漏電を検出する漏電検出部をさらに備え、該漏電検出部が漏電を検出すると、前記制御手段は前記開閉回路を介して電路を遮断する、請求項1から10のいずれか1項に記載の電気推進車両用充電ケーブル。
PCT/JP2012/001465 2011-03-03 2012-03-02 電気推進車両用充電ケーブル WO2012117743A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280011388.4A CN103402812B (zh) 2011-03-03 2012-03-02 电推进车辆用充电线缆
EP12752722.4A EP2682301B1 (en) 2011-03-03 2012-03-02 Charging cable for electric drive vehicle
CA2827606A CA2827606A1 (en) 2011-03-03 2012-03-02 Charging cable for electrically-driven vehicle
US14/001,822 US9211801B2 (en) 2011-03-03 2012-03-02 Charging cable for electrically-driven vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-046392 2011-03-03
JP2011046392 2011-03-03
JP2012-015184 2012-01-27
JP2012015184A JP5934905B2 (ja) 2011-03-03 2012-01-27 電気推進車両用充電ケーブル

Publications (1)

Publication Number Publication Date
WO2012117743A1 true WO2012117743A1 (ja) 2012-09-07

Family

ID=46757685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001465 WO2012117743A1 (ja) 2011-03-03 2012-03-02 電気推進車両用充電ケーブル

Country Status (6)

Country Link
US (1) US9211801B2 (ja)
EP (1) EP2682301B1 (ja)
JP (1) JP5934905B2 (ja)
CN (1) CN103402812B (ja)
CA (1) CA2827606A1 (ja)
WO (1) WO2012117743A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014161803A2 (de) * 2013-04-02 2014-10-09 Rwe Ag Verfahren zum betreiben einer ladestation
US11305657B2 (en) 2017-11-30 2022-04-19 Panasonic Corporation Electric propulsion vehicle charging cable and power adapter attached to electric propulsion vehicle charging cable

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9515498B2 (en) * 2012-03-08 2016-12-06 Panasonic Intellectual Property Management Co., Ltd. Charging cable
JP5872026B2 (ja) * 2012-04-05 2016-03-01 三菱電機株式会社 充電制御装置および充電設備
JP6031695B2 (ja) * 2012-07-31 2016-11-24 三菱自動車工業株式会社 電動車両の外部給電装置
JP6111500B2 (ja) * 2013-03-29 2017-04-12 パナソニックIpマネジメント株式会社 電気接続用コネクタ
JP5447723B1 (ja) 2013-07-19 2014-03-19 パナソニック株式会社 充電器及び電子機器システム
US9296303B2 (en) * 2013-08-20 2016-03-29 Lear Corporation Electric vehicle supply equipment (EVSE) assembly convertible between a cord set and a charge station
JP5467553B1 (ja) 2013-10-24 2014-04-09 パナソニック株式会社 充電器および電子機器システム
KR101526697B1 (ko) * 2013-10-25 2015-06-05 현대자동차주식회사 친환경 차량용 내부 장착 충전기
CN103595105B (zh) * 2013-11-29 2015-10-28 上海埃士工业科技有限公司 一种随车充电控制装置及方法
JP6210303B2 (ja) * 2013-12-13 2017-10-11 パナソニックIpマネジメント株式会社 電源コード
US9490640B2 (en) * 2013-12-18 2016-11-08 Ford Global Technologies, Llc Temperature monitoring HEV charger cord assembly and charging method
DE102014201764A1 (de) * 2014-01-31 2015-08-06 Siemens Aktiengesellschaft Elektrische Verbindungsvorrichtung und Ladekabel für ein Elektrofahrzeug
DE102014111185A1 (de) * 2014-08-06 2016-02-11 Phoenix Contact E-Mobility Gmbh Steckverbinderteil mit einer Temperatursensoreinrichtung
KR101587356B1 (ko) * 2014-09-01 2016-01-20 엘에스산전 주식회사 차량 충전 장치 및 충전 방법
KR101587357B1 (ko) * 2014-09-01 2016-01-20 엘에스산전 주식회사 차량 충전 장치 및 충전 방법
KR20160031809A (ko) * 2014-09-15 2016-03-23 엘에스산전 주식회사 전기 자동차 충전 장치
US20160107530A1 (en) * 2014-10-21 2016-04-21 GM Global Technology Operations LLC Apparatus and method for controlling a charge current
DE102014016825B4 (de) * 2014-11-13 2023-06-29 Audi Ag Kraftfahrzeug-Ladedose mit Überhitzungsschutz
US9656560B2 (en) * 2014-12-15 2017-05-23 Ford Global Technologies, Llc Charge cycle strategy for vehicles using smaller cross section cable
US10377264B2 (en) 2015-01-30 2019-08-13 Ford Global Technologies, Llc Vehicle conductive charge port having cooling infrastructure
CN107407704B (zh) * 2015-03-23 2021-05-18 伟巴斯特充电系统公司 监测电源连接器及电缆健康的系统
DE102015107053A1 (de) * 2015-05-06 2016-11-10 Phoenix Contact E-Mobility Gmbh Steckverbinderteil mit einer temperaturabhängigen Schalteinrichtung
JP6159368B2 (ja) * 2015-07-03 2017-07-05 三菱電機株式会社 充放電装置
US10343539B2 (en) * 2015-08-31 2019-07-09 Nichicon Corporation Power supply device for supplying electricity to a load utilizing electric power of a storage-battery-equipped vehicle
CN108475939B (zh) * 2015-11-16 2022-03-08 莫列斯有限公司 功率充电模块及其使用方法
CN205396359U (zh) * 2015-11-20 2016-07-27 顾林鹏 具充电散热功能的电动车
US9979214B2 (en) 2016-01-12 2018-05-22 Richtek Technology Corporation Adaptive buck converter and charging cable using the same
US10170923B2 (en) 2016-01-12 2019-01-01 Richtek Technology Corporation Adaptive buck converter with monitor circuit and charging cable using the same
CN105857104A (zh) * 2016-04-11 2016-08-17 广东奥美格传导科技股份有限公司 单向插拔式的充电系统及充电时的温度保护方法
CN108886259A (zh) * 2016-04-13 2018-11-23 三菱电机株式会社 充放电器
DE102016220110A1 (de) * 2016-10-14 2018-04-19 Phoenix Contact E-Mobility Gmbh Temperaturüberwachtes Ladesystem zur Übertragung von elektrischen Ladeströmen
CN107054118A (zh) * 2017-01-25 2017-08-18 上海蔚来汽车有限公司 电动汽车的充电装置、充电系统及充电方法
CN106712212A (zh) * 2017-02-22 2017-05-24 朱小平 一种更安全可靠有效充电的充电枪
KR102441070B1 (ko) * 2017-10-16 2022-09-06 현대자동차주식회사 충전용 인렛의 과온 방지 장치 및 그 방법
US10787087B2 (en) 2018-03-22 2020-09-29 Ford Global Technologies, Llc Vehicle charger electrical outlet diagnostic
CN110673667B (zh) * 2018-07-03 2021-12-21 郑州宇通客车股份有限公司 一种车用充电连接装置的智能温控方法及装置
CN109130909B (zh) * 2018-07-27 2023-11-10 广州万城万充新能源科技有限公司 一种电动汽车传导充电的智能连接装置
US11186191B2 (en) 2018-12-07 2021-11-30 Delta Electronics, Inc. Charging device for electric vehicle
JP7104618B2 (ja) * 2018-12-26 2022-07-21 株式会社Subaru 充電システム
DE102019125736A1 (de) * 2019-09-25 2021-03-25 Audi Ag Kalibrieren einer Ladeeinrichtung eines Elektrofahrzeugs
CN213705226U (zh) * 2020-11-06 2021-07-16 长春捷翼汽车零部件有限公司 一种电动车辆充电控制装置
DE102021129893A1 (de) 2021-11-16 2023-05-17 Audi Aktiengesellschaft System und Verfahren zum Übertragen von thermischer und elektrischer Energie

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154305A (ja) * 2006-12-14 2008-07-03 Toyota Motor Corp ケーブルの保護機構
JP2008252986A (ja) * 2007-03-29 2008-10-16 Toyota Motor Corp 充電ケーブルおよび充電システム
WO2009035069A1 (ja) * 2007-09-13 2009-03-19 Toyota Jidosha Kabushiki Kaisha 車両の充電制御装置および車両
JP2010110055A (ja) 2008-10-28 2010-05-13 Panasonic Electric Works Co Ltd 電気自動車用充電ケーブル
JP2010110050A (ja) * 2008-10-28 2010-05-13 Panasonic Electric Works Co Ltd 充電ケーブルユニット
WO2011064856A1 (ja) * 2009-11-26 2011-06-03 トヨタ自動車株式会社 充電装置
JP2011139572A (ja) * 2009-12-28 2011-07-14 Honda Motor Co Ltd 充電カプラおよび充電制御装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016473A (en) * 1975-11-06 1977-04-05 Utah Research & Development Co., Inc. DC powered capacitive pulse charge and pulse discharge battery charger
JPH01107875U (ja) * 1988-01-12 1989-07-20
JPH0595108U (ja) * 1992-05-29 1993-12-24 三菱自動車工業株式会社 電気自動車用電動機の電池温度上昇時制御
JPH0767245A (ja) * 1993-08-27 1995-03-10 Janome Sewing Mach Co Ltd 電源供給回路の安全装置
US5600306A (en) * 1994-10-17 1997-02-04 Nisso Industry Co., Ltd. Receptacle unit and extension cord
JP3915219B2 (ja) * 1998-01-16 2007-05-16 トヨタ自動車株式会社 電気自動車用充電装置
JP4049959B2 (ja) * 1999-11-11 2008-02-20 本田技研工業株式会社 バッテリ充電方法
JP3669234B2 (ja) * 1999-11-15 2005-07-06 新神戸電機株式会社 組電池の充電制御装置
US6905362B2 (en) * 2000-07-28 2005-06-14 Roger C. Williams Electric vehicle battery rapid charging connector
JP2006074935A (ja) * 2004-09-03 2006-03-16 Sanyo Electric Co Ltd 充電方法
JP2008067426A (ja) * 2006-09-04 2008-03-21 Yamaha Motor Electronics Co Ltd 車両用充電制御方法
JP4254890B2 (ja) * 2007-09-20 2009-04-15 トヨタ自動車株式会社 車両の制御装置
JP2010052861A (ja) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd 電気自動車充電用コードセット
JP4726939B2 (ja) * 2008-09-26 2011-07-20 富士通テン株式会社 制御システム、制御装置、及びケーブル接続状態判定方法
JP2010104114A (ja) * 2008-10-22 2010-05-06 Toyota Motor Corp 車両の制御装置および車両
US8736226B2 (en) 2008-10-28 2014-05-27 Panasonic Corporation Charging cable, charging cable unit, and charging system for electric vehicle
WO2010049773A2 (en) 2008-10-28 2010-05-06 Panasonic Electric Works Co., Ltd. Charging cable unit
JP2010166768A (ja) * 2009-01-19 2010-07-29 Fujitsu Ten Ltd 制御装置、制御システム、制御方法
US9013142B2 (en) * 2009-04-27 2015-04-21 Toyota Jidosha Kabushiki Kaisha Charging connector and charging cable unit
JP2011004448A (ja) * 2009-06-16 2011-01-06 Fujitsu Ten Ltd 充電ケーブル、電子制御装置、及び充電ケーブルの異常検知方法
JP2011015581A (ja) * 2009-07-03 2011-01-20 San'eisha Mfg Co Ltd 電気自動車用急速充電器の劣化検出装置
DE102009034886A1 (de) * 2009-07-27 2011-02-03 Rwe Ag Ladekabelstecker zur Verbindung eines Elektrofahrzeuges mit einer Ladestation
JP5590671B2 (ja) * 2010-09-09 2014-09-17 日東工業株式会社 自動車充電装置
JP5743562B2 (ja) * 2011-01-14 2015-07-01 トヨタホーム株式会社 充電装置
US8922967B2 (en) * 2011-02-10 2014-12-30 Lear Corporation Thermal protection system for electrical device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154305A (ja) * 2006-12-14 2008-07-03 Toyota Motor Corp ケーブルの保護機構
JP2008252986A (ja) * 2007-03-29 2008-10-16 Toyota Motor Corp 充電ケーブルおよび充電システム
WO2009035069A1 (ja) * 2007-09-13 2009-03-19 Toyota Jidosha Kabushiki Kaisha 車両の充電制御装置および車両
JP2010110055A (ja) 2008-10-28 2010-05-13 Panasonic Electric Works Co Ltd 電気自動車用充電ケーブル
JP2010110050A (ja) * 2008-10-28 2010-05-13 Panasonic Electric Works Co Ltd 充電ケーブルユニット
WO2011064856A1 (ja) * 2009-11-26 2011-06-03 トヨタ自動車株式会社 充電装置
JP2011139572A (ja) * 2009-12-28 2011-07-14 Honda Motor Co Ltd 充電カプラおよび充電制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014161803A2 (de) * 2013-04-02 2014-10-09 Rwe Ag Verfahren zum betreiben einer ladestation
WO2014161803A3 (de) * 2013-04-02 2014-12-31 Rwe Ag Verfahren zum betreiben einer ladestation mit ladeleistung abhängig von der temperatur der ladestation
US10195954B2 (en) 2013-04-02 2019-02-05 Innogy Se Method for negotiating a charging power between an electric vehicle and a charging station
US11305657B2 (en) 2017-11-30 2022-04-19 Panasonic Corporation Electric propulsion vehicle charging cable and power adapter attached to electric propulsion vehicle charging cable

Also Published As

Publication number Publication date
JP2012196120A (ja) 2012-10-11
CN103402812A (zh) 2013-11-20
EP2682301B1 (en) 2018-05-30
JP5934905B2 (ja) 2016-06-15
EP2682301A1 (en) 2014-01-08
CA2827606A1 (en) 2012-09-07
CN103402812B (zh) 2017-02-22
EP2682301A4 (en) 2016-03-02
US20130335024A1 (en) 2013-12-19
US9211801B2 (en) 2015-12-15

Similar Documents

Publication Publication Date Title
JP5934905B2 (ja) 電気推進車両用充電ケーブル
US9987932B2 (en) Battery system
US9614379B2 (en) Adapter, and vehicle and method for performing power feeding using adapter
US9515498B2 (en) Charging cable
US9203120B2 (en) Control apparatus for vehicle
CN102858582B (zh) 电动车辆的电源装置及其控制方法
CN103580100B (zh) 电动车辆的外部供电设备
EP2634035A1 (en) Power supply apparatus for electric vehicle, method of controlling power supply apparatus, and electric vehicle
WO2013097803A1 (zh) 电动汽车及用于电动汽车的充电系统
EP3068658B1 (en) Charging and discharging system and vehicle used therein
KR101299109B1 (ko) 전기 자동차용 충전기의 제어 시스템 및 그 방법
CN103187758A (zh) 电动汽车的充电系统及具有其的电动汽车
JP6183709B2 (ja) 電動車両の充放電システム
WO2012066665A1 (ja) 車両および車両の制御方法
JP2014082875A (ja) 車両の電源装置
CN103419664A (zh) 电动汽车、电动汽车的动力系统及电池加热方法
JP5696615B2 (ja) 充電装置および車両、ならびに充電装置の制御方法
JP2014023231A (ja) 車載充電制御装置
WO2012164681A1 (ja) 車両および車両の制御方法
JP6003775B2 (ja) 電力供給システムおよびそれを備える車両、ならびに電力供給システムの制御方法
JP6003776B2 (ja) 電力供給システムおよびそれを備える車両、ならびに電力供給システムの制御方法
JP2017103976A (ja) 充電装置
CN204835630U (zh) 车载电器的供电控制系统
JP2021118629A (ja) 車両のバッテリ制御装置
KR20170079016A (ko) 주행거리확장 전기자동차의 캠핑용 발전 제어장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752722

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012752722

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2827606

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14001822

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE