WO2012114637A1 - ニッケル粉末の製造方法 - Google Patents
ニッケル粉末の製造方法 Download PDFInfo
- Publication number
- WO2012114637A1 WO2012114637A1 PCT/JP2011/079780 JP2011079780W WO2012114637A1 WO 2012114637 A1 WO2012114637 A1 WO 2012114637A1 JP 2011079780 W JP2011079780 W JP 2011079780W WO 2012114637 A1 WO2012114637 A1 WO 2012114637A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nickel powder
- nickel
- acid
- magnesium
- adjuster
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
Definitions
- the present invention relates to a method for producing nickel powder, and more particularly to a method for producing nickel powder useful as an internal electrode material of a multilayer ceramic electronic component such as a multilayer ceramic capacitor.
- Nickel powder is widely used as a conductive powder constituting a conductive paste used to form an internal electrode of a multilayer ceramic capacitor. And as a manufacturing method of the nickel powder used for such a use, it divides roughly and the vapor phase method and the liquid phase method are known.
- a method for producing a nickel powder by a liquid phase method to which the present invention relates includes a hydrazine, sodium borohydride, sodium hypophosphite in a nickel compound solution in which a water-soluble nickel compound such as nickel sulfate, nickel chloride, and nickel acetate is dissolved.
- a nickel powder is obtained by reducing a nickel compound by adding a reducing agent such as (see, for example, Patent Document 1).
- the reduction step is usually performed in a strong alkali in order to promote the reduction of the nickel compound to nickel powder.
- impurities are contained in the nickel compound as a nickel raw material used for the production of nickel powder.
- magnesium-based impurities are difficult to extract from a nickel compound, they often remain in the nickel compound in a large amount compared to other components.
- the present invention solves the above-described problems, and an object of the present invention is to provide a nickel powder production method capable of efficiently producing a high-quality nickel powder having a low magnesium content by a wet method. To do.
- the method for producing the nickel powder of the present invention comprises: A reduction step of reducing a nickel compound containing a magnesium-based impurity to metallic nickel in an alkaline solution having a pH of more than 10.5 to precipitate nickel powder; By adding a pH adjuster containing at least one of an inorganic acid and an organic acid to the alkaline solution on which the nickel powder has been deposited in the reduction step, the pH is adjusted to 10.5 or less, so that the surface of the nickel powder is obtained.
- a cleaning step of cleaning the nickel powder after the magnesium-based impurities are transferred to the solution side with pure water.
- the pH adjustment step when the pH adjuster is added to bring the pH to 10.5 or less, the pH is adjusted to 3.0 or more and 10.5 or less. It is preferable.
- the inorganic acid used as the pH adjuster is at least one selected from the group consisting of sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid, and the organic acid used as the pH adjuster is formic acid, It is preferably at least one selected from the group consisting of acetic acid, citric acid and oxalic acid.
- an aqueous solution of hydrochloric acid or sulfuric acid as the pH adjuster.
- a pH adjuster containing at least one of an inorganic acid and an organic acid is added to an alkaline solution in which nickel powder is precipitated in a reduction step under a condition where the pH exceeds 10.5.
- magnesium impurities mainly magnesium hydroxide
- the nickel powder is purified with pure water. Therefore, it is possible to efficiently remove magnesium-based impurities and produce high-quality nickel powder by a wet method.
- various known reducing agents such as hydrazine, sodium borohydride, sodium hypophosphite, etc. are used as the reducing agent for reducing the nickel compound. be able to.
- the nickel powder is prevented from redissolving and containing magnesium impurities. It becomes possible to efficiently produce a low quality, high quality nickel powder. In the vicinity of pH 3.0, the nickel powder tends to dissolve over time, but in a short time, the amount of nickel powder dissolved is small, and practicality can be ensured.
- the pH adjuster is at least one inorganic acid selected from the group consisting of sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid, or at least selected from the group consisting of formic acid, acetic acid, citric acid and oxalic acid.
- the above inorganic acid and organic acid may be used in combination.
- Example 1 Preparation of aqueous nickel compound solution As shown in Table 1, nickel sulfate containing magnesium-based impurities in the range of 120 to 250 ppm as Mg is dissolved in water and dissolved in water (as shown in Table 1). In Example 1, for example, a 1.5 mol% aqueous solution of nickel sulfate was prepared.
- reducing agent Aqueous Solution As a reducing agent, hydrazine was prepared, dissolved in water, and the pH was adjusted to prepare a reducing agent aqueous solution having a pH of 14 (for example, a 5 mol% hydrazine aqueous solution).
- a reducing agent in addition to hydrazine, various reducing agents such as sodium borohydride and sodium hypophosphite can be used.
- a 1 mol% aqueous solution of sulfuric acid was used as a pH adjuster.
- an acid that gives protons is used as a pH adjuster.
- inorganic acids sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, and as organic acids, carboxylic acids such as formic acid, acetic acid, citric acid, and oxalic acid can be suitably used. Among these, it is more preferable to use hydrochloric acid or sulfuric acid.
- a pH adjuster either of these may be used independently and may be used in combination of multiple.
- the pH values in Table 1 are all measured after the pH adjusting agent was added.
- a mixed solution (synthetic solution) having a pH of about 14 (sample number 1 in Table 1) was prepared by mixing an aqueous nickel compound solution and an aqueous reducing agent solution to reduce the nickel compound and depositing nickel powder. ⁇ 3) were subjected to the following washing step without particularly adjusting the pH.
- Nickel powder suspension (synthetic solution) (sample numbers 4 to 6) according to an example of the present invention, the pH of which was adjusted to 10.5 as described above, and the pH which was not adjusted About 14 nickel powder suspensions (synthetic solutions) (sample numbers 1 to 3) of Comparative Example were filtered and washed with pure water.
- Washing was performed by supplying pure water onto the nickel cake obtained by filtering the nickel powder suspension (synthetic solution), and filtering the nickel cake through the nickel cake. And this washing
- nickel nickel chloride and nickel acetate shown in Table 2 were used instead of nickel sulfate used in Example 1 above, under the same conditions as in Sample No. 6 in Example 1 above.
- the nickel powder was manufactured by carrying out each of the preparation of the compound aqueous solution, the preparation of the reducing agent aqueous solution, the reduction step, the pH adjustment step, and the washing step.
- nickel chloride and nickel acetate were used as 1.5 mol% aqueous solutions, respectively.
- the suspension in which nickel powder was precipitated in either case of using nickel chloride as the nickel compound (Sample No. 7) or nickel acetate (Sample No. 8) ( By adjusting the pH of the synthesis solution) to 10.5, and performing filtration and washing, the conductivity of the filtrate is reduced to 10 ⁇ S / cm or less with 0.03 liters of washing pure water per gram of nickel powder. It was confirmed that the amount of magnesium-based impurities in the nickel powder could be reduced to less than 50 ppm ( ⁇ in the evaluation of Table 2) as Mg.
- an aqueous solution of hydrochloric acid, nitric acid, phosphoric acid, formic acid, acetic acid, citric acid, and oxalic acid was used as shown in Table 3 in place of the sulfuric acid aqueous solution used in the above examples. Then, under the same conditions as in the case of Sample No. 6 in Example 1 (using nickel sulfate as the nickel compound), each step of the nickel compound aqueous solution preparation, reducing agent aqueous solution preparation, reduction step, pH adjustment step, and washing step To produce nickel powder.
- pH adjusters 1 mol% aqueous solutions of hydrochloric acid, nitric acid, phosphoric acid, formic acid, acetic acid, citric acid, and oxalic acid were used.
- Example 3 the pH was adjusted to 10.5 in the pH adjustment step, and after the pH was stabilized, the nickel powder was filtered and washed when 10 seconds passed and 5 minutes passed. Drying was performed to determine the nickel yield.
- the yield of nickel is the ratio of the nickel powder obtained with respect to nickel 100 in the nickel compound as a raw material), and when the nickel yield is 95% or less, the nickel yield is insufficient. It was judged that the product was bad and evaluated as poor ( ⁇ ), and when the yield exceeded 95%, it was judged that the yield was sufficient and evaluated as good ( ⁇ ). Table 3 also shows the evaluation results regarding the amount of Mg in the nickel powder and the yield of nickel.
- nickel powder precipitated in the case of using an aqueous solution of hydrochloric acid, nitric acid, phosphoric acid, formic acid, acetic acid, citric acid, and oxalic acid instead of sulfuric acid as a pH adjuster After adjusting the pH of the solution (synthetic solution) to 10.5, filtration and washing are performed, so that the magnesium-based impurity in the nickel powder is less than 50 ppm ( ⁇ in the evaluation of Table 3) as Mg, and the impurity is low. It was confirmed that a powder was obtained.
- the pH adjusted in the pH adjusting step is stable.
- the yield of nickel was good when 10 seconds passed and when 5 minutes passed.
- nitric acid when used as a pH adjuster, it is necessary to quickly separate and recover the nickel powder after pH adjustment. It will be necessary. Therefore, nitric acid can be used as the acid species used for pH adjustment, but it is more desirable to use an acid species other than nitric acid.
- Example 4 the same conditions as in the case of Sample No. 6 in Example 1 above (except for using nickel sulfate as a nickel compound and a pH adjuster, except that the set value of pH in the pH adjusting step was changed).
- the aqueous solution of the nickel compound was prepared as follows: the preparation of the aqueous nickel compound solution, the preparation of the reducing agent aqueous solution, the reduction step, the pH adjustment step, and the washing step.
- Table 4 also shows the evaluation results for the amount of Mg in the nickel powder, the amount of pure water required for cleaning, and the yield of nickel.
- the pH in the pH adjustment step, the pH can be set to 2 depending on the conditions, but from the viewpoint of ensuring a stable nickel yield, the pH range in the pH adjustment step is in the range of pH 3 to 10.5. It was confirmed that it was desirable.
- Nickel powder produced by the above method (nickel powder of sample number 6 in Table 1) was kneaded with an organic vehicle in which a binder resin and a solvent were mixed to prepare a conductive paste.
- a ceramic green sheet having an internal electrode pattern formed thereon was laminated to form a laminate.
- a ceramic layer (dielectric layer) is formed in the multilayer ceramic capacitor as shown in FIG. ) 12
- a plurality of internal electrodes 13a, 13b are laminated, and the internal electrodes 13a, 13b facing each other are alternately drawn out to the end faces 14a, 14b on different sides of the laminated ceramic element 11, and the end faces 14a
- a multilayer ceramic capacitor 20 having a structure connected to the external electrodes 15a and 15b formed on 14b was produced.
- the internal ceramic was compared with the conventional multilayer ceramic capacitor in which the internal electrode was formed using a conductive paste containing nickel containing a large amount of magnesium impurities as a conductive component. It is possible to obtain a monolithic ceramic capacitor having a stable characteristic by reducing the dielectric constant of the dielectric layer due to diffusion to the ceramic layer (dielectric layer) adjacent to the internal electrode with little magnesium in the electrode. confirmed.
- the nickel powder of the present invention is not limited to the internal electrode of a multilayer ceramic capacitor, but is used in the production of various multilayer ceramic capacitors having internal electrodes such as multilayer varistors, multilayer LC composite parts, and ceramic multilayer substrates. It can be widely used as a conductive powder constituting a conductive paste for forming internal electrodes.
- the present invention is not limited to the above-described embodiments in other respects.
- the nickel compound and the reducing agent, the specific conditions for the reduction process and the pH adjustment process, and the nickel used when performing the cleaning process are not limited to the above-described embodiments in other respects.
- the nickel compound and the reducing agent, the specific conditions for the reduction process and the pH adjustment process, and the nickel used when performing the cleaning process are not limited to the above-described embodiments in other respects.
- Multilayer Ceramic Element 12 Ceramic Layer (Dielectric Layer) 13a, 13b Internal electrode 14a, 14b End face of multilayer ceramic element 15a, 15b External electrode 20 Multilayer ceramic capacitor
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
そして、このような用途に用いられるニッケル粉末の製造方法としては、大別して、気相法と液相法が知られている。
マグネシウム系不純物を含んだニッケル化合物を、pH10.5を超えるアルカリ性溶液中で金属ニッケルに還元してニッケル粉末を析出させる還元工程と、
還元工程で前記ニッケル粉末を析出させた前記アルカリ性溶液に、無機酸および有機酸の少なくとも1種を含むpH調整剤を添加してpHを10.5以下にすることにより、前記ニッケル粉末の表面に存在するマグネシウム系不純物を、前記ニッケル粉末の表面から溶液側に移行させるpH調整工程と、
前記マグネシウム系不純物を溶液側に移行させた後の前記ニッケル粉末を、純水で洗浄する洗浄工程と
を具備することを特徴としている。
なお、pH3.0付近では、時間が経過するとニッケル粉末が溶解する傾向があるが、短時間ではニッケル粉末の溶解量もわずかで、実用性を担保することができる。
ニッケル化合物として、表1に示すように、マグネシウム系不純物をMgとして120~250ppmの範囲で含んだ硫酸ニッケルを用い、これを水に溶解してニッケル化合物水溶液(この実施例1では、例えば硫酸ニッケルの1.5mol%水溶液)を調製した。
還元剤として、ヒドラジンを用意し、これを水に溶解させ、pHを調整することにより、pHが14の還元剤水溶液(例えば、ヒドラジン5mol%水溶液)を調製した。
還元剤としては、ヒドラジンの他にも、水素化ホウ素ナトリウム、次亜リン酸ナトリウムなど種々の還元剤を用いることが可能である。
上述のようにして調製したニッケル化合物水溶液と、還元剤水溶液を、それぞれ55℃に加熱した後、両者を混合して、ニッケル化合物を還元することにより、ニッケル粉末が析出したpHが約14のスラリー液(合成液)を得た。
上記[1]の工程で得た、ニッケル粉末が析出したpHが約14の合成液にpH調整剤を加えてpHを表1の試料番号4~6に示すような値(pH=10.5)に調整した。
なお、この実施例1ではpH調整剤として硫酸の1mol%水溶液を用いた。
なお、pH調整剤はこれらのうちのいずれかを単独で使用してもよく、また、複数を組み合わせて用いてもよい。
表1のpHの値は、いずれも、pH調整剤を投入後、安定した値を測定したものである。
上述のようにしてpHを10.5に調整した本発明の実施例にかかるニッケル粉末懸濁液(合成液)(試料番号4~6)と、pH調整を行っていないpHが約14の比較例のニッケル粉末懸濁液(合成液)(試料番号1~3)とを、ろ過した後、純水により洗浄した。
(1)ニッケル粉末中のMg量
上述のようにして純水による洗浄を行ったニッケルケーキを乾燥し、乾燥後のニッケル粉末に含まれるマグネシウム系不純物の量をICP(誘導結合プラズマ発光分析装置)により測定し、マグネシウム系不純物がMgとして50ppm以上のものをマグネシウム系不純物が除去されていないと判断して不良(×)と評価した。また、Mgが50ppm未満のものをマグネシウム系不純物が除去されていると判断して良(○)と評価した。
その結果を表1に併せて示す。
上述のように、純水による洗浄は、ろ液の導電率が10μS/cm以下になるまで行った。そして、洗浄に要した純水の量を評価するため、導電率が10μS/cm以下になるまでに使用した純水の量(ニッケル1gあたりの洗浄純水量)を求めた。
その結果を表1に併せて示す。
なお、ニッケル化合物水溶液としては、塩化ニッケルおよび酢酸ニッケルを、それぞれ1.5mol%水溶液として用いた。
その結果を表2に示す。
なお、pH調整剤としては、塩酸、硝酸、リン酸、ギ酸、酢酸、クエン酸、およびシュウ酸の、それぞれの1mol%水溶液を用いた。
また、この実施例3では、pH調整工程でpHを10.5に調整し、pHが安定した後、10秒が経過した時点および5分が経過した時点で、ニッケル粉末をろ過、洗浄し、乾燥を行ってニッケルの収率を求めた。
ニッケル粉末中のMg量およびニッケルの収率についての評価結果を、表3に併せて示す。
したがって、pH調整に用いる酸種としては、硝酸も使用可能ではあるが、硝酸以外の酸種を用いることがより望ましい。
上記方法で製造したニッケル粉末(表1の試料番号6のニッケル粉末)を、バインダー樹脂と溶剤とを混合した有機ビヒクルと混練して、導電性ペーストを作製した。
12 セラミック層(誘電体層)
13a,13b 内部電極
14a,14b 積層セラミック素子の端面
15a,15b 外部電極
20 積層セラミックコンデンサ
Claims (4)
- マグネシウム系不純物を含んだニッケル化合物を、pHが10.5を超えるアルカリ性溶液中で金属ニッケルに還元してニッケル粉末を析出させる還元工程と、
還元工程で前記ニッケル粉末を析出させた前記アルカリ性溶液に、無機酸および有機酸の少なくとも1種を含むpH調整剤を添加してpHを10.5以下にすることにより、前記ニッケル粉末の表面に存在するマグネシウム系不純物を、前記ニッケル粉末の表面から溶液側に移行させるpH調整工程と、
前記マグネシウム系不純物を溶液側に移行させた後の前記ニッケル粉末を、純水で洗浄する洗浄工程と
を具備することを特徴とするニッケル粉末の製造方法。 - 前記pH調整工程において、前記pH調整剤を添加してpHを10.5以下にする際に、pHを3.0以上、10.5以下にすることを特徴とする請求項1記載のニッケル粉末の製造方法。
- 前記pH調整剤として用いられる前記無機酸が、硫酸、塩酸、硝酸、リン酸からなる群より選ばれる少なくとも1種であり、また、前記pH調整剤として用いられる前記有機酸が、ギ酸、酢酸、クエン酸、シュウ酸からなる群より選ばれる少なくとも1種であることを特徴とする請求項1または2記載のニッケル粉末の製造方法。
- 前記pH調整剤として、塩酸または硫酸の水溶液を用いることを特徴とする請求項1~3のいずれかに記載のニッケル粉末の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180068301.2A CN103391824B (zh) | 2011-02-25 | 2011-12-22 | 镍粉末的制造方法 |
JP2013500850A JP5590212B2 (ja) | 2011-02-25 | 2011-12-22 | ニッケル粉末の製造方法 |
KR1020137022211A KR101486229B1 (ko) | 2011-02-25 | 2011-12-22 | 니켈 분말의 제조방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011039553 | 2011-02-25 | ||
JP2011-039553 | 2011-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012114637A1 true WO2012114637A1 (ja) | 2012-08-30 |
Family
ID=46720437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/079780 WO2012114637A1 (ja) | 2011-02-25 | 2011-12-22 | ニッケル粉末の製造方法 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5590212B2 (ja) |
KR (1) | KR101486229B1 (ja) |
CN (1) | CN103391824B (ja) |
TW (1) | TWI449582B (ja) |
WO (1) | WO2012114637A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014156640A (ja) * | 2013-02-18 | 2014-08-28 | Murata Mfg Co Ltd | ニッケル粉末の製造方法 |
WO2015122315A1 (ja) * | 2014-02-17 | 2015-08-20 | 住友金属鉱山株式会社 | 水素還元ニッケル粉の製造に用いる種結晶の製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6099601B2 (ja) * | 2014-02-17 | 2017-03-22 | 国立大学法人高知大学 | ニッケル粉の製造方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4974160A (ja) * | 1972-10-20 | 1974-07-17 | ||
JPH07278619A (ja) * | 1994-04-13 | 1995-10-24 | Murata Mfg Co Ltd | ニッケル粉末の製造方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3369855B2 (ja) * | 1996-07-18 | 2003-01-20 | 住友金属鉱山株式会社 | 高純度ニッケル水溶液の製造方法 |
DE19921313A1 (de) * | 1999-05-07 | 2000-11-09 | Starck H C Gmbh Co Kg | Verfahren zur Herstellung von Nickelhydroxiden |
JP2003129105A (ja) * | 2001-10-16 | 2003-05-08 | Mitsui Mining & Smelting Co Ltd | ニッケル粉の表面処理方法及びその方法により得られたニッケル粉 |
US7081441B2 (en) * | 2002-05-24 | 2006-07-25 | The Procter & Gamble Co. | Composition for cleaning and/or treating surfaces |
JP3508766B2 (ja) * | 2002-06-14 | 2004-03-22 | 住友電気工業株式会社 | 金属微粉末の製造方法 |
US7261761B2 (en) * | 2002-08-28 | 2007-08-28 | Toho Titanium Co., Ltd. | Metallic nickel powder and process for production thereof |
CN1968773B (zh) * | 2004-06-16 | 2011-08-03 | 东邦钛株式会社 | 镍粉及其制备方法 |
KR100845688B1 (ko) * | 2004-11-24 | 2008-07-11 | 삼성전기주식회사 | 유기 용액을 이용한 니켈 나노 입자의 표면 처리 방법 |
KR100709822B1 (ko) * | 2004-12-15 | 2007-04-23 | 삼성전기주식회사 | 산 용액을 이용한 니켈 입자의 표면 처리 방법 |
JP4978237B2 (ja) * | 2006-04-27 | 2012-07-18 | 昭栄化学工業株式会社 | ニッケル粉末の製造方法 |
KR101044726B1 (ko) * | 2009-01-06 | 2011-06-28 | 충남대학교산학협력단 | 화학환원법에 의한 미세 니켈 분말의 제조 방법 |
KR101166365B1 (ko) * | 2009-11-27 | 2012-07-23 | 한국과학기술연구원 | 금속 나노 입자의 연속 제조 방법 및 상기 방법으로 제조된 금속 나노 입자 |
JP5182206B2 (ja) | 2009-04-24 | 2013-04-17 | 住友金属鉱山株式会社 | ニッケル粉およびその製造方法 |
-
2011
- 2011-12-22 JP JP2013500850A patent/JP5590212B2/ja active Active
- 2011-12-22 WO PCT/JP2011/079780 patent/WO2012114637A1/ja active Application Filing
- 2011-12-22 KR KR1020137022211A patent/KR101486229B1/ko active IP Right Grant
- 2011-12-22 CN CN201180068301.2A patent/CN103391824B/zh active Active
-
2012
- 2012-01-12 TW TW101101287A patent/TWI449582B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4974160A (ja) * | 1972-10-20 | 1974-07-17 | ||
JPH07278619A (ja) * | 1994-04-13 | 1995-10-24 | Murata Mfg Co Ltd | ニッケル粉末の製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014156640A (ja) * | 2013-02-18 | 2014-08-28 | Murata Mfg Co Ltd | ニッケル粉末の製造方法 |
WO2015122315A1 (ja) * | 2014-02-17 | 2015-08-20 | 住友金属鉱山株式会社 | 水素還元ニッケル粉の製造に用いる種結晶の製造方法 |
AU2015216321B2 (en) * | 2014-02-17 | 2016-10-13 | Sumitomo Metal Mining Co., Ltd. | Production method for seed crystal used in production of hydrogen-reduced nickel powder |
US9700942B2 (en) | 2014-02-17 | 2017-07-11 | Sumitomo Metal Mining Co., Ltd. | Method for producing seed crystals used for producing hydrogen-reduced nickel powder |
Also Published As
Publication number | Publication date |
---|---|
CN103391824B (zh) | 2015-11-25 |
KR101486229B1 (ko) | 2015-01-26 |
JPWO2012114637A1 (ja) | 2014-07-07 |
TW201235132A (en) | 2012-09-01 |
JP5590212B2 (ja) | 2014-09-17 |
TWI449582B (zh) | 2014-08-21 |
KR20130101589A (ko) | 2013-09-13 |
CN103391824A (zh) | 2013-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101407197B1 (ko) | 니켈 분말과 그의 제조방법 | |
JP5407495B2 (ja) | 金属粉末および金属粉末製造方法、導電性ペースト、並びに積層セラミックコンデンサ | |
KR20100087112A (ko) | 구리 미립자와 그 제조 방법 및 구리 미립자 분산액 | |
KR101729455B1 (ko) | 표면 처리된 금속 분말, 및 그 제조 방법 | |
JP2010043345A (ja) | ニッケル粉末またはニッケルを主成分とする合金粉末およびその製造方法、導電性ペースト、並びに積層セラミックコンデンサ | |
JP2002053904A (ja) | 金属粉末の製造方法,金属粉末,これを用いた導電性ペーストならびにこれを用いた積層セラミック電子部品 | |
JP5590212B2 (ja) | ニッケル粉末の製造方法 | |
JP2009079239A (ja) | ニッケル粉末、またはニッケルを主成分とする合金粉末およびその製造方法、導電性ペースト、並びに積層セラミックコンデンサ | |
JP5369864B2 (ja) | ニッケル粉およびその製造方法 | |
JP4100244B2 (ja) | ニッケル粉末とその製造方法 | |
JP5141983B2 (ja) | ニッケル微粉およびその製造方法 | |
JP5835077B2 (ja) | ニッケル粉及びその製造方法 | |
JP4940520B2 (ja) | 金属粉末およびその製造方法、導電性ペーストならびに積層セラミック電子部品 | |
JP6056532B2 (ja) | ニッケル粉末の製造方法 | |
JP6213301B2 (ja) | ニッケル粉末の製造方法 | |
JP6131775B2 (ja) | ニッケル粉の製造方法 | |
JP2013042104A (ja) | 積層セラミックコンデンサ用の導電ペーストおよびその製造方法 | |
JP6065699B2 (ja) | ニッケル粉末の製造方法 | |
JP2002275509A (ja) | 金属粉末の製造方法,金属粉末,これを用いた導電性ペーストならびにこれを用いた積層セラミック電子部品 | |
JP2015131997A (ja) | 表面処理された銅粉及びその製造方法 | |
JP6201817B2 (ja) | チタン含有ニッケル粉末の製造方法 | |
JP4683598B2 (ja) | 積層セラミックコンデンサ内部電極用の表面処理ニッケル粉及びその製造方法 | |
JP2004068090A (ja) | 導電性粉末の製造方法、導電性粉末、導電性ペーストおよび積層セラミック電子部品 | |
KR20190048141A (ko) | 은 분말 및 이의 제조방법 | |
CN109423634A (zh) | 一种电子元件用导电陶瓷粉的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11859247 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013500850 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20137022211 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11859247 Country of ref document: EP Kind code of ref document: A1 |