WO2012108212A1 - 集電体 - Google Patents

集電体 Download PDF

Info

Publication number
WO2012108212A1
WO2012108212A1 PCT/JP2012/000902 JP2012000902W WO2012108212A1 WO 2012108212 A1 WO2012108212 A1 WO 2012108212A1 JP 2012000902 W JP2012000902 W JP 2012000902W WO 2012108212 A1 WO2012108212 A1 WO 2012108212A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
aluminum foil
electrochemical element
element according
aqueous solution
Prior art date
Application number
PCT/JP2012/000902
Other languages
English (en)
French (fr)
Inventor
山口 知典
大森 将弘
仁 横内
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US13/984,208 priority Critical patent/US20130323589A1/en
Priority to EP12745152.4A priority patent/EP2675004A4/en
Priority to JP2012524018A priority patent/JP5039872B1/ja
Priority to CN201280001862.5A priority patent/CN102971898B/zh
Priority to KR1020127034250A priority patent/KR101472873B1/ko
Publication of WO2012108212A1 publication Critical patent/WO2012108212A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/20Acidic compositions for etching aluminium or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • C23F1/36Alkaline compositions for etching aluminium or alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12431Foil or filament smaller than 6 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31703Next to cellulosic

Definitions

  • the present invention relates to a current collector.
  • this invention relates to the electrical power collector used for electrochemical elements, such as a secondary battery and an electrical double layer capacitor, a solar cell, a touch panel.
  • secondary batteries such as lithium ion secondary batteries and nickel metal hydride batteries
  • capacitors such as electric double layer capacitors and hybrid capacitors are known.
  • Electrodes of electrochemical elements generally include a current collector including a metal foil such as an aluminum foil or a copper foil, and an electrode active material layer.
  • An undercoat layer is provided on the surface of the current collector as necessary. In order to reduce the internal resistance and impedance of the electrochemical element, it is necessary to reduce the penetration resistance of the current collector and the electrode.
  • the undercoat layer and the electrode active material layer are formed by applying a coating liquid for them to the metal foil.
  • a coating liquid for them It is known that the performance of a battery using an electrode including a current collector provided with an undercoat layer varies depending on the surface state of the metal foil.
  • Patent Document 1 states that a metal foil having a water contact angle of less than 40 ° is preferably used as a current collector.
  • Patent Document 2 proposes to use a current collector made of an aluminum core having a contact angle of N-methylpyrrolidone of 45 ° or less.
  • Patent Document 3 is characterized in that a metal current collector is reacted in an acidic aqueous solution at 20 to 80 ° C. or a basic aqueous solution at 20 to 90 ° C.
  • Patent Document 3 discloses a collection for a lithium ion battery, which includes cleaning an aluminum grid with a basic solution to remove the alumina layer present on the surface of the grid, and then coating the cleaned aluminum grid with zinc. A method for manufacturing an electrical conductor is described.
  • An object of the present invention is to provide a current collector used for an electrochemical element such as a secondary battery or an electric double layer capacitor, a solar battery, a touch panel, or the like, having a low penetration resistance and a small change with time in the penetration resistance. is there.
  • the present invention includes the following.
  • [3] The current collector for an electrochemical element according to [2], wherein the film contains a binder.
  • An electrochemical device current collector comprising the electrochemical device current collector according to any one of [1] to [6] above and an active material layer on one or both sides of the current collector. electrode.
  • An electrochemical device comprising the electrochemical device electrode according to [14].
  • the electrochemical device according to [15] which is a lithium ion secondary battery or an electric double layer capacitor.
  • the current collector according to the present invention has a low penetration resistance and a small change with time in the penetration resistance.
  • the electrode according to the present invention can provide an electrochemical element having low internal resistance or impedance.
  • the current collector or electrode according to the present invention can be suitably used in electrochemical devices such as secondary batteries and electric double layer capacitors, solar cells, touch panels and the like.
  • the surface of the aluminum foil is usually covered with an oxide film.
  • the oxide film on the surface of the conventional aluminum foil contains voids and impurities. Therefore, when the surface layer of the conventional aluminum foil is measured by Fourier transform infrared spectroscopy, a peak is observed in the vicinity of 930 cm ⁇ 1 to 944 cm ⁇ 1 (see Comparative Example 1).
  • the aluminum foil used for the current collector of the present invention has a peak in the range of 945cm -1 ⁇ 962cm -1 in the measurement of the surface layer by Fourier transform infrared spectroscopy.
  • the oxide film covering the aluminum foil used in the current collector of the present invention is presumed to be dense with few voids and impurities. As a result, it is considered that the affinity for the undercoat layer and the electrode active material layer provided on the surface of the aluminum foil is increased, the occurrence of poor conduction is reduced, and the above-described effect is exhibited.
  • FIG. 1 The figure which shows the spectrum acquired by the Fourier-transform infrared spectroscopy measurement of the aluminum foil surface manufactured in Example 1.
  • FIG. 1 The figure which shows the spectrum acquired by the Fourier-transform infrared spectroscopy measurement of the aluminum foil surface manufactured by the comparative example 1.
  • FIG. 1 The figure which shows the spectrum acquired by the Fourier-transform infrared spectroscopy measurement of the aluminum foil surface manufactured by the comparative example 1.
  • a current collector according to the present invention are those comprising an aluminum foil having a peak in the range of 945cm -1 ⁇ 962cm -1 in the measurement of the surface layer by Fourier transform infrared spectroscopy.
  • Aluminum foil used in the present invention the range of 945cm -1 ⁇ 962cm -1 in the measurement of the surface layer by Fourier transform infrared spectroscopy, and more preferably in the range of 948 ⁇ 955cm -1, more preferably 951 ⁇ 954cm It has a peak in the range of -1 .
  • Measurement by Fourier transform infrared spectroscopy is performed under the following conditions.
  • An incident angle at which the maximum sensitivity is obtained between an incident angle of 75 ° and 85 ° is set, and only parallel polarized light is monitored by a reflection method using a polarizer. From the viewpoint of measurement accuracy and time required for measurement, the resolution is 2 cm ⁇ 1 to 4 cm ⁇ 1 and the integration is performed 1000 times.
  • a gold deposition mirror is used for the background. For each peak having an absorbance of 0.02 or more with respect to the baseline, the wave number at which the absorbance is maximum is recorded as the peak position.
  • the aluminum foil used in the present invention is not particularly limited by the thickness, but from the viewpoints of miniaturization of the electrochemical element, aluminum foil and current collectors obtained using the same, and handling properties of electrodes, etc.
  • the thickness is preferably 5 ⁇ m to 200 ⁇ m, more preferably 10 to 100 ⁇ m.
  • the aluminum foil material those conventionally used as an electrode base material for electrochemical devices can be used.
  • Pure aluminum foil 1000 series such as A1085 material
  • aluminum alloy foil 2000 [Al—Cu alloy], 3000 series [Al—Mn alloy] such as A3003 material, 4000 series [Al—Si alloy], 5000 series [Al—Mg alloy], 6000 series [Al—Mg—Si alloy] 7000 series [Al—Zn—Mg alloy]
  • the aluminum foil material is Si 0.10% by mass or less, Fe 0.12% by mass or less, Cu 0.03% by mass or less, Mn 0.02% by mass.
  • the shape of the aluminum foil may be a foil having no holes, or a foil having holes such as a net-like foil or a punching metal foil.
  • An aluminum foil having a peak in the above range as measured by Fourier transform infrared spectroscopy can be obtained, for example, by the following method.
  • aluminum is rolled to a predetermined thickness to obtain an aluminum foil material.
  • the rolling method is not particularly limited, but a method using a cold rolling mill is preferable.
  • the rolling oil remaining on the surface of the aluminum foil material may be removed using a surfactant or a solvent.
  • the aluminum foil material may have a matte surface with minute irregularities on one surface, a smooth glossy surface on the other surface, a matte surface on both sides, or a glossy surface on both sides It may be a surface. Of these, one with a matte surface and the other with a glossy surface is preferred.
  • the surface of the aluminum foil material is washed with a chemical solution capable of dissolving aluminum. It is thought that the aluminum is dissolved by the cleaning, the oxide film on the surface of the aluminum foil material is denatured, voids and impurities are reduced, and the texture becomes finer.
  • the cleaning is preferably performed by immersion cleaning. Ultrasonic waves or the like may be applied in the immersion cleaning.
  • the equivalent thickness of aluminum dissolved by this cleaning is preferably 10 nm to 1000 nm. More specifically, although it depends on the rolling history, etc., it is usually 200 to 400 nm, preferably 10 to 200 nm when the surface contamination and voids are small, and when the surface contamination is severe or contains many voids. Preferably, it is 400 to 1000 nm.
  • the dissolution equivalent thickness is obtained by the following procedure.
  • the chemical solution used for cleaning the aluminum foil material is analyzed by an inductively coupled plasma emission spectrometer, and the mass of aluminum in the solution is calculated.
  • the density of the aluminum foil material for example, 2.7 g / cm 3 in the case of pure aluminum
  • the value obtained by converting the aluminum mass in the liquid into a volume and dividing the volume by the area of the aluminum foil material using the volume was the equivalent thickness.
  • Examples of chemical solutions that can dissolve aluminum include acidic aqueous solutions or alkaline aqueous solutions.
  • the acidic aqueous solution include hydrochloric acid, nitric acid aqueous solution, sulfuric acid aqueous solution and the like.
  • the alkaline aqueous solution include an aqueous solution of an alkali metal hydroxide such as an aqueous sodium hydroxide solution and an aqueous potassium hydroxide solution, and an aqueous solution of an alkaline earth metal hydroxide such as magnesium hydroxide and calcium hydroxide.
  • the concentration of the acidic aqueous solution is usually 0.1 to 30% by mass, preferably 0.5 to 20% by mass, more preferably 1 to 10% by mass.
  • the concentration of the alkaline aqueous solution is usually 0.1 to 30% by mass, preferably 0.1 to 10% by mass, more preferably 0.1 to 5% by mass.
  • the temperature during washing is preferably 10 ° C. or higher and 80 ° C. or lower, more preferably 10 ° C. or higher and lower than 40 ° C.
  • rinsing can be performed with pure water.
  • the number of rinses and the amount of pure water used are not particularly limited.
  • an alkaline aqueous solution is used as the chemical solution, it is preferable to neutralize with 0.1 to 5 mol / L sulfuric acid before rinsing with pure water.
  • the temperature of pure water during rinsing is preferably 20 to 80 ° C, more preferably 30 to 50 ° C.
  • pure water include distilled water, RO water, deionized water, and purified water [Nippon Pharmacopoeia].
  • the impurity concentration of pure water is preferably 1000 ⁇ g / L or less, more preferably 10 ⁇ g / L or less.
  • the conductivity of pure water is preferably 1 ⁇ S / cm or less, more preferably 0.07 ⁇ S / cm or less.
  • heat treatment is preferably performed at 70 to 200 ° C., more preferably 80 to 180 ° C. in an air atmosphere for 1 to 5 minutes. Water and volatile components are removed by this heat treatment.
  • the heat treatment temperature and heat treatment time can be adjusted as follows. First, a trial heat treatment is performed. Then. The surface layer of the obtained current collector is measured by Fourier transform infrared spectroscopy. When a peak is observed on the lower wave number side than the target wave number, the temperature in the actual heat treatment is increased or the treatment time is shortened.
  • the temperature in the actual heat treatment is lowered or the treatment time is lengthened.
  • the adjustment of the heat treatment temperature and the heat treatment time as described above is preferably performed when the dissolution equivalent thickness is 400 nm or more.
  • a film containing a conductive material is further provided on one surface or both surfaces of the aluminum foil.
  • This film functions as the above-described undercoat layer and usually does not contain an electrode active material.
  • the thickness of the film is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m, and the basis weight is preferably 0.00. 2 to 5 g / m 2 , more preferably 0.5 to 3 g / m 2 .
  • the conductive material contained in the film is preferably a carbonaceous material containing carbon as a main component.
  • the carbonaceous material include acetylene black, ketjen black, carbon fiber, carbon nanotube, carbon nanofiber, and graphite.
  • fibrous carbonaceous materials such as carbon fibers, carbon nanotubes, and carbon nanofibers or acetylene black are preferable.
  • vapor-grown carbon fibers are used from the viewpoint of conductivity and dispersibility. preferable.
  • These carbonaceous materials can be used singly or in combination of two or more.
  • Examples of conductive materials other than carbonaceous materials include powders of metals such as gold, silver, copper, nickel, and aluminum.
  • the conductive material is not particularly limited by its shape, and may be, for example, a spherical shape, a flat shape, or an indefinite shape.
  • the size of the conductive material is preferably a number average primary particle size of 10 nm to 50 ⁇ m, more preferably 10 nm to 100 nm.
  • the number average fiber diameter is preferably 0.001 ⁇ m to 0.5 ⁇ m, more preferably 0.003 ⁇ m to 0.2 ⁇ m, and the number average fiber length is preferably 1 ⁇ m to 100 ⁇ m, more preferably. Is from 1 ⁇ m to 30 ⁇ m.
  • the average particle diameter, average fiber length, or average fiber diameter of the conductive material is calculated by measuring the particle diameter, fiber diameter, or fiber length of 100 to 1000 conductive materials using an electron microscope, and calculating the number average. .
  • the conductive material preferably has a powder electrical resistance of 5.0 ⁇ 10 ⁇ 1 ⁇ ⁇ cm or less measured in accordance with JIS K1469.
  • the film preferably contains a binder from the viewpoint of film formation cost.
  • binders include polysaccharides because of their excellent ion permeability of the film.
  • a polysaccharide is a polymer compound in which a number of monosaccharides or derivatives thereof are polymerized by glycosidic bonds.
  • a polymer obtained by polymerizing 10 or more monosaccharides or derivatives thereof is generally called a polysaccharide, but even a polymer obtained by polymerizing 10 or less monosaccharides can be used.
  • polysaccharides examples include cellulose and chitosan.
  • a polysaccharide modified with a functional group such as carboxymethyl group, carboxyethyl group, hydroxyethyl group, hydroxypropyl group, glyceryl group is preferred.
  • a particularly preferred polysaccharide modified with a functional group is glycerylated chitosan.
  • Glycerylated chitosan can be produced, for example, by the method described in Japanese Patent No. 3958536 (corresponding US application: US 2004/092620 A1).
  • binders other than polysaccharides include fluoropolymers such as polytetrafluoroethylene and polyvinylidene fluoride; latexes such as natural rubber latex, styrene butadiene rubber latex, and chloroprene rubber latex; acrylic acid, Mention may be made of acrylic acid copolymers containing acrylic monomers such as methacrylic acid and itaconic acid.
  • the amount of the binder is preferably 10 to 300 parts by mass, more preferably 10 to 200 parts by mass with respect to 100 parts by mass of the conductive material.
  • the above film is a dispersion stabilizer, thickener, anti-settling agent, anti-skinning agent, antifoaming agent, antistatic agent, anti-sagging agent, leveling agent, anti-repelling agent, cross-linking agent.
  • additives such as a crosslinking catalyst may be included.
  • the film when a polysaccharide is included as a binder, the film preferably includes a carboxylic acid or a derivative thereof as a dispersion stabilizer or a crosslinking agent.
  • carboxylic acids include pyromellitic acid or 1,2,3,4-butanetetracarboxylic acid.
  • carboxylic acid derivatives include esters, acid chlorides, and acid anhydrides. Of these, acid anhydrides are preferred.
  • Carboxylic acid or a derivative thereof can be used alone or in combination of two or more.
  • the amount of carboxylic acid used is preferably 30 to 300 parts by mass, more preferably 40 to 120 parts by mass, with respect to 100 parts by mass of the polysaccharide.
  • the film containing the conductive material is obtained by applying a coating liquid obtained by mixing the conductive material, a binder, and, if necessary, an additive and a dispersion medium onto an aluminum foil and drying it.
  • the dispersion medium include aprotic polar solvents such as N-methylpyrrolidone and ⁇ -butyrolactone; protic polar solvents such as ethanol, isopropyl alcohol and n-propyl alcohol; water and the like.
  • the amount of the dispersion medium in the coating liquid is preferably 70 to 99% by mass, more preferably 80 to 95% by mass.
  • a heat-crosslinking binder as the binder, it is necessary to dry at a temperature and time sufficient for crosslinking.
  • a binder containing a polysaccharide is crosslinked with a carboxylic acid or a derivative thereof, it is preferably dried at 120 to 250 ° C. for 10 seconds to 10 minutes.
  • a conductive material such as a vapor grown carbon fiber, carbon nanotube, or carbon nanofiber can be grown directly on the surface of an aluminum foil by a method such as chemical vapor deposition. It is also possible to form a coating containing it. (electrode)
  • An electrode of a lithium ion secondary battery or an electric double layer capacitor is obtained by forming an electrode active material layer on a current collector (on the film when an undercoat layer is formed).
  • an electrode active material layer there are no particular limitations on the material used for the electrode active material layer and the method for forming the electrode active material layer, and known materials used for the production of electrochemical elements such as lithium ion secondary batteries, electric double layer capacitors, and hybrid capacitors. The method can be adopted.
  • the current collector according to the present invention can also be used for electrodes of electrochemical elements other than those described above, or electrodes of solar cells, touch panels, sensors, and the like.
  • the electrochemical element has the above-described electrode, a separator, and an electrolyte, and these are covered with an exterior material.
  • the electrode in the electrochemical element may be an electrode according to the present invention, both of the positive electrode and the negative electrode, or may be either a positive electrode or a negative electrode according to the present invention, and the other may be a known electrode. Good.
  • the positive electrode is preferably the electrode according to the present invention.
  • the electrolyte, separator, and exterior material are not particularly limited as long as they are used in secondary batteries such as lithium ion batteries, electric double layer capacitors, and hybrid capacitors.
  • Electrochemical elements can be applied to power supply systems.
  • this power supply system includes automobiles; transport equipment such as railways, ships and airplanes; portable equipment such as mobile phones, personal digital assistants and portable electronic computers; office equipment; solar power generation systems, wind power generation systems, fuel cell systems, etc. It can be applied to the power generation system.
  • Examples 1 to 3 Preparation of aluminum foil
  • the aluminum foil material was cut to a size of 20 cm wide and 30 cm long.
  • the aluminum foil material was immersed in 30 L of hydrochloric acid having a hydrogen chloride concentration of 2% by mass maintained at 25 ° C. and washed so as to have a thickness corresponding to the dissolution amount shown in Table 1.
  • the equivalent amount of dissolution was adjusted by changing the immersion time between 5 seconds and 5 minutes.
  • the thickness equivalent to the dissolution amount is an aluminum analytical line (167.100) obtained by measuring the mass of aluminum dissolved in the chemical solution using an inductively coupled plasma emission spectrometer (trade name VISTA-PRO) manufactured by Seiko Instruments Inc. 02 mass), and then the mass was converted into a volume based on the density of pure aluminum 2.7 g / cm 3 and the volume was obtained by dividing the volume by the area of the aluminum foil material.
  • the aluminum foil material was pulled up from the chemical solution and thoroughly rinsed with pure water (conductivity: 0.07 ⁇ S / cm) at 30 ° C. Then, it heat-processed for 2 minutes in the 80 degreeC drying furnace in air
  • This slurry was applied to one side of the aluminum foil using a bar coater and dried at 180 ° C. for 1 minute to produce a current collector made of an aluminum foil with an undercoat layer.
  • the thickness of the undercoat layer was 1 ⁇ m, and the basis weight was 0.5 g / m 2 .
  • Example 4 A current collector was prepared in the same manner as in Example 1 except that the chemical solution was changed to a 1% by mass sodium hydroxide aqueous solution and neutralized with 1 mol / L sulfuric acid before rinsing with pure water.
  • FIG. 2 shows a spectrum obtained by Fourier transform infrared spectrometry of the aluminum foil surface obtained in Comparative Example 1.
  • the current collector made of an aluminum foil with an undercoat layer prepared in Examples 1 to 4 and Comparative Example 1 was cut to prepare two current collector sections having a width of 20 mm and a length of 100 mm. Two current collector sections were overlapped and placed on a vinyl chloride plate so that the surfaces provided with a film containing a conductive material face each other and the contact surface was 20 mm wide and 20 mm long. . The contact surface was fixed by applying a load of 1 kg / cm 2 to the contact surface. A milliohm meter was connected to each end of the current collector sections that were not in contact with each other, and the AC resistance of the current collector was measured. This measured value was defined as a penetration resistance.
  • a low penetration resistance indicates that it is suitable for an electrode of an electrochemical device.
  • the evaluation results of the initial penetration resistance are shown by the following indices according to the range of the penetration resistance. ⁇ : Less than 100 m ⁇ ⁇ : 100 m ⁇ to 150 m ⁇ ⁇ : 150 m ⁇ or more
  • the current collector made of an aluminum foil with an undercoat layer prepared in Examples 1 to 4 and Comparative Example 1 was cut to prepare two current collector sections having a width of 20 mm and a length of 100 mm.
  • the evaluation results of the change in penetration resistance with time are shown by the following indices according to the range of the increase rate. ⁇ : Increase rate of less than 200% ⁇ : Increase rate of 200% or more
  • the current collector according to the present invention has a low penetration resistance and a small change with time in the penetration resistance. This indicates that the electrode using the current collector according to the present invention can provide an electrochemical element having low internal resistance or impedance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 アルミニウム箔素材を用意し、該アルミニウム箔素材の表面を、塩酸、硝酸水溶液、硫酸水溶液、アルカリ金属水酸化物の水溶液、アルカリ土類金属水酸化物の水溶液などのアルミニウムを溶解可能な薬液によって洗浄する工程と、必要に応じて70~200℃でアルミニウム箔を熱処理する工程および/またはアルミニウム箔の片面または両面に導電材を含む皮膜を形成する工程とを含む製造方法によって、フーリエ変換赤外分光法による表面層の測定において945cm-1~962cm-1の範囲にピークを有するアルミニウム箔を含んで成る電気化学素子用集電体を得る。

Description

集電体
 本発明は集電体に関する。より詳細に、本発明は、二次電池や電気二重層キャパシタなどの電気化学素子や、太陽電池、タッチパネルなどに用いられる集電体に関する。
 電気化学素子として、リチウムイオン二次電池やニッケル水素電池などの二次電池、および電気二重層キャパシタやハイブリッドキャパシタなどのキャパシタが知られている。
 電気化学素子の電極は、一般に、アルミニウム箔や銅箔などの金属箔を含む集電体と、電極活物質層とを含む。集電体の表面には、必要に応じてアンダーコート層が設けられる。電気化学素子の内部抵抗やインピーダンスを低減するには、上記集電体や、電極の貫通抵抗を小さくする必要がある。
 アンダーコート層や電極活物質層は、それらのための塗工液を金属箔に塗布することによって形成される。アンダーコート層が設けられた集電体を含んで成る電極を用いた電池の性能は、金属箔の表面状態によって変化することが知られている。例えば、特許文献1は、水の接触角が40°未満である金属箔を集電体として用いることが好ましいと述べている。特許文献2はN-メチルピロリドンの接触角が45°以下であるアルミニウム芯体からなる集電体を用いることが提案されている。
 また、特許文献3には、金属集電体を20~80℃の酸性水溶液または20~90℃の塩基性水溶液において10分以下で反応させ、その後、純水で洗浄し、乾燥することを特徴とする二次電池用集電体の処理方法が記載されている。特許文献3の処理においては酸性水溶液または塩基性水溶液による反応で金属集電体の表面にベーマイトが生成し、それを乾燥させるとボイドを有する表面酸化膜が形成され金属集電体の比表面積が増大する。特許文献4には、アルミニウムグリッドを塩基性溶液を用いて洗浄することによって前記グリッド表面に存在するアルミナ層を除去し、次いで洗浄されたアルミニウムグリッドを亜鉛でコーティングすることを含むリチウムイオン電池用集電体の製造方法が記載されている。
特開平11-288722号公報 特開2005-050679号公報 WO00/07253 特開平10-241695号公報
 本発明の目的は、貫通抵抗が低く且つ貫通抵抗の経時変化が小さい、二次電池や電気二重層キャパシタなどの電気化学素子や、太陽電池、タッチパネルなどに用いられる集電体を提供することである。
 本発明は以下のものを包含する。
[1]フーリエ変換赤外分光法による表面層の測定において945cm-1~962cm-1の範囲にピークを有するアルミニウム箔を含んで成る電気化学素子用集電体。
[2]前記アルミニウム箔の片面または両面に、導電材を含む皮膜をさらに含んで成る[1]に記載の電気化学素子用集電体。
[3]前記皮膜が結着剤を含む[2]に記載の電気化学素子用集電体。
[4]前記結着剤が多糖類を含む[3]に記載の電気化学素子用集電体。
[5]前記皮膜がカルボン酸またはその誘導体を含む[4]に記載の電気化学素子用集電体。
[6]前記導電材が炭素質材料である[2]~[5]のいずれか1項に記載の電気化学素子用集電体。
[7]アルミニウム箔素材を用意し、該アルミニウム箔素材の表面を、アルミニウムを溶解可能な薬液によって洗浄する工程を含む、 フーリエ変換赤外分光法による表面層の測定において945cm-1~962cm-1の範囲にピークを有するアルミニウム箔を含んで成る電気化学素子用集電体の製造方法。
[8]前記薬液が酸性水溶液またはアルカリ性水溶液である[7]に記載の電気化学素子用集電体の製造方法。
[9]前記薬液が塩酸、硝酸水溶液および硫酸水溶液からなる群より選ばれる一種以上を含む[7]に記載の電気化学素子用集電体の製造方法。
[10]前記薬液がアルカリ金属水酸化物の水溶液およびアルカリ土類金属水酸化物の水溶液からなる群より選ばれる一種以上を含む[7]に記載の電気化学素子用集電体の製造方法。
[11]薬液洗浄の後に、70~200℃でアルミニウム箔を熱処理する工程をさらに含む[7]~[10]のいずれか1項に記載の電気化学素子用集電体の製造方法。
[12]アルミニウム箔の片面または両面に、導電材を含む皮膜を形成する工程をさらに含む[7]~[11]のいずれか1項に記載の電気化学素子用集電体の製造方法。
[13]前記皮膜形成工程は、塗工液を塗布することを含む、[12]に記載の電気化学素子用集電体の製造方法。
[14]前記[1]~[6]のいずれか1項に記載の電気化学素子用集電体と、 該集電体の片面または両面に有する活物質層と を含んで成る電気化学素子用電極。
[15]前記[14]に記載の電気化学素子用電極を含む電気化学素子。
[16]リチウムイオン二次電池または電気二重層キャパシタである[15]に記載の電気化学素子。
 本発明に係る集電体は、貫通抵抗が低く且つ貫通抵抗の経時変化が小さい。本発明に係る電極は内部抵抗またはインピーダンスが低い電気化学素子を提供できる。本発明に係る集電体または電極は、二次電池や電気二重層キャパシタなどの電気化学素子や、太陽電池、タッチパネルなどにおいて、好適に用いることができる。
 アルミニウム箔の表面は、通常、酸化皮膜で覆われている。従来のアルミニウム箔表面にある酸化皮膜にはボイドや不純物が含まれている。そのために、従来のアルミニウム箔の表面層をフーリエ変換赤外分光法によって測定すると930cm-1~944cm-1付近にピークが観測される(比較例1参照)。
 これに対して、本発明の集電体に用いられるアルミニウム箔は、フーリエ変換赤外分光法による表面層の測定において945cm-1~962cm-1の範囲にピークを有する。本発明の集電体に用いられるアルミニウム箔を覆う酸化皮膜は、ボイドや不純物が少なく、緻密であると推測される。その結果として、アルミニウム箔の表面に設けられるアンダーコート層や電極活物質層に対する親和性が高くなり、また通電不良を起こすことが減り、上記の効果を奏すると考えられる。
実施例1で製造されたアルミニウム箔表面のフーリエ変換赤外分光測定により得られたスペクトルを示す図。 比較例1で製造されたアルミニウム箔表面のフーリエ変換赤外分光測定により得られたスペクトルを示す図。
 本発明に係る集電体は、フーリエ変換赤外分光法による表面層の測定において945cm-1~962cm-1の範囲にピークを有するアルミニウム箔を含んで成るものである。
(アルミニウム箔)
 本発明に用いられるアルミニウム箔は、フーリエ変換赤外分光法による表面層の測定において945cm-1~962cm-1の範囲に、より好ましくは948~955cm-1の範囲に、さらに好ましくは951~954cm-1の範囲にピークを有するものである。
 フーリエ変換赤外分光法による測定は以下の条件にて行う。入射角75°から85°の間で最大感度を得る入射角に設定し、偏光子を用いて平行偏光のみを反射法にてモニタリングする。測定精度と測定に要する時間との観点から、分解能は2cm-1~4cm-1とし、積算は1000回で行う。バックグラウンドには金蒸着ミラーを用いる。ベースラインに対して吸光度が0.02以上である各ピークについて、吸光度が最大となる波数をピーク位置として記録する。
 本発明に用いられるアルミニウム箔は厚さによって特に制限されないが、電気化学素子の小型化や、アルミニウム箔およびそれを用いて得られる集電体、電極等のハンドリング性などの観点から、アルミニウム箔の厚さは、好ましくは5μm~200μm、より好ましくは10~100μmである。
 アルミニウム箔素材は、電気化学素子の電極基材として従来から用いられているものを用いることができ、純アルミニウム箔(A1085材のような1000系)、純度95質量%以上のアルミニウム合金箔(2000系[Al-Cu合金]、A3003材のような3000系[Al-Mn合金]、4000系[Al-Si合金]、5000系[Al-Mg合金]、6000系[Al-Mg-Si合金]、7000系[Al-Zn-Mg合金])のいずれも使用することができる。例えば、リチウムイオン二次電池の正極や電気二重層キャパシタの電極に用いる場合、アルミニウム箔素材としてはSi0.10質量%以下、Fe0.12質量%以下、Cu0.03質量%以下、Mn0.02質量%以下、Mg0.02質量%以下、Zn0.03%質量以下、Ga0.03質量%以下、V0.05質量%以下、Ti0.02質量%以下、およびAl99.85質量%以上であり、その他元素は個々に0.01質量%以下である純アルミニウム箔、またはSi0.6質量%以下、Fe0.7質量%以下、Cu0.05~0.20質量%、Mn1.0~1.5質量%、およびZn0.10%質量以下であり、その他元素は個々に0.05質量%以下且つ合計で0.15質量%以下であり、残部がAlであるアルミニウム合金箔を挙げることができる。アルミニウム箔の形状は、孔の開いていない箔でもよいし、網状の箔やパンチングメタル箔など孔の開いている箔でもよい。
(アルミニウム箔の製造方法)
 フーリエ変換赤外分光法による測定で、上記範囲にピークをもつアルミニウム箔は、例えば、以下の方法で得ることができる。
 先ずアルミニウムを所定の厚さまで圧延してアルミニウム箔素材を得る。圧延方法は特に限定されないが、冷間圧延機を用いた方法が好ましい。アルミニウム箔素材の表面に残る圧延油を界面活性剤や溶剤を用いて除去してもよい。アルミニウム箔素材は、その一方の表面が微少な凹凸を有するつや消し面に、他方の表面が平滑な光沢面になっていてもよいし、両面がつや消し面になっていてもよいし、両面が光沢面になっていてもよい。これらのうち、一方がつや消し面、他方が光沢面になっているものが好ましい。
 次いで、該アルミニウム箔素材の表面を、アルミニウムを溶解可能な薬液によって洗浄する。洗浄によってアルミニウムが溶解し、アルミニウム箔素材の表面の酸化皮膜が変性され、ボイドや不純物が減り、きめが細かくなると考えられる。洗浄は浸漬洗浄で行うことが好ましい。浸漬洗浄において超音波などを印加してもよい。
 この洗浄によるアルミニウムの溶解量相当厚は、好ましくは10nm~1000nmである。より詳細には、圧延履歴等によっても異なるが、通常200~400nm、表面の汚染やボイドが少ない場合には好ましくは10~200nmであり、表面の汚染が激しい場合やボイドを多く含む場合には好ましくは400~1000nmである。ここで、溶解量相当厚は、以下の手順で求める。アルミニウム箔素材の洗浄に使用した薬液を誘導結合プラズマ発光分光分析装置によって分析して当該液中のアルミニウムの質量を算出する。アルミニウム箔素材の密度(例えば、純アルミニウムの場合は、2.7g/cm3)に基づいて、液中のアルミニウム質量を体積に換算し、該体積を使用したアルミニウム箔素材の面積で除算した値を溶解量相当厚とした。
 アルミニウムを溶解可能な薬液の例としては、酸性水溶液またはアルカリ性水溶液が挙げられる。酸性水溶液の例としては、塩酸、硝酸水溶液、硫酸水溶液などが挙げられる。アルカリ性水溶液の例としては、水酸化ナトリウム水溶液、水酸化カリウム水溶液などのアルカリ金属水酸化物の水溶液や、水酸化マグネシウム、水酸化カルシウムなどのアルカリ土類金属水酸化物の水溶液が挙げられる。酸性水溶液は、その濃度が、通常、0.1~30質量%、好ましくは0.5~20質量%、より好ましくは1~10質量%である。アルカリ性水溶液は、その濃度が、通常、0.1~30質量%、好ましくは0.1~10質量%、より好ましくは0.1~5質量%である。洗浄時の温度は、好ましくは10℃以上80℃以下、より好ましくは10℃以上40℃未満である。
 次いで純水でリンスを行うことができる。リンスの回数、使用する純水の量は特に制限されない。なお、薬液としてアルカリ性水溶液を用いた場合には、純水によるリンスの前に0.1~5mol/Lの硫酸で中和処理を行うことが好ましい。リンス時の純水の温度は好ましくは20~80℃、より好ましくは30~50℃である。なお、純水としては、蒸留水、RO水、脱イオン水、精製水[日本薬局方]などが挙げられる。純水の不純物濃度は、好ましくは1000μg/L以下、より好ましくは10μg/L以下である。純水の導電率は、好ましくは1μS/cm以下、より好ましくは0.07μS/cm以下である。
 リンス後、好ましくは70~200℃、より好ましくは80~180℃の大気雰囲気下で、1~5分間熱処理する。この熱処理によって水気や揮発成分が除去される。なお、熱処理温度および熱処理時間を以下のようにして調整することができる。先ず、試し熱処理を行う。次いで。得られた集電体の表面層をフーリエ変換赤外分光法で測定する。目的とする波数より低波数側にピークが認められる場合は、本番熱処理における温度を高くまたは処理時間を短くする。目的とする波数より高波数側にピークが認められる場合は、本番熱処理における温度を低くまたは処理時間を長くする。上記のような熱処理温度および熱処理時間の調整は、溶解量相当厚を400nm以上とした場合に、行うのが好ましい。
(導電材を含む皮膜)
 本発明に係る集電体は、アルミニウム箔の片面または両面に、導電材を含む皮膜がさらに設けられていることが好ましい。この皮膜は、前述のアンダーコート層として機能するものであり、通常は電極活物質を含まない。電気化学素子の小型化や、内部抵抗またはインピーダンスの低減の観点から、皮膜の厚みは、好ましくは0.1~10μm、より好ましくは0.5~5μmであり、目付け量は、好ましくは0.2~5g/m2、より好ましくは0.5~3g/m2である。
(導電材)
 上記皮膜に含まれる導電材は、炭素を主構成成分とする炭素質材であることが好ましい。炭素質材としては、アセチレンブラック、ケッチェンブラック、炭素繊維、カーボンナノチューブ、カーボンナノファイバー、グラファイトなどが挙げられる。これらのうち、炭素繊維、カーボンナノチューブ、カーボンナノファイバーなどの繊維状炭素質材またはアセチレンブラックが好ましく、繊維状炭素質材の中では、導電性や分散性の観点から、気相成長炭素繊維が好ましい。これらの炭素質材は一種単独でまたは二種以上を組み合わせて用いることができる。
 炭素質材以外の導電材としては、金、銀、銅、ニッケル、アルミなどの金属の粉末が挙げられる。
 導電材はその形状によって特に制限されず、例えば、球状、扁平状、不定形状などであってもよい。導電材の大きさは、粒子状の導電材の場合、数平均一次粒径が好ましくは10nm~50μm、より好ましくは10nm~100nmである。また繊維状の導電材の場合、数平均繊維径が好ましくは0.001μm~0.5μm、より好ましくは0.003μm~0.2μmであり、数平均繊維長が好ましくは1μm~100μm、より好ましくは1μm~30μmである。導電材の平均粒径、平均繊維長または平均繊維径は、電子顕微鏡を用いて100~1000個の導電材の粒径、繊維径または繊維長を計測し、これを数平均することによって算出する。
 導電材は、JIS K1469に準拠して測定した粉体電気抵抗が5.0×10-1Ω・cm以下のものが好ましい。
(結着剤)
 上記皮膜は、皮膜形成のコストなどの面から、結着剤を含むことが好ましい。好ましい結着剤の例としては、皮膜のイオン透過性に優れることなどから、多糖類が挙げられる。多糖類は、単糖類またはその誘導体が、グリコシド結合によって多数重合した高分子化合物である。通常10以上の単糖類またはその誘導体が重合したものを多糖類と言うが、10以下の単糖類が重合したものであっても、使用することができる。
 好ましい多糖類の例としては、セルロース、キトサンが挙げられる。分散性、塗布性などの点からカルボキシメチル基、カルボキシエチル基、ヒドロキシエチル基、ヒドロキシプロピル基、グリセリル基などの官能基で修飾された多糖類が好ましい。官能基で修飾された多糖類として特に好ましいものとしては、グリセリル化キトサンが挙げられる。グリセリル化キトサンは、例えば、日本特許3958536号(対応する米国出願:US 2004/092620 A1)に記載の方法で製造することができる。
 多糖類以外の結着剤の例としては、ポリテトラフルオロエチレン、ポリビニリデンフルオライドなどのフッ素系重合体;天然ゴム系ラテックス、スチレンブタジエンゴム系ラテックス、クロロプレンゴム系ラテックスなどのラテックス;アクリル酸、メタクリル酸、イタコン酸などのアクリル系単量体を含むアクリル酸共重合体を挙げることができる。
 結着剤の量は、導電材100質量部に対して、好ましくは10~300質量部、より好ましくは10~200質量部である。
(添加剤)
 上記皮膜は、必要に応じて、分散安定剤、増粘剤、沈降防止剤、皮張り防止剤、消泡剤、静電塗装性改良剤、タレ防止剤、レベリング剤、ハジキ防止剤、架橋剤、架橋触媒などの添加剤を含んでもよい。
 例えば結着剤として多糖類を含む場合、上記皮膜は分散安定剤または架橋剤として、カルボン酸またはその誘導体を含むことが好ましい。好ましいカルボン酸の例としては、ピロメリット酸または1,2,3,4-ブタンテトラカルボン酸などが挙げられる。
 またカルボン酸の誘導体としてはエステル、酸クロライド、酸無水物などが挙げられる。これらのうち酸無水物が好ましい。
 カルボン酸またはその誘導体は、一種単独でまたは二種以上を組み合わせて用いることができる。
 カルボン酸の使用量は多糖類100質量部に対して、好ましくは30質量部~300質量部、より好ましくは40~120質量部である。
(皮膜の形成)
 上記導電材を含む皮膜は、上記の導電材、結着剤および必要に応じて添加剤と、分散媒とを混合した塗工液を、アルミニウム箔上に塗布し、乾燥させることによって得られる。分散媒の例としては、N-メチルピロリドン、γ-ブチロラクトンなどの非プロトン性極性溶媒; エタノール、イソプロピルアルコール、n-プロピルアルコールなどのプロトン性極性溶媒; 水などが挙げられる。塗工液中の分散媒の量は好ましくは70~99質量%、より好ましくは80~95質量%である。
 塗布や乾燥の方法に特に制限はなく、電気化学素子の製造に用いられている公知の方法で行うことができる。なお結着剤として熱架橋型の結着剤を用いる場合は、架橋に充分な温度、時間で乾燥することが必要である。例えば、多糖類を含む結着剤をカルボン酸またはその誘導体で架橋する場合は、120℃~250℃で10秒間~10分間乾燥することが好ましい。
 また塗工液を用いず、気相法炭素繊維、カーボンナノチューブ、カーボンナノファイバーなどの導電材を、化学気相成長法などの方法で、直接アルミニウム箔の表面に成長させることによっても導電材を含む皮膜を形成することもできる。
(電極)
 リチウムイオン二次電池や電気二重層キャパシタの電極は、集電体上(アンダーコート層となる皮膜を形成した場合にはその皮膜上)に、電極活物質層を形成して得られる。電極活物質層に用いられる材料や電極活物質層の形成方法に特に制限はなく、リチウムイオン二次電池、電気二重層キャパシタ、ハイブリッドキャパシタなどの電気化学素子の製造に用いられている公知の材料、方法を採用することができる。
 本発明に係る集電体は、上記以外の電気化学素子の電極、または太陽電池、タッチパネル、センサーなどの電極に用いることもできる。
(電気化学素子)
 電気化学素子は、前述の電極、さらにセパレーターおよび電解質を有し、これらを外装材で覆ってなるものである。電気化学素子における電極は、正極および負極の両方が本発明に係る電極であってもよいし、正極または負極のどちらか一方が本発明に係る電極であり、他方が公知の電極であってもよい。リチウムイオン電池においては、少なくとも正極が本発明に係る電極であることが好ましい。電解質、セパレーターおよび外装材は、リチウムイオン電池などの二次電池、電気二重層キャパシタ、ハイブリッドキャパシタなどにおいて使用されているものであれば特に制限されない。
 電気化学素子は、電源システムに適用することができる。そして、この電源システムは、自動車;鉄道、船舶、航空機などの輸送機器;携帯電話、携帯情報端末、携帯電子計算機などの携帯機器;事務機器;太陽光発電システム、風力発電システム、燃料電池システムなどの発電システム;などに適用することができる。
 次に実施例および比較例を示し、本発明をさらに具体的に説明する。なお本発明は、本実施例によってその範囲が制限されるものではない。本発明に係る集電体およびその製造方法は、本発明の要旨を変更しない範囲において適宜変更して実施することができる。
(実施例1~3)
(アルミニウム箔の作製)
 Si0.10質量%以下、Fe0.12質量%以下、Cu0.03質量%以下、Mn0.02質量%以下、Mg0.02質量%以下、Zn0.03%質量以下、Ga0.03質量%以下、V0.05質量%以下、Ti0.02質量%以下、およびAl99.85質量%以上であり、その他元素は個々に0.01質量%以下である純アルミニウムの圧延処理によって50μm厚のアルミニウム箔素材を用意した。アルミニウム箔素材をカットして幅20cm長さ30cmの大きさにした。アルミニウム箔素材を25℃に保った塩化水素濃度2質量%の塩酸30Lに浸漬し、表1に示す溶解量相当厚となるように洗浄した。なお、溶解量相当厚は浸漬時間を5秒~5分の間で変えることにより調整した。なお、溶解量相当厚は、薬液に溶解したアルミニウムの質量を、セイコーインスツル社製の誘導結合プラズマ発光分光分析装置(商品名VISTA-PRO)を用いて測定されたアルミニウムの分析線(167.02nm)に基いて算出し、次いで純アルミニウムの密度2.7g/cm3に基いて質量を体積に換算し、該体積をアルミニウム箔素材の面積で除算して得た。
 アルミニウム箔素材を薬液から引き上げ、30℃の純水(導電率0.07μS/cm)で充分リンスした。その後、大気雰囲気下、80℃の乾燥炉で2分間熱処理して、アルミニウム箔を得た。
(フーリエ変換赤外分光[FTIR]測定)
 上記で得られたアルミニウム箔の表面を、バリアン社製のフーリエ変換赤外分光装置FTS-6000を用い、入射角83°に設定し、偏光子を用いて平行偏光のみを反射法にてモニタリングした。バックグラウンドには金蒸着ミラーを用い、4cm-1の分解能で、1000回の積算を行った。ベースラインに対して吸光度が0.02以上である各ピークについて、吸光度が最大となる波数をピーク位置として記録した。
 実施例1~3で得られたアルミニウム箔のピーク位置を表1に示す。また実施例1で得られたアルミニウム箔表面のフーリエ変換赤外分光測定により得られたスペクトルを図1に示す。
(導電材を含む皮膜の形成)
 導電材としてアセチレンブラック(電気化学工業(株)製商品名デンカブラックHS-100)5質量部、結着剤として日本特許3958536号(対応する米国出願:US 2004/092620 A1)に記載の方法で製造したグリセリル化キトサン2.5質量部、添加剤としてピロメリット酸無水物2.5質量部、および分散媒としてN-メチル-2-ピロリドンを90質量部を配合し、ディゾルバータイプの撹拌機を用いて回転数300rpmで10分間攪拌して、スラリーを作製した。このスラリーを上記アルミニウム箔の片面にバーコーターを用いて塗布し、180℃にて1分間乾燥してアンダーコート層付きアルミニウム箔からなる集電体を作製した。アンダーコート層の厚みは1μm、目付け量は0.5g/m2であった。
(実施例4)
 薬液を1質量%の水酸化ナトリウム水溶液に変更し、純水でリンスする前に1mol/L硫酸による中和処理を行った以外は、実施例1と同じ方法で集電体を作製した。
(比較例1)
 薬液による浸漬洗浄を温水による1分間浸漬洗浄に変更した以外は、実施例1と同じ方法で集電体を作製した。比較例1で得られたアルミニウム箔表面のフーリエ変換赤外分光測定により得られたスペクトルを図2に示す。
(初期の貫通抵抗)
 実施例1~4および比較例1で作製したアンダーコート層付きアルミニウム箔からなる集電体をカットして、幅20mm長さ100mmの集電体切片を2枚作製した。導電材を含む皮膜を設けた面同士を向かい合わせ、接触面が幅20mm長さ20mmになるように、2枚の集電体切片を交差して重ね、それを塩化ビニル板の上に置いた。前記接触面の部分に1kg/cm2の荷重をかけて接触面を固定した。集電体切片の相互に接触していないそれぞれの端部にミリオームメーターを接続し、集電体の交流抵抗を測定した。この測定値を貫通抵抗とした。低い貫通抵抗は電気化学素子の電極に適していることを示す。
 初期の貫通抵抗の評価結果を貫通抵抗の範囲に応じて以下のような指標で示した。
 ◎:100mΩ未満
 ○:100mΩから150mΩ
 ×:150mΩ以上
(貫通抵抗の経時変化)
 実施例1~4および比較例1で作製したアンダーコート層付きアルミニウム箔からなる集電体をカットして、幅20mm長さ100mmの集電体切片を2枚作製した。集電体切片を湿度80%温度40℃の中で24時間保持した。その後、上記と同じ方法で貫通抵抗を測定し、初期貫通抵抗に対する上昇率を算出した。
 貫通抵抗の経時変化の評価結果を上昇率の範囲に応じて以下のような指標で示した。
 ○:上昇率200%未満
 ×:上昇率200%以上
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明に係る集電体は、貫通抵抗が低く且つ貫通抵抗の経時変化が小さい。このことから、本発明に係る集電体を用いた電極は、内部抵抗またはインピーダンスが低い電気化学素子を提供できることがわかる。

Claims (16)

  1.  フーリエ変換赤外分光法による表面層の測定において945cm-1~962cm-1の範囲にピークを有するアルミニウム箔を含んで成る電気化学素子用集電体。
  2.  前記アルミニウム箔の片面または両面に、導電材を含む皮膜をさらに含んで成る請求項1に記載の電気化学素子用集電体。
  3.  前記皮膜が結着剤を含む請求項2に記載の電気化学素子用集電体。
  4.  前記結着剤が多糖類を含む請求項3に記載の電気化学素子用集電体。
  5.  前記皮膜がカルボン酸またはその誘導体を含む請求項4に記載の電気化学素子用集電体。
  6.  前記導電材が炭素質材料である請求項2~5のいずれか1項に記載の電気化学素子用集電体。
  7.  アルミニウム箔素材を用意し、 該アルミニウム箔素材の表面を、アルミニウムを溶解可能な薬液によって洗浄する工程を含む、 フーリエ変換赤外分光法による表面層の測定において945cm-1~962cm-1の範囲にピークを有するアルミニウム箔を含んで成る電気化学素子用集電体の製造方法。
  8.  前記薬液が酸性水溶液またはアルカリ性水溶液である請求項7に記載の電気化学素子用集電体の製造方法。
  9.  前記薬液が塩酸、硝酸水溶液および硫酸水溶液からなる群より選ばれる一種以上を含む請求項7に記載の電気化学素子用集電体の製造方法。
  10.  前記薬液がアルカリ金属水酸化物の水溶液およびアルカリ土類金属水酸化物の水溶液からなる群より選ばれる一種以上を含む請求項7に記載の電気化学素子用集電体の製造方法。
  11.  薬液洗浄工程の後に、70~200℃でアルミニウム箔を熱処理する工程をさらに含む請求項7~10のいずれか1項に記載の電気化学素子用集電体の製造方法。
  12.  アルミニウム箔の片面または両面に、導電材を含む皮膜を形成する工程をさらに含む請求項7~11のいずれか1項に記載の電気化学素子用集電体の製造方法。
  13.  前記皮膜形成工程は、塗工液を塗布することを含む、請求項12に記載の電気化学素子用集電体の製造方法。
  14.  請求項1~6のいずれか1項に記載の電気化学素子用集電体と、 該集電体の片面または両面に有する活物質層と を含んで成る電気化学素子用電極。
  15.  請求項14に記載の電気化学素子用電極を含む電気化学素子。
  16.  リチウムイオン二次電池または電気二重層キャパシタである請求項15に記載の電気化学素子。
PCT/JP2012/000902 2011-02-10 2012-02-10 集電体 WO2012108212A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/984,208 US20130323589A1 (en) 2011-02-10 2012-02-10 Current collector
EP12745152.4A EP2675004A4 (en) 2011-02-10 2012-02-10 CURRENT COLLECTOR
JP2012524018A JP5039872B1 (ja) 2011-02-10 2012-02-10 集電体
CN201280001862.5A CN102971898B (zh) 2011-02-10 2012-02-10 集电体
KR1020127034250A KR101472873B1 (ko) 2011-02-10 2012-02-10 집전체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011026817 2011-02-10
JP2011-026817 2011-02-10

Publications (1)

Publication Number Publication Date
WO2012108212A1 true WO2012108212A1 (ja) 2012-08-16

Family

ID=46638432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000902 WO2012108212A1 (ja) 2011-02-10 2012-02-10 集電体

Country Status (6)

Country Link
US (1) US20130323589A1 (ja)
EP (1) EP2675004A4 (ja)
JP (2) JP5039872B1 (ja)
KR (1) KR101472873B1 (ja)
CN (1) CN102971898B (ja)
WO (1) WO2012108212A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014116317A (ja) * 2012-08-29 2014-06-26 Showa Denko Kk 蓄電デバイスおよびその製造方法
EP2903059A4 (en) * 2012-09-26 2016-04-13 Showa Denko Kk POSITIVE ELECTRODE FOR SECONDARY BATTERIES AND SECONDARY BATTERY
JP2016196695A (ja) * 2015-04-06 2016-11-24 住友化学株式会社 高純度アルミニウム粒材およびその製造方法
JP2017073267A (ja) * 2015-10-07 2017-04-13 セイコーエプソン株式会社 電池用電極、電池用電極の製造方法、電池
CN110233233A (zh) * 2018-03-06 2019-09-13 丰田自动车株式会社 正极、非水电解质二次电池、以及正极的制造方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5487364B2 (ja) * 2012-03-19 2014-05-07 昭和電工株式会社 クロロプレンゴム系重合体ラテックス組成物及びその用途
EP2907884B1 (en) * 2012-10-11 2018-05-09 UACJ Corporation Plate-like conductor for bus bar, and bus bar comprising same
CN103779084A (zh) * 2012-10-24 2014-05-07 海洋王照明科技股份有限公司 一种正极集流体及其制备方法和应用
WO2015033525A1 (ja) * 2013-09-09 2015-03-12 日本電気株式会社 集電体用アルミニウム箔及び二次電池及び評価方法
JP6252841B2 (ja) * 2013-11-25 2017-12-27 株式会社Gsユアサ 蓄電素子
WO2015115201A1 (ja) * 2014-01-29 2015-08-06 日本ゼオン株式会社 電気化学素子用電極及び電気化学素子
JP6396067B2 (ja) 2014-04-10 2018-09-26 株式会社Uacj バスバー用アルミニウム合金板及びその製造方法
WO2016013648A1 (ja) * 2014-07-24 2016-01-28 電気化学工業株式会社 複合体及びその製造方法
JP2016186882A (ja) * 2015-03-27 2016-10-27 株式会社Gsユアサ 電極、及び、該電極を備えた蓄電素子
GB201604341D0 (en) * 2016-03-14 2016-04-27 Aurubis Belgium Nv Sa Composition
CN105895922B (zh) * 2016-05-13 2019-01-08 合肥国轩高科动力能源有限公司 一种导电涂层铝箔的制备方法
WO2019146413A1 (ja) * 2018-01-23 2019-08-01 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極及び非水電解質二次電池
CN109179589A (zh) * 2018-09-20 2019-01-11 同济大学 碳包覆磷酸钒钠电极材料的制备方法及其在杂化电容去离子技术中的应用
CN110649220A (zh) * 2019-09-03 2020-01-03 河南豫清新能源产业有限公司 一种锂电池铝箔的表面涂碳方法
EP4169096A1 (en) * 2020-06-17 2023-04-26 Salient Energy Inc. Positive electrode compositions and architectures for aqueous rechargeable zinc batteries, and aqueous rechargeable zinc batteries using the same
US20230261268A1 (en) * 2022-01-25 2023-08-17 U.S. Army DEVCOM, Army Research Laboratory Acidic Surface Treatment for Multivalent Battery Metal Anode
CN114744208B (zh) * 2022-03-29 2023-02-10 佛山市中技烯米新材料有限公司 一种集流体刻蚀箔材及其制备方法、电极、锂电池
CN114744207B (zh) * 2022-03-29 2023-02-10 佛山市中技烯米新材料有限公司 一种补锂集流体、补锂电极
KR20240102415A (ko) * 2022-12-26 2024-07-03 주식회사 엘지에너지솔루션 알루미늄 박막의 제조 방법, 알루미늄 박막, 이를 포함하는 양극 및 리튬 이차 전지

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134560A (ja) * 1983-01-24 1984-08-02 Matsushita Electric Ind Co Ltd 非水電解質電池
JPH10241695A (ja) 1997-02-21 1998-09-11 Samsung Display Devices Co Ltd リチウムイオン電池用電流集電体およびその製造方法
JPH1116789A (ja) * 1997-06-24 1999-01-22 Kobe Steel Ltd 静電容量の均一な電解コンデンサ用アルミニウム箔
WO2000007253A1 (fr) 1998-07-31 2000-02-10 Finecell Co., Ltd. Procede pour traiter un collecteur de courant en cuivre et en aluminium metallique pour accumulateur
JP2000243383A (ja) * 1999-02-22 2000-09-08 Toshiba Battery Co Ltd リチウム二次電池の製造方法
US20040092620A1 (en) 2000-07-12 2004-05-13 Nobuyuki Kobayashi Aqueous compositions and process for the surface modification of articles by use of the aqueous compositions
JP2005050679A (ja) 2003-07-29 2005-02-24 Sanyo Electric Co Ltd 非水溶媒系二次電池
JP2008060060A (ja) * 2006-08-04 2008-03-13 Kyoritsu Kagaku Sangyo Kk 電極板製造用塗工液、アンダーコート剤およびその使用
JP2009009778A (ja) * 2007-06-27 2009-01-15 Furukawa Sky Kk リチウムイオン電池の正極板及びその製造方法、ならびに、それを用いたリチウムイオン電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3387724B2 (ja) * 1995-03-17 2003-03-17 キヤノン株式会社 二次電池用電極、その製造方法及び該電極を有する二次電池
US5518839A (en) * 1995-04-12 1996-05-21 Olsen; Ib I. Current collector for solid electrochemical cell
US6808845B1 (en) * 1998-01-23 2004-10-26 Matsushita Electric Industrial Co., Ltd. Electrode metal material, capacitor and battery formed of the material and method of producing the material and the capacitor and battery
US6845003B2 (en) * 2002-11-29 2005-01-18 Honda Motor Co., Ltd. Metal collector foil for electric double layer capacitor, method of producing the metal collector foil, and electric double layer capacitor using the metal collector foil
CN1333415C (zh) * 2003-05-26 2007-08-22 乳源瑶族自治县东阳光化成箔有限公司 电解电容器阳极铝箔腐蚀工艺
JP5249258B2 (ja) * 2005-02-10 2013-07-31 昭和電工株式会社 二次電池用集電体、二次電池用正極、二次電池用負極、二次電池及びそれらの製造方法
CN102160218B (zh) * 2009-01-30 2013-08-14 松下电器产业株式会社 非水电解质二次电池及其制造方法
CN102300807B (zh) * 2009-02-03 2013-12-11 特密高股份有限公司 石墨材料

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134560A (ja) * 1983-01-24 1984-08-02 Matsushita Electric Ind Co Ltd 非水電解質電池
JPH10241695A (ja) 1997-02-21 1998-09-11 Samsung Display Devices Co Ltd リチウムイオン電池用電流集電体およびその製造方法
JPH1116789A (ja) * 1997-06-24 1999-01-22 Kobe Steel Ltd 静電容量の均一な電解コンデンサ用アルミニウム箔
WO2000007253A1 (fr) 1998-07-31 2000-02-10 Finecell Co., Ltd. Procede pour traiter un collecteur de courant en cuivre et en aluminium metallique pour accumulateur
JP2000243383A (ja) * 1999-02-22 2000-09-08 Toshiba Battery Co Ltd リチウム二次電池の製造方法
US20040092620A1 (en) 2000-07-12 2004-05-13 Nobuyuki Kobayashi Aqueous compositions and process for the surface modification of articles by use of the aqueous compositions
JP3958536B2 (ja) 2000-07-12 2007-08-15 大日精化工業株式会社 水性溶液組成物および物品の表面改質方法
JP2005050679A (ja) 2003-07-29 2005-02-24 Sanyo Electric Co Ltd 非水溶媒系二次電池
JP2008060060A (ja) * 2006-08-04 2008-03-13 Kyoritsu Kagaku Sangyo Kk 電極板製造用塗工液、アンダーコート剤およびその使用
JP2009009778A (ja) * 2007-06-27 2009-01-15 Furukawa Sky Kk リチウムイオン電池の正極板及びその製造方法、ならびに、それを用いたリチウムイオン電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2675004A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014116317A (ja) * 2012-08-29 2014-06-26 Showa Denko Kk 蓄電デバイスおよびその製造方法
JP2018137236A (ja) * 2012-08-29 2018-08-30 昭和電工株式会社 蓄電デバイスおよびその製造方法
EP2903059A4 (en) * 2012-09-26 2016-04-13 Showa Denko Kk POSITIVE ELECTRODE FOR SECONDARY BATTERIES AND SECONDARY BATTERY
JP2016196695A (ja) * 2015-04-06 2016-11-24 住友化学株式会社 高純度アルミニウム粒材およびその製造方法
JP2017073267A (ja) * 2015-10-07 2017-04-13 セイコーエプソン株式会社 電池用電極、電池用電極の製造方法、電池
CN110233233A (zh) * 2018-03-06 2019-09-13 丰田自动车株式会社 正极、非水电解质二次电池、以及正极的制造方法

Also Published As

Publication number Publication date
US20130323589A1 (en) 2013-12-05
KR101472873B1 (ko) 2014-12-15
EP2675004A1 (en) 2013-12-18
EP2675004A4 (en) 2016-06-29
CN102971898A (zh) 2013-03-13
CN102971898B (zh) 2015-10-07
JP2012199244A (ja) 2012-10-18
JPWO2012108212A1 (ja) 2014-07-03
JP5039872B1 (ja) 2012-10-03
KR20130031304A (ko) 2013-03-28

Similar Documents

Publication Publication Date Title
JP5039872B1 (ja) 集電体
JP2016192409A (ja) 電気化学素子用集電体の製造方法、電気化学素子用電極の製造方法、及び、電気化学素子用集電体を作製するための塗工液
WO2013005739A1 (ja) リチウム二次電池用電極、リチウム二次電池及びリチウム二次電池用電極の製造方法
US8518572B2 (en) Graphite/DSA assembled electrode for redox flow battery, method of manufacturing the same and redox flow battery including the same
US20130295458A1 (en) Current collector
TWI390789B (zh) A battery current collector, a battery positive electrode, a battery negative electrode, a battery, and a manufacturing method
JP5596641B2 (ja) 塗工液、導電性塗工膜、蓄電装置用電極板及び蓄電装置
WO2018180742A1 (ja) リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP5871302B2 (ja) 二次電池用負極および二次電池
WO2014007330A1 (ja) 電気化学素子の使用方法
WO2012147761A1 (ja) 二次電池
WO2014049697A1 (ja) 二次電池用負極および二次電池
JP6529700B1 (ja) 蓄電デバイス用集電体、その製造方法、およびその製造に用いる塗工液
JP2012072396A (ja) 塗工液、集電体および集電体の製造方法
JP2012074369A (ja) 集電体および集電体の製造方法
JP2022167301A (ja) リチウムイオン二次電池用正極
JP2022174846A (ja) リチウムイオン二次電池正極用ペースト

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001862.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012524018

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12745152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127034250

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012745152

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13984208

Country of ref document: US

Ref document number: 2012745152

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE