WO2012102137A1 - 電荷制御剤及びそれを用いたトナー - Google Patents

電荷制御剤及びそれを用いたトナー Download PDF

Info

Publication number
WO2012102137A1
WO2012102137A1 PCT/JP2012/050858 JP2012050858W WO2012102137A1 WO 2012102137 A1 WO2012102137 A1 WO 2012102137A1 JP 2012050858 W JP2012050858 W JP 2012050858W WO 2012102137 A1 WO2012102137 A1 WO 2012102137A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
unsubstituted
substituent
Prior art date
Application number
PCT/JP2012/050858
Other languages
English (en)
French (fr)
Inventor
育夫 木村
一徳 辻
雅也 東條
昌史 浅貝
Original Assignee
保土谷化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保土谷化学工業株式会社 filed Critical 保土谷化学工業株式会社
Priority to EP12739281.9A priority Critical patent/EP2669741A4/en
Priority to KR1020137021982A priority patent/KR101883517B1/ko
Priority to JP2012554736A priority patent/JP5893571B2/ja
Priority to US13/885,731 priority patent/US20130266895A1/en
Priority to CN2012800064182A priority patent/CN103348290A/zh
Publication of WO2012102137A1 publication Critical patent/WO2012102137A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09733Organic compounds
    • G03G9/09758Organic compounds comprising a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/72Two oxygen atoms, e.g. hydantoin
    • C07D233/76Two oxygen atoms, e.g. hydantoin with substituted hydrocarbon radicals attached to the third ring carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/72Two oxygen atoms, e.g. hydantoin
    • C07D233/76Two oxygen atoms, e.g. hydantoin with substituted hydrocarbon radicals attached to the third ring carbon atom
    • C07D233/78Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/96Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/09Colouring agents for toner particles
    • G03G9/0906Organic dyes
    • G03G9/0914Acridine; Azine; Oxazine; Thiazine-;(Xanthene-) dyes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09733Organic compounds
    • G03G9/09741Organic compounds cationic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09733Organic compounds
    • G03G9/0975Organic compounds anionic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09733Organic compounds
    • G03G9/09766Organic compounds comprising fluorine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09733Organic compounds
    • G03G9/09775Organic compounds containing atoms other than carbon, hydrogen or oxygen

Definitions

  • the present invention relates to a charge control agent used in an image forming apparatus for developing an electrostatic latent image in fields such as electrophotography and electrostatic recording, and a negatively chargeable toner containing the charge control agent.
  • an electrostatic latent image is formed on an inorganic photoreceptor such as selenium, selenium alloy, cadmium sulfide, amorphous silicon, or an organic photoreceptor using a charge generator and a charge transport agent. Is developed with toner, transferred onto paper or plastic film, and fixed to obtain a visible image.
  • an inorganic photoreceptor such as selenium, selenium alloy, cadmium sulfide, amorphous silicon, or an organic photoreceptor using a charge generator and a charge transport agent.
  • the photosensitive member has positive and negative charging characteristics depending on the structure.
  • development is performed with a reverse sign charging toner, while on the other hand, the printed part is discharged to perform reverse development.
  • development is performed with a toner having the same sign.
  • the toner is composed of a binder resin, a colorant, and other additives.
  • a charge control agent is generally added. By adding the charge control agent, the toner characteristics are greatly improved.
  • nigrosine dyes, azine dyes, copper phthalocyanine pigments, quaternary ammonium salts, and polymers having quaternary ammonium salts in the side chain are known.
  • Known negative triboelectric charge control agents include metal complexes of monoazo dyes, metal complexes of salicylic acid, naphthoic acid or dicarboxylic acid, copper phthalocyanine pigments, and resins containing acid components.
  • a light-colored, preferably colorless, charge control agent that does not affect the hue is indispensable.
  • These light or colorless charge control agents include metal complex salts of hydroxybenzoic acid derivatives (for example, see Patent Documents 1 to 3) and aromatic dicarboxylic acid metal salt compounds (for example, see Patent Document 4) for negatively chargeable toners.
  • Metal complex salts of anthranilic acid derivatives for example, see Patent Documents 5 to 6
  • organoboron compounds for example, see Patent Documents 7 to 8
  • biphenol compounds for example, see Patent Document 9
  • calix (n) allene examples thereof include compounds (see, for example, Patent Documents 10 to 15) and cyclic phenol sulfides (see, for example, Patent Documents 16 to 18).
  • quaternary ammonium salt compounds for example, see Patent Documents 19 to 21 for positively chargeable toners.
  • charge control agents are complexes or salts made of heavy metals such as chromium, which are problems regarding waste regulations and are not necessarily safe.
  • the charge imparting effect required today is low and the charge rising speed is insufficient, so that the initial copy image lacks clarity, the quality of the copy image during continuous copying tends to fluctuate,
  • a charge control agent that has a high charge imparting effect and can be applied to polymerized toners has been desired.
  • the object of the present invention is to provide a safe charge control agent having a high charge amount and no problem with waste regulations. It is another object of the present invention to provide a negatively chargeable toner for developing an electrostatic image and a negatively chargeable polymerized toner having high charging performance using the charge control agent.
  • the present invention has been obtained as a result of intensive studies to achieve the above object, and has the following gist.
  • the present invention provides a charge control agent containing one or more hydantoin derivatives represented by the general formula (1) as an active ingredient.
  • R 1 and R 2 may be the same or different from each other, and may be a hydrogen atom or a linear or branched alkyl having 1 to 8 carbon atoms which may have a substituent.
  • R 3 represents a ring aromatic group, and R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 8 carbon atoms which may have a substituent, or a carbon which may have a substituent.
  • a cycloalkyl group having 5 to 10 atoms, a linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent, and 1 to 1 carbon atoms which may have a substituent 8 linear or branched alkyloxy groups, may have substituents
  • An aryloxy group, R 4 , R 5 , R 6 , R 7 and R 8 (hereinafter also referred to as “R 4 to R 8 ”) may be the same or different from each other; Atom, fluorine atom, chlorine atom, bromine atom, iodine atom, hydroxyl group, cyano group, trifluoromethyl group
  • R 3 , R 4 , R 5 , R 6 , R 7 and R 8 may be bonded to each other to form a ring.
  • V, W, X, Y and Z represent a carbon atom or a nitrogen atom, and V, W, X, Y and Z are any one of 0 to 3 nitrogen atoms. In this case, the nitrogen atom is R It shall not have 4 to R 8 substituents.
  • the present invention also provides a toner containing a charge control agent, a colorant and a binder resin containing one or more hydantoin derivatives represented by the general formula (1) as active ingredients.
  • the present invention further provides a polymerized toner containing a charge control agent, a colorant and a binder resin containing one or more hydantoin derivatives represented by the general formula (1) as active ingredients.
  • the charge control agent containing one or more hydantoin derivatives represented by the above general formula (1) as an active ingredient has a high charge amount, and is safe and has no problem with waste regulations. Therefore, it can be suitably used for charge control of toner. Therefore, the present invention relates to the use of a charge control agent containing one or more hydantoin derivatives represented by the general formula (1) as an active ingredient for charge control of the toner, or the general formula (1). It can also be said that the charge control agent containing one or more of the hydantoin derivatives represented by formula (1) is applied to the charge control of the toner.
  • the toner may be a polymerized toner.
  • the present invention can also be referred to as a toner charge control method using a charge control agent containing one or more hydantoin derivatives represented by the general formula (1) as an active ingredient.
  • the toner may be a polymerized toner.
  • a charge control agent containing one or more hydantoin derivatives represented by the general formula (1) as an active ingredient has a higher charge rising speed than a conventional charge control agent, and has a higher charge amount. And charging characteristics that are particularly excellent in stability over time and environmental stability. In addition, it does not contain heavy metals such as chromium, which is a concern for environmental problems, and is excellent in dispersibility and compound stability.
  • the charge control agent according to the present invention is excellent in charge control characteristics, environmental resistance, and durability, and has no fog when used for pulverized toner or polymerized toner, and image density, dot reproducibility, fine line reproducibility. Can obtain a good image.
  • the charge control agent is useful for an electrophotographic charge control agent that expresses sufficient triboelectric chargeability in the toner, particularly for a color toner, and further for a polymerized toner.
  • the charge control agent according to the present embodiment contains one or more hydantoin derivatives represented by the general formula (1) as an active ingredient.
  • the hydantoin derivative represented by the general formula (1) will be described.
  • the “linear or branched alkyl group having 1 to 8 carbon atoms” or “cycloalkyl group having 5 to 10 carbon atoms” in the “cycloalkyl group having 5 to 10 carbon atoms” which may be Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-heptyl group Group, isoheptyl group, n-octyl group, isooctyl group, cyclopentyl group, cyclohexyl group, 1-adamantyl
  • a linear or branched alkyl group having 1 to 8 carbon atoms having a substituent represented by R 1 and R 2 in the general formula (1), or “5 to 10 carbon atoms having a substituent”
  • Specific examples of the “substituent” in the “cycloalkyl group” include a deuterium atom, a trifluoromethyl group, a cyano group, a nitro group, and a hydroxyl group; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • An aromatic hydrocarbon group or a condensed polycyclic aromatic group pyridyl group, furanyl group, pyranyl group, thienyl group, furyl group, pyrrolyl group, pyrrolidinyl group, imidazolyl group, imidazolinyl group, imidazolidinyl group, pyrazolyl group, pyrazolinyl group, Pi Lazolidinyl group, pyridazinyl group, pyrazinyl group, piperidinyl group, piperazinyl group, thiolanyl group, thianyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothiophenyl group, indolyl group, carbazolyl group, benzoxazolyl group, benzothiazolyl group, Heterocyclic groups such as quinoxalyl, benzimidazolyl, pyrazolyl, dibenzofuranyl, dibenzo
  • the linear or branched alkyl group having 1 to 8 carbon atoms which may have a substituent” represented by R 1 and R 2 in the general formula (1) is “the substituent is Preferred is a linear or branched alkyl group having 1 to 6 carbon atoms which may be present, and “a linear or branched alkyl group having 1 to 4 carbon atoms which may be substituted”. More preferred are “alkyl groups”, and more preferred are “unsubstituted”.
  • the “cycloalkyl group having 5 to 10 carbon atoms which may have a substituent” represented by R 1 and R 2 in the general formula (1) is “having a substituent. Preferred is a cycloalkyl group having 5 to 6 carbon atoms ”, and more preferably“ unsubstituted ”.
  • Examples of “8 linear or branched alkyl group”, “C5-C10 cycloalkyl group” or “C2-C6 linear or branched alkenyl group” specifically include , Methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-heptyl group, isoheptyl group Group, n-octyl group, iso Corruptible group, a cyclopentyl group, a cyclohexyl group, 1-adamantyl, 2-adamantyl, vinyl, allyl, and the like isopropenyl group and a 2-butenyl group.
  • R 3 to R 8 may be bonded to each other via a single bond, an oxygen atom or a sulfur atom to form a ring, or R 4 to R 8 are each a single bond, an oxygen atom or They may be bonded to each other via a sulfur atom to form a ring.
  • “substituent” in the “cycloalkyl group” or “straight-chain or branched alkenyl group having 2 to 6 carbon atoms” include deuterium atom, trifluoromethyl group, cyano Group, nitro group, hydroxyl group; halogen atom such as fluorine atom, chlorine atom, bromine atom, iodine atom; methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group A straight or straight chain having 1 to 8 carbon atoms, such as n-pentyl group, isopentyl group, neopentyl group, n-hexyl group,
  • the “optionally substituted linear or branched alkyl group having 1 to 8 carbon atoms” represented by R 3 to R 8 in the general formula (1) includes Preferred is a linear or branched alkyl group having 1 to 6 carbon atoms which may be present, and “a linear or branched alkyl group having 1 to 4 carbon atoms which may be substituted”. More preferred are “alkyl groups”, and more preferred are “unsubstituted”.
  • the “optionally substituted cycloalkyl group having 5 to 10 carbon atoms” represented by R 3 to R 8 in the general formula (1) is “optionally substituted”
  • a “cycloalkyl group having 5 to 6 carbon atoms” is preferred, and these are more preferably “unsubstituted”.
  • the “optionally substituted straight-chain or branched alkenyl group having 2 to 6 carbon atoms” represented by R 3 to R 8 in the general formula (1) includes “substituent The C2-C4 linear or branched alkenyl group which may be present is preferred, and these are more preferably “unsubstituted”.
  • R 3 to R 8 may be bonded to each other via a single bond, an oxygen atom or a sulfur atom to form a ring, or R 4 to R 8 are each a single bond, an oxygen atom or They may be bonded to each other via a sulfur atom to form a ring.
  • a linear or branched alkyloxy group having 1 to 8 carbon atoms having a substituent represented by R 3 to R 8 in the general formula (1) or “5 to 5 carbon atoms having a substituent”
  • Specific examples of the “substituent” in “10 cycloalkyloxy groups” include deuterium atom, trifluoromethyl group, cyano group, nitro group, hydroxyl group; fluorine atom, chlorine atom, bromine atom, iodine atom, etc.
  • Halogen atom methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-heptyl group A straight-chain or branched alkyl group having 1 to 8 carbon atoms such as isoheptyl group, n-octyl group, isooctyl group, etc .; methoxy group, ethoxy group, propyloxy group A linear or branched alkoxy group having 1 to 8 carbon atoms such as a group; an alkenyl group such as an allyl group; an aralkyl group such as a benzyl group, a naphthylmethyl group or a phenethyl group; an aryloxy group such as a phenoxy group
  • the “optionally substituted linear or branched alkyloxy group having 1 to 8 carbon atoms” represented by R 3 to R 8 in the general formula (1) is “substituent Is preferably a linear or branched alkyloxy group having 1 to 6 carbon atoms which may have a substituent, and is “a linear or branched alkyl group having 1 to 4 carbon atoms which may have a substituent”. In the form of an alkyloxy group in the form of "unsubstituted”.
  • cycloalkyloxy group having 5 to 10 carbon atoms which may have a substituent represented by R 3 to R 8 in the general formula (1), “may have a substituent” “A good cycloalkyloxy group having 5 to 6 carbon atoms” is preferable, and these are more preferably “unsubstituted”.
  • Substituted or unsubstituted aromatic hydrocarbon group “substituted or unsubstituted heterocyclic group” represented by R 1 to R 8 in the general formula (1), or “substituted or unsubstituted condensed polycyclic aromatic”
  • R 3 to R 8 may be bonded to each other via a single bond, an oxygen atom or a sulfur atom to form a ring, or R 4 to R 8 are each a single bond, an oxygen atom or They may be bonded to each other via a sulfur atom to form a ring.
  • the “substituent” in the “substituted aromatic hydrocarbon group”, “substituted heterocyclic group” or “substituted condensed polycyclic aromatic group” represented by R 1 to R 8 in the general formula (1) is specifically Deuterium atom, cyano group, trifluoromethyl group, nitro group, hydroxyl group; halogen atom such as fluorine atom, chlorine atom, bromine atom, iodine atom; methyl group, ethyl group, n-propyl group, isopropyl group , N-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-heptyl group, isoheptyl group, n-octyl group, isooctyl group, etc.
  • aryloxy group in the “substituted or unsubstituted aryloxy group” represented by R 3 to R 8 in the general formula (1), specifically, a phenoxy group, a tolyloxy group, a biphenylyloxy group, Examples thereof include a terphenylyloxy group, a naphthyloxy group, an anthryloxy group, a phenanthryloxy group, a fluorenyloxy group, an indenyloxy group, a pyrenyloxy group, and a perylenyloxy group.
  • R 3 to R 8 may be bonded to each other via a single bond, an oxygen atom or a sulfur atom to form a ring, or R 4 to R 8 are each a single bond, an oxygen atom or They may be bonded to each other via a sulfur atom to form a ring.
  • substituted aryloxy group represented by R 3 to R 8 in the general formula (1)
  • substituents in the “substituted aryloxy group” represented by R 3 to R 8 in the general formula (1) include deuterium atom, cyano group, trifluoromethyl group, nitro group, hydroxyl group
  • linear or branched alkenyl groups linear or branched alkyloxy groups having 1 to 8 carbon atoms such as methoxy group, ethoxy group, propyloxy group; cyclopentyloxy group, cyclohexyloxy group, etc.
  • R 3 and R 4 in the general formula (1) may be bonded to each other via a single bond, an oxygen atom or a sulfur atom, directly or via a substituent, to form a ring.
  • V, W, X, Y and Z it is preferable that all of them are carbon atoms, or any one or two of them are nitrogen atoms, and V, W, More preferably, all of X, Y, and Z are carbon atoms.
  • the hydantoin derivative represented by the general formula (1) may be, for example, a hydantoin derivative represented by the following general formula (2) or the following general formula (3).
  • R 1 and R 2 may be the same or different from each other, and may be a hydrogen atom or a linear or branched alkyl having 1 to 8 carbon atoms which may have a substituent.
  • R 3 represents a ring aromatic group, and R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 8 carbon atoms which may have a substituent, or a carbon which may have a substituent.
  • a cycloalkyl group having 5 to 10 atoms, a linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent, and 1 to 1 carbon atoms which may have a substituent 8 linear or branched alkyloxy groups, may have substituents
  • R 4 , R 5 , R 6 , R 7 and R 8 may be the same as or different from each other, and each represents a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, A hydroxyl group, a cyano group, a triflu
  • R 1 and R 2 may be the same or different from each other, and are a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or a group having 5 to 6 carbon atoms.
  • An alkyl group having 5 to 6 carbon atoms, a linear or branched alkenyl group having 2 to 4 carbon atoms, a linear or branched alkyloxy group having 1 to 6 carbon atoms, A cycloalkyloxy group having 5 to 6 carbon atoms, an unsubstituted aromatic hydrocarbon group, an unsubstituted heterocyclic group, an unsubstituted condensed polycyclic aromatic group, or an unsubstituted aryloxy group; R 3 , R 4 , R 5 , R 6 , R 7 and R 8 may be bonded to each other to form a ring.
  • the hydantoin derivative represented by the general formula (1) according to this embodiment can be produced by a known method. For example, it can be synthesized by condensing a corresponding substituted or unsubstituted hydantoin and a corresponding aldehyde or ketone in the presence of a base or an acid.
  • the synthesized hydantoin derivative is produced as an E-form, a Z-form, or a mixture of an E-form and a Z-form in the geometric isomerism of a double bond generated by a condensation reaction.
  • the charge control agent is preferably used by adjusting the volume average particle diameter within the range of 0.1 ⁇ m to 20 ⁇ m, and particularly preferably adjusted within the range of 0.1 ⁇ m to 10 ⁇ m. If the volume average particle size is smaller than 0.1 ⁇ m, the amount of the charge control agent appearing on the toner surface tends to be extremely small, and the target charge control effect tends to be difficult to be obtained. It is not preferable because the charge control agent tends to increase and adverse effects such as in-machine contamination tend to occur.
  • the volume average particle diameter is preferably adjusted to 1.0 ⁇ m or less, particularly preferably adjusted to be in the range of 0.01 ⁇ m to 1.0 ⁇ m. .
  • the volume average particle size exceeds 1.0 ⁇ m, the particle size distribution of the finally obtained electrophotographic toner may be broadened or free particles may be generated, which may lead to a decrease in performance or reliability.
  • the average particle diameter is within the above range, there are no disadvantages, and the uneven distribution among the toners is reduced, the dispersion in the toner is improved, and the variation in performance and reliability is advantageous.
  • a method for adding the charge control agent according to the present embodiment to the toner a method of adding a kneading agent to the binder resin together with a colorant, kneading, and pulverization (pulverized toner), or charge control to a polymerizable monomer monomer
  • a method of adding toner in advance to the inside of the toner particles such as a method for obtaining a toner by polymerizing (polymerized toner), and a method for preparing toner particles in advance, and a charge control agent on the surface of the toner particles
  • a method of adding external addition.
  • the charge control agent is preferably added in an amount of the hydantoin derivative with respect to 100 parts by weight of the binder resin, preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight. This is the amount to be part.
  • the amount of the hydantoin derivative is preferably 0.01 to 5 parts by mass, more preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of the binder resin. Further, it is preferable that the toner particles are fixed mechanochemically.
  • the charge control agent containing the hydantoin derivative represented by the general formula (1) as an active ingredient can be used in combination with other known negatively chargeable charge control agents.
  • Preferred charge control agents to be used in combination include azo iron complexes or complex salts, azo chromium complexes or complex salts, azo manganese complexes or complex salts, azo cobalt complexes or complex salts, azo zirconium complexes or complex salts, and chromium complexes of carboxylic acid derivatives.
  • a complex salt, a zinc complex or complex salt of a carboxylic acid derivative, an aluminum complex or complex salt of a carboxylic acid derivative, and a zirconium complex or complex salt of a carboxylic acid derivative is preferably an aromatic hydroxycarboxylic acid, more preferably 3,5-di-tert-butylsalicylic acid.
  • a boron complex or complex salt, a negatively chargeable resin type charge control agent and the like can be mentioned.
  • the amount of charge control other than the charge control agent according to the present embodiment is 100 parts by mass of the binder resin.
  • the agent is preferably 0.1 to 10 parts by mass.
  • binder resin can be used as the binder resin used in the toner according to the exemplary embodiment.
  • Vinyl polymers such as styrene monomers, acrylate monomers, methacrylate monomers, or copolymers composed of two or more of these monomers, polyester polymers, polyol resins, phenol resins, Examples include silicone resins, polyurethane resins, polyamide resins, furan resins, epoxy resins, xylene resins, terpene resins, coumarone indene resins, polycarbonate resins, petroleum resins, and the like.
  • styrene monomer examples include styrene monomer, acrylate monomer, and methacrylate monomer that form the vinyl polymer or copolymer are illustrated below, but are not limited thereto.
  • Styrene monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, p-phenylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, pn-amylstyrene, p -Tert-butyl styrene, pn-hexyl styrene, pn-octyl styrene, pn-nonyl styrene, pn-decyl styrene, pn-dodecyl styrene, p-methoxy styrene, p-chloro Examples thereof include styrene such as styrene, 3,4-dichlorostyrene, m-nitrostyrene, o-nitrost
  • acrylate monomers include acrylic acid or methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, n-octyl acrylate, n-dodecyl acrylate, 2-acrylate
  • acrylic acid such as ethylhexyl, stearyl acrylate, 2-chloroethyl acrylate, and phenyl acrylate or esters thereof.
  • Methacrylate monomers include methacrylic acid, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-octyl methacrylate, n-dodecyl methacrylate, 2-ethyl methacrylate.
  • methacrylic acid or esters thereof such as hexyl, stearyl methacrylate, phenyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, and the like.
  • Examples of other monomers that form the vinyl polymer or copolymer include the following (1) to (18).
  • Monoolefins such as ethylene, propylene, butylene and isobutylene;
  • Polyenes such as butadiene and isoprene;
  • Vinyl halides such as vinyl chloride, vinylidene chloride, vinyl bromide and vinyl fluoride;
  • Vinyl esters such as vinyl acetate, vinyl propionate and vinyl benzoate;
  • Vinyl ethers such as vinyl methyl ether, vinyl ethyl ether and vinyl isobutyl ether; (6) Vinyl methyl ketone, vinyl hexyl ketone and methyl.
  • Vinyl ketones such as isopropenyl ketone; (7) N-vinyl compounds such as N-vinyl pyrrole, N-vinyl carbazole, N-vinyl indole, N-vinyl pyrrolidone; (8) vinyl naphthalenes; (9) acrylonitrile, methacrylate.
  • the vinyl polymer or copolymer of the binder resin may have a crosslinked structure crosslinked with a crosslinking agent having two or more vinyl groups.
  • the cross-linking agent include aromatic divinyl compounds such as divinylbenzene and divinylnaphthalene.
  • diacrylate compounds linked by an alkyl chain include ethylene glycol diacrylate, 1,3-butylene glycol diacrylate, 1,4-butanediol diacrylate, 1,5-pentanediol diacrylate, 1,6 -Hexanediol diacrylate, neopentyl glycol diacrylate, or those obtained by replacing the acrylate of the above compound with methacrylate.
  • diacrylate compounds linked by an alkyl chain containing an ether bond examples include diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol # 400 diacrylate, polyethylene glycol # 600 diacrylate, Examples include propylene glycol diacrylate or those obtained by replacing acrylate of the above-mentioned compound with methacrylate.
  • polyester diacrylates examples include trade name MANDA (manufactured by Nippon Kayaku Co., Ltd.).
  • Polyfunctional cross-linking agents include pentaerythritol triacrylate, trimethylol ethane triacrylate, trimethylol propane triacrylate, tetramethylol methane tetraacrylate, oligoester acrylate, and those obtained by replacing acrylates of the above compounds with methacrylate, Examples include lucyanurate and triallyl trimellitate.
  • crosslinking agents can be used in an amount of preferably 0.01 to 10 parts by weight, particularly preferably 0.03 to 5 parts by weight, with respect to 100 parts by weight of other monomer components.
  • cross-linkable monomers those that are preferably used in the toner resin from the viewpoint of fixability and anti-offset properties include one aromatic divinyl compound (especially divinylbenzene is preferred), one aromatic group and one ether bond. Examples thereof include diacrylate compounds linked by a linking chain.
  • a combination of monomers that becomes a styrene copolymer or a styrene-acrylate copolymer is preferable.
  • examples of the polymerization initiator used for producing the vinyl polymer or copolymer include 2,2′-azobisisobutyronitrile, 2,2′-azobis (4-methoxy-2, 4-dimethylvaleronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2-methylbutyronitrile), dimethyl-2,2′-azobisisobutyrate 1,1′-azobis (1-cyclohexanecarbonitrile), 2- (carbamoylazo) -isobutyronitrile, 2,2′-azobis (2,4,4-trimethylpentane), 2-phenylazo- 2 ′, 4′-dimethyl-4′-methoxyvaleronitrile, 2,2′-azobis (2-methylpropane), methyl ethyl ketone peroxide, acetylacetone peroxide, Ketone peroxides such as rohexanone peroxide, 2,2-bis (
  • the binder resin is a styrene-acrylate resin
  • the molecular weight distribution is 3,000 by molecular weight distribution by gel permeation chromatography (hereinafter abbreviated as GPC) soluble in the resin component tetrahydrofuran (hereinafter abbreviated as THF).
  • GPC gel permeation chromatography
  • THF-soluble component is preferably a binder resin in which a component having a molecular weight distribution of 100,000 or less is 50 to 90%. More preferably, it has a main peak in a region having a molecular weight of 5,000 to 30,000, and most preferably in a region having a molecular weight of 5,000 to 20,000.
  • the acid value is preferably 0.1 mgKOH / g to 100 mgKOH / g, and preferably 0.1 mgKOH / g to 70 mgKOH / g. More preferably, it is 0.1 mgKOH / g to 50 mgKOH / g.
  • Examples of the monomer constituting the polyester polymer include the following.
  • Examples of the divalent alcohol component include ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, diethylene glycol, triethylene glycol, 1,5-pentanediol, 1, Examples thereof include 6-hexanediol, neopentyl glycol, 2-ethyl-1,3-hexanediol, hydrogenated bisphenol A, or diol obtained by polymerizing cyclic ethers such as ethylene oxide and propylene oxide with bisphenol A.
  • a trihydric or higher alcohol examples include sorbitol, 1,2,3,6-hexanetetrol, 1,4-sorbitan, pentaerythritol, dipentaerythritol, tripentaerythritol, 1,2,4-butanetriol, 1,2,5-pentatriol, glycerol, 2-methylpropanetriol, 2-methyl-1,2,4-butanetriol, trimethylolethane, trimethylolpropane, 1,3,5-trihydroxybenzene It is done.
  • Examples of the acid component that forms the polyester polymer include benzene dicarboxylic acids such as phthalic acid, isophthalic acid, and terephthalic acid or anhydrides thereof, and alkyldicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and azelaic acid or the like.
  • Unsaturated dibasic acids such as anhydride, maleic acid, citraconic acid, itaconic acid, alkenyl succinic acid, fumaric acid, mesaconic acid, maleic anhydride, citraconic anhydride, itaconic anhydride, alkenyl succinic anhydride, etc.
  • unsaturated dibasic acid anhydrides such as anhydride, maleic acid, citraconic acid, itaconic acid, alkenyl succinic acid, fumaric acid, mesaconic acid, maleic anhydride, citraconic anhydride, itaconic anhydride, alkenyl succin
  • Trivalent or higher polyvalent carboxylic acid components include trimellitic acid, pyromellitic acid, 2,5,7-naphthalene tricarboxylic acid, 1,2,4-naphthalene tricarboxylic acid, 1,2,4-butanetricarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1,3-dicarboxy-2-methyl-2-methylenecarboxypropane, tetra (methylenecarboxy) methane, 1,2,7,8-octanetetracarboxylic acid, empol trimer Body acids, or anhydrides thereof, partial lower alkyl esters, and the like.
  • the molecular weight distribution of the THF-soluble component of the resin component has at least one peak in the molecular weight region of 3,000 to 50,000, which indicates toner fixability and offset resistance.
  • the THF-soluble component is preferably a binder resin in which a component having a molecular weight of 100,000 or less is 60 to 100%. More preferably, at least one peak is present in a region having a molecular weight of 5,000 to 20,000.
  • the molecular weight distribution of the binder resin is measured by GPC using THF as a solvent.
  • the molecular weight is, for example, a number average molecular weight in terms of standard polystyrene measured with an HLC-8220 GPC apparatus (manufactured by Tosoh Corporation).
  • the acid value is preferably 0.1 mgKOH / g to 100 mgKOH / g, more preferably 0.1 mgKOH / g to 70 mgKOH / g, and 0.1 mgKOH / g. More preferably, it is ⁇ 50 mg KOH / g.
  • the hydroxyl value is preferably 30 mgKOH / g or less, more preferably 10 mgKOH / g to 25 mgKOH / g.
  • two or more of an amorphous polyester resin and a crystalline polyester resin may be mixed and used. In this case, it is preferable to select the material in consideration of the compatibility of each.
  • amorphous polyester resin those synthesized from a polyvalent carboxylic acid component, preferably an aromatic polyvalent carboxylic acid and a polyhydric alcohol component, are suitably used.
  • a crystalline polyester resin one synthesized from a divalent carboxylic acid component, preferably an aliphatic dicarboxylic acid and a dihydric alcohol component, is suitably used.
  • a resin that includes a monomer component capable of reacting with both the resin components in the vinyl polymer component and / or the polyester resin component can also be used.
  • monomers that can react with the vinyl polymer among the monomers constituting the polyester resin component include unsaturated dicarboxylic acids such as phthalic acid, maleic acid, citraconic acid, and itaconic acid, or anhydrides thereof.
  • the monomer constituting the vinyl polymer component include those having a carboxyl group or a hydroxy group, and acrylic acid or methacrylic acid esters.
  • the total binder resin has a resin having an acid value of 0.1 mgKOH / g to 50 mgKOH / g of 60% by mass or more. preferable.
  • the acid value of the binder resin component of the toner composition is determined by the following method, and the basic operation conforms to JIS K-0070.
  • the sample is used by removing additives other than the binder resin (polymer component) in advance, or the acid value and content of components other than the binder resin and the crosslinked binder resin are obtained in advance. .
  • a crushed sample of 0.5 to 2.0 g is precisely weighed, and the weight of the polymer component is defined as Wg.
  • Wg the weight of the polymer component
  • the toner binder resin and the composition containing the binder resin have a glass transition temperature (Tg) of preferably 35 to 80 ° C., particularly preferably 40 to 75 ° C., from the viewpoint of toner storage stability.
  • Tg glass transition temperature
  • the toner is likely to deteriorate in a high temperature atmosphere, and offset is likely to occur during fixing.
  • Tg exceeds 80 ° C., fixability tends to be lowered.
  • a binder resin having a softening point in the range of 80 to 140 ° C. is preferably used.
  • the softening point of the binder resin is less than 80 ° C.
  • the toner and the image stability of the toner after fixing and storage may be deteriorated.
  • the softening point exceeds 140 ° C.
  • the low-temperature fixability may be deteriorated.
  • Magnetic materials that can be used in the present embodiment include (1) magnetic iron oxides such as magnetite, maghemite, and ferrite, and iron oxides containing other metal oxides, (2) metals such as iron, cobalt, and nickel, or Alloys of these metals with metals such as aluminum, cobalt, copper, lead, magnesium, tin, zinc, antimony, beryllium, bismuth, cadmium, calcium, manganese, selenium, titanium, tungsten, vanadium, (3) and Examples thereof include a mixture thereof.
  • the magnetic material include Fe 3 O 4 , ⁇ -Fe 2 O 3 , ZnFe 2 O 4 , Y 3 Fe 5 O 12 , CdFe 2 O 4 , Gd 3 Fe 5 O 12 , CuFe 2 O 4 , PbFe 12 O, NiFe 2 O 4 , NdFe 2 O, BaFe 12 O 19 , MgFe 2 O 4 , MnFe 2 O 4 , LaFeO 3 , iron powder, cobalt powder, nickel powder, etc. Or in combination of two or more.
  • a particularly suitable magnetic substance is fine powder of iron trioxide or ⁇ -iron trioxide.
  • magnetic iron oxides such as magnetite, maghemite, and ferrite containing different elements, or a mixture thereof can be used.
  • different elements include lithium, beryllium, boron, magnesium, aluminum, silicon, phosphorus, germanium, zirconium, tin, sulfur, calcium, scandium, titanium, vanadium, chromium, manganese, cobalt, nickel, copper, zinc, gallium, etc.
  • Preferred heterogeneous elements are selected from magnesium, aluminum, silicon, phosphorus, or zirconium.
  • the foreign element may be incorporated into the iron oxide crystal lattice, may be incorporated into the iron oxide as an oxide, or may exist as an oxide or hydroxide on the surface. Is preferably contained as an oxide.
  • the aforementioned different elements can be incorporated into the particles by adjusting the pH by mixing salts of the different elements at the time of producing the magnetic material. Moreover, it can be made to precipitate on the particle
  • the amount of the magnetic substance used can be 10 to 200 parts by mass, preferably 20 to 150 parts by mass, with respect to 100 parts by mass of the binder resin.
  • These magnetic materials preferably have a number average particle diameter of 0.1 ⁇ m to 2 ⁇ m, and more preferably 0.1 ⁇ m to 0.5 ⁇ m.
  • the number average particle diameter can be obtained by measuring a photograph taken with a transmission electron microscope with a digitizer or the like.
  • the magnetic material preferably has a magnetic property of 10 to 150 oersted, a saturation magnetization of 50 to 200 emu / g, and a residual magnetization of 2 to 20 emu / g when applied with 10K oersted.
  • the magnetic material can also be used as a colorant.
  • the colorant according to this embodiment includes black or blue dye or pigment particles.
  • black or blue pigments include carbon black, aniline black, acetylene black, phthalocyanine blue, and indanthrene blue.
  • black or blue dyes include azo dyes, anthraquinone dyes, xanthene dyes, and methine dyes.
  • examples of the colorant include the following.
  • magenta colorant condensed azo compounds, diketopyrrolopyrrole compounds, anthraquinone compounds, quinacridone compounds, basic dyes, lake dyes, naphthol dyes, benzimidazolone compounds, thioindigo compounds, and perylene compounds can be used.
  • examples of pigment-based magenta colorants include C.I. I.
  • the pigment may be used alone, it is more preferable from the viewpoint of the image quality of a full-color image to improve the sharpness by using a dye and a pigment together.
  • C.I. I. Solvent Red 1, 3, 8, 23, 24, 25, 27, 30, 49, 81, 82, 83, 84, 100, 109, 121, C.I. I, disperse thread 9, C.I. I. Solvent Violet 8, 13, 14, 21, 27, C.I. I.
  • Oil-soluble dyes such as Desperperiolet 1, C.I. I. Basic red 1, 2, 9, 12, 13, 14, 15, 17, 18, 22, 23, 24, 27, 29, 32, 34, 35, 36, 37, 38, 39, 40, C.I. I. Examples include basic dyes such as basic violet 1,3,7,10,14,15,21,25,26,27,28.
  • cyan colorant copper phthalocyanine compounds and derivatives thereof, anthraquinones, basic dye lake compounds can be used.
  • examples of the pigment-based cyan colorant include C.I. I. Pigment blue 2, 3, 15, 16, 17, C.I. I. Bat Blue 6, C.I. I. Examples include Acid Blue 45 or copper phthalocyanine pigments in which 1 to 5 phthalimidomethyl groups are substituted on the phthalocyanine skeleton.
  • yellow colorant condensed azo compounds, isoindolinone compounds, anthraquinone compounds, azo metal complexes, methine compounds, and allylamide compounds can be used.
  • yellow pigments include C.I. I. Pigment Yellow 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 23, 65, 73, 83, C.I. I. Bat yellow 1, 3, 20 and the like.
  • orange pigment examples include red chrome yellow, molybdenum orange, permanent orange GTR, pyrazolone orange, Vulcan orange, benzidine orange G, indanthrene brilliant orange RK, and indanthrene brilliant orange GK.
  • purple pigments include manganese purple, fast violet B, and methyl violet lake.
  • green pigment examples include chromium oxide, chrome green, pigment green, malachite green lake, final yellow green G, and the like.
  • white pigments examples include zinc white, titanium oxide, antimony white, and zinc sulfide.
  • the amount of the colorant used is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the binder resin.
  • the toner of this embodiment may be mixed with a carrier and used as a two-component developer.
  • a carrier a normal carrier such as ferrite or magnetite or a resin-coated carrier can be used as a carrier.
  • the resin-coated carrier is composed of a carrier core particle and a coating material that is a resin that coats (coats) the surface of the carrier core particle.
  • a coating material that is a resin that coats (coats) the surface of the carrier core particle.
  • the resin used for the coating material include styrene-acrylate resins such as styrene-acrylic acid ester copolymers and styrene-methacrylic acid ester copolymers, acrylic acid ester copolymers, and methacrylic acid ester copolymers.
  • Fluorine-containing resins such as acrylate resins, polytetrafluoroethylene, monochlorotrifluoroethylene polymer, polyvinylidene fluoride, silicone resins, polyester resins, polyamide resins, polyvinyl butyral, and aminoacrylate resins are preferred.
  • a resin that can be used as a coating material for a carrier such as an ionomer resin or a polyphenylene sulfide resin can be used. These resins can be used alone or in combination.
  • a binder type carrier core in which magnetic powder is dispersed in a resin can be used.
  • the method of coating the surface of the carrier core with at least a resin coating agent is a method in which the resin is dissolved or suspended in a solvent and applied to and adhered to the carrier core, or simply mixed in a powder state. Applicable methods are applicable.
  • the ratio of the resin coating material to the resin-coated carrier may be appropriately determined, but is preferably 0.01 to 5% by mass, more preferably 0.1 to 1% by mass with respect to the resin-coated carrier.
  • Examples of use in which a magnetic material is coated with a coating agent of two or more kinds of mixtures include (1) dimethyldichlorosilane and dimethyl silicon oil (mass ratio 1: 5) with respect to 100 parts by mass of fine titanium oxide powder. Those treated with 12 parts by mass of the mixture, and (2) those treated with 20 parts by mass of the mixture of dimethyldichlorosilane and dimethylsilicone oil (mass ratio 1: 5) with respect to 100 parts by mass of the silica fine powder.
  • a styrene-methyl methacrylate copolymer a mixture of a fluorine-containing resin and a styrene copolymer, or a silicone resin is preferable, and a silicone resin is more preferable.
  • Examples of the mixture of the fluorine-containing resin and the styrene copolymer include, for example, a mixture of polyvinylidene fluoride and a styrene-methyl methacrylate copolymer, a mixture of polytetrafluoroethylene and a styrene-methyl methacrylate copolymer, Vinylidene fluoride-tetrafluoroethylene copolymer (copolymer mass ratio 10:90 to 90:10), styrene-2-ethylhexyl acrylate copolymer (copolymer mass ratio 10:90 to 90:10) and styrene And a mixture with an acrylic acid-2-ethylhexyl-methyl methacrylate copolymer (copolymer mass ratio 20 to 60: 5 to 30:10:50).
  • silicone resin examples include nitrogen-containing silicone resins and modified silicone resins produced by reacting a nitrogen-containing silane coupling agent with a silicone resin.
  • ferrite, iron-rich ferrite, magnetite, oxides such as ⁇ -iron oxide, metals such as iron, cobalt, nickel, or alloys thereof can be used.
  • elements contained in these magnetic materials include iron, cobalt, nickel, aluminum, copper, lead, magnesium, tin, zinc, antimony, beryllium, bismuth, calcium, manganese, selenium, titanium, tungsten, and vanadium.
  • Preferred magnetic materials include copper-zinc-iron-based ferrites mainly composed of copper, zinc and iron components, and manganese-magnesium-iron-based ferrites mainly composed of manganese, magnesium and iron components.
  • the resistance value of the carrier is preferably adjusted to 10 6 to 10 10 ⁇ ⁇ cm by adjusting the degree of unevenness on the surface of the carrier and the amount of resin to be coated.
  • the particle size of the carrier can be 4 ⁇ m to 200 ⁇ m, preferably 10 ⁇ m to 150 ⁇ m, more preferably 20 ⁇ m to 100 ⁇ m.
  • the resin-coated carrier preferably has a 50% particle size of 20 ⁇ m to 70 ⁇ m.
  • the two-component developer it is preferable to use 1 to 200 parts by mass of the toner according to this embodiment with respect to 100 parts by mass of the carrier, and 2 to 50 parts by mass of toner with respect to 100 parts by mass of the carrier. Is more preferable.
  • the toner according to this embodiment may further contain a wax.
  • the waxes used in this embodiment include the following.
  • oxides of aliphatic hydrocarbon waxes such as low molecular weight polyethylene, low molecular weight polypropylene, polyolefin wax, microcrystalline wax, paraffin wax, sazol wax, aliphatic hydrocarbon waxes such as oxidized polyethylene wax, or blocks thereof Copolymer, plant wax such as candelilla wax, carnauba wax, wood wax, jojoba wax, animal wax such as beeswax, lanolin, whale wax, mineral wax such as ozokerite, ceresin, petrolatum, montanate ester wax, Examples thereof include waxes mainly composed of fatty acid esters such as caster wax and those obtained by partially or fully deoxidizing fatty acid esters such as deoxidized carnauba wax.
  • waxes are further saturated linear fatty acids such as palmitic acid, stearic acid, montanic acid, or linear alkyl carboxylic acids having a linear alkyl group, prandidic acid, eleostearic acid, valinalic acid, etc.
  • Preferred waxes include polyolefins obtained by radical polymerization of olefins under high pressure, polyolefins obtained by purifying low molecular weight by-products obtained during polymerization of high molecular weight polyolefins, and polymerizations using catalysts such as Ziegler catalysts and metallocene catalysts under low pressures.
  • Synthetic hydrocarbon waxes synthesized by the above synthetic waxes having a compound having one carbon atom as monomers, hydrocarbon waxes having functional groups such as hydroxyl groups or carboxyl groups, hydrocarbon waxes and government Mixture of hydrocarbon wax having a group, or a styrene these waxes as a matrix, maleic acid esters, acrylates, methacrylates, graft modified wax with vinyl monomers such as maleic anhydride.
  • these waxes have a sharp molecular weight distribution using a press perspiration method, a solvent method, a recrystallization method, a vacuum distillation method, a supercritical gas extraction method or a solution liquid crystal deposition method, or low molecular weight solid fatty acids, low A molecular weight solid alcohol, a low molecular weight solid compound or other impurities are preferably used.
  • the wax used in the present embodiment preferably has a melting point of 50 to 140 ° C., more preferably 70 to 120 ° C., in order to balance the fixability and the offset resistance. If it is less than 50 degreeC, there exists a tendency for blocking resistance to fall, and if it exceeds 140 degreeC, it will become difficult to express an offset-proof effect.
  • the plasticizing action and the releasing action which are the actions of the wax can be expressed simultaneously.
  • the wax having a plasticizing action include a wax having a low melting point, a wax having a branched molecular structure, or a wax having a structure having a polar group.
  • the wax having a releasing action include a wax having a high melting point, a wax having a linear structure in terms of molecular structure, and a nonpolar wax having no functional group.
  • Examples of use include a combination in which the difference in melting point between two or more different waxes is 10 ° C. to 100 ° C., a combination of polyolefin and graft-modified polyolefin, and the like.
  • the melting point of at least one of the waxes is preferably 70 to 120 ° C., more preferably 70 to 100 ° C. When the melting point is in the above range, the function separation effect tends to be exhibited.
  • relatively waxes having a branched structure those having a polar group such as a functional group, or those modified with a component different from the main component exhibit a plastic action, and have a more linear structure.
  • a non-polar one having no functional group or an unmodified straight one exhibits a releasing action.
  • Preferred combinations of waxes include polyethylene homopolymers or copolymers based on ethylene and polyolefin homopolymers or copolymers based on olefins other than ethylene; combinations of polyolefins and graft modified polyolefins; alcohol waxes, fatty acid waxes or A combination of ester wax and hydrocarbon wax; Fischer-Tropsch wax or polyolefin wax and paraffin wax or microcrystal wax; Fischer Tropsch wax and polyolefin wax combination; Paraffin wax and microcrystal wax combination; Carnauba wax; Candelilla wax, rice wax or montan wax and carbonized water The combination of the system wax and the like.
  • the endothermic peak observed in the DSC measurement of the toner preferably has a maximum peak peak temperature in the region of 70 to 110 ° C., and more preferably has a maximum peak in the region of 70 to 110 ° C. . This makes it easy to balance toner storage and fixing properties.
  • the total content of these waxes is preferably 0.2 to 20 parts by mass, and preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the binder resin. More preferred.
  • the melting point of the wax is the peak top temperature of the endothermic peak of the wax measured by DSC.
  • the DSC measurement of wax or toner is performed with a highly accurate internal heat input compensation type differential scanning calorimeter.
  • the measurement method is performed according to ASTM D3418-82.
  • a DSC curve is used that is measured when the temperature is raised at a temperature rate of 10 ° C./min after once raising and lowering the temperature and taking a previous history.
  • a fluidity improver may be added to the toner of this embodiment.
  • the fluidity improver improves the fluidity of the toner (becomes easy to flow) when added to the toner surface.
  • fluorocarbon resin powders such as carbon black, vinylidene fluoride fine powder, polytetrafluoroethylene fine powder, fine powder silica such as wet process silica, dry process silica, fine powder unoxidized titanium, fine powder unalumina, and silane
  • the particle size of the fluidity improver is preferably 0.001 ⁇ m to 2 ⁇ m, more preferably 0.002 ⁇ m to 0.2 ⁇ m, as an average primary particle size.
  • a preferable fine powder silica is a fine powder produced by vapor phase oxidation of a silicon halide inclusion, and is called so-called dry silica or fumed silica.
  • Examples of commercially available silica fine powders produced by vapor phase oxidation of silicon halogen compounds include those sold under the following trade names.
  • AEROSIL manufactured by Nippon Aerosil Co., Ltd., the same shall apply hereinafter
  • -130, -300, -380, -TT600, -MOX170, -MOX80, -COK84 Ca-O-SiL (manufactured by CABOT Corp., hereinafter the same shall apply) -M-5 , -MS-7, -MS-75, -HS-5, -EH-5, Wacker HDK (manufactured by WACKER-CHEMIEGMBH Co., Ltd., the same shall apply hereinafter) -N20 V15, -N20E, -T30, -T40: D-CFineSi1ica (Manufactured by Dow Corning): Franco1 (manufactured by Franci1).
  • a treated silica fine powder obtained by hydrophobizing a silica fine powder produced by vapor phase oxidation of a silicon halogen compound is more preferable.
  • the treated silica fine powder it is particularly preferable to treat the silica fine powder so that the degree of hydrophobicity measured by a methanol titration test shows a value of 30 to 80%.
  • the hydrophobizing treatment can be performed, for example, by a method of chemically or physically treating with an organosilicon compound that reacts or physically adsorbs with silica fine powder.
  • a method of treating silica fine powder produced by vapor phase oxidation of a silicon halogen compound with an organosilicon compound is preferable.
  • organosilicon compounds include hydroxypropyltrimethoxysilane, phenyltrimethoxysilane, n-hexadecyltrimethoxysilane, n-octadecyltrimethoxysilane, vinylmethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, dimethylvinylchlorosilane, Divinylchlorosilane, ⁇ -methacryloxypropyltrimethoxysilane, hexamethyldisilane, trimethylsilane, trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, allyldimethylchlorosilane, allylphenyldichlorosilane, benzyldimethylchlorosilane, bromomethyldimethylchlorosilane, ⁇ -Chloroethyltrichlorosilane,
  • the fluidity improver preferably has a number average particle diameter of 5 nm to 100 nm, more preferably 5 nm to 50 nm.
  • the specific surface area by nitrogen adsorption measured by the BET method is preferably 30 m 2 / g or more, more preferably 60 to 400 m 2 / g.
  • the surface-treated fine powder is preferably 20 m 2 / g or more, particularly preferably 40 to 300 m 2 / g.
  • the application amount of these fine powders is preferably 0.03 to 8 parts by mass with respect to 100 parts by mass of the toner particles.
  • the toner of the present embodiment includes various types of metal soaps for the purpose of protecting the photoconductor / carrier, improving cleaning properties, adjusting thermal characteristics / electrical characteristics / physical characteristics, adjusting resistance, adjusting softening point, improving fixing rate, etc.
  • lubricants such as polytetrafluoroethylene, zinc stearate, and polyvinylidene fluoride, abrasives such as cesium oxide, silicon carbide, and strontium titanate, anti-caking agents, and white particles and black particles that are opposite in polarity to the toner particles A small amount can be used as a developability improver.
  • These additives include silicone varnishes, various modified silicone varnishes, silicone oils, various modified silicone oils, silane coupling agents, silane coupling agents having functional groups, and other organosilicon compounds for the purpose of charge control. It is also preferable to treat with a treating agent or various treating agents.
  • the charge control agent is sufficiently mixed and stirred together with the additive and toner as described above by a mixer such as a Henschel mixer, a ball mill, a nauter mixer, a V-type mixer, a W-type mixer, or a super mixer.
  • a mixer such as a Henschel mixer, a ball mill, a nauter mixer, a V-type mixer, a W-type mixer, or a super mixer.
  • the target electrostatic charge developing toner can be obtained by uniformly externally treating the toner particle surface.
  • the toner of this embodiment is thermally stable and does not undergo thermal changes during the electrophotographic process, and can maintain stable charging characteristics. Further, since it is uniformly dispersed in any binder resin, the charge distribution of the fresh toner is very uniform. For this reason, in the toner of this embodiment, even in the untransferred and recovered toner (waste toner), almost no change is observed in the saturated triboelectric charge amount and the charge distribution compared to the fresh toner. However, when the waste toner from the electrostatic image developing toner of this embodiment is reused, a method of selecting a polyester resin containing an aliphatic diol as a binder resin, a metal-crosslinked styrene-acrylate copolymer is used. By producing a toner by using a binder resin and adding a large amount of polyolefin to the binder resin, the difference between the fresh toner and the waste toner can be further reduced.
  • the toner according to the present embodiment can be manufactured by a known manufacturing method.
  • the above-mentioned toner constituent materials such as a binder resin, a charge control agent, and a colorant are sufficiently mixed by a mixer such as a ball mill, and the resulting mixture is well kneaded by a heating and kneading apparatus such as a hot roll kneader.
  • a method (pulverization method) obtained by solidifying by cooling, classification after pulverization is preferable.
  • It can also be produced by a method obtained by dissolving the mixture in a solvent and atomizing, drying, and classifying by spraying. Furthermore, a predetermined material is mixed with a monomer to constitute the binder resin to form an emulsion or suspension, and then polymerized to obtain a toner, so-called a toner manufacturing method by a polymerization method, a so-called core material and shell material.
  • the microcapsule toner can also be manufactured by a method in which a predetermined material is contained in the core material, the shell material, or both.
  • the toner according to the exemplary embodiment can be manufactured by sufficiently mixing a desired additive and toner particles with a mixer such as a Henschel mixer as necessary.
  • a binder resin, a colorant, a charge control agent, and other necessary additives are mixed uniformly.
  • a known stirrer such as a Henschel mixer, a super mixer, or a ball mill can be used.
  • the obtained mixture is hot-melt kneaded using a closed kneader or a single-screw or twin-screw extruder.
  • the kneaded product is coarsely pulverized using a crusher or a hammer mill, and further finely pulverized by a pulverizer such as a jet mill or a high-speed rotor rotary mill.
  • classification is performed to a predetermined particle size using an air classifier, for example, an inertia class elbow jet utilizing the Coanda effect, a cyclone (centrifugal) class microplex, a DS separator, and the like.
  • an air classifier for example, an inertia class elbow jet utilizing the Coanda effect, a cyclone (centrifugal) class microplex, a DS separator, and the like.
  • a high-speed agitator such as a Henschel mixer or a super mixer.
  • the toner according to the present embodiment can be manufactured by a suspension polymerization method or an emulsion polymerization method.
  • a suspension polymerization method first, a polymerizable monomer, a colorant, a polymerization initiator, a charge control agent and, if necessary, a crosslinking agent, a dispersion stabilizer and other additives are uniformly dissolved or dispersed.
  • a monomer composition is prepared.
  • the monomer composition and the dispersion stabilizer are mixed into a suitable stirrer or disperser such as a homomixer, a homogenizer, an atomizer, a microfluidizer, a one-component fluid nozzle, a gas-liquid fluid in a continuous phase (for example, an aqueous phase).
  • a suitable stirrer or disperser such as a homomixer, a homogenizer, an atomizer, a microfluidizer, a one-component fluid nozzle, a gas-liquid fluid in a continuous phase (for example, an aqueous phase).
  • granulation is performed by adjusting the stirring speed, temperature, and time so that the droplets of the polymerizable monomer composition have a desired toner particle size.
  • the polymerization reaction is carried out at 40 to 90 ° C. to obtain toner particles having a desired particle size.
  • the obtained toner particles are washed, filtered, and dried.
  • the method described above can be used.
  • the average particle diameter is extremely small, 0.1 ⁇ m to 1.0 ⁇ m, although it is excellent in uniformity compared to the particles obtained by the suspension polymerization method described above. It can also be produced by a so-called seed polymerization method in which particles are grown by post-addition of a polymerizable monomer, or a method in which emulsified particles are coalesced and fused to an appropriate average particle size.
  • the selection range of can be expanded.
  • the release agent or colorant which is a hydrophobic material, is difficult to be exposed on the surface of the toner particles, so that contamination of the toner carrying member, the photoreceptor, the transfer roller, and the fixing device can be reduced.
  • the toner according to this embodiment By producing the toner according to this embodiment by a polymerization method, characteristics such as image reproducibility, transferability, and color reproducibility can be further improved.
  • the toner particle size can be reduced in order to deal with minute dots, and a toner having a sharp particle size distribution can be obtained relatively easily.
  • Examples of the polymerizable monomer used when the toner according to the exemplary embodiment is manufactured by a polymerization method include vinyl polymerizable monomers capable of radical polymerization.
  • a monofunctional polymerizable monomer or a polyfunctional polymerizable monomer can be used.
  • Monofunctional polymerizable monomers include styrene, ⁇ -methyl styrene, ⁇ -methyl styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, 2,4-dimethyl styrene, pn-butyl.
  • Styrene polymerizable monomers such as styrene, p-tert-butylstyrene, pn-hexylstyrene, p-phenylstyrene; methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl Acrylate, tert-butyl acrylate, n-amyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, benzyl acrylate, dimethyl phosphate methyl acrylate, dibutyl phosphate ethyl Acrylate polymerizable monomers such as acrylate and 2-benzoyloxyethyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl me
  • a known one such as an organic peroxide can be used.
  • Water-soluble initiators include ammonium persulfate, potassium persulfate, 2,2′-azobis (N, N′-dimethyleneisobutyroamidine) hydrochloride, 2,2′-azobis (2-aminodipropane) hydrochloric acid Salt, azobis (isobutylamidine) hydrochloride, sodium 2,2′-azobisisobutyronitrile sulfonate, ferrous sulfate or hydrogen peroxide.
  • the polymerization initiator is preferably added in an amount of 0.5 to 20 parts by mass with respect to 100 parts by mass of the polymerizable monomer, and may be used alone or in combination.
  • the dispersant used in the production of the polymerized toner include inorganic calcium oxides such as tricalcium phosphate, magnesium phosphate, aluminum phosphate, zinc phosphate, calcium carbonate, magnesium carbonate, aluminum hydroxide, and metasilicate. Examples thereof include calcium acid, calcium sulfate, barium sulfate, bentonite, silica, and alumina.
  • organic compound examples include polyvinyl alcohol, gelatin, methyl cellulose, methyl hydroxypropyl cellulose, ethyl cellulose, sodium salt of carboxymethyl cellulose, starch and the like. These dispersants are preferably used in an amount of 0.2 to 2.0 parts by mass with respect to 100 parts by mass of the polymerizable monomer.
  • the inorganic compound can also be produced in a dispersion medium under high-speed stirring.
  • the toner obtained by the polymerization method tends to have a small degree of unevenness of the toner particles compared to the toner by the pulverization method without any special treatment and is indefinite, so that the contact between the electrostatic latent image carrier and the toner The area is increased and the toner adhesion is increased. As a result, there is less in-machine contamination, and a higher image density and higher quality image can be easily obtained.
  • the toner particles are dispersed in water and heated by a hot water bath method, a heat treatment method in which the toner particles pass through a hot air current, or a mechanical impact method in which mechanical energy is applied and processed.
  • the degree of unevenness on the toner surface can be reduced.
  • Effective devices for reducing the degree of unevenness include a mechano-fusion system (manufactured by Hosokawa Micron Co., Ltd.) applying dry mechanochemical method, an I-type jet mill, and a hybridizer that is a mixing device having a rotor and a liner (Nara Machinery) Manufactured by Seisakusho Co., Ltd.) and a Henschel mixer which is a mixer having high-speed stirring blades.
  • the average circularity (C) is the total number of particles obtained by calculating the circularity (Ci) by the following formula (2) and further measuring the total roundness of all the particles measured as shown by the following formula (3). It means the value divided by (m).
  • the circularity (Ci) is measured using a flow particle image analyzer (for example, FPIA-1000 manufactured by Toa Medical Electronics Co., Ltd.).
  • a flow particle image analyzer for example, FPIA-1000 manufactured by Toa Medical Electronics Co., Ltd.
  • a measurement method a dispersion in which about 5 mg of toner is dispersed in 10 ml of water in which about 0.1 mg of a nonionic surfactant is dissolved is prepared, and ultrasonic waves (20 kHz, 50 W) are irradiated to the dispersion for 5 minutes.
  • the circularity distribution of particles having an equivalent circle diameter of 0.60 ⁇ m or more and less than 159.21 ⁇ m is measured using the flow type particle image analyzer with a dispersion concentration of 5000 to 20000 particles / ⁇ L.
  • the value of the average circularity is preferably 0.955 to 0.995, and more preferably 0.960 to 0.985.
  • the toner particle diameter is preferably in the range of 2 ⁇ m to 15 ⁇ m, more preferably in the range of 3 ⁇ m to 12 ⁇ m in terms of volume average particle diameter.
  • the average particle size exceeds 15 ⁇ m, the resolution or sharpness tends to be dull, and when the average particle size is less than 2 ⁇ m, the resolution is good, but the problem of high cost due to the deterioration of the yield during toner production, Or there is a tendency for health problems such as toner scattering and skin penetration in the machine.
  • the polymerized toner it is preferably in the range of 3 ⁇ m to 9 ⁇ m, more preferably in the range of 4 ⁇ m to 8.5 ⁇ m, and particularly preferably in the range of 5 ⁇ m to 8 ⁇ m.
  • the volume average particle size is less than 4 ⁇ m, the toner fluidity is lowered, the chargeability of each particle is likely to be lowered, and the charge distribution is widened, so that fogging on the background or toner spillage from the developing device is likely to occur. Become.
  • it is smaller than 4 ⁇ m the cleaning property may be extremely difficult.
  • the volume average particle size is larger than 9 ⁇ m, the resolution decreases, so that sufficient image quality cannot be obtained, and it may be difficult to satisfy recent high image quality requirements.
  • the polymerized toner according to the present embodiment draws a cumulative distribution from the smaller diameter side in each of the volume and number, and the cumulative particle size distribution is 16% with respect to the divided particle size range (channel).
  • the particle size to be defined is defined as volume D16%
  • the particle size to be accumulated 50% is defined as volume D50%
  • the particle size to be accumulated 84% is defined as volume D84%, it is calculated from (D84% / D16%) 1/2.
  • the volume average particle size distribution index (GSDv) is preferably 1.15 to 1.30, more preferably 1.15 to 1.25.
  • the particle content of 2 ⁇ m or less is 10 to 90% on the number basis, for example, by particle size measurement using a Coulter counter (TA-II manufactured by Coulter Co., Ltd.).
  • the content of particles of 12.7 ⁇ m or more is 0 to 30% on a volume basis.
  • it is desirable that the particle size uniformity is high (volume average particle size / number average particle size is 1.00 to 1.30).
  • the specific surface area of the toner is preferably 1.2 to 5.0 m 2 / g in BET specific surface area measurement using nitrogen as a desorption gas. More preferably, it is 1.5 to 3.0 m 2 / g.
  • the specific surface area is measured using, for example, a BET specific surface area measuring apparatus (for example, FlowSorb II2300, manufactured by Shimadzu Corporation), desorbing the adsorbed gas on the toner surface at 50 ° C. for 30 minutes, and then rapidly cooling with liquid nitrogen. The gas is re-adsorbed and then heated again to 50 ° C., which is defined as a value obtained from the degassing amount at this time.
  • the apparent specific gravity was measured using, for example, a powder tester (for example, manufactured by Hosokawa Micron Corporation).
  • a powder tester for example, manufactured by Hosokawa Micron Corporation.
  • 0.2 to 0.6 g / cm 3 is preferable, and in the case of a magnetic toner, 0.2 to 2.0 g / cm 3 is preferable depending on the kind and content of the magnetic powder.
  • the true specific gravity in the case of the non-magnetic toner is preferably 0.9 to 1.2 g / cm 3 , and in the case of the magnetic toner, it depends on the kind and content of the magnetic powder, but is 0.9. ⁇ 4.0 g / cm 3 is preferred.
  • the true specific gravity of the toner is calculated as follows. 1.000 g of toner is precisely weighed, put into a 10 mm ⁇ tablet molding machine, and compression molded while applying a pressure of 200 kgf / cm 2 under vacuum. The height of this cylindrical molded product is measured with a micrometer, and the true specific gravity is calculated from this.
  • the fluidity of the toner is defined by, for example, a flow repose angle and a static repose angle by a repose angle measuring device (for example, manufactured by Tsutsui Rika Co., Ltd.).
  • the flow angle of repose is preferably 5 to 45 degrees.
  • the rest angle of repose is preferably 10 to 50 degrees.
  • the average value of the shape factor (SF-1) in the case of the pulverized toner is preferably 100 to 400, and the average value of the shape factor 2 (SF-2) is preferably 100 to 350.
  • SF-1 and SF-2 indicating the shape factor of the toner are, for example, toner particles magnified 1000 times using an optical microscope (for example, BH-2 manufactured by Olympus Corporation) equipped with a CCD camera.
  • the group is sampled to be about 30 in one field of view, and the obtained image is transferred to an image analyzer (for example, Luzex FS manufactured by Nireco Co., Ltd.), and the same operation is repeated until there are about 1000 toner particles.
  • an image analyzer for example, Luzex FS manufactured by Nireco Co., Ltd.
  • SF-1 ((ML 2 ⁇ ⁇ ) / 4A) ⁇ 100 (In the formula, ML represents the maximum particle length, and A represents the projected area of one particle.)
  • SF-2 (PM 2 / 4A ⁇ ) ⁇ 100 (In the formula, PM represents the perimeter of the particle, and A represents the projected area of one particle.)
  • SF-1 represents the distortion of the particle, and the closer the particle is to a sphere, the closer to 100, and the longer the particle, the larger the value.
  • SF-2 represents the unevenness of the particle. The closer the particle is to a sphere, the closer to 100, and the more complicated the particle shape, the larger the value.
  • the toner according to this embodiment preferably has a volume resistivity of 1 ⁇ 10 12 to 1 ⁇ 10 16 ⁇ ⁇ cm in the case of a non-magnetic toner, and the type and content of magnetic powder in the case of a magnetic toner. Depending on the amount, 1 ⁇ 10 8 to 1 ⁇ 10 16 ⁇ ⁇ cm is preferable.
  • the toner volume resistivity is obtained by compression-molding toner particles to produce a disk-shaped test piece having a diameter of 50 mm and a thickness of 2 mm, and setting this on a solid electrode (for example, SE-70 manufactured by Ando Electric Co., Ltd.).
  • a high insulation resistance meter for example, 4339A manufactured by Hewlett-Packard Co., Ltd.
  • it is defined as a value after 1 hour when a DC voltage of 100 V is continuously applied.
  • the toner according to this embodiment preferably has a dielectric loss tangent of 1.0 ⁇ 10 ⁇ 3 to 15.0 ⁇ 10 ⁇ 3 in the case of non-magnetic toner, and the kind of magnetic powder in the case of magnetic toner. Depending on the content, those of 2 ⁇ 10 ⁇ 3 to 30 ⁇ 10 ⁇ 3 are preferable.
  • the dielectric loss tangent of the toner is obtained by compression-molding the toner particles to produce a disk-shaped test piece having a diameter of 50 mm and a thickness of 2 mm, setting this on an electrode for solid, and an LCR meter (for example, Hewlett-Packard) It is defined as a dielectric loss tangent value (Tan ⁇ ) obtained when measured at a measurement frequency of 1 KHz and a peak-to-peak voltage of 0.1 KV using 4284A).
  • the toner according to the exemplary embodiment preferably has an Izod impact value of the toner of 0.1 to 30 kg ⁇ cm / cm.
  • the Izod impact value of the toner in this case is measured in accordance with JIS standard K-7110 (hard plastic impact test method) by thermally melting toner particles to produce a plate-like test piece.
  • the toner according to the present embodiment preferably has a toner melt index (MI value) of 10 to 150 g / 10 min.
  • the melt index (MI value) of the toner in this case is measured according to JIS standard K-7210 (Method A). In this case, the measurement temperature is 125 ° C. and the load is 10 kg.
  • the melting start temperature of the toner is preferably 80 to 180 ° C.
  • the 4 mm drop temperature is preferably 90 to 220 ° C.
  • the toner melting start temperature is obtained by compressing and molding toner particles to produce a cylindrical test piece having a diameter of 10 mm and a thickness of 20 mm, which is then used as a thermal melting characteristic measuring device such as a flow tester (for example, CFT manufactured by Shimadzu Corporation). -500C) and is defined as the value at which melting starts and the piston starts to descend when measured at a load of 20 kgf / cm 2 .
  • the temperature when the piston drops by 4 mm is defined as the 4 mm drop temperature.
  • the glass transition temperature (Tg) of the toner is preferably 35 to 80 ° C., and more preferably 40 to 75 ° C.
  • the glass transition temperature of the toner in this case is measured using a differential thermal analysis (abbreviated as DSC) device, and is obtained from the peak value of the phase change that appears when the temperature is raised at a constant temperature, rapidly cooled, and then reheated. It is defined as a thing.
  • DSC differential thermal analysis
  • the peak top temperature of the maximum peak is in the region of 70 to 120 ° C.
  • the melt viscosity of the toner is preferably 1000 to 50000 poise, and more preferably 1500 to 38000 poise.
  • the toner melt viscosity is obtained by compressing and molding toner particles to prepare a cylindrical test piece having a diameter of 10 mm and a thickness of 20 mm, and using this, for example, a flow tester (CFT-500C manufactured by Shimadzu Corporation). It is defined as a value when measured at a load of 20 kgf / cm 2 .
  • the solvent-soluble residue of the toner according to the exemplary embodiment is preferably 0 to 30% by mass as a THF-insoluble component, 0 to 40% by mass as an ethyl acetate-insoluble component, and 0 to 30% by mass as a chloroform-insoluble component.
  • the solvent-dissolved residue here is obtained by uniformly dissolving / dispersing 1 g of toner in 100 ml of each solvent of THF, ethyl acetate and chloroform, pressure-filtering the solution / dispersion, drying the filtrate, and quantifying. From this value, the ratio of insoluble matter in the organic solvent in the toner is calculated.
  • the toner according to the present embodiment can be used in a one-component development method which is one of image forming methods.
  • the one-component developing method is a method for developing a latent image by supplying a thinned toner to a latent image carrier.
  • the toner thinning usually includes a toner conveying member, a toner layer thickness regulating member and a toner replenishing auxiliary member, and the replenishing auxiliary member and the toner conveying member, and the toner layer thickness regulating member and the toner conveying member are in contact with each other. It is performed using the device.
  • the two-component development system is a system that uses toner and a carrier (having a role as a charge imparting material and a toner transport material), and the carrier uses the above-described magnetic material or glass beads.
  • the developer toner and carrier
  • the developer is agitated by the agitating member to generate a predetermined amount of charge, and is conveyed to the development site by a magnet roller or the like.
  • a magnet roller On the magnet roller, a developer is held on the roller surface by magnetic force, and a magnetic brush whose layer is regulated to an appropriate height by a developer regulating plate or the like is formed.
  • the developer moves on the roller as the developing roller rotates, and is brought into contact with the electrostatic charge latent image holding member or opposed in a non-contact state at a constant interval to develop and visualize the latent image.
  • a driving force for the toner it is usually possible to obtain a driving force for the toner to fly through a space at a constant interval by generating a direct current electric field between the developer and the latent image holding member. It can also be applied to a method of superimposing alternating current in order to develop an image.
  • the charge control agent used in the present embodiment is also suitable as a charge control agent (charge enhancer) in a coating for electrostatic powder coating. That is, the coating material for electrostatic coating using this charge enhancer is excellent in environmental resistance, storage stability, in particular thermal stability and durability, has a coating efficiency of 100%, and is a thick film free from coating film defects. Can be formed.
  • charge enhancer charge control agent
  • Purification of the hydantoin derivative represented by the general formula (1) was performed by purification using column chromatography, adsorption purification using silica gel, activity, activated clay, etc., recrystallization using a solvent, or crystallization.
  • the compound was identified by NMR analysis.
  • Example 19 Manufacture of non-magnetic toner 1 Styrene-acrylate copolymer resin (manufactured by Mitsui Chemicals, trade name CPR-100, acid value 0.1 mg KOH / g) 91 parts, hydantoin derivative (Exemplary Compound 15) 1 part synthesized in Synthesis Example 14, carbon Melt 5 parts of black (Mitsubishi Chemical Co., Ltd., trade name MA-100) and 3 parts of low molecular weight polypropylene (Sanyo Kasei Co., Ltd., trade name Viscol 550P) with a heating and mixing device (biaxial extrusion kneader) at 130 ° C. Mixed. The cooled mixture was coarsely pulverized with a hammer mill, then finely pulverized with a jet mill, and classified to obtain a nonmagnetic toner 1 having a volume average particle size of 9 ⁇ 0.5 ⁇ m.
  • the charge amount was also evaluated when mixed with a silicon-coated ferrite carrier (F96-150 manufactured by Powdertech). As a result, it was ⁇ 25.8 ⁇ c / g.
  • Example 20 (Production and evaluation of non-magnetic toner 2) A nonmagnetic toner 2 was prepared in the same manner as in Example 19 except that the hydantoin derivative synthesized in Synthesis Example 14 (Exemplary Compound 15) was replaced with the hydantoin derivative synthesized in Synthesis Example 12 (Exemplary Compound 13). The charge amount was evaluated using a blow-off powder charge amount measuring device. As a result, the charge amount when mixed with a non-coated ferrite carrier (F-150 manufactured by Powdertech Co., Ltd.) was ⁇ 34.5 ⁇ c / g. Similarly, the charge amount when mixed with a silicon-coated ferrite carrier (F96-150 manufactured by Powdertech) was -24.3 ⁇ c / g.
  • Comparative Example 1 (Production and evaluation of comparative non-magnetic toner) A comparative nonmagnetic toner was prepared in the same manner as in Example 19 except that the hydantoin derivative synthesized in Synthesis Example 14 (Exemplary Compound 15) was replaced with a salt of 3,5-tert-butylsalicylic acid and zinc. The charge amount was evaluated by a blow-off powder charge amount measuring device. As a result, the charge amount when mixed with a non-coated ferrite carrier (F-150 manufactured by Powdertech Co., Ltd.) was ⁇ 23.0 ⁇ c / g. Similarly, the charge amount when mixed with a silicon-coated ferrite carrier (F96-150 manufactured by Powdertech) was -15.0 ⁇ c / g.
  • a non-coated ferrite carrier F-150 manufactured by Powdertech Co., Ltd.
  • silicon-coated ferrite carrier F96-150 manufactured by Powdertech
  • the toner using the charge control agent containing the hydantoin derivative represented by the general formula (1) of the present invention as an active ingredient has a high charge amount.
  • Example 21 (Preparation of resin dispersion) Mix 80 parts of polyester resin (Made by Mitsubishi Rayon Co., Ltd., DIACRON ER-561), 320 parts of ethyl acetate and 32 parts of isopropyl alcohol, and use a homogenizer (Megaku Co., Ltd., foamless mixer NGM-0.5TB). While stirring at 5000 to 10000 rpm, an appropriate amount of 0.1% by mass of ammonia water was added dropwise for phase inversion emulsification, and the solvent was removed while reducing the pressure with an evaporator to obtain a resin dispersion. The volume average particle diameter of the resin particles in this dispersion was 0.2 ⁇ m (the resin particle concentration was adjusted to 20% by mass with ion-exchanged water).
  • the mixture was further stirred for 2 hours, and after confirming that the volume average particle size was 6.0 ⁇ m and the particle shape was spheroidized, it was rapidly cooled using ice water.
  • the sample was collected by filtration and dispersed and washed with ion exchange water. Dispersion washing was repeated until the electric conductivity of the filtrate after dispersion became 20 ⁇ S / cm or less. Thereafter, the toner particles were obtained by drying with a dryer at 40 ° C. The obtained toner was sieved with a 166 mesh (aperture 90 ⁇ m) sieve to obtain an evaluation toner.
  • Example 2 For comparison, a toner was prepared under the same conditions as in Example 21 except that the operation of adding the charge control agent dispersion was omitted, and the saturation charge amount was measured. As a result, the saturated charge amount was ⁇ 20.5 ⁇ C / g.
  • the polymerized toner containing the hydantoin derivative represented by the general formula (1) of the present invention as an active ingredient exhibits excellent charging performance. That is, by using a charge control agent containing a hydantoin derivative represented by the general formula (1) of the present invention as an active ingredient, high charge performance can be imparted to the polymerized toner.
  • the hydantoin derivative represented by the general formula (1) of the present invention has an excellent charging performance, and the charge control agent containing the compound as an active ingredient has a clearly higher charging performance than the conventional charge control agent.
  • the charge control agent is optimal for color toners, particularly for polymerized toners. Furthermore, the charge control agent is extremely useful because it does not contain heavy metals such as chromium compounds, which are concerned about environmental problems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

 本発明は、下記一般式(1)で表されるヒダントイン誘導体の1種又は2種以上を有効成分として含有する電荷制御剤を提供する。[式中、R及びRは、相互に同一でも異なってもよく、水素原子、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基等を示し、Rは、水素原子等を示し、R~Rは、相互に同一でも異なってもよく、水素原子、塩素原子、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基等を示す。R~Rは、互いに結合して環を形成していてもよい。V、W、X、Y及びZは炭素原子又は窒素原子を示し、V、W、X、Y及びZはそのいずれか0~3個が窒素原子であるものとし、この場合の窒素原子はR~Rの置換基を有さないものとする。]

Description

電荷制御剤及びそれを用いたトナー
 本発明は電子写真、静電記録などの分野で静電潜像を顕像化するための画像形成装置で用いられる電荷制御剤、及び電荷制御剤を含有する負帯電性トナーに関する。
 電子写真方式による画像形成プロセスでは、セレン、セレン合金、硫化カドミウム、アモルファスシリコンなどの無機感光体、又は、電荷発生剤と電荷輸送剤を用いた有機感光体に静電潜像を形成し、これをトナーにより現像し、紙又はプラスチックフィルムに転写し、定着して可視画像を得る。
 感光体にはその構成により正帯電性と負帯電性が有り、露光により印字部を静電潜像として残す場合は逆符号帯電性トナーにより現像し、一方、印字部を除電して反転現像を行なう場合は同符号帯電性トナーにより現像する。
 トナーは、結着樹脂、着色剤、及びその他の添加剤により構成される。望ましい帯電特性(帯電速度、帯電レベル、帯電安定性など)、経時安定性、環境安定性などを付与するために一般に電荷制御剤が添加される。この電荷制御剤の添加によりトナーの特性は大きく改善される。
 今日、当該技術分野で知られている正摩擦帯電性電荷制御剤として、ニグロシン染料、アジン系染料、銅フタロシアニン顔料、4級アンモニウム塩、及び4級アンモニウム塩を側鎖に有するポリマーなどが知られている。負摩擦帯電性電荷制御剤としては、モノアゾ染料の金属錯塩、サリチル酸、ナフトエ酸又はジカルボン酸の金属錯塩、銅フタロシアニン顔料、及び、酸成分を含む樹脂などが知られている。
 また今後の市場拡大が予想されるカラートナーの場合においては、色相に影響を与えない淡色、望ましくは無色の電荷制御剤が必要不可欠である。これら淡色又は無色の電荷制御剤には、負帯電性トナー用としてヒドロキシ安息香酸誘導体の金属錯塩化合物(例えば、特許文献1~3参照)、芳香族ジカルボン酸金属塩化合物(例えば、特許文献4参照)、アントラニル酸誘導体の金属錯塩化合物(例えば、特許文献5~6参照)、有機ホウ素化合物(例えば、特許文献7~8参照)、ビフェノール化合物(例えば、特許文献9参照)、カリックス(n)アレン化合物(例えば、特許文献10~15参照)及び環状フェノール硫化物(例えば、特許文献16~18参照)などがある。また、正帯電性トナー用として、第四級アンモニウム塩化合物(例えば、特許文献19~21参照)などがある。
特公昭55-042752号公報 特開昭61-069073号公報 特開昭61-221756号公報 特開昭57-111541号公報 特開昭61-141453号公報 特開昭62-094856号公報 米国特許第4767688号公報 特開平1-306861号公報 特開昭61-003149号公報 特許第2568675号公報 特許第2899038号公報 特許第3359657号公報 特許第3313871号公報 特許第3325730号公報 特開2003-162100号公報 特開2003-295522号公報 WO2007-111346号公報 WO2007-119797号公報 特開昭57-119364号公報 特開昭58-009154号公報 特開昭58-098742号公報
 しかしながら、これらの電荷制御剤の多くはクロムなどの重金属からなる錯体又は塩などであって、廃棄物規制に関して問題であり、必ずしも安全であるとは言えない。また、今日要求されている帯電付与効果が低く、帯電の立ち上がり速度が不十分なために、初期の複写画像が鮮明性に欠けたり、連続複写中における複写画像の品質が変動し易かったり、さらには、重合トナーへの適用ができないなどの欠点があった。そこで、帯電付与効果が高く、重合トナーへの適用ができる電荷制御剤が望まれていた。
 本発明は、高い帯電量を有し、廃棄物規制にも問題のない安全な電荷制御剤を提供することを目的とする。また、当該電荷制御剤を使用する高い帯電性能を有する静電荷像現像用負帯電性トナー、及び負帯電性重合トナーを提供することを目的とする。
 本発明は、前記目的を達成するために鋭意研究した結果得られたものであり、以下を要旨とするものである。
 すなわち、本発明は、一般式(1)で表されるヒダントイン誘導体の1種又は2種以上を有効成分として含有する電荷制御剤を提供する。
Figure JPOXMLDOC01-appb-C000004
 一般式(1)中、R及びRは、相互に同一でも異なってもよく、水素原子、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、又は置換若しくは無置換の縮合多環芳香族基を示し、Rは、水素原子、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、置換若しくは無置換の縮合多環芳香族基、又は置換若しくは無置換のアリールオキシ基を示し、R、R、R、R及びR(以下「R~R」とも記載する。)は、相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ヒドロキシル基、シアノ基、トリフルオロメチル基、ニトロ基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、置換若しくは無置換の縮合多環芳香族基または置換若しくは無置換のアリールオキシ基を示す。R、R、R、R、R及びR(以下「R~R」とも記載する。)は、互いに結合して環を形成していてもよい。V、W、X、Y及びZは炭素原子又は窒素原子を示し、V、W、X、Y及びZはそのいずれか0~3個が窒素原子であるものとし、この場合の窒素原子はR~Rの置換基を有さないものとする。
 本発明はまた、上記一般式(1)で表されるヒダントイン誘導体の1種又は2種以上を有効成分として含有する電荷制御剤、着色剤及び結着樹脂を含有するトナーを提供する。
 本発明は更に、上記一般式(1)で表されるヒダントイン誘導体の1種又は2種以上を有効成分として含有する電荷制御剤、着色剤及び結着樹脂を含有する重合トナーを提供する。
 上記一般式(1)で表されるヒダントイン誘導体の1種又は2種以上を有効成分として含有する電荷制御剤は、高い帯電量を有し、しかも、廃棄物規制にも問題がなく安全であるという優れた特性を有しており、トナーの電荷制御に好適に使用できる。したがって、本発明は、上記一般式(1)で表されるヒダントイン誘導体の1種又は2種以上を有効成分として含有する電荷制御剤のトナーの電荷制御のための使用、又は上記一般式(1)で表されるヒダントイン誘導体の1種又は2種以上を有効成分として含有する電荷制御剤のトナーの電荷制御への応用ということもできる。上記トナーは重合トナーであってもよい。
 さらに、本発明は、上記一般式(1)で表されるヒダントイン誘導体の1種又は2種以上を有効成分として含有する電荷制御剤を用いるトナーの電荷制御方法、ということもできる。この場合も上記トナーは重合トナーであってもよい。
 本発明において、一般式(1)で表されるヒダントイン誘導体の1種又は2種以上を有効成分として含有する電荷制御剤は、従来の電荷制御剤より帯電の立ち上がり速度が高く、高い帯電量を有し、かつ経時安定性及び環境安定性に特に優れた帯電特性を有している。また、環境問題で懸念されるクロムなどの重金属を含まず、さらに分散性及び化合物の安定性に優れている。
 本発明に係る電荷制御剤は、電荷制御特性、耐環境性、及び耐久性に優れており、粉砕トナーまたは重合トナーに用いた場合に、カブリがなく、画像濃度、ドット再現性、細線再現性が良好な画像を得ることができる。上記電荷制御剤は、トナーに十分な摩擦帯電性を発現させる電子写真用の荷電制御剤、特にカラートナー用として、さらには重合トナー用として有用である。
 以下、本発明の実施形態について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本実施形態に係る電荷制御剤は、上記一般式(1)で表されるヒダントイン誘導体の1種又は2種以上を有効成分として含有する。まず、一般式(1)で表されるヒダントイン誘導体について説明する。
 一般式(1)中のR及びRで表される「置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基」又は「置換基を有していてもよい炭素原子数5~10のシクロアルキル基」における「炭素原子数1~8の直鎖状若しくは分岐状のアルキル基」又は「炭素原子数5~10のシクロアルキル基」としては、具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基及び2-アダマンチル基などをあげることができる。
 一般式(1)中のR及びRで表される「置換基を有する炭素原子数1~8の直鎖状若しくは分岐状のアルキル基」又は「置換基を有する炭素原子数5~10のシクロアルキル基」における「置換基」としては、具体的に、重水素原子、トリフルオロメチル基、シアノ基、ニトロ基、ヒドロキシル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基などの炭素原子数1~8の直鎖状若しくは分岐状のアルキル基;メトキシ基、エトキシ基、プロピルオキシ基などの炭素原子数1~8の直鎖状若しくは分岐状のアルコキシ基;アリル基などのアルケニル基;ベンジル基、ナフチルメチル基、フェネチル基などのアラルキル基;フェノキシ基、トリルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルコキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基若しくは縮合多環芳香族基;ピリジル基、フラニル基、ピラニル基、チエニル基、フリル基、ピロリル基、ピロリジニル基、イミダゾリル基、イミダゾリニル基、イミダゾリジニル基、ピラゾリル基、ピラゾリニル基、ピラゾリジニル基、ピリダジニル基、ピラジニル基、ピペリジニル基、ピペラジニル基、チオラニル基、チアニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルボリニル基などの複素環基;スチリル基、ナフチルビニル基などのアリールビニル基;アセチル基、ベンゾイル基などのアシル基;ジメチルアミノ基、ジエチルアミノ基などのジアルキルアミノ基;ジフェニルアミノ基、ジナフチルアミノ基などの芳香族炭化水素基若しくは縮合多環芳香族基で置換されたジ置換アミノ基;ジベンジルアミノ基、ジフェネチルアミノ基などのジアラルキルアミノ基;ジピリジルアミノ基、ジチエニルアミノ基、ジピペリジニルアミノ基などの複素環基で置換されたジ置換アミノ基;ジアリルアミノ基などのジアルケニルアミノ基;アルキル基、芳香族炭化水素基、縮合多環芳香族基、アラルキル基、複素環基又はアルケニル基から選択される置換基で置換されたジ置換アミノ基のような基をあげることができ、これらの置換基は、さらに他の置換基によって置換されていてもよく、単結合、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。
 一般式(1)中のR及びRで表される「置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基」としては、「置換基を有していてもよい炭素原子数1~6の直鎖状若しくは分岐状のアルキル基」が好ましく、「置換基を有していてもよい炭素原子数1~4の直鎖状若しくは分岐状のアルキル基」がより好ましく、これらは「無置換」であることが更に好ましい。
 また、一般式(1)中のR及びRで表される「置換基を有していてもよい炭素原子数5~10のシクロアルキル基」としては、「置換基を有していてもよい炭素原子数5~6のシクロアルキル基」が好ましく、これらは「無置換」であることがより好ましい。
 一般式(1)中のR~Rで表される「置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基」、「置換基を有していてもよい炭素原子数5~10のシクロアルキル基」又は「置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基」における「炭素原子数1~8の直鎖状若しくは分岐状のアルキル基」、「炭素原子数5~10のシクロアルキル基」又は「炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基」としては、具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、ビニル基、アリル基、イソプロペニル基及び2-ブテニル基などをあげることができる。この場合、R~Rはそれぞれ、単結合、酸素原子又は硫黄原子を介して互いに結合して環を形成していてもよく、又はR~Rはそれぞれ、単結合、酸素原子又は硫黄原子を介して互いに結合して環を形成していてもよい。
 一般式(1)中のR~Rで表される「置換基を有する炭素原子数1~8の直鎖状若しくは分岐状のアルキル基」、「置換基を有する炭素原子数5~10のシクロアルキル基」又は「置換基を有する炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基」における「置換基」としては、具体的に、重水素原子、トリフルオロメチル基、シアノ基、ニトロ基、ヒドロキシル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基などの炭素原子数1~8の直鎖状若しくは分岐状のアルキル基;メトキシ基、エトキシ基、プロピルオキシ基などの炭素原子数1~8の直鎖状若しくは分岐状のアルコキシ基;アリル基などのアルケニル基;ベンジル基、ナフチルメチル基、フェネチル基などのアラルキル基;フェノキシ基、トリルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルコキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基若しくは縮合多環芳香族基;ピリジル基、フラニル基、ピラニル基、チエニル基、フリル基、ピロリル基、ピロリジニル基、イミダゾリル基、イミダゾリニル基、イミダゾリジニル基、ピラゾリル基、ピラゾリニル基、ピラゾリジニル基、ピリダジニル基、ピラジニル基、ピペリジニル基、ピペラジニル基、チオラニル基、チアニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルボリニル基などの複素環基;スチリル基、ナフチルビニル基などのアリールビニル基;アセチル基、ベンゾイル基などのアシル基;ジメチルアミノ基、ジエチルアミノ基などのジアルキルアミノ基;ジフェニルアミノ基、ジナフチルアミノ基などの芳香族炭化水素基若しくは縮合多環芳香族基で置換されたジ置換アミノ基;ジベンジルアミノ基、ジフェネチルアミノ基などのジアラルキルアミノ基;ジピリジルアミノ基、ジチエニルアミノ基、ジピペリジニルアミノ基などの複素環基で置換されたジ置換アミノ基;ジアリルアミノ基などのジアルケニルアミノ基;アルキル基、芳香族炭化水素基、縮合多環芳香族基、アラルキル基、複素環基又はアルケニル基から選択される置換基で置換されたジ置換アミノ基のような基をあげることができ、これらの置換基は、さらに他の置換基によって置換されていてもよく、単結合、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。
 一般式(1)中のR~Rで表される「置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基」としては、「置換基を有していてもよい炭素原子数1~6の直鎖状若しくは分岐状のアルキル基」が好ましく、「置換基を有していてもよい炭素原子数1~4の直鎖状若しくは分岐状のアルキル基」がより好ましく、これらは「無置換」であることが更に好ましい。
 一般式(1)中のR~Rで表される「置換基を有していてもよい炭素原子数5~10のシクロアルキル基」としては、「置換基を有していてもよい炭素原子数5~6のシクロアルキル基」が好ましく、これらは「無置換」であることがより好ましい。
 一般式(1)中のR~Rで表される「置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基」としては、「置換基を有していてもよい炭素原子数2~4の直鎖状若しくは分岐状のアルケニル基」が好ましく、これらは「無置換」であることがより好ましい。
 一般式(1)中のR~Rで表される「置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基」又は「置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基」における「炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基」又は「炭素原子数5~10のシクロアルキルオキシ基」としては、具体的に、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、イソヘプチルオキシ基、n-オクチルオキシ基、イソオクチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、1-アダマンチルオキシ基及び2-アダマンチルオキシ基などをあげることができる。この場合、R~Rはそれぞれ、単結合、酸素原子又は硫黄原子を介して互いに結合して環を形成していてもよく、又はR~Rはそれぞれ、単結合、酸素原子又は硫黄原子を介して互いに結合して環を形成していてもよい。
 一般式(1)中のR~Rで表される「置換基を有する炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基」又は「置換基を有する炭素原子数5~10のシクロアルキルオキシ基」における「置換基」としては、具体的に、重水素原子、トリフルオロメチル基、シアノ基、ニトロ基、ヒドロキシル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基などの炭素原子数1~8の直鎖状若しくは分岐状のアルキル基;メトキシ基、エトキシ基、プロピルオキシ基などの炭素原子数1~8の直鎖状若しくは分岐状のアルコキシ基;アリル基などのアルケニル基;ベンジル基、ナフチルメチル基、フェネチル基などのアラルキル基;フェノキシ基、トリルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルコキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基若しくは縮合多環芳香族基;ピリジル基、フラニル基、ピラニル基、チエニル基、フリル基、ピロリル基、ピロリジニル基、イミダゾリル基、イミダゾリニル基、イミダゾリジニル基、ピラゾリル基、ピラゾリニル基、ピラゾリジニル基、ピリダジニル基、ピラジニル基、ピペリジニル基、ピペラジニル基、チオラニル基、チアニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルボリニル基などの複素環基;スチリル基、ナフチルビニル基などのアリールビニル基;アセチル基、ベンゾイル基などのアシル基;ジメチルアミノ基、ジエチルアミノ基などのジアルキルアミノ基;ジフェニルアミノ基、ジナフチルアミノ基などの芳香族炭化水素基若しくは縮合多環芳香族基で置換されたジ置換アミノ基;ジベンジルアミノ基、ジフェネチルアミノ基などのジアラルキルアミノ基;ジピリジルアミノ基、ジチエニルアミノ基、ジピペリジニルアミノ基などの複素環基で置換されたジ置換アミノ基;ジアリルアミノ基などのジアルケニルアミノ基;アルキル基、芳香族炭化水素基、縮合多環芳香族基、アラルキル基、複素環基又はアルケニル基から選択される置換基で置換されたジ置換アミノ基のような基をあげることができ、これらの置換基は、さらに他の置換基によって置換されていてもよく、単結合、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。
 一般式(1)中のR~Rで表される「置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基」としては、「置換基を有していてもよい炭素原子数1~6の直鎖状若しくは分岐状のアルキルオキシ基」が好ましく、「置換基を有していてもよい炭素原子数1~4の直鎖状若しくは分岐状のアルキルオキシ基」がより好ましく、これらは「無置換」であることが更に好ましい。
 一般式(1)中のR~Rで表される「置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基」としては、「置換基を有していてもよい炭素原子数5~6のシクロアルキルオキシ基」が好ましく、これらは「無置換」であることがより好ましい。
 一般式(1)中のR~Rで表される「置換若しくは無置換の芳香族炭化水素基」、「置換若しくは無置換の複素環基」又は「置換若しくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「複素環基」又は「縮合多環芳香族基」としては、具体的に、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントリル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、ピリジル基、フラニル基、ピラニル基、チエニル基、ピロリジニル基、イミダゾリル基、イミダゾリニル基、イミダゾリジニル基、ピラゾリル基、ピラゾリニル基、ピラゾリジニル基、ピリダジニル基、ピラジニル基、ピペリジニル基、ピペラジニル基、チオラニル基、チアニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、及びカルボリニル基などをあげることができる。この場合、R~Rはそれぞれ、単結合、酸素原子又は硫黄原子を介して互いに結合して環を形成していてもよく、又はR~Rはそれぞれ、単結合、酸素原子又は硫黄原子を介して互いに結合して環を形成していてもよい。
 一般式(1)中のR~Rで表される「置換芳香族炭化水素基」、「置換複素環基」又は「置換縮合多環芳香族基」における「置換基」としては、具体的に、重水素原子、シアノ基、トリフルオロメチル基、ニトロ基、ヒドロキシル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基などの炭素原子数1~8の直鎖状若しくは分岐状のアルキル基;シクロペンチル基、シクロヘキシル基などの炭素原子数5~10のシクロアルキル基;ビニル基、アリル基、2-ブテニル基、1-ヘキセニル基などの炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基;メトキシ基、エトキシ基、プロピルオキシ基などの炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基;シクロペンチルオキシ基、シクロヘキシルオキシ基などの炭素原子数5~10のシクロアルキルオキシ基;ベンジル基、ナフチルメチル基、フェネチル基などのアラルキル基;フェノキシ基、トリルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントリルオキシ基、フェナントリルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルコキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基若しくは縮合多環芳香族基;ピリジル基、フラニル基、ピラニル基、チエニル基、フリル基、ピロリル基、ピロリジニル基、イミダゾリル基、イミダゾリニル基、イミダゾリジニル基、ピラゾリル基、ピラゾリニル基、ピラゾリジニル基、ピリダジニル基、ピラジニル基、ピペリジニル基、ピペラジニル基、チオラニル基、チアニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルボリニル基などの複素環基;スチリル基、ナフチルビニル基などのアリールビニル基;アセチル基、ベンゾイル基などのアシル基;ジメチルアミノ基、ジエチルアミノ基などのジアルキルアミノ基;ジフェニルアミノ基、ジナフチルアミノ基などの芳香族炭化水素基若しくは縮合多環芳香族基で置換されたジ置換アミノ基;ジベンジルアミノ基、ジフェネチルアミノ基などのジアラルキルアミノ基;ジピリジルアミノ基、ジチエニルアミノ基、ジピペリジニルアミノ基などの複素環基で置換されたジ置換アミノ基;ジアリルアミノ基などのジアルケニルアミノ基;アルキル基、芳香族炭化水素基、縮合多環芳香族基、アラルキル基、複素環基又はアルケニル基から選択される置換基で置換されたジ置換アミノ基のような基をあげることができ、これらの置換基は、さらに他の置換基によって置換されていてもよく、単結合、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。
 一般式(1)中のR~Rで表される「置換若しくは無置換のアリールオキシ基」における「アリールオキシ基」としては、具体的に、フェノキシ基、トリルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントリルオキシ基、フェナントリルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基などをあげることができる。この場合、R~Rはそれぞれ、単結合、酸素原子又は硫黄原子を介して互いに結合して環を形成していてもよく、又はR~Rはそれぞれ、単結合、酸素原子又は硫黄原子を介して互いに結合して環を形成していてもよい。
 一般式(1)中のR~Rで表される「置換アリールオキシ基」における「置換基」としては、具体的に、重水素原子、シアノ基、トリフルオロメチル基、ニトロ基、ヒドロキシル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基などの炭素原子数1~8の直鎖状若しくは分岐状のアルキル基;シクロペンチル基、シクロヘキシル基などの炭素原子数5~10のシクロアルキル基;ビニル基、アリル基、2-ブテニル基、1-ヘキセニル基などの炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基;メトキシ基、エトキシ基、プロピルオキシ基などの炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基;シクロペンチルオキシ基、シクロヘキシルオキシ基などの炭素原子数5~10のシクロアルキルオキシ基;ベンジル基、ナフチルメチル基、フェネチル基などのアラルキル基;フェノキシ基、トリルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントリルオキシ基、フェナントリルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルコキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基若しくは縮合多環芳香族基;ピリジル基、フラニル基、ピラニル基、チエニル基、フリル基、ピロリル基、ピロリジニル基、イミダゾリル基、イミダゾリニル基、イミダゾリジニル基、ピラゾリル基、ピラゾリニル基、ピラゾリジニル基、ピリダジニル基、ピラジニル基、ピペリジニル基、ピペラジニル基、チオラニル基、チアニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルボリニル基などの複素環基;スチリル基、ナフチルビニル基などのアリールビニル基;アセチル基、ベンゾイル基などのアシル基;ジメチルアミノ基、ジエチルアミノ基などのジアルキルアミノ基;ジフェニルアミノ基、ジナフチルアミノ基などの芳香族炭化水素基若しくは縮合多環芳香族基で置換されたジ置換アミノ基;ジベンジルアミノ基、ジフェネチルアミノ基などのジアラルキルアミノ基;ジピリジルアミノ基、ジチエニルアミノ基、ジピペリジニルアミノ基などの複素環基で置換されたジ置換アミノ基;ジアリルアミノ基などのジアルケニルアミノ基;アルキル基、芳香族炭化水素基、縮合多環芳香族基、アラルキル基、複素環基又はアルケニル基から選択される置換基で置換されたジ置換アミノ基のような基をあげることができ、これらの置換基は、さらに他の置換基によって置換されていてもよく、単結合、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。
 一般式(1)中のRとRは、直接又は置換基を介して、単結合、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。
 一般式(1)において、V、W、X、Y及びZとしては、その全てが炭素原子であるか、又は、いずれか1個又は2個が窒素原子である場合が好ましく、V、W、X、Y及びZの全てが炭素原子である場合がより好ましい。
 上記一般式(1)で表されるヒダントイン誘導体は、例えば、下記一般式(2)又は下記一般式(3)で表されるヒダントイン誘導体であってもよい。
Figure JPOXMLDOC01-appb-C000005
 一般式(2)中、R及びRは、相互に同一でも異なってもよく、水素原子、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、又は置換若しくは無置換の縮合多環芳香族基を示し、Rは、水素原子、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、置換若しくは無置換の縮合多環芳香族基、又は置換若しくは無置換のアリールオキシ基を示し、R、R、R、R及びRは、相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ヒドロキシル基、シアノ基、トリフルオロメチル基、ニトロ基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、置換若しくは無置換の縮合多環芳香族基、又は置換若しくは無置換のアリールオキシ基を示す。R、R、R、R、R及びRは、互いに結合して環を形成していてもよい。
Figure JPOXMLDOC01-appb-C000006
 一般式(3)中、R及びRは、相互に同一でも異なってもよく、水素原子、炭素原子数1~6の直鎖状若しくは分岐状のアルキル基、炭素原子数5~6のシクロアルキル基、無置換の芳香族炭化水素基、無置換の複素環基、又は無置換の縮合多環芳香族基を示し、Rは、水素原子、炭素原子数1~6の直鎖状若しくは分岐状のアルキル基、炭素原子数5~6のシクロアルキル基、炭素原子数2~4の直鎖状若しくは分岐状のアルケニル基、炭素原子数1~6の直鎖状若しくは分岐状のアルキルオキシ基、炭素原子数5~6のシクロアルキルオキシ基、無置換の芳香族炭化水素基、無置換の複素環基、無置換の縮合多環芳香族基、又は無置換のアリールオキシ基を示し、R、R、R、R及びRは、相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ヒドロキシル基、シアノ基、トリフルオロメチル基、ニトロ基、炭素原子数1~6の直鎖状若しくは分岐状のアルキル基、炭素原子数5~6のシクロアルキル基、炭素原子数2~4の直鎖状若しくは分岐状のアルケニル基、炭素原子数1~6の直鎖状若しくは分岐状のアルキルオキシ基、炭素原子数5~6のシクロアルキルオキシ基、無置換の芳香族炭化水素基、無置換の複素環基、無置換の縮合多環芳香族基、又は無置換のアリールオキシ基を示す。R、R、R、R、R及びRは、互いに結合して環を形成していてもよい。
 本実施形態に係る一般式(1)で表されるヒダントイン誘導体は、既知の方法によって製造することができる。例えば、相当する置換若しくは無置換のヒダントインと相当するアルデヒド又はケトンなどを、塩基又は酸等の存在下で縮合することによって、合成することができる。
 ここで、合成されるヒダントイン誘導体は、縮合反応によって生じる二重結合の幾何異性において、E体、Z体又はE体とZ体の混合物として生成する。
 本実施形態に係る一般式(1)で表されるヒダントイン誘導体の中で、好ましい化合物の具体例を以下に示すが、本発明は、これらの化合物に限定されるものではない。
 なお、下記構造式では、水素原子は省略して記載している。また、下記構造式において、二重結合の幾何異性は一方のみを記載しているが、E体、Z体又はE体とZ体の混合物、のいずれであってもよい。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
 本実施形態において、電荷制御剤は体積平均粒径を0.1μm~20μmの範囲内に調整して用いるのが好ましく、0.1μm~10μmの範囲内に調整して用いるのが特に好ましい。前記体積平均粒径が0.1μmより小さいと、トナー表面に出現する該電荷制御剤が極めて少なくなり目的の電荷制御効果が得られにくくなる傾向にあり、また20μmより大きいと、トナーから欠落する電荷制御剤が増加し、機内汚染などの悪影響が出やすくなる傾向にあるため好ましくない。
 また、電荷制御剤を重合トナーに用いる場合は、体積平均粒径を1.0μm以下に調整して用いるのが好ましく、0.01μm~1.0μmの範囲内に調整して用いるのが特に好ましい。前記体積平均粒径が1.0μmを越えると、最終的に得られる電子写真用トナーの粒径分布が広くなったり、遊離粒子の発生が生じ、性能又は信頼性の低下を招く場合がある。一方、前記平均粒径が前記範囲内にあると前記欠点がない上、トナー間の偏在が減少し、トナー中の分散が良好となり、性能及び信頼性のバラツキが小さくなる点で有利である。
 本実施形態に係る電荷制御剤をトナーに含有させる方法としては、結着樹脂に着色剤などとともに添加し、混練し、粉砕する方法(粉砕トナー)、又は重合性の単量体モノマーに電荷制御剤を添加し、重合せしめてトナーを得る方法(重合トナー)のように、予めトナー粒子の内部に添加する方法(内添)と、予めトナー粒子を製造し、トナー粒子の表面に電荷制御剤を添加(外添)する方法がある。トナー粒子に内添する場合の好ましい電荷制御剤の添加量は、結着樹脂100質量部に対するヒダントイン誘導体の量が、好ましくは0.1~10質量部、より好ましくは、0.2~5質量部となる量である。また、トナー粒子に外添する場合は、結着樹脂100質量部に対するヒダントイン誘導体の量が、好ましくは0.01~5質量部、より好ましくは0.01~2質量部となる量である。また、メカノケミカル的にトナー粒子表面に固着させるのが好ましい。
 また本実施形態において、一般式(1)で表されるヒダントイン誘導体を有効成分とする電荷制御剤は、既知の他の負帯電性の電荷制御剤と併用することができる。併用する好ましい電荷制御剤としては、アゾ系鉄錯体又は錯塩、アゾ系クロム錯体又は錯塩、アゾ系マンガン錯体又は錯塩、アゾ系コバルト錯体又は錯塩、アゾ系ジルコニウム錯体又は錯塩、カルボン酸誘導体のクロム錯体又は錯塩、カルボン酸誘導体の亜鉛錯体又は錯塩、カルボン酸誘導体のアルミ錯体又は錯塩、カルボン酸誘導体のジルコニウム錯体又は錯塩があげられる。前記カルボン酸誘導体は、芳香族ヒドロキシカルボン酸が好ましく、3,5-ジ-tert-ブチルサリチル酸がより好ましい。更にホウ素錯体又は錯塩、負帯電性樹脂型電荷制御剤などがあげられる。
 本実施形態において、本実施形態に係る電荷制御剤と他の電荷制御剤を併用する場合の添加量は、結着樹脂100質量部に対して、本実施形態に係る電荷制御剤以外の電荷制御剤は0.1~10質量部が好ましい。
 本実施形態に係るトナーに使用される結着樹脂としては、公知のものであればいずれも使用できる。スチレン系単量体、アクリレート系単量体、メタクリレート系単量体などのビニル重合体、又はこれらの単量体2種類以上からなる共重合体など、ポリエステル系重合体、ポリオール樹脂、フェノール樹脂、シリコーン樹脂、ポリウレタン樹脂、ポリアミド樹脂、フラン樹脂、エポキシ樹脂、キシレン樹脂、テルペン樹脂、クマロンインデン樹脂、ポリカーボネート樹脂、石油系樹脂などがあげられる。
 前記ビニル重合体又は共重合体を形成するスチレン系単量体、アクリレート系単量体、メタクリレート系単量体について、以下に例示するがこれらに限定されるものではない。
 スチレン系単量体としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-フェニルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、p-n-アミルスチレン、p-tert-ブチルスチレン、p-n-へキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレン、p-メトキシスチレン、p-クロルスチレン、3,4-ジクロロスチレン、m-ニトロスチレン、o-ニトロスチレン、p-ニトロスチレンなどのスチレン又はその誘導体などがあげられる。
 アクリレート系単量体としては、アクリル酸、あるいはアクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸n-オクチル、アクリル酸n-ドデシル、アクリル酸2-エチルへキシル、アクリル酸ステアリル、アクリル酸2-クロルエチル、アクリル酸フェニルなどのアクリル酸又はそのエステル類などがあげられる。
 メタクリレート系単量体としては、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸n-オクチル、メタクリル酸n-ドデシル、メタクリル酸2-エチルへキシル、メタクリル酸ステアリル、メタクリル酸フェニル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチルなどのメタクリル酸又はそのエステル類などがあげられる。
 前記ビニル重合体、又は共重合体を形成する他のモノマーの例としては、以下の(1)~(18)があげられる。(1)エチレン、プロピレン、ブチレン、イソブチレンなどのモノオレフイン類;(2)ブタジエン、イソプレンなどのポリエン類;(3)塩化ビニル、塩化ビニリデン、臭化ビニル、フッ化ビニルなどのハロゲン化ビニル類;(4)酢酸ビニル、プロピオン酸ビニル、安息香酸ビニルなどのビニルエステル類;(5)ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテルなどのビニルエーテル類;(6)ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトンなどのビニルケトン類;(7)N-ビニルピロール、N-ビニルカルバゾール、N-ビニルインドール、N-ビニルピロリドンなどのN-ビニル化合物;(8)ビニルナフタレン類;(9)アクリロニトリル、メタクリロニトリル、アクリルアミドなどのアクリル酸若しくはメタクリル酸誘導体など;(10)マレイン酸、シトラコン酸、イタコン酸、アルケニルコハク酸、フマル酸、メサコン酸などの不飽和二塩基酸;(11)マレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、アルケニルコハク酸無水物などの不飽和二塩基酸無水物;(12)マレイン酸モノメチルエステル、マレイン酸モノエチルエステル、マレイン酸モノブチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステル、シトラコン酸モノブチルエステル、イタコン酸モノメチルエステル、アルケニルコハク酸モノメチルエステル、フマル酸モノメチルエステル、メサコン酸モノメチルエステルなどの不飽和二塩基酸のモノエステル;(13)ジメチルマレイン酸、ジメチルフマル酸などの不飽和二塩基酸エステル;(14)クロトン酸、ケイヒ酸などのα,β-不飽和酸;(15)クロトン酸無水物、ケイヒ酸無水物などのα,β-不飽和酸無水物;(16)該α,β-不飽和酸と低級脂肪酸との無水物、アルケニルマロン酸、アルケニルグルタル酸、アルケニルアジピン酸、これらの酸無水物及びこれらのモノエステルなどのカルボキシル基を有するモノマー;(17)2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレートなどのアクリル酸又はメタクリル酸ヒドロキシアルキルエステル類;(18)4-(1-ヒドロキシ-1-メチルブチル)スチレン、4-(1-ヒドロキシ-1-メチルへキシル)スチレンなどのヒドロキシ基を有するモノマー。
 本実施形態に係るトナーにおいて、結着樹脂のビニル重合体、又は共重合体は、ビニル基を2個以上有する架橋剤で架橋された架橋構造を有していてもよいが、この場合に用いられる架橋剤は、芳香族ジビニル化合物として例えば、ジビニルベンゼン、ジビニルナフタレンがあげられる。アルキル鎖で結ばれたジアクリレート化合物類としては、例えば、エチレングリコールジアクリレート、1,3-ブチレングリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,5-ペンタンジオールジアクリレート、1,6-へキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート又は前記の化合物のアクリレートをメタクリレートに代えたものがあげられる。
 エーテル結合を含むアルキル鎖で結ばれたジアクリレート化合物類としては、例えば、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコール#400ジアクリレート、ポリエチレングリコール#600ジアクリレート、ジプロピレングリコールジアクリレート、又は前記の化合物のアクリレートをメタアクリレートに代えたものがあげられる。
 その他、芳香族基及びエーテル結合を含む鎖で結ばれたジアクリレート化合物、又はジメタクリレート化合物もあげられる。ポリエステル型ジアクリレート類としては例えば、商品名MANDA(日本化薬株式会社製)があげられる。
 多官能の架橋剤としては、ペンタエリスリトールトリアクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、オリゴエステルアクリレート、及び以上の化合物のアクリレートをメタクリレートに代えたもの、トリアリルシアヌレート、トリアリルトリメリテートがあげられる。
 これらの架橋剤は、他のモノマー成分100質量部に対して、好ましくは0.01~10質量部用いることができ、特に0.03~5質量部用いることが好ましい。これらの架橋性モノマーのうち、トナー用樹脂に定着性、耐オフセット性の点から好適に用いられるものとして、芳香族ジビニル化合物(特にジビニルベンゼンが好ましい。)、芳香族基及びエーテル結合を1つ含む結合鎖で結ばれたジアクリレート化合物類があげられる。これらの中でも、スチレン系共重合体、スチレン-アクリレート系共重合体となるようなモノマーの組み合わせが好ましい。
 本実施形態において、ビニル重合体又は共重合体の製造に用いられる重合開始剤としては、例えば、2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2'-アゾビス(2,4-ジメチルバレロニトリル)、2,2'-アゾビス(2-メチルブチロニトリル)、ジメチル-2,2'-アゾビスイソブチレート、1,1'-アゾビス(1-シクロへキサンカルボニトリル)、2-(カルバモイルアゾ)-イソブチロニトリル、2,2'-アゾビス(2,4,4-トリメチルペンタン)、2-フェニルアゾ-2',4'-ジメチル-4'-メトキシバレロニトリル、2,2'-アゾビス(2-メチルプロパン)、メチルエチルケトンパーオキサイド、アセチルアセトンパーオキサイド、シクロへキサノンパーオキサイドなどのケトンパーオキサイド類、2,2-ビス(tert-ブチルパーオキシ)ブタン、tert-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、ジ-tert-ブチルパーオキサイド、tert-ブチルクミルパーオキサイド、ジクミルパーオキサイド、α-(tert-ブチルパーオキシ)イソプロピルベンゼン、イソブチルパーオキサイド、オクタノイルパーオキサイド、デカノイルパーオキサイド、ラウロイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、ベンゾイルパーオキサイド、m-トリルパーオキサイド、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルへキシルパーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、ジ-2-エトキシエチルパーオキシカーボネート、ジエトキシイソプロピルパーオキシジカーボネート、ビス(3-メチル-3-メトキシブチル)パーオキシカーボネート、アセチルシクロへキシルスルホニルパーオキサイド、tert-ブチルパーオキシアセテート、tert-ブチルパーオキシイソブチレート、tert-ブチルパーオキシ-2-エチルへキサレート、tert-ブチルパーオキシラウレート、tert-ブチルオキシベンゾエ-ト、tert-ブチルパーオキシイソプロピルカーボネート、ジ-tert-ブチルパーオキシイソフタレート、tert-ブチルパーオキシアリルカーボネート、イソアミルパーオキシ-2-エチルへキサノエート、ジ-tert-ブチルパーオキシへキサハイドロテレフタレート、tert-ブチルパーオキシアゼレートなどがあげられる。
 結着樹脂がスチレン-アクリレート系樹脂の場合、樹脂成分のテトラヒドロフラン(以後、THFと略称する)に可溶分のゲルパーミエーションクロマトグラフィー(以後、GPCと略称する)による分子量分布で、分子量3千~5万(数平均分子量換算)の領域に少なくとも1つのピークが存在し、分子量10万以上の領域に少なくとも1つのピークが存在する樹脂が、定着性、オフセット性、保存性の点で好ましい。またTHF可溶分は、分子量分布10万以下の成分が50~90%となるような結着樹脂も好ましい。更に好ましくは、分子量5千~3万の領域に、最も好ましくは5千~2万の領域にメインピークを有するのがよい。
 結着樹脂がスチレン-アクリレート系樹脂などのビニル重合体の場合、その酸価は、0.1mgKOH/g~100mgKOH/gであることが好ましく、0.1mgKOH/g~70mgKOH/gであることがより好ましく、0.1mgKOH/g~50mgKOH/gであることが更に好ましい。
 ポリエステル系重合体を構成するモノマーとしては、以下のものがあげられる。
 2価のアルコール成分としては、エチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、ジエチレングリコール、トリエチレングリコール、1,5-ペンタンジオール、1,6-へキサンジオール、ネオペンチルグリコール、2-エチル-1,3-ヘキサンジオール、水素化ビスフェノールA、又はビスフェノールAにエチレンオキシド、プロピレンオキシドなどの環状エーテルが重合して得られるジオールなどがあげられる。
 ポリエステル樹脂を架橋させるために3価以上のアルコールを併用することが好ましい。3価以上の多価アルコールとしては、ソルビトール、1,2,3,6-ヘキサンテトロール、1,4-ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4-ブタントリオール、1,2,5-ペンタトリオール、グリセロール、2-メチルプロパントリオール、2-メチル-1,2,4-ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5-トリヒドロキシベンゼンなどがあげられる。
 前記ポリエステル系重合体を形成する酸成分としては、フタル酸、イソフタル酸、テレフタル酸などのべンゼンジカルボン酸類又はその無水物、こはく酸、アジピン酸、セバシン酸、アゼライン酸などのアルキルジカルボン酸類又はその無水物、マレイン酸、シトラコン酸、イタコン酸、アルケニルコハク酸、フマル酸、メサコン酸などの不飽和二塩基酸、マレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、アルケニルコハク酸無水物などの不飽和二塩基酸無水物などがあげられる。また、3価以上の多価カルボン酸成分としては、トリメリト酸、ピロメリト酸、2,5,7-ナフタレントリカルボン酸、1,2,4-ナフタレントリカルボン酸、1,2,4-ブタントリカルボン酸、1,2,5-ヘキサントリカルボン酸、1,3-ジカルボキシ-2-メチル-2-メチレンカルボキシプロパン、テトラ(メチレンカルボキシ)メタン、1,2,7,8-オクタンテトラカルボン酸、エンポール三量体酸、又はこれらの無水物、部分低級アルキルエステルなどがあげられる。
 結着樹脂がポリエステル系樹脂の場合は、樹脂成分のTHF可溶成分の分子量分布で、分子量3千~5万の領域に少なくとも1つのピークが存在するのがトナーの定着性、耐オフセット性の点で好ましく、また、THF可溶分は、分子量10万以下の成分が60~100%となるような結着樹脂も好ましい。更に好ましくは、分子量5千~2万の領域に少なくとも1つのピークが存在するのがよい。
 本実施形態において、結着樹脂の分子量分布は、THFを溶媒としたGPCによって測定される。上記分子量は、例えば、HLC-8220GPC装置(東ソー社製)で測定した、標準ポリスチレン換算の数平均分子量である。
 結着樹脂がポリエステル樹脂の場合、その酸価が、0.1mgKOH/g~100mgKOH/gであることが好ましく、0.1mgKOH/g~70mgKOH/gであることがより好ましく、0.1mgKOH/g~50mgKOH/gであることが更に好ましい。
 また、水酸基価は、30mgKOH/g以下であることが好ましく、10mgKOH/g~25mgKOH/gが更に好ましい。
 本実施形態において、非晶性のポリエステル樹脂と結晶性のポリエステル樹脂の2種以上を混合して用いてもよい。この場合、それぞれの相溶性を考慮に入れて材料を選択するのが好ましい。
 非晶性のポリエステル樹脂は多価カルボン酸成分、好ましくは芳香族多価カルボン酸と多価アルコール成分とから合成されるものが好適に用いられる。
 結晶性のポリエステル樹脂は2価カルボン酸成分、好ましくは脂肪族ジカルボン酸と2価アルコール成分とから合成されるものが好適に用いられる。
 本実施形態に係るトナーに使用できる結着樹脂として、前記ビニル重合体成分及び/又はポリエステル系樹脂成分中に、これらの両樹脂成分と反応し得るモノマー成分を含む樹脂も使用することができる。ポリエステル系樹脂成分を構成するモノマーのうちビニル重合体と反応し得るものとしては、例えば、フタル酸、マレイン酸、シトラコン酸、イタコン酸などの不飽和ジカルボン酸又はその無水物などがあげられる。ビニル重合体成分を構成するモノマーとしては、カルボキシル基又はヒドロキシ基を有するもの、又はアクリル酸若しくはメタクリル酸エステル類があげられる。
 また、ポリエステル系重合体、ビニル重合体とその他の結着樹脂を併用する場合、全体の結着樹脂の酸価が0.1mgKOH/g~50mgKOH/gである樹脂を60質量%以上有するものが好ましい。
 本実施形態において、トナー組成物の結着樹脂成分の酸価は、以下の方法により求め、基本操作はJIS K-0070に準ずる。
(1)試料は予め結着樹脂(重合体成分)以外の添加物を除去して使用するか、結着樹脂及び架橋された結着樹脂以外の成分の酸価及び含有量を予め求めておく。試料の粉砕品0.5~2.0gを精秤し、重合体成分の重さをWgとする。例えば、トナーから結着樹脂の酸価を測定する場合は、着色剤又は磁性体などの酸価及び含有量を別途測定しておき、計算により結着樹脂の酸価を求める。
(2)300(ml)のビーカーに試料を入れ、トルエン/エタノール(体積比4/1)の混合液150(ml)を加え溶解する。
(3)0.1mol/LのKOHのエタノール溶液を用いて、電位差滴定装置を用いて滴定する。
(4)この時のKOH溶液の使用量をS(ml)とし、同時にブランクを測定し、この時のKOH溶液の使用量をB(ml)とし、以下の式(1)で算出する。ただしfはKOH濃度のファクターである。
 酸価(mgKOH/g)=[(S-B)×f×5.61]/W  (1)
 トナーの結着樹脂及び結着樹脂を含む組成物は、トナー保存性の観点から、ガラス転移温度(Tg)が好ましくは35~80℃、特に好ましくは40~75℃である。Tgが35℃より低いと高温雰囲気下でトナーが劣化しやすく、また定着時にオフセットが発生しやすくなる。またTgが80℃を超えると、定着性が低下する傾向にある。
 本実施形態の重合トナーにおいて、軟化点が80から140℃の範囲内である結着樹脂が好適に用いられる。結着樹脂の軟化点が80℃未満であると、定着後及び保管時のトナー及びトナーの画像安定性が悪化する場合がある。一方、軟化点が140℃を超えると、低温定着性が悪化してしまう場合がある。
 本実施形態において使用できる磁性体としては、(1)マグネタイト、マグヘマイト、フェライトなどの磁性酸化鉄、及び他の金属酸化物を含む酸化鉄、(2)鉄、コバルト、ニッケルのような金属、あるいは、これらの金属とアルミニウム、コバルト、銅、鉛、マグネシウム、錫、亜鉛、アンチモン、ベリリウム、ビスマス、カドミウム、カルシウム、マンガン、セレン、チタン、タングステン、バナジウムのような金属との合金、(3)及びこれらの混合物などが挙げられる。
 磁性体として具体的に例示すると、Fe、γ-Fe、ZnFe、YFe12、CdFe、GdFe12、CuFe、PbFe12O、NiFe、NdFeO、BaFe1219、MgFe、MnFe、LaFeO、鉄粉、コバルト粉、ニッケル粉などがあげられる、上述した磁性体を単独で、又は2種以上を組み合わせて使用する。特に好適な磁性体は、四三酸化鉄又はγ-三二酸化鉄の微粉末である。
 また、異種元素を含有するマグネタイト、マグヘマイト、フェライトなどの磁性酸化鉄、又はその混合物も使用できる。異種元素を例示すると、リチウム、ベリリウム、ホウ素、マグネシウム、アルミニウム、ケイ素、リン、ゲルマニウム、ジルコニウム、錫、イオウ、カルシウム、スカンジウム、チタン、バナジウム、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウムなどがあげられる。好ましい異種元素としては、マグネシウム、アルミニウム、ケイ素、リン、又はジルコニウムから選択される。異種元素は、酸化鉄結晶格子の中に取り込まれていてもよいし、酸化物として酸化鉄中に取り込まれていてもよいし、又は表面に酸化物若しくは水酸化物として存在していてもよいが、酸化物として含有されているのが好ましい。
 前記の異種元素は、磁性体生成時にそれぞれの異種元素の塩を混在させpH調整により、粒子中に取り込むことができる。また、磁性体粒子生成後にpH調整、又は各々の元素の塩を添加しpH調整することにより、粒子表面に析出させることができる。
 前記磁性体の使用量は、結着樹脂100質量部に対して、磁性体10~200質量部とすることができ、20~150質量部とするのが好ましい。これらの磁性体は個数平均粒径が0.1μm~2μmであることが好ましく、0.1μm~0.5μmであることがより好ましい。個数平均粒径は透過電子顕微鏡により拡大撮影した写真をデジタイザーなどで測定することにより求めることができる。
 また、磁性体としては、10Kエルステッド印加での磁気特性がそれぞれ、抗磁力20~150エルステッド、飽和磁化50~200emu/g、残留磁化2~20emu/gのものが好ましい。
 前記磁性体は、着色剤としても使用することができる。本実施形態に係る着色剤としては黒色トナーの場合、黒色又は青色の染料又は顔料粒子があげられる。黒色又は青色の顔料としては、カーボンブラック、アニリンブラック、アセチレンブラック、フタロシアニンブルー、インダンスレンブルーなどがあげられる。黒色又は青色の染料としては、アゾ系染料、アントラキノン系染料、キサンテン系染料、メチン系染料などがあげられる。
 カラー用トナーとして使用する場合には、着色剤として、次の様なものがあげられる。マゼンダ着色剤としては、縮合アゾ化合物、ジケトピロロピロール化合物、アントラキノン化合物、キナクリドン化合物、塩基性染料、レーキ染料、ナフトール染料、ベンズイミダゾロン化合物、チオインジゴ化合物、ペリレン化合物を利用できる。具体的には、顔料系のマゼンダ着色剤としては、C.I.ピグメントレッド1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,30,31,32,37,38,39,40,41,48,49,50,51,52,53,54,55,57,58,60,63,64,68,81,83,87,88,89,90,112,114,122,123,163,202,206,207,209、C.I.ピグメントバイオレット19、C.I.バットレッド1,2,10,13,15,23,29,35などがあげられる。
 前記顔料を単独で使用しても構わないが、染料と顔料と併用してその鮮明度を向上させた方がフルカラー画像の画質の点からより好ましい。
 染料系マゼンタ着色剤としては、C.I.ソルベントレッド1,3,8,23,24,25,27,30,49,81,82,83,84,100,109,121、C.I,デイスパースレッド9、C.I.ソルべントバイオレット8,13,14,21,27、C.I.デイスパースパイオレット1などの油溶染料、C.I.べーシックレッド1,2,9,12,13,14,15,17,18,22,23,24,27,29,32,34,35,36,37,38,39,40、C.I.ベーシックバイオレツト1,3,7,10,14,15,21,25,26,27,28などの塩基性染料があげられる。
 シアン着色剤としては、銅フタロシアニン化合物及びその誘導体、アントラキノン、塩基染料レーキ化合物を利用できる。具体的には、顔料系のシアン着色剤としては、C.I.ピグメントブルー2,3,15,16,17、C.I.バットブルー6、C.I.アシッドブルー45又はフタロシアニン骨格にフタルイミドメチル基を1~5個置換した銅フタロシアニン顔料があげられる。
 イエロー着色剤としては、縮合アゾ化合物、イソインドリノン化合物、アンスラキノン化合物、アゾ金属錯体、メチン化合物、アリルアミド化合物を利用できる。具体的には、イエロー用顔料としては、C.I.ピグメントイエロー1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,23,65,73,83、C.I.バットイエロー1,3,20などがあげられる。
 橙色顔料としては、赤色黄鉛、モリブデンオレンジ、パーマネントオレンジGTR、ピラゾロンオレンジ、バルカンオレンジ、ベンジジンオレンジG、インダスレンブリリアントオレンジRK、インダンスレンブリリアントオレンジGKなどをあげることができる。紫色顔料としては、マンガン紫、ファストバイオレットB、メチルバイオレットレーキなどをあげることができる。緑色顔料としては、酸化クロム、クロムグリーン、ピグメントグリーン、マラカイトグリーンレーキ、ファイナルイエローグリーンGなどをあげることができる。白色顔料としては、亜鉛華、酸化チタン、アンチモン白、硫化亜鉛などをあげることができる。
 前記の着色剤の使用量は、結着樹脂100量部に対して、0.1~20質量部とするのが好ましい。
 本実施形態のトナーは、キャリアと混合して2成分現像剤として使用してもよい。本実施形態において、キャリアとして、通常のフェライト、マグネタイトなどのキャリアも樹脂コートキャリアも使用することができる。
 樹脂コートキャリアは、キャリアコア粒子とキャリアコア粒子表面を被覆(コート)する樹脂である被覆材からなる。該被覆材に使用する樹脂としては、スチレン-アクリル酸エステル共重合体、スチレン-メタクリル酸エステル共重合体などのスチレン-アクリレート系樹脂、アクリル酸エステル共重合体、メタクリル酸エステル共重合体などのアクリレート系樹脂、ポリテトラフルオロエチレン、モノクロロトリフルオロエチレン重合体、ポリフッ化ビニリデンなどのフッ素含有樹脂、シリコーン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリビニルブチラール、アミノアクリレート樹脂が好ましい。他にもアイオモノマー樹脂、ポリフェニレンサルファイド樹脂などのキャリアの被覆(コート)材として使用できる樹脂を用いることができる。これらの樹脂は、単独で、又は複数を組み合わせて用いることができる。
 また、樹脂中に磁性粉が分散されたバインダー型のキャリアコアも用いることができる。樹脂コートキャリアにおいて、キャリアコアの表面を少なくとも樹脂被覆剤で被覆する方法としては、樹脂を溶剤中に溶解又は懸濁させて、キャリアコアに塗布して付着させる方法、又は単に粉体状態で混合する方法が適用できる。樹脂コートキャリアに対して樹脂被覆材の割合は、適宜決定すればよいが、樹脂コートキャリアに対し好ましくは0.01~5質量%、より好ましくは0.1~1質量%である。
 2種以上の混合物の被覆(コート)剤で磁性体を被覆する使用例としては、(1)酸化チタン微粉体100質量部に対してジメチルジクロロシランとジメチルシリコンオイル(質量比1:5)の混合物12質量部で処理したもの、(2)シリカ微粉体100質量部に対してジメチルジクロロシランとジメチルシリコンオイル(質量比1:5)の混合物20質量部で処理したものがあげられる。
 前記の樹脂の中でも、スチレン-メタクリル酸メチル共重合体、含フッ素樹脂とスチレン系共重合体との混合物、又はシリコーン樹脂が好ましく、シリコーン樹脂がより好ましい。
 含フッ素樹脂とスチレン系共重合体との混合物としては、例えば、ポリフッ化ビニリデンとスチレン-メタクリ酸メチル共重合体との混合物、ポリテトラフルオロエチレンとスチレン-メタクリル酸メチル共重合体との混合物、フッ化ビニリデン-テトラフルオロエチレン共重合(共重合体質量比10:90~90:10)とスチレン-アクリル酸2-エチルヘキシル共重合体(共重合質量比10:90~90:10)とスチレン-アクリル酸-2-エチルヘキシル-メタクリル酸メチル共重合体(共重合体質量比20~60:5~30:10:50)との混合物があげられる。
 シリコーン樹脂としては、含窒素シリコーン樹脂及び含窒素シランカップリング剤とシリコーン樹脂とが反応することにより生成された変性シリコーン樹脂があげられる。
 キャリアコアの磁性材料としては、フェライト、鉄過剰型フェライト、マグネタイト、γ-酸化鉄などの酸化物、鉄、コバルト、ニッケルなどの金属、又はこれらの合金を用いることができる。またこれらの磁性材料に含まれる元素としては、鉄、コバルト、ニッケル、アルミニウム、銅、鉛、マグネシウム、スズ、亜鉛、アンチモン、ベリリウム、ビスマス、カルシウム、マンガン、セレン、チタン、タングステン、バナジウムがあげられる。好ましい磁性材料として、銅、亜鉛、及び鉄成分を主成分とする銅-亜鉛-鉄系フェライト、マンガン、マグネシウム及び鉄成分を主成分とするマンガン-マグネシウム-鉄系フェライトがあげられる。
 キャリアの抵抗値は、キャリアの表面の凹凸度合い、被覆する樹脂の量を調整して、106~1010Ω・cmにするのがよい。キャリアの粒径は4μm~200μmとすることができるが、好ましくは10μm~150μmであり、より好ましくは20μm~100μmである。特に、樹脂コートキャリアは、50%粒径が20μm~70μmであることが好ましい。
 2成分系現像剤では、キャリア100質量部に対して、本実施形態に係るトナー1~200質量部を使用することが好ましく、キャリア100質量部に対して、トナー2~50質量部を使用するのがより好ましい。
 本実施形態に係るトナーは更に、ワックスを含有していてもよい。本実施形態において用いられるワックスには次のようなものがある。例えば低分子量ポリエチレン、低分子量ポリプロピレン、ポリオレフィンワックス、マイクロクリスタリンワックス、パラフィンワックス、サゾールワックスなどの脂肪族炭化水素系ワックス、酸化ポリエチレンワックスなどの脂肪族炭化水素系ワックスの酸化物、又はそれらのブロック共重合体、キャンデリラワックス、カルナバワックス、木ろう、ホホバろうなどの植物系ワックス、みつろう、ラノリン、鯨ろうなどの動物系ワックス、オゾケライト、セレシン、ペテロラタムなどの鉱物系ワックス、モンタン酸エステルワックス、カスターワックスなどの脂肪酸エステルを主成分とするワックス類、脱酸カルナバワックスなどの脂肪酸エステルを一部又は全部を脱酸化したものがあげられる。
 ワックスの例としては、更に、パルミチン酸、ステアリン酸、モンタン酸、あるいは更に直鎖のアルキル基を有する直鎖アルキルカルボン酸類などの飽和直鎖脂肪酸、プランジン酸、エレオステアリン酸、バリナリン酸などの不飽和脂肪酸、ステアリルアルコール、エイコシルアルコール、ベヘニルアルコール、カルナウピルアルコール、セリルアルコール、メシリルアルコール、あるいは長鎖アルキルアルコールなどの飽和アルコール、ソルビトールなどの多価アルコール、リノール酸アミド、オレフィン酸アミド、ラウリン酸アミドなどの脂肪酸アミド、メチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、ヘキサメチレンビスステアリン酸アミドなどの飽和脂肪酸ビスアミド、エチレンビスオレイン酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N'-ジオレイルアジピン酸アミド、N,N'-ジオレイルセパシン酸アミドなどの不飽和脂肪酸アミド類、m-キシレンビスステアリン酸アミド、N,N'-ジステアリルイソフタル酸アミドなどの芳香族系ビスアミド、ステアリン酸カルシウム、ラウリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウムなどの脂肪酸金属塩、脂肪族炭化水素系ワックスにスチレン及びアクリレートなどのビニル系モノマーを用いてグラフト化させたワックス、ベヘニン酸モノグリセリドなどの脂肪酸と多価アルコールの部分エステル化合物、植物性油脂を水素添加することによって得られるヒドロキシル基を有するメチルエステル化合物があげられる。
 好ましく用いられるワックスとしては、オレフィンを高圧下でラジカル重合したポリオレフィン、高分子量ポリオレフィン重合時に得られる低分子量副生成物を精製したポリオレフィン、低圧下でチーグラー触媒、メタロセン触媒などの触媒を用いて重合したポリオレフィン、放射線、電磁波又は光を利用して重合したポリオレフィン、高分子量ポリオレフィンを熱分解して得られる低分子量ポリオレフィン、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス、ジントール法、ヒドロコール法、アーゲ法などにより合成される合成炭化水素ワックス、炭素数1個の化合物をモノマーとする合成ワックス、水酸基又はカルボキシル基などの官能基を有する炭化水素系ワックス、炭化水素系ワックスと官能基を有する炭化水素系ワックスとの混合物、又はこれらのワックスを母体としてスチレン、マレイン酸エステル、アクリレート、メタクリレート、無水マレイン酸などのビニルモノマーでグラフト変性したワックスがあげられる。
 また、これらのワックスを、プレス発汗法、溶剤法、再結晶法、真空蒸留法、超臨界ガス抽出法若しくは溶液晶析法を用いて分子量分布をシャープにしたもの、又は低分子量固形脂肪酸、低分子量固形アルコール、低分子量固形化合物若しくはその他の不純物を除去したものが好ましく用いられる。
 本実施形態において使用するワックスは、定着性と耐オフセット性のバランスを取るために融点が50~140℃であることが好ましく、70~120℃であることがより好ましい。50℃未満では耐ブロッキング性が低下する傾向があり、140℃を超えると耐オフセット効果が発現しにくくなる。
 また、2種以上の異なる種類のワックスを併用することにより、ワックスの作用である可塑化作用と離型作用を同時に発現させることができる。
 可塑化作用を有するワックスとしては、例えば融点の低いワックス、又は分子の構造上に分岐のあるもの、若しくは極性基を有する構造のワックスがあげられる。離型作用を有するワックスとしては、融点の高いワックス、分子の構造では、直鎖構造のワックス、又は、官能基を有さない無極性のワックスがあげられる。使用例としては、2種以上の異なるワックスの融点の差が10℃~100℃となる組み合わせ、及び、ポリオレフィンとグラフト変性ポリオレフィンの組み合わせなどがあげられる。
 2種のワックスを選択する場合は、同様の構造を有するワックスの場合は、相対的に、融点の低いワックスが可塑化作用を発揮し、融点の高いワックスが離型作用を発揮する。この時、融点の差が10~100℃の場合に、機能分離が効果的に発現する。10℃未満では機能分離効果が表れにくく、100℃を超える場合には相互作用による機能の強調が行われにくい。この場合、少なくとも一方のワックスの融点が70~120℃であることが好ましく、70~100℃であることがより好ましい。融点が上記範囲にあると、機能分離効果を発揮しやすくなる傾向がある。
 また、ワックスは、相対的に、枝分かれ構造のもの、官能基などの極性基を有するもの、又は、主成分とは異なる成分で変性されたものが可塑作用を発揮し、より直鎖構造のもの、官能基を有さない無極性のもの、又は、未変性のストレートなものが離型作用を発揮する。好ましいワックスの組み合わせとしては、エチレンを主成分とするポリエチレンホモポリマー又はコポリマーとエチレン以外のオレフィンを主成分とするポリオレフィンホモポリマー又はコポリマーの組み合わせ;ポリオレフィンとグラフト変成ポリオレフィンの組み合わせ;アルコールワックス、脂肪酸ワックス又はエステルワックスと炭化水素系ワックスの組み合わせ;フイシャートロプシュワックス又はポリオレフィンワックスとパラフィンワックス又はマイクロクリスタルワックスの組み合わせ;フィッシャートロプシュワックスとポルリオレフィンワックスの組み合わせ;パラフィンワックスとマイクロクリスタルワックスの組み合わせ;カルナバワックス、キャンデリラワックス、ライスワックス又はモンタンワックスと炭化水素系ワックスの組み合わせがあげられる。
 いずれの場合においてもトナーのDSC測定において観測される吸熱ピークにおいて70~110℃の領域に最大ピークのピークトップ温度があることが好ましく、70~110℃の領域に最大ピークがあることがより好ましい。これにより、トナー保存性と定着性のバランスをとりやすくなる。
 本実施形態のトナーにおいては、これらのワックスの総含有量は、結着樹脂100質量部に対し、0.2~20質量部であることが好ましく、0.5~10質量部であることがより好ましい。
 本実施形態では、ワックスの融点は、DSCにおいて測定されるワックスの吸熱ピークの最大ピークのピークトップの温度である。
 本実施形態においてワックス又はトナーのDSC測定は、高精度の内熱式入力補償型の示差走査熱量計で行うことが好ましい。測定方法は、ASTM D3418-82に準じて行う。本実施形態においては、1回昇温、降温させ前履歴を取った後、温度速度10℃/minで、昇温させた時に測定されるDSC曲線を用いる。
 本実施形態のトナーには、流動性向上剤を添加してもよい。流動性向上剤は、トナー表面に添加することにより、トナーの流動性を改善(流動しやすくなる)するものである。例えば、カーボンブラック、フッ化ビニリデン微粉末、ポリテトラフルオロエチレン微粉末などのフッ素系樹脂粉末、湿式製法シリカ、乾式製法シリカなどの微粉末シリカ、微粉未酸化チタン、微粉未アルミナ、及びこれらにシランカップリング剤、チタンカップリング剤又はシリコーンオイルにより表面処理を施した、処理シリカ、処理酸化チタン、処理アルミナがあげられる。なかでも、微粉末シリカ、微粉未酸化チタン、微粉未アルミナが好ましく、また、これらをシランカップリング剤、又はシリコーンオイルにより表面処理を施した処理シリカが更に好ましい。流動性向上剤の粒径は、平均一次粒径として0.001μm~2μmであることが好ましく、0.002μm~0.2μmであることがより好ましい。
 好ましい微粉末シリカは、ケイ素ハロゲン化含物の気相酸化により生成された微粉体であり、いわゆる乾式法シリカ又はヒュームドシリカと称されるものである。
 ケイ素ハロゲン化合物の気相酸化により生成された市販のシリカ微粉体としては、例えば以下の様な商品名で市販されているものがある。AEROSIL(日本アエロジル株式会社製、以下同じ)-130、-300、-380、-TT600、-MOX170、-MOX80、-COK84:Ca-O-SiL(CABOT株式会社製、以下同じ)-M-5、-MS-7、-MS-75、-HS-5、-EH-5、Wacker HDK(WACKER-CHEMIEGMBH株式会社製、以下同じ)-N20 V15、-N20E、-T30、-T40:D-CFineSi1ica(ダウコーニング株式会社製):Franso1(Fransi1株式会社製)。
 更には、ケイ素ハロゲン化合物の気相酸化により生成されたシリカ微粉体を疎水化処理した処理シリカ微粉体がより好ましい。処理シリカ微粉体としては、メタノール滴定試験によって測定された疎水化度が30~80%の値を示すようにシリカ微粉体を処理したものが特に好ましい。疎水化処理は、例えば、シリカ微粉体と反応又は物理吸着する有機ケイ素化合物などで化学的又は物理的に処理する方法により行うことができる。中でも、ケイ素ハロゲン化合物の気相酸化により生成されたシリカ微粉体を有機ケイ素化合物で処理する方法が好ましい。
 有機ケイ素化合物としては、ヒドロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、n-ヘキサデシルトリメトキシシラン、n-オクタデシルトリメトキシシラン、ビニルメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ジメチルビニルクロロシラン、ジビニルクロロシラン、γ-メタクリルオキシプロピルトリメトキシシラン、へキサメチルジシラン、トリメチルシラン、トリメチルクロロシラン、ジメチルジクロロシラン、メチルトリクロロシラン、アリルジメチルクロロシラン、アリルフェニルジクロロシラン、ベンジルジメチルクロロシラン、ブロモメチルジメチルクロロシラン、α-クロルエチルトリクロロシラン、β-クロロエチルトリクロロシラン、クロロメチルジメチルクロロシラン、トリオルガノシリルメルカプタン、トリメチルシリルメルカプタン、トリオルガノシリルアクリレート、ビニルジメチルアセトキシシラン、ジメチルエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、イソブチルトリメトキシシラン、ジメチルジメトキシシラン、ジフェニルジエトキシシラン、へキサメチルジシロキサン、1,3-ジビニルテトラメチルジシロキサン、1,3-ジフェニルテトラメチルジシロキサン及び1分子当り2~12個のシロキサン単位を有し、未端に位置する単位にそれぞれSiに結合した水酸基を0~1個含有するジメチルポリシロキサンなどがあげられる。更に、ジメチルシリコーンオイルなどのシリコーンオイルもあげられる。これらは1種単独で、又は2種以上の混合物で用いられる。
 流動性向上剤は、個数平均粒径が5nm~100nmになるものがよく、更に好ましくは5nm~50nmになるものがよい。BET法で測定した窒素吸着による比表面積が30m/g以上のものが好ましく、60~400m/gのものがより好ましい。表面処理された微粉体としては、20m/g以上が好ましく、特に40~300m/gが好ましい。これらの微粉体の適用量は、トナー粒子100質量部に対して、好ましくは0.03~8質量部である。
 本実施形態のトナーには、感光体・キャリアーの保護、クリーニング性の向上、熱特性・電気特性・物理特性の調整、抵抗調整、軟化点調整、定着率向上などを目的として、各種金属石けん、フッ素系界面活性剤、フタル酸ジオクチルル、導電性付与剤として酸化スズ、酸化亜鉛、カーボンブラック、酸化アンチモンなど、又は、酸化チタン、酸化アルミニウム、アルミナなどの無機微粉体などを必要に応じて添加することができる。また、これらの無機微粉体は必要に応じて疎水化してもよい。また、ポリテトラフルオロエチレン、ステアリン酸亜鉛、ポリフッ化ビニリデンなどの滑剤、酸化セシウム、炭化ケイ素、チタン酸ストロンチウムなどの研磨剤、ケーキング防止剤、更に、トナー粒子と逆極性の白色微粒子及び黒色微粒子を現像性向上剤として少量用いることもできる。
 これらの添加剤は、帯電量コントロールなどの目的でシリコーンワニス、各種変性シリコーンワニス、シリコーンオイル、各種変性シリコーンオイル、シランカップリング剤、官能基を有するシランカップリング剤、その他の有機ケイ素化合物などの処理剤、又は種々の処理剤で処理することも好ましい。
 本実施形態において、電荷制御剤を前記のような添加剤及びトナーと一緒に、ヘンシェルミキサー、ボールミル、ナウターミキサー、V型ミキサー、W型ミキサー、スーパーミキサーなどの混合機により充分に混合攪拌し、トナー粒子表面に均一に外添処理することにより目的とする静電荷現像用トナーを得ることもできる。
 本実施形態のトナーは、熱的にも安定であり電子写真プロセス時に熱的変化を受けることがなく、安定した帯電特性を保持することが可能である。また、どのような結着樹脂にも均一に分散することから、フレッシュトナーの帯電分布が非常に均一である。そのため、本実施形態のトナーは未転写、回収トナー(廃トナー)においても、フレッシュトナーと較べて飽和摩擦帯電量、帯電分布とも変化はほとんど認められない。しかし、 本実施形態の静電荷像現像用トナーから出る廃トナーを再利用する場合は、脂肪族ジオールを含むポリエステル樹脂を結着樹脂に選択する方法、金属架橋されたスチレン-アクリレート共重合体を結着樹脂とし、これに多量のポリオレフィンを加えた方法でトナーを製造することによってフレッシュトナーと廃トナーの格差を更に小さくすることができる。
 本実施形態に係るトナーは、既知の製造法によって製造することができる。製造方法について例示すると、結着樹脂、電荷制御剤、着色剤などの上述したトナー構成材料をボールミルなどの混合機により十分混合し、得られた混合物を熱ロールニーダなどの加熱混練装置により良く混練し、冷却固化し、粉砕後、分級して得る方法(粉砕法)が好ましい。
 また前記混合物を溶媒に溶解させ噴霧により微粒化、乾燥、分級して得る方法でも製造できる。更に、結着樹脂を構成すべき単量体に所定の材料を混合して乳化又は懸濁液とした後に、重合させてトナーを得る重合法によるトナー製造法、コア材及びシェル材から成るいわゆるマイクロカプセルトナーにおいて、コア材若しくはシェル材、又はこれらの両方に所定の材料を含有させる方法によっても製造できる。更に必要に応じ所望の添加剤とトナー粒子とをヘンシェルミキサーなどの混合機により十分に混合することにより、本実施形態に係るトナーを製造することができる。
 前記粉砕法による製造法を更に詳しく説明する。初めに結着樹脂と着色剤、電荷制御剤、その他必要な添加剤を均一に混合する。混合には既知の攪拌機、例えばヘンシェルミキサー、スーパーミキサー、ボールミルなどを用いることができる。得られた混合物を、密閉式のニーダー、若しくは1軸又は2軸の押出機を用いて、熱溶融混練する。混練物を冷却後に、クラッシャー又はハンマーミルを用いて粗粉砕し、更にジェットミル、高速ローター回転式ミルなどの粉砕機で微粉砕する。更に風力分級機、例えばコアンダ効果を利用した慣性分級方式のエルボジェット、サイクロン(遠心)分級方式のミクロプレックス、DSセパレーターなどを使用し、所定の粒度にまで分級を行う。更に外添剤などをトナー表面に処理する場合は、トナーと外添剤を高速攪拌機、例えばヘンシェルミキサー、スーパーミキサーなどで攪拌混合する。
 また、本実施形態に係るトナーは、懸濁重合法又は乳化重合法によっても製造できる。懸濁重合法においては、まず、重合性単量体、着色剤、重合開始剤、電荷制御剤、更に必要に応じて架橋剤、分散安定剤その他の添加剤を、均一に溶解又は分散させて、単量体組成物を調製する。その後、この単量体組成物と分散安定剤を、連続相(たとえば水相)中に適当な攪拌機又は分散機、例えばホモミキサー、ホモジナイザー、アトマイザー、マイクロフルイダイザー、一液流体ノズル、気液流体ノズル、電気乳化機などを用いて分散させる。好ましくは、重合性単量体組成物の液滴が所望のトナー粒子のサイズを有するように撹拌速度、温度、時間を調整し、造粒する。同時に重合反応を40~90℃で行い、所望の粒径を有するトナー粒子を得ることができる。得られたトナー粒子を洗浄し、ろ別した後、乾燥する。トナー粒子の製造後の外添処理は前記記載の方法が使用できる。
 乳化重合法で製造すると、上述の懸濁重合法により得られる粒子と比べ、均一性には優れるものの平均粒子径が0.1μm~1.0μmと極めて小さいため、場合によっては乳化粒子を核として重合性単量体を後添加して粒子を成長させる、いわゆるシード重合による方法、又は、乳化粒子を適当な平均粒径にまで合一、融着させる方法で製造することもできる。
 これらの重合法による製造は、粉砕工程を経ないためトナー粒子に脆性を付与させる必要がなく、更に従来の粉砕法では使用することが困難であった低軟化点物質を多量に使用できることから材料の選択幅を広げることができる。トナー粒子表面に疎水性の材料である離型剤又は着色剤が露出しにくく、このためトナー担持部材、感光体、転写ローラー及び定着器への汚染を少なくすることができる。
 本実施形態に係るトナーを重合法によって製造することによって、画像再現性、転写性、色再現性などの特性を更に向上させることができる。また、微小ドットに対応するためにトナーの粒径を小径化し、比較的容易に粒度分布がシャープなトナーを得ることができる。
 本実施形態に係るトナーを重合方法で製造する際に使用する重合性単量体としては、ラジカル重合が可能なビニル系重合性単量体があげられる。該ビニル系重合性単量体としては、単官能性重合性単量体又は多官能性重合性単量体を使用することができる。
 単官能性重合性単量体としては、スチレン、α-メチルスチレン、β-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、p-n-ブチルスチレン、p-tert-ブチルスチレン、p-n-ヘキシルスチレン、p-フェニルスチレンなどのスチレン系重合性単量体;メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、tert-ブチルアクリレート、n-アミルアクリレート、n-ヘキシルアクリレート、2-エチルヘキシルアクリレート、n-オクチルアクリレート、ベンジルアクリレート、ジメチルフォスフェートメチルアクリレート、ジブチルフォスフェートエチルアクリレート、2-ベンゾイルオキシエチルアクリレートなどのアクリレート系重合性単量体;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレート、tert-ブチルメタクリレート、n-アミルメタクリレート、n-ヘキシルメタクリレート、2-エチルヘキシルメタクリレート、n-オクチルメタクリレート、ジエチルフォスフェートメタクリレート、ジブチルフォスフェートエチルメタクリレートなどのメタクリレート系重合性単量体;不飽和脂肪族モノカルボン酸エステル類;酢酸ビニル、プロピオン酸ビニル、安息香酸ビニルなどのビニルエステル類;ビニルメチルエーテル、ビニルイソブチルエーテルなどのビニルエーテル類;ビニルメチルケトン、ビニルヘキシルケトン、ビニルイソプロピルケトンなどのビニルケトン類があげられる。
 本実施形態に係るトナーを重合方法で製造する際に使用する重合開始剤は有機過酸化物など、公知のものが使用できる。水溶性開始剤としては、過硫酸アンモニウム、過硫酸カリウム、2,2'-アゾビス(N、N'-ジメチレンイソブチロアミジン)塩酸塩、2,2'-アゾビス(2-アミノジプロパン)塩酸塩、アゾビス(イソブチルアミジン)塩酸塩、2,2'-アゾビスイソブチロニトリルスルホン酸ナトリウム、硫酸第一鉄又は過酸化水素があげられる。
 重合開始剤は重合性単量体100質量部に対して0.5~20質量部の添加量が好ましく、単独又は併用してもよい。重合トナーを製造する際に使用する分散剤としては、例えば無機系酸化物としては、リン酸三カルシウム、リン酸マグネシウム、リン酸アルミニウム、リン酸亜鉛、炭酸カルシウム、炭酸マグネシウム、水酸化アルミニウム、メタケイ酸カルシウム、硫酸カルシウム、硫酸バリウム、ベントナイト、シリカ、アルミナなどがあげられる。有機系化合物としては、例えばポリビニルアルコール、ゼラチン、メチルセルロース、メチルヒドロキシプロピルセルロース、エチルセルロース、カルボキシメチルセルロースのナトリウム塩、デンプンなどがあげられる。これらの分散剤は、重合性単量体100質量部に対して0.2~2.0質量部を使用することが好ましい。
 これら分散剤は市販のものをそのまま使用してもよいが細かい均一な粒度を有する分散粒子を得るために、分散媒体中にて高速撹拌下にて該無機化合物を生成させることもできる。
 前記重合法で得られるトナーは、特別な処理をしない粉砕法によるトナーに較べ、トナー粒子の凹凸の度合いが小さい傾向にあり、不定形であるために静電潜像担持体とトナーとの接触面積が増加し、トナー付着力が高くなり、結果として機内汚染が少なく、より高画像濃度、より高品位な画像を得られやすい。
 また、粉砕法によるトナーにおいても、トナー粒子を、水中に分散させ加熱する湯浴法、熱気流中を通過させる熱処理法、又は機械的エネルギーを付与して処理する機械的衝撃法などの方法によりトナー表面の凹凸の度合いを小さくすることができる。凹凸の度合いを小さくするために有効な装置としては、乾式メカノケミカル法を応用したメカノフージョンシステム(ホソカワミクロン株式会社製)、I式ジェットミル、ローターとライナーを有する混合装置であるハイブリダイザー(奈良機械製作所株式会社製)、高速撹拌羽を有する混合機であるヘンシェルミキサーなどがあげられる。
 前記トナー粒子の凹凸の度合いを示す値の一つとして、平均円形度をあげることができる。平均円形度(C)とは、下式(2)により円形度(Ci)を求め、更に下式(3)で示すように測定された全粒子の円形度の総和を測定された全粒子数(m)で除した値を意味する。
Figure JPOXMLDOC01-appb-M000042
Figure JPOXMLDOC01-appb-M000043
 前記円形度(Ci)は、フロー式粒子像分析装置(例えば、東亜医用電子株式会社製FPIA-1000)を用いて測定する。測定方法としては、ノニオン界面活性剤約0.1mgを溶解している水10mlにトナー約5mgを分散させた分散液を調整し、超音波(20kHz、50W)を分散液に5分間照射し、分散液濃度を5000~20000個/μLとして、前記フロー式粒子像分析装置を用い、0.60μm以上159.21μm未満の円相当径を有する粒子の円形度分布を測定する。
 前記平均円形度の値は、0.955~0.995が好ましく、0.960~0.985がより好ましい。この値になるようにトナー粒子を調整すると、転写残トナーの増加を招くという現象が生じにくく、再転写を起こしにくい傾向にある。
 本実施形態に係るトナーの場合、画像性とトナーの生産性の面から、例えばミクロンサイザー(例えば、セイシン企業株式会社製)などのレーザー式粒度分布測定機を使用した測定において、粉砕トナーの場合、トナーの粒子径が体積基準の平均粒径で2μm~15μmの範囲内であることが好ましく、3μm~12μmの範囲内であることがより好ましい。15μmを超える平均粒径になると解像度又は鮮鋭性が鈍くなる傾向にあり、また、2μm未満の平均粒径では解像性は良好となるものの、トナー製造時の歩留まりの悪化によるコスト高の問題、又は機内でのトナー飛散、皮膚浸透などの健康への障害が生じる傾向がある。
 一方、重合トナーの場合では3μm~9μmの範囲内であることが好ましく、4μm~8.5μmの範囲内であることがより好ましく、5μm~8μmの範囲内であることが特に好ましい。体積平均粒径が4μmより小さいと、トナー流動性が低下し、各粒子の帯電性が低下しやすく、また帯電分布が広がるため、背景へのかぶり、又は現像器からのトナーこぼれ等が生じやすくなる。また4μmより小さいと、格段にクリーニング性が困難となる場合がある。体積平均粒径が9μmより大きいと、解像度が低下するため、十分な画質が得られなくなり、近年の高画質要求を満たすことが困難となる場合がある。
 また、本実施形態に係る重合トナーは、下記の方法により測定される粒度分布を分割された粒度範囲(チャンネル)に対し、体積、数、それぞれに小径側から累積分布を描き、累積16%となる粒径を体積D16%、累積50%となる粒径を体積D50%、累積84%となる粒径を体積D84%と定義したときに、(D84%/D16%)1/2より算出される体積平均粒度分布指標(GSDv)は、1.15~1.30であることが好ましく、1.15~1.25であることがより好ましい。
 トナーの粒度分布に関して、本実施形態に係るトナーの場合、例えばコールターカウンター(コールター株式会社製TA-II)による粒度測定により、2μm以下の粒子含有量が個数基準で10~90%であることが好ましく、12.7μm以上の粒子の含有量が体積基準で0~30%であることがより好ましい。
 また、粒径均一性が高い(体積平均粒径/個数平均粒径が1.00~1.30)ことが望ましい。
 本実施形態に係る静電荷現像用トナーの場合、トナーの比表面積は、脱吸着ガスを窒素としたBET比表面積測定において、1.2~5.0m/gであることが好ましい。より好ましくは1.5~3.0m/gである。比表面積の測定は、例えばBET比表面積測定装置(例えば、株式会社島津製作所製、FlowSorb II2300)を使用し、50℃で30分間トナー表面の吸着ガスを脱離後、液体窒素により急冷して窒素ガスを再吸着し、更に再度50℃に昇温し、このときの脱ガス量から求めた値と定義する。
 本実施形態に係るトナーの場合、見かけ比重(かさ密度)は、例えばパウダーテスター(例えば、ホソカワミクロン株式会社製)を用いて測定した。非磁性トナーの場合は0.2~0.6g/cm3が好ましく、磁性トナーの場合は磁性粉の種類及び含有量にもよるが0.2~2.0g/cm3が好ましい。
 本実施形態に係るトナーの場合、非磁性トナーの場合の真比重は0.9~1.2g/cmが好ましく、磁性トナーの場合は磁性粉の種類及び含有量にもよるが0.9~4.0g/cmが好ましい。トナーの真比重は、次のようにして算出される。トナー1.000gを精秤し、これを10mmΦの錠剤成型器に入れ、真空下で200kgf/cmの圧力をかけながら圧縮成型する。この円柱状の成型物の高さをマイクロメーターで測定し、これより真比重を算出する。
 トナーの流動性は、例えば、安息角測定装置(例えば、筒井理化株式会社製)による流動安息角と静止安息角により定義する。流動安息角は本実施形態に係る電荷制御剤を使用した静電荷現像用トナーの場合、5度~45度のものが好ましい。また静止安息角は10~50度のものが好ましい。
 本実施形態に係るトナーは、粉砕型トナーの場合の形状係数(SF-1)の平均値が100~400が好ましく、形状係数2(SF-2)の平均値が100~350が好ましい。
 本実施形態において、トナーの形状係数を示すSF-1、SF-2とは、例えばCCDカメラを備えた光学顕微鏡(例えば、オリンパス株式会社製BH-2)を用い、1000倍に拡大したトナー粒子群を一視野に30個程度となるようサンプリングし、得られた画像を画像解析装置(例えば、ニレコ株式会社製ルーゼックスFS)に転送し、同作業をトナー粒子に対し約1000個となるまで繰り返し行い、以下の式によって算出する。
SF-1=((ML×π)/4A)×100
 (式中、MLは粒子の最大長、Aは一粒子の投影面積を示す。)
SF-2=(PM/4Aπ)×100
 (式中、PMは粒子の周囲長、Aは一粒子の投影面積を示す。)。
 SF-1は粒子の歪みを表し、粒子が球に近いものほど100に近く、細長いものであるほど数値が大きくなる。またSF-2は粒子の凹凸を表し、粒子が球に近いものほど100に近く、粒子の形が複雑であるほど数値が大きくなる。
 本実施形態に係るトナーは、トナーの体積抵抗率が、非磁性トナーの場合は1×1012~1×1016Ω・cmのものが好ましく、また磁性トナーの場合は磁性粉の種類及び含有量にもよるが、1×10~1×1016Ω・cmのものが好ましい。この場合のトナー体積抵抗率は、トナー粒子を圧縮成型し直径50mm、厚み2mmの円盤状の試験片を作製し、これを固体用電極(例えば、安藤電気株式会社製SE-70)にセットし、高絶縁抵抗計(例えば、ヒューレットパッカッ-ド株式会社製4339A)を用いて、直流電圧100Vを連続印加した時の1時間経過後の値と定義する。
 本実施形態に係るトナーは、トナーの誘電正接が、非磁性トナーの場合は1.0×10-3~15.0×10-3のものが好ましく、また磁性トナーの場合は磁性粉の種類及び含有量にもよるが、2×10-3~30×10-3のものが好ましい。この場合のトナーの誘電正接は、トナー粒子を圧縮成型し、直径50mm、厚み2mmの円盤状の試験片を作製し、これを固体用電極にセットし、LCRメーター(例えば、ヒューレットパッカッ-ド株式会社製4284A)を用いて、測定周波数1KHz、ピークトゥーピーク電圧0.1KVで測定した時に得られる誘電正接値(Tanδ)と定義する。
 本実施形態に係るトナーは、トナーのアイゾット衝撃値が0.1~30kg・cm/cmであることが好ましい。この場合のトナーのアイゾット衝撃値とは、トナー粒子を熱溶融し板状の試験片を作製し、これをJIS規格K-7110(硬質プラスチックの衝撃試験法)に準じて測定する。
 本実施形態に係るトナーは、トナーのメルトインデクス(MI値)が10~150g/10minであることが好ましい。この場合のトナーのメルトインデクス(MI値)とは、JIS規格K-7210(A法)に準じて測定するものである。この場合、測定温度が125℃、加重を10kgとする。
 本実施形態に係るトナーは、トナーの溶融開始温度が80~180℃であることが好ましく、4mm降下温度が90~220℃であることが好ましい。この場合のトナー溶融開始温度は、トナー粒子を圧縮成型し直径10mm、厚み20mmの円柱状の試験片を作製し、これを熱溶融特性測定装置、例えばフローテスター(例えば、株式会社島津製作所製CFT-500C)にセットし、荷重20kgf/cmで測定した時の溶融が始まりピストンが降下し始める値と定義する。また同様の測定で、ピストンが4mm降下したときの温度を4mm降下温度と定義する。
 本実施形態に係るトナーは、トナーのガラス転移温度(Tg)が35~80℃であることが好ましく、40~75℃であることがより好ましい。この場合のトナーのガラス転移温度は、示差熱分析(DSCとも略称する)装置を用いて測定し、一定温度で昇温後、急冷し、再昇温したときに現れる相変化のピーク値より求めるものと定義する。トナーのTgが35℃を下回ると、耐オフセット性及び保保存安定性が低下する傾向にあり、80℃を超えると画像の定着強度が低下する傾向がある。
 本実施形態に係るトナーのDSC測定において観測される吸熱ピークにおいて70~120℃の領域に最大ピークのピークトップ温度があることが好ましい。
 本実施形態に係るトナーは、トナーの溶融粘度が1000~50000ポイズであることが好ましく、1500~38000ポイズであることがより好ましい。この場合のトナー溶融粘度は、トナー粒子を圧縮成型し直径10mm、厚み20mmの円柱状の試験片を作製し、これを熱溶融特性測定装置、例えばフローテスター(株式会社島津製作所製CFT-500C)にセットし、荷重20kgf/cmで測定した時の値と定義する。
 本実施形態に係るトナーの溶媒溶解残分は、THF不溶分として0~30質量%、酢酸エチル不溶分として0~40質量%及びクロロホルム不溶分として0~30質量%であることが好ましい。ここでの溶媒溶解残分は、トナー1gをTHF、酢酸エチル及びクロロホルムの各溶剤100mlに均一に溶解/又は分散させ、この溶液/又は分散液を圧ろ過し、ろ液を乾燥させ定量し、この値からトナー中の有機溶剤への不溶解物の割合を算出した値とする。
 本実施形態に係るトナーは画像形成方法の1つである1成分現像方式に使用することができる。1成分現像方式とは、薄膜化させたトナーを潜像担持体に供給して潜像を現像する方式である。トナーの薄膜化は、通常、トナー搬送部材、トナー層厚規制部材及びトナー補給補助部材を備え、かつ該補給補助部材とトナー搬送部材並びにトナー層厚規制部材とトナー搬送部材とがそれぞれ当接している装置を用いて行われる。
 本実施形態に係るトナーを2成分現像法について適用する場合について具体的に説明する。2成分現像方式とは、トナーとキャリア(帯電付与材及びトナー搬送材としての役割を持つもの)を使用する方式であり、キャリアは上述した磁性材又はガラスビーズが使用される。現像剤(トナー及びキャリア)は、攪拌部材によって攪拌される事により、所定の電荷量を発生させ、マグネットローラーなどによって現像部位にまで搬送される。マグネットローラー上では磁力により、ローラー表面に現像剤が保持され、現像剤規制板などにより適当な高さに層規制された磁気ブラシを形成する。現像剤は現像ローラーの回転に伴って、ローラー上を移動し、静電荷潜像保持体と接触又は一定の間隔で非接触状態で対向させ、潜像を現像可視化する。非接触状態での現像の場合は、通常、現像剤と潜像保持体の間に直流電界を生じさせる事によりトナーが一定間隔の空間を飛翔する駆動力を得ることができるが、より鮮明な画像に現像するために、交流を重畳させる方式にも適用することができる。
 また、更に本実施形態において使用する電荷制御剤は、静電粉体塗装用塗料における電荷制御剤(電荷増強剤)としても好適である。すなわち、この電荷増強剤を用いた静電塗装用塗料は、耐環境性、保存安定性、特に熱安定性と耐久性に優れ、塗着効率が100%に達し、塗膜欠陥のない厚膜を形成することができる。
 以下、実施例に基づいて本発明をより詳細に説明するが、これらは本発明をなんら制限するものではない。以下の実施例において、「部」は全て「質量部」を表す。
 一般式(1)で表されるヒダントイン誘導体の精製は、カラムクロマトグラフによる精製、シリカゲル、活性、又は活性白土などによる吸着精製、溶媒による再結晶又は晶析法などによって行った。化合物の同定は、NMR分析によって行った。
[合成実施例1](例示化合物2の合成)
 窒素置換した反応容器に、1-メチルヒダントイン6.85g(60ミリモル)、ベンズアルデヒド6.1ml(60ミリモル)、酢酸ナトリウム14.77g(180ミリモル)、酢酸100mlを加え、攪拌しながら96時間加熱還流した。室温まで放冷した後、水500mlを入れた反応容器に反応溶液を加え、室温で30分攪拌した。析出する粗製物をろ過によって採取し、水で洗浄した後、60℃で減圧乾燥することによって、5-ベンジリデン-1-メチルヒダントイン(例示化合物2)の淡黄色結晶1.79g(収率14.8%)を得た。
 得られた淡黄色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の10個の水素のシグナルを検出した。
 δ(ppm)=11.34(1H)、7.92-7.94(2H)、7.31-7.38(3H)、6.42(1H)、3.09(3H)。
[合成実施例2](例示化合物3の合成)
 窒素置換した反応容器に、1-メチルヒダントイン22.82g(200ミリモル)、4-tert-ブチルベンズアルデヒド32.45g(200ミリモル)、酢酸ナトリウム49.82g(600ミリモル)、プロピオン酸300mlを加え、攪拌しながら100時間加熱還流した。室温まで放冷した後、水1500mlを入れた反応容器に反応溶液を加え、室温で1時間攪拌した。析出する粗製物をろ過によって採取し、水で洗浄した後、60℃で減圧乾燥することによって、5-(4-tert-ブチルベンジリデン)-1-メチルヒダントイン(例示化合物3)の淡橙色結晶29.26g(収率56.6%)を得た。
 得られた淡橙色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の18個の水素のシグナルを検出した。
 δ(ppm)=11.32(1H)、7.33-7.89(4H)、6.37-6.62(1H)、2.85-3.08(3H)、1.29(9H)。
[合成実施例3](例示化合物4の合成)
 窒素置換した反応容器に、1-メチルヒダントイン17.12g(150ミリモル)、4-メチルベンズアルデヒド18.02g(150ミリモル)、酢酸ナトリウム37.36g(450ミリモル)、プロピオン酸200mlを加え、攪拌しながら76時間攪拌した。室温まで放冷した後、水500mlを入れた反応容器に反応溶液を加え、室温で1時間攪拌した。析出する粗製物をろ過によって採取し、水で洗浄し、さらにメタノールで洗浄した後、60℃で減圧乾燥することによって、5-(4-メチルベンジリデン)-1-メチルヒダントイン(例示化合物4)の淡橙色結晶19.58g(収率60.36%)を得た。
 得られた淡橙色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の12個の水素のシグナルを検出した。
 δ(ppm)=11.33(1H)、7.17-7.87(4H)、6.36-6.6.62(1H)、2.82-3.34(3H)、2.32(3H)。
[合成実施例4](例示化合物5の合成)
 窒素置換した反応容器に、1-メチルヒダントイン17.12g(150ミリモル)、3-メチルベンズアルデヒド18.02g(150ミリモル)、酢酸ナトリウム24.91g(300ミリモル)、プロピオン酸75mlを加え、攪拌しながら100時間加熱還流した。室温まで放冷した後、水250mlを入れた反応容器に反応溶液を加え、室温で1時間攪拌した。析出する粗製物をろ過によって採取し、水で洗浄し、さらにメタノールで洗浄した後、60℃で減圧乾燥することによって、5-(3-メチルベンジリデン)-1-メチルヒダントイン(例示化合物5)の淡橙色結晶9.37g(収率28.9%)を得た。
 得られた淡橙色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の12個の水素のシグナルを検出した。
 δ(ppm)=11.31(1H)、7.12-7.79(4H)、6.35(1H)、3.08(3H)、2.31(3H)。
[合成実施例5](例示化合物6の合成)
 窒素置換した反応容器に、1-メチルヒダントイン17.12g(150ミリモル)、2-メチルベンズアルデヒド18.02g(150ミリモル)、酢酸ナトリウム24.91g(300ミリモル)、プロピオン酸75mlを加え、攪拌しながら100時間加熱還流した。室温まで放冷した後、水250mlを入れた反応容器に反応溶液を加え、室温で1時間攪拌した。析出する粗製物をろ過によって採取し、水で洗浄し、さらにメタノールで洗浄した後、60℃で減圧乾燥することによって、5-(2-メチルベンジリデン)-1-メチルヒダントイン(例示化合物6)の淡橙色結晶20.1g(収率62.0%)を得た。
 得られた淡橙色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の12個の水素のシグナルを検出した。
 δ(ppm)=11.31(1H)、7.11-7.92(4H)、6.39-6.61(1H)、2.63-3.10(3H)、2.27-2.30(3H)。
[合成実施例6](例示化合物7の合成)
 窒素置換した反応容器に、1-メチルヒダントイン22.82g(200ミリモル)、4-クロロベンズアルデヒド28.11g(200ミリモル)、ピペリジン19.8ml(200ミリモル)、酢酸11.5ml(200ミリモル)、n-ブタノール40mlを加え、攪拌しながら48時間加熱還流した。室温まで放冷した後、析出する粗製物をろ過によって採取した。メタノールで洗浄し、さらに水で洗浄した後、60℃で減圧乾燥することによって、5-(4-クロロベンジリデン)-1-メチルヒダントイン(例示化合物7)の淡黄色結晶32.65g(収率69.0%)を得た。
 得られた淡黄色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の9個の水素のシグナルを検出した。
 δ(ppm)=11.33(1H)、7.94-7.96(2H)、7.41-7.43(2H)、6.37(1H)、3.08(3H)。
[合成実施例7](例示化合物8の合成)
 窒素置換した反応容器に、1-メチルヒダントイン17.12g(150ミリモル)、3-クロロベンズアルデヒド21.09g(150ミリモル)、ピペリジン14.8ml(150ミリモル)、酢酸8.6ml(150ミリモル)、n-ブタノール40mlを加え、攪拌しながら48時間加熱還流した。室温まで放冷した後、析出する粗製物をろ過によって採取した。エタノールで洗浄し、さらに水で洗浄した後、60℃で減圧乾燥することによって、5-(3-クロロベンジリデン)-1-メチルヒダントイン(例示化合物8)の淡黄色結晶13.86g(収率39.0%)を得た。
 得られた淡黄色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の9個の水素のシグナルを検出した。
 δ(ppm)=11.41(1H)、8.11(1H)、7.81-7.83(1H)、7.35-7、42(2H)、6.40(1H)、3.08(3H)。
[合成実施例8](例示化合物9の合成)
 窒素置換した反応容器に、1-メチルヒダントイン17.12g(150ミリモル)、2-クロロベンズアルデヒド21.09g(150ミリモル)、ピペリジン14.8ml(150ミリモル)、酢酸8.6ml(150ミリモル)、n-ブタノール40mlを加え、攪拌しながら48時間加熱還流した。室温まで放冷した後、析出する粗製物をろ過によって採取した。メタノールで洗浄し、さらに水で洗浄した後、60℃で減圧乾燥することによって、5-(2-クロロベンジリデン)-1-メチルヒダントイン(例示化合物9)の淡黄色結晶20.76g(収率58.5%)を得た。
 得られた淡黄色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の9個の水素のシグナルを検出した。
 δ(ppm)=11.36(1H)、7.83-7.85(1H)、7.47-7.49(1H)、7.29-7、34(2H)、6.35(1H)、3.09(3H)。
[合成実施例9](例示化合物10の合成)
 窒素置換した反応容器に、1-メチルヒダントイン17.12g(150ミリモル)、4-メトキシベンズアルデヒド20.42g(150ミリモル)、ピペリジン14.8ml(150ミリモル)、酢酸8.6ml(150ミリモル)、n-ブタノール40mlを加え、攪拌しながら72時間加熱還流した。室温まで放冷した後、析出する粗製物をろ過によって採取した。メタノールで洗浄し、さらに水で洗浄した後、60℃で減圧乾燥することによって、5-(4-メトキシベンジリデン)-1-メチルヒダントイン(例示化合物10)の淡黄色結晶29.84g(収率70.5%)を得た。
 得られた淡黄色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の12個の水素のシグナルを検出した。
 δ(ppm)=11.28(1H)、7.99-8.01(2H)、6.94-6.95(2H)、6.36(1H)、3.81(3H)、3.07(3H)。
[合成実施例10](例示化合物11の合成)
 窒素置換した反応容器に、1-メチルヒダントイン17.12g(150ミリモル)、3-メトキシベンズアルデヒド20.42g(150ミリモル)、ピペリジン14.8ml(150ミリモル)、酢酸8.6ml(150ミリモル)、n-ブタノール40mlを加え、攪拌しながら96時間加熱還流した。室温まで放冷した後、析出する粗製物をろ過によって採取した。メタノールで洗浄し、さらに水で洗浄した後、60℃で減圧乾燥することによって、5-(3-メトキシベンジリデン)-1-メチルヒダントイン(例示化合物11)の淡黄色結晶14.02g(収率40.2%)を得た。
 得られた淡黄色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の12個の水素のシグナルを検出した。
 δ(ppm)=11.37(1H)、7.73(1H)、7.45-7.47(1H)、7.27-7.29(1H)、6.89-6.90(1H)、6.38(1H)、3.77(3H)、3.08(3H)。
[合成実施例11](例示化合物12の合成)
 窒素置換した反応容器に、ヒダントイン10.0g(100ミリモル)、ベンズアルデヒド11.1ml(110ミリモル)、ピペリジン9.9ml(150ミリモル)、酢酸5.7ml(150ミリモル)、n-ブタノール20mlを加え、攪拌しながら6時間加熱還流した。室温まで放冷した後、析出する粗製物をろ過によって採取した。メタノールで洗浄し、さらに水で洗浄した後、60℃で減圧乾燥することによって、5-ベンジリデンヒダントイン(例示化合物12)の淡黄色結晶10.02g(収率53.2%)を得た。
 得られた淡黄色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の8個の水素のシグナルを検出した。
 δ(ppm)=11.31(2H)、7.62-7.63(2H)、7.40-7.42(2H)、7.32-7.35(1H)、6.42(1H)。
[合成実施例12](例示化合物13の合成)
 窒素置換した反応容器に、ヒダントイン15.03g(150ミリモル)、2-メチルベンズアルデヒド18.02g(150ミリモル)、ピペリジン14.82ml(150ミリモル)、酢酸8.6ml(150ミリモル)、n-ブタノール40mlを加え、攪拌しながら24時間加熱還流した。室温まで放冷した後、析出する粗製物をろ過によって採取した。メタノールで洗浄し、さらに水で洗浄した後、60℃で減圧乾燥することによって、5-(2-メチルベンジリデン)ヒダントイン(例示化合物13)の淡黄色結晶20.8g(収率68.5%)を得た。
 得られた淡黄色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の10個の水素のシグナルを検出した。
 δ(ppm)=11.34(2H)、7.52-7.53(1H)、7.21-7.26(3H)、6.48(1H)、2.33(3H)。
[合成実施例13](例示化合物14の合成)
 窒素置換した反応容器に、ヒダントイン15.03g(150ミリモル)、3-メチルベンズアルデヒド18.02g(150ミリモル)、ピペリジン14.82ml(150ミリモル)、酢酸8.6ml(150ミリモル)、n-ブタノール40mlを加え、攪拌しながら48時間加熱還流した。室温まで放冷した後、析出する粗製物をろ過によって採取した。メタノールで洗浄し、さらに水で洗浄した後、60℃で減圧乾燥することによって、5-(2-メチルベンジリデン)ヒダントイン(例示化合物14)の淡黄色結晶16.6g(収率54.7%)を得た。
 得られた淡黄色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の10個の水素のシグナルを検出した。
 δ(ppm)=11.32(2H)、7.47(1H)、7.37-7.39(1H)、7.27-7.30(1H)、7.14-7.15(1H)、6.37(1H)、2.33(3H)。
[合成実施例14](例示化合物15の合成)
 窒素置換した反応容器に、ヒダントイン15.03g(150ミリモル)、4-tert-ブチルベンズアルデヒド24.34g(150ミリモル)、ピペリジン14.82ml(150ミリモル)、酢酸8.6ml(150ミリモル)、n-ブタノール40mlを加え、攪拌しながら24時間加熱還流した。室温まで放冷した後、析出する粗製物をろ過によって採取した。メタノールで洗浄し、さらに水で洗浄した後、60℃で減圧乾燥することによって、5-(4-tert-ブチルベンジリデン)ヒダントイン(例示化合物15)の淡黄色結晶25.33g(収率69.1%)を得た。
 得られた淡黄色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の16個の水素のシグナルを検出した。
 δ(ppm)=11.33(2H)、7.55-7.56(2H)、7.41-7.42(2H)、6.40(1H)、1.29(9H)。
[合成実施例15](例示化合物16の合成)
 窒素置換した反応容器に、ヒダントイン11.3g(113ミリモル)、トルエン500mlを加えて加熱した。還流下、N,N-ジメチルアセトアミドジメチルアセタール45.0g(338ミリモル)のトルエン(50ml)溶液を滴下し、さらに攪拌しながら3時間加熱還流した。室温まで放冷した後、析出する不溶物をろ過によって採取した。トルエンで洗浄した後、60℃で減圧乾燥することによって、3-メチルヒダントイン8.4g(収率68.4%)を得た。
 得られた3-メチルヒダントイン4.0g(35.1ミリモル)、ベンズアルデヒド3.7g(35.1ミリモル)、ピペリジン3.0g(35.1ミリモル)、酢酸2.1g(35.1ミリモル)、n-ブタノール30mlを窒素置換した反応容器に加え、攪拌しながら17時間加熱還流した。室温まで放冷した後、析出する粗製物をろ過によって採取した。メタノールで洗浄し、さらに水で洗浄した後、60℃で減圧乾燥することによって、5-ベンジリデン-3-メチルヒダントイン(例示化合物16)の淡黄色結晶5.3g(収率74.6%)を得た。
 得られた淡黄色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の10個の水素のシグナルを検出した。
 δ(ppm)=10.77(1H)、7.64-7.65(2H)、7.34-7.41(3H)、6.53(1H)、2.96(3H)。
[合成実施例16](例示化合物17の合成)
 合成実施例15で合成した、3-メチルヒダントイン4.0g(35.1ミリモル)、4-メチルベンズアルデヒド4.2g(35.1ミリモル)、ピペリジン3.0g(35.1ミリモル)、酢酸2.1g(35.1ミリモル)、n-ブタノール30mlを窒素置換した反応容器に加え、攪拌しながら12時間加熱還流した。室温まで放冷した後、析出する粗製物をろ過によって採取した。メタノールで洗浄し、さらに水で洗浄した後、60℃で減圧乾燥することによって、5-(4-メチルベンジリデン)-3-メチルヒダントイン(例示化合物17)の淡黄色結晶6.1g(収率80.5%)を得た。
 得られた淡黄色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の12個の水素のシグナルを検出した。
 δ(ppm)=10.71(1H)、7.54-7.55(2H)、7.22-7.23(2H)、6.50(1H)、2.96(3H)、2.35(3H)。
[合成実施例17](例示化合物18の合成)
 合成実施例15で合成した、3-メチルヒダントイン4.0g(35.1ミリモル)、4-tert-ブチルベンズアルデヒド5.7g(35.1ミリモル)、ピペリジン3.0g(35.1ミリモル)、酢酸2.1g(35.1ミリモル)、n-ブタノール30mlを窒素置換した反応容器に加え、攪拌しながら50時間加熱還流した。室温まで放冷した後、析出する粗製物をろ過によって採取した。メタノールで洗浄し、さらに水で洗浄した後、60℃で減圧乾燥することによって、5-(4-tert-ブチルベンジリデン)-3-メチルヒダントイン(例示化合物18)の淡黄色結晶6.2g(収率68.1%)を得た。
 得られた淡黄色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の18個の水素のシグナルを検出した。
 δ(ppm)=10.70(1H)、7.57-7.59(2H)、7.42-7.43(2H)、6.51(1H)、2.96(3H)、1.29(9H)。
[合成実施例18](例示化合物19の合成)
 合成実施例15で合成した、3-メチルヒダントイン4.0g(35.1ミリモル)、4-クロロベンズアルデヒド4.9g(35.1ミリモル)、ピペリジン3.0g(35.1ミリモル)、酢酸2.1g(35.1ミリモル)、n-ブタノール30mlを窒素置換した反応容器に加え、攪拌しながら42時間加熱還流した。室温まで放冷した後、析出する粗製物をろ過によって採取した。メタノールで洗浄し、さらに水で洗浄した後、60℃で減圧乾燥することによって、5-(4-クロロベンジリデン)-3-メチルヒダントイン(例示化合物19)の淡黄色結晶5.6g(収率67.5%)を得た。
 得られた淡黄色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の9個の水素のシグナルを検出した。
 δ(ppm)=10.83(1H)、7.65-7.67(2H)、7.45-7.47(2H)、6.50(1H)、2.96(3H)。
[実施例19]
(非磁性トナー1の製造)
 スチレン-アクリレート系共重合体樹脂(三井化学株式会社製、商品名CPR-100、酸価0.1mgKOH/g)91部、合成実施例14で合成したヒダントイン誘導体(例示化合物15)1部、カーボンブラック(三菱化学株式会社製、商品名MA-100)5部及び低分子量ポリプロピレン(三洋化成株式会社製、商品名ビスコール550P)3部を130℃の加熱混合装置(2軸押出混練機)によって溶融混合した。冷却した混合物をハンマーミルで粗粉砕した後、ジェットミルで微粉砕し、分級して体積平均粒径9±0.5μmの非磁性トナー1を得た。
(非磁性トナー1の評価)
 非磁性トナー1をノンコート系のフェライトキャリア(パウダーテック株式会社製F-150)と4対100質量部(トナー:キャリア)の割合で混合振とうしてトナーを負に帯電させた後、ブローオフ粉体帯電量測定装置で帯電量を測定した。その結果、-35.8μc/gであった。
 同様に、シリコンコート系のフェライトキャリアー(パウダーテック社製F96-150)と混合した場合についても帯電量を評価した。その結果、-25.8μc/gであった。
[実施例20]
(非磁性トナー2の製造及び評価)
 合成実施例14で合成したヒダントイン誘導体(例示化合物15)を合成実施例12で合成したヒダントイン誘導体(例示化合物13)に代えたこと以外は、実施例19と同様の方法で非磁性トナー2を調製し、ブローオフ粉体帯電量測定装置によって帯電量を評価した。その結果、ノンコート系のフェライトキャリア(パウダーテック株式会社製F-150)と混合した場合の帯電量は-34.5μc/gであった。同様に、シリコンコート系のフェライトキャリアー(パウダーテック社製F96-150)と混合した場合の帯電量は-24.3μc/gであった。
[比較例1]
(比較非磁性トナーの製造と評価)
 合成実施例14で合成したヒダントイン誘導体(例示化合物15)を3,5-tert-ブチルサリチル酸と亜鉛の塩に代えたこと以外は、実施例19と同様の方法で比較非磁性トナーを調製し、ブローオフ粉体帯電量測定装置によって帯電量を評価した。その結果、ノンコート系のフェライトキャリア(パウダーテック株式会社製F-150)と混合した場合の帯電量は-23.0μc/gであった。同様に、シリコンコート系のフェライトキャリアー(パウダーテック社製F96-150)と混合した場合の帯電量は-15.0μc/gであった。
 以上の結果から明らかなように、本発明の一般式(1)で表されるヒダントイン誘導体を有効成分として含有する電荷制御剤を用いたトナーでは、帯電量が高くなることが分かった。
[実施例21]
(樹脂分散液の調製)
 ポリエステル樹脂(三菱レイヨン株式会社製、DIACRON ER-561)80部、酢酸エチル320部、イソプロピルアルコール32部を混合し、ホモジナイザー(株式会社美粒製、泡レスミキサー NGM-0.5TB)を用いて、5000~10000rpmで攪拌しながら0.1質量%のアンモニア水を適量滴下して転相乳化させ、さらにエバポレーターで減圧しながら脱溶剤を行って、樹脂分散液を得た。この分散液における樹脂粒子の体積平均粒径は0.2μmであった(樹脂粒子濃度はイオン交換水で調整して20質量%とした)。
(電荷制御剤分散液の調製)
 ドデシルベンゼンスルホン酸ナトリウム0.2部、ソルボンT-20(東邦化学工業株式会社製)0.2部、イオン交換水17.6部を混合溶解し、さらに合成実施例14で合成したヒダントイン誘導体(例示化合物15)2.0部、ジルコニアビーズ(ビーズの粒子径0.65mmφ、15ml相当量)を加えて、ペイントコンディショナー(UNION N.J.(USA)社製、Red Devil No.5400-5L)で3時間分散させた。篩いを用いてジルコニアビーズを除き、イオン交換水で調整して10質量%の電荷制御剤分散液とした。
(重合トナーの調製)
 温度計、pH計、攪拌機を備えた反応容器に前記樹脂分散液125部、20質量%のドデシルベンゼンスルホン酸ナトリウム水溶液1.0部、イオン交換水125部を加え、液温を30℃に制御しながら、回転数150rpmで30分撹拌した。1質量%の硝酸水溶液を添加してpHを3.0に調整し、さらに5分間撹拌した。ホモジナイザー(IKAジャパン社製、ウルトラタラックスT-25)で分散させながら、ポリ塩化アルミニウム0.125部を加え、液温を50℃まで昇温させた後、さらに30分間分散させた。前記樹脂分散液62.5部、前記電荷制御剤分散液4.0部を加えた後、1質量%の硝酸水溶液を添加してpHを3.0に調整し、さらに30分間分散した。攪拌機を用いて400~700rpmで撹拌しながら、5質量%の水酸化ナトリウム水溶液8.0部を加え、トナーの体積平均粒子径が9.5μmとなるまで撹拌を継続した。液温を75℃まで昇温させた後、さらに2時間撹拌し、体積平均粒子径が6.0μmとなり、粒子形状が球形化したことを確認した後、氷水を用いて急速冷却させた。ろ過によって採取し、イオン交換水で分散洗浄を行った。分散洗浄は、分散後のろ液の電気伝導度が20μS/cm以下となるまで繰り返した。その後、40℃の乾燥機で乾燥してトナー粒子を得た。
 得られたトナーを166メッシュ(目開き90μm)の篩いで篩分して評価用トナーとした。
(評価)
 得られた評価用トナー2部、シリコンコート系のフェライトキャリアー(パウダーテック社製F96-150)100部の割合で混合して振とうし、トナーを負に帯電させた後、ブローオフ粉体帯電量測定装置で温度25℃、湿度50%の雰囲気下で飽和帯電量の測定を行った。その結果、飽和帯電量は-41.2μC/gであった。
[比較例2]
 比較のために、電荷制御剤分散液を加える操作を省略したこと以外は、実施例21と同様の条件でトナーを作製し、飽和帯電量測定を行った。その結果、飽和帯電量は-20.5μC/gであった。
 以上の結果から明らかなように、本発明の一般式(1)で表されるヒダントイン誘導体を、有効成分として含有する重合トナーは、優れた帯電性能を示すことが分かった。
 すなわち本発明の一般式(1)で表されるヒダントイン誘導体を有効成分として含有する電荷制御剤を用いることによって重合トナーに高い帯電性能を付与することができる。
 本発明の一般式(1)で表されるヒダントイン誘導体は優れた帯電性能を有しており、該化合物を有効成分として含有する電荷制御剤は、従来の電荷制御剤より明らかに高い帯電性能を有している。また、上記電荷制御剤は、カラートナー用として、特に重合トナー用として最適である。さらに、上記電荷制御剤は、環境問題で懸念されるクロム化合物などの重金属も含まれず、極めて有用である。

Claims (5)

  1.  下記一般式(1)で表されるヒダントイン誘導体の1種又は2種以上を有効成分として含有する電荷制御剤。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)中、R及びRは、相互に同一でも異なってもよく、水素原子、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、又は置換若しくは無置換の縮合多環芳香族基を示し、Rは、水素原子、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、置換若しくは無置換の縮合多環芳香族基、又は置換若しくは無置換のアリールオキシ基を示し、R、R、R、R及びRは、相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ヒドロキシル基、シアノ基、トリフルオロメチル基、ニトロ基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、置換若しくは無置換の縮合多環芳香族基、又は置換若しくは無置換のアリールオキシ基を示す。R、R、R、R、R及びRは、互いに結合して環を形成していてもよい。V、W、X、Y及びZは炭素原子又は窒素原子を示し、V、W、X、Y及びZはそのいずれか0~3個が窒素原子であるものとし、この場合の窒素原子はR、R、R、R及びRの置換基を有さないものとする。]
  2.  下記一般式(2)で表されるヒダントイン誘導体の1種又は2種以上を有効成分として含有する電荷制御剤。
    Figure JPOXMLDOC01-appb-C000002
    [一般式(2)中、R及びRは、相互に同一でも異なってもよく、水素原子、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、又は置換若しくは無置換の縮合多環芳香族基を示し、Rは、水素原子、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、置換若しくは無置換の縮合多環芳香族基、又は置換若しくは無置換のアリールオキシ基を示し、R、R、R、R及びRは、相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ヒドロキシル基、シアノ基、トリフルオロメチル基、ニトロ基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、置換若しくは無置換の縮合多環芳香族基、又は置換若しくは無置換のアリールオキシ基を示す。R、R、R、R、R及びRは、互いに結合して環を形成していてもよい。]
  3.  下記一般式(3)で表されるヒダントイン誘導体の1種又は2種以上を有効成分として含有する電荷制御剤。
    Figure JPOXMLDOC01-appb-C000003
    [一般式(3)中、R及びRは、相互に同一でも異なってもよく、水素原子、炭素原子数1~6の直鎖状若しくは分岐状のアルキル基、炭素原子数5~6のシクロアルキル基、無置換の芳香族炭化水素基、無置換の複素環基、又は無置換の縮合多環芳香族基を示し、Rは、水素原子、炭素原子数1~6の直鎖状若しくは分岐状のアルキル基、炭素原子数5~6のシクロアルキル基、炭素原子数2~4の直鎖状若しくは分岐状のアルケニル基、炭素原子数1~6の直鎖状若しくは分岐状のアルキルオキシ基、炭素原子数5~6のシクロアルキルオキシ基、無置換の芳香族炭化水素基、無置換の複素環基、無置換の縮合多環芳香族基、又は無置換のアリールオキシ基を示し、R、R、R、R及びRは、相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ヒドロキシル基、シアノ基、トリフルオロメチル基、ニトロ基、炭素原子数1~6の直鎖状若しくは分岐状のアルキル基、炭素原子数5~6のシクロアルキル基、炭素原子数2~4の直鎖状若しくは分岐状のアルケニル基、炭素原子数1~6の直鎖状若しくは分岐状のアルキルオキシ基、炭素原子数5~6のシクロアルキルオキシ基、無置換の芳香族炭化水素基、無置換の複素環基、無置換の縮合多環芳香族基、又は無置換のアリールオキシ基を示す。R、R、R、R、R及びRは、互いに結合して環を形成していてもよい。]
  4.  請求項1~3のいずれか一項に記載の電荷制御剤、着色剤及び結着樹脂を含有する、トナー。
  5.  請求項1~3のいずれか一項に記載の電荷制御剤、着色剤及び結着樹脂を含有する、重合トナー。
PCT/JP2012/050858 2011-01-27 2012-01-17 電荷制御剤及びそれを用いたトナー WO2012102137A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12739281.9A EP2669741A4 (en) 2011-01-27 2012-01-17 LOAD CONTROLLER AND TONER THEREOF
KR1020137021982A KR101883517B1 (ko) 2011-01-27 2012-01-17 전하 제어제 및 그것을 이용한 토너
JP2012554736A JP5893571B2 (ja) 2011-01-27 2012-01-17 電荷制御剤及びそれを用いたトナー
US13/885,731 US20130266895A1 (en) 2011-01-27 2012-01-17 Charge control agent and toner using same
CN2012800064182A CN103348290A (zh) 2011-01-27 2012-01-17 电荷控制剂及使用该电荷控制剂的调色剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011014665 2011-01-27
JP2011-014665 2011-01-27

Publications (1)

Publication Number Publication Date
WO2012102137A1 true WO2012102137A1 (ja) 2012-08-02

Family

ID=46580709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050858 WO2012102137A1 (ja) 2011-01-27 2012-01-17 電荷制御剤及びそれを用いたトナー

Country Status (6)

Country Link
US (1) US20130266895A1 (ja)
EP (1) EP2669741A4 (ja)
JP (1) JP5893571B2 (ja)
KR (1) KR101883517B1 (ja)
CN (1) CN103348290A (ja)
WO (1) WO2012102137A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015175941A (ja) * 2014-03-14 2015-10-05 株式会社リコー 静電荷像現像用トナー、トナーの製造方法、二成分現像剤及び画像形成装置
DE102018112373A1 (de) 2017-05-24 2019-02-21 Hodogaya Chemical Co., Ltd. Ladungskontrollmittel mit makromolekularen Verbindungen sowie Toner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9804516B2 (en) * 2015-05-12 2017-10-31 Ricoh Company, Ltd. Toner, developer, image forming apparatus, and process cartridge

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3365296A (en) * 1964-05-18 1968-01-23 Gen Aniline & Film Corp Light-sensitive ultraviolet absorbing compounds and diazotype materials containing the same
JPS5542752B2 (ja) 1977-04-13 1980-11-01
JPS57111541A (en) 1980-12-27 1982-07-12 Orient Kagaku Kogyo Kk Toner for developing electrostatic charge image
JPS57119364A (en) 1980-12-04 1982-07-24 Xerox Corp Toner composition
JPS589154A (ja) 1981-04-14 1983-01-19 イ−ストマン・コダツク・カンパニ− 乾式静電画像現像剤
JPS5898742A (ja) 1981-12-03 1983-06-11 ゼロツクス・コ−ポレ−シヨン 帯電強化スルホネ−ト添加剤を含有する現像剤組成物
JPS613149A (ja) 1984-06-15 1986-01-09 Nippon Kayaku Co Ltd 電子写真用トナ−
JPS6169073A (ja) 1984-09-12 1986-04-09 Orient Kagaku Kogyo Kk 静電荷像現像用トナ−
JPS61141453A (ja) 1984-12-15 1986-06-28 Canon Inc 静電荷像現像用電荷付与材
JPS61221756A (ja) 1985-03-27 1986-10-02 Kao Corp 静電荷現像用トナ−
JPS6294856A (ja) 1985-10-21 1987-05-01 Orient Chem Ind Ltd 静電荷像現像用トナ−
US4767688A (en) 1986-03-07 1988-08-30 Fuji Xerox Co., Ltd. Charge controlling method and developers containing a charge-exchange control agent comprising organic boron compound
JPH01306861A (ja) 1988-06-03 1989-12-11 Japan Carlit Co Ltd:The 電子写真用トナー
JPH03223769A (ja) * 1989-12-08 1991-10-02 Sharp Corp 電子写真用現像剤
JPH0770084A (ja) * 1993-06-30 1995-03-14 Shiseido Co Ltd ベンジリデンヒダントイン誘導体、紫外線吸収剤及びそれを配合した皮膚外用剤
JP2568675B2 (ja) 1989-01-30 1997-01-08 オリヱント化学工業株式会社 静電荷像現像用トナー
JPH09175976A (ja) * 1995-12-25 1997-07-08 Sansho Seiyaku Co Ltd 皮膚外用剤
JPH11116457A (ja) * 1997-10-13 1999-04-27 Ajinomoto Co Inc 化粧料
JP2899038B2 (ja) 1990-02-14 1999-06-02 キヤノン株式会社 静電荷像現像用トナー
JP3313871B2 (ja) 1994-02-23 2002-08-12 保土谷化学工業株式会社 静電荷像現像用トナ−
JP3325730B2 (ja) 1994-11-11 2002-09-17 オリヱント化学工業株式会社 荷電制御剤及び静電荷像現像用トナー
JP3359657B2 (ja) 1991-04-22 2002-12-24 株式会社リコー 電子写真用トナー
JP2003162100A (ja) 2001-11-29 2003-06-06 Matsushita Electric Ind Co Ltd トナー
JP2003295522A (ja) 2002-04-02 2003-10-15 Toda Kogyo Corp 荷電制御剤及び静電荷現像用トナー
WO2007111346A1 (ja) 2006-03-29 2007-10-04 Hodogaya Chemical Co., Ltd. 混合環状フェノール硫化物、それを用いた電荷制御剤及びトナー
WO2007119797A1 (ja) 2006-04-13 2007-10-25 Hodogaya Chemical Co., Ltd. 酸化型混合環状フェノール硫化物、それを用いた電荷制御剤及びトナー

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1439318A (en) * 1972-06-16 1976-06-16 Canada Packers Ltd 5-substituted benzal- hydantoins derivatives
US4065570A (en) * 1974-06-11 1977-12-27 Canada Packers Limited Antiviral 5-(substituted benzal) hydantoins
JPS5542752A (en) 1978-09-20 1980-03-26 Yuji Sakata High speed flexible belt grinder
DE3013647C2 (de) * 1980-04-09 1985-07-11 Degussa Ag, 6000 Frankfurt Verfahren zur Herstellung von 5-Arylidenhydantoinen (B)
US5000945A (en) * 1986-04-22 1991-03-19 Ajinomoto Co., Inc. Method of stabilizing a UVB absorbing compound, a stabilized UV absorber, and a cosmetic composition containing the same
IE940525L (en) * 1988-05-25 1989-11-25 Warner Lambert Co Known and selected novel arylmethylenyl derivatives of¹thiazolidinones, imidazolidinones and oxazolidinones useful¹as antiallergy agents and antiinflammatory agents
US5306822A (en) * 1988-05-25 1994-04-26 Warner-Lambert Company Arylmethylenyl derivatives of oxazolidinone
EP0632029A1 (en) * 1993-06-30 1995-01-04 Shiseido Company Limited Benzylidene hydantoin derivative, ultraviolet ray absorbent and external preparation for skin including the same
CN1242000A (zh) * 1996-12-30 2000-01-19 罗纳-布朗克罗莱尔股份有限公司 法呢转移酶抑制剂
UA60386C2 (uk) * 1998-10-29 2003-10-15 Reddys Laboratories Ltd Спосіб одержання похідних 3-[4-[2-(феноксазин-10-іл)метокси]феніл]пропіонової кислоти (варіанти) та проміжні сполуки для їх отримання
FR2830773B1 (fr) * 2001-10-11 2004-07-23 Oreal Utilisation de copolymeres amphiphiles pour stabiliser des dispersions de composes organiques insolubles filtrant le rayonnement uv, dispersions stabilisees par ces copolymeres et compositions cosmetiques les contenant
JP3793920B2 (ja) * 2002-07-23 2006-07-05 株式会社リコー 電子写真用トナーの製造方法、このトナーを用いた現像剤、現像方法、転写方法及びプロセスカートリッジ
JP2004302008A (ja) * 2003-03-31 2004-10-28 Nippon Zeon Co Ltd 帯電制御樹脂及び電子写真用トナー
JP5084128B2 (ja) 2005-10-21 2012-11-28 株式会社三共 遊技機
JP2007119797A (ja) 2005-10-25 2007-05-17 Canon Inc 真空処理装置
KR100942676B1 (ko) * 2006-11-15 2010-02-17 주식회사 엘지화학 대전특성, 장기신뢰성 및 전사효율이 우수한 토너 모입자, 그 제조방법 및 상기 토너 모입자를 포함하는 토너

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3365296A (en) * 1964-05-18 1968-01-23 Gen Aniline & Film Corp Light-sensitive ultraviolet absorbing compounds and diazotype materials containing the same
JPS5542752B2 (ja) 1977-04-13 1980-11-01
JPS57119364A (en) 1980-12-04 1982-07-24 Xerox Corp Toner composition
JPS57111541A (en) 1980-12-27 1982-07-12 Orient Kagaku Kogyo Kk Toner for developing electrostatic charge image
JPS589154A (ja) 1981-04-14 1983-01-19 イ−ストマン・コダツク・カンパニ− 乾式静電画像現像剤
JPS5898742A (ja) 1981-12-03 1983-06-11 ゼロツクス・コ−ポレ−シヨン 帯電強化スルホネ−ト添加剤を含有する現像剤組成物
JPS613149A (ja) 1984-06-15 1986-01-09 Nippon Kayaku Co Ltd 電子写真用トナ−
JPS6169073A (ja) 1984-09-12 1986-04-09 Orient Kagaku Kogyo Kk 静電荷像現像用トナ−
JPS61141453A (ja) 1984-12-15 1986-06-28 Canon Inc 静電荷像現像用電荷付与材
JPS61221756A (ja) 1985-03-27 1986-10-02 Kao Corp 静電荷現像用トナ−
JPS6294856A (ja) 1985-10-21 1987-05-01 Orient Chem Ind Ltd 静電荷像現像用トナ−
US4767688A (en) 1986-03-07 1988-08-30 Fuji Xerox Co., Ltd. Charge controlling method and developers containing a charge-exchange control agent comprising organic boron compound
JPH01306861A (ja) 1988-06-03 1989-12-11 Japan Carlit Co Ltd:The 電子写真用トナー
JP2568675B2 (ja) 1989-01-30 1997-01-08 オリヱント化学工業株式会社 静電荷像現像用トナー
JPH03223769A (ja) * 1989-12-08 1991-10-02 Sharp Corp 電子写真用現像剤
JP2899038B2 (ja) 1990-02-14 1999-06-02 キヤノン株式会社 静電荷像現像用トナー
JP3359657B2 (ja) 1991-04-22 2002-12-24 株式会社リコー 電子写真用トナー
JPH0770084A (ja) * 1993-06-30 1995-03-14 Shiseido Co Ltd ベンジリデンヒダントイン誘導体、紫外線吸収剤及びそれを配合した皮膚外用剤
JP3313871B2 (ja) 1994-02-23 2002-08-12 保土谷化学工業株式会社 静電荷像現像用トナ−
JP3325730B2 (ja) 1994-11-11 2002-09-17 オリヱント化学工業株式会社 荷電制御剤及び静電荷像現像用トナー
JPH09175976A (ja) * 1995-12-25 1997-07-08 Sansho Seiyaku Co Ltd 皮膚外用剤
JPH11116457A (ja) * 1997-10-13 1999-04-27 Ajinomoto Co Inc 化粧料
JP2003162100A (ja) 2001-11-29 2003-06-06 Matsushita Electric Ind Co Ltd トナー
JP2003295522A (ja) 2002-04-02 2003-10-15 Toda Kogyo Corp 荷電制御剤及び静電荷現像用トナー
WO2007111346A1 (ja) 2006-03-29 2007-10-04 Hodogaya Chemical Co., Ltd. 混合環状フェノール硫化物、それを用いた電荷制御剤及びトナー
WO2007119797A1 (ja) 2006-04-13 2007-10-25 Hodogaya Chemical Co., Ltd. 酸化型混合環状フェノール硫化物、それを用いた電荷制御剤及びトナー

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2669741A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015175941A (ja) * 2014-03-14 2015-10-05 株式会社リコー 静電荷像現像用トナー、トナーの製造方法、二成分現像剤及び画像形成装置
DE102018112373A1 (de) 2017-05-24 2019-02-21 Hodogaya Chemical Co., Ltd. Ladungskontrollmittel mit makromolekularen Verbindungen sowie Toner

Also Published As

Publication number Publication date
EP2669741A1 (en) 2013-12-04
CN103348290A (zh) 2013-10-09
KR20140005986A (ko) 2014-01-15
US20130266895A1 (en) 2013-10-10
EP2669741A4 (en) 2016-05-11
KR101883517B1 (ko) 2018-07-30
JPWO2012102137A1 (ja) 2014-06-30
JP5893571B2 (ja) 2016-03-23

Similar Documents

Publication Publication Date Title
JP5256021B2 (ja) 混合環状フェノール硫化物、それを用いた電荷制御剤及びトナー
JP5329010B1 (ja) 電荷制御剤及びそれを用いたトナー
JP5893571B2 (ja) 電荷制御剤及びそれを用いたトナー
WO2012035990A1 (ja) 電荷制御剤及びそれを用いたトナー
WO2011105334A1 (ja) 電荷制御剤およびそれを用いたトナー
JP6308881B2 (ja) 電荷制御剤およびそれを用いたトナー
JP6407156B2 (ja) トナー、現像剤及びトナーカートリッジ
WO2012073756A1 (ja) 電荷制御剤及びそれを用いたトナー
JP5194322B2 (ja) 環状フェノール硫化物の金属化合物を用いた電荷制御剤及びトナー
JP5358756B1 (ja) 電荷制御剤及びそれを用いたトナー
JP5389306B1 (ja) 電荷制御剤及びそれを用いたトナー
JP5552581B1 (ja) 電荷制御剤及びトナー
JP7099910B2 (ja) 電荷制御剤及びそれを用いたトナー
WO2011016519A1 (ja) 環状フェノール硫化物を含有する重合トナー
JP6263059B2 (ja) 電荷制御剤およびそれを用いたトナー
WO2014017298A1 (ja) 電荷制御剤及びそれを用いたトナー
WO2012036171A1 (ja) 電荷制御剤及びそれを用いたトナー
JP2020052373A (ja) 電荷制御剤及びそれを用いたトナー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739281

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012554736

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13885731

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012739281

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012739281

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137021982

Country of ref document: KR

Kind code of ref document: A