WO2012101816A1 - 二次電池、および、電極シートの切断装置 - Google Patents

二次電池、および、電極シートの切断装置 Download PDF

Info

Publication number
WO2012101816A1
WO2012101816A1 PCT/JP2011/051764 JP2011051764W WO2012101816A1 WO 2012101816 A1 WO2012101816 A1 WO 2012101816A1 JP 2011051764 W JP2011051764 W JP 2011051764W WO 2012101816 A1 WO2012101816 A1 WO 2012101816A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode sheet
insulating layer
material layer
secondary battery
Prior art date
Application number
PCT/JP2011/051764
Other languages
English (en)
French (fr)
Inventor
将一 梅原
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to KR1020157018798A priority Critical patent/KR101660203B1/ko
Priority to PCT/JP2011/051764 priority patent/WO2012101816A1/ja
Priority to US13/981,673 priority patent/US9548483B2/en
Priority to CN201180066156.4A priority patent/CN103339766B/zh
Priority to KR1020137022591A priority patent/KR101556047B1/ko
Priority to JP2012554595A priority patent/JP5856571B2/ja
Publication of WO2012101816A1 publication Critical patent/WO2012101816A1/ja
Priority to US15/283,905 priority patent/US9660250B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0483Processes of manufacture in general by methods including the handling of a melt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53135Storage cell or battery
    • Y10T29/53139Storage cell or battery including deforming means

Definitions

  • the present invention relates to a secondary battery and an electrode sheet cutting device.
  • second battery means a general electric storage device that can be repeatedly charged, so-called storage batteries such as lithium-ion secondary batteries, nickel-metal hydride batteries, nickel cadmium batteries, and the like. It is a term encompassing power storage elements such as electric double layer capacitors.
  • lithium ion secondary battery refers to a secondary battery that uses lithium ions as electrolyte ions and is charged and discharged by the movement of electric charge accompanying the lithium ions between the positive and negative electrodes.
  • a battery generally referred to as a “lithium secondary battery” is included in the lithium ion secondary battery in this specification.
  • Patent Document 1 discloses a secondary battery including a porous electronic insulating layer bonded to the surface of at least one electrode selected from the group consisting of a positive electrode and a negative electrode.
  • the porous electronic insulating layer includes a fine particle filler and a resin binder, and the fine particle filler is a particle including an amorphous particle in which a plurality of primary particles are connected and fixed.
  • the fine particle filler includes titanium oxide (titania), aluminum oxide (alumina), zirconium oxide (zirconia), and tungsten oxide.
  • Patent Document 2 discloses a non-aqueous electrolyte secondary battery having a porous separator for isolating the positive electrode and the negative electrode on the surface of the positive electrode and / or the negative electrode.
  • the separator contains a cross-linked resin, and has sufficient strength and resistance to the non-aqueous electrolyte.
  • the crosslinked resin include polyethylene (PE), polypropylene (PP), copolymerized polyolefin, polyolefin derivatives (such as chlorinated polyethylene), styrene-butadiene copolymer, acrylic resin [polyalkyl (metamethyl methacrylate, polymethyl acrylate, etc.
  • Patent Document 2 describes that the separator may contain various inorganic fine particles in order to increase its strength.
  • the inorganic fine particles are not particularly limited as long as they are electrochemically stable and electrically insulating. However, oxidation of iron oxide, SiO 2 (silica), Al 2 O 3 (alumina), TiO 2 , BaTiO 3, etc.
  • Product powder Nitrogen powder such as aluminum nitride and silicon nitride; Covalent crystal powder such as silicon and diamond; Slightly soluble ion crystal powder such as barium sulfate, calcium fluoride and barium fluoride; Montmorillonite; It has been.
  • Patent Document 2 discloses that the separator contains fine particles that melt at 80 to 150 ° C., such as polyolefin fine particles, in order to give the battery shutdown characteristics.
  • fine-particles microparticles
  • copolymer polyolefin examples include ethylene-vinyl monomer copolymer, more specifically, ethylene-vinyl acetate copolymer (EVA), ethylene-acrylic acid copolymer (ethylene-methyl acrylate copolymer, ethylene -Ethyl acrylate copolymer etc.) and the like.
  • EVA ethylene-vinyl acetate copolymer
  • EVA ethylene-acrylic acid copolymer
  • ethylene-methyl acrylate copolymer ethylene-Ethyl acrylate copolymer etc.
  • Patent Document 3 an electrode active material is mixed with a binder to prepare a coating solution for forming an electrode. After the coating solution is applied to a current collector, the coating solution is dried, and the current collector is activated. It is disclosed to form a sheet-like electrode in which a substance-containing layer is formed. Further, it is disclosed that the sheet-like electrode is then rolled and cut into a predetermined dimension. In Patent Document 3, it is sufficiently suppressed that cutting waste of the current collector is fused to the side surface of the upper blade when the sheet-like electrode is cut, and that the burr is generated on the cut surface of the current collector. There has been proposed a slitter device that can be suppressed.
  • the present inventor considers laminating insulating resin particles such as polyethylene on the active material layer of the positive electrode or the negative electrode as the insulating layer. Then, it is considered that a current collecting foil on which the active material layer and the insulating layer are formed is cut into a predetermined size to obtain an electrode in which the insulating layer is laminated on the active material layer. For example, such an insulating layer is considered to join resin particles together with a binder.
  • a mother sheet of a wide current collector is prepared, an active material layer and an insulating layer are formed in this order, and then cut into predetermined dimensions. At this time, if the insulating layer is cut as it is, it is considered that the resin particles can be bonded to each other and partially peeled off.
  • the edge of the insulating layer in which the resin particles are laminated is exposed at the edge of the electrode sheet, the insulating layer is easily peeled off from the edge of the insulating layer, and foreign matter is removed in the secondary battery. It can be a factor to be generated.
  • a secondary battery according to one embodiment of the present invention is disposed so as to face a positive electrode current collector, a positive electrode active material layer that is held by the positive electrode current collector and includes at least a positive electrode active material, and the positive electrode current collector And a negative electrode active material layer that is held by the negative electrode current collector and contains at least the negative electrode active material.
  • the secondary battery further includes a porous insulating layer in which resin particles having insulating properties are laminated so as to cover at least one of the positive electrode active material layer and the negative electrode active material layer. A melted portion in which the resin particles are melted is formed at the edge of the insulating layer.
  • the edge of the insulating layer is strong. For this reason, falling off of the resin particles is suppressed, and the insulating layer is hardly peeled off.
  • the edge of the insulating layer may have a cut mark.
  • the insulating layer may be stacked on the negative electrode active material layer. When the insulating layer covers the positive electrode active material layer, the electrolyte related to the battery reaction may be prevented from being released from the positive electrode active material layer. For this reason, the insulating layer is preferably laminated on the negative electrode active material layer.
  • the insulating layer may include an inorganic filler or rubber particles having insulating properties.
  • the negative electrode active material layer is wider than the positive electrode active material layer and is disposed to face the positive electrode active material layer, and the negative electrode active material layer is disposed on the side where the insulating layer faces the positive electrode active material layer. It may be laminated on the material layer. In this case, since the negative electrode active material layer is wider than the positive electrode active material layer, even if the edge of the insulating layer stacked on the negative electrode active material layer is melted, the negative electrode active material layer is not in contact with the positive electrode active material layer. Since it can oppose, the function of a positive electrode active material layer is not inhibited.
  • the method for manufacturing a secondary battery according to the present invention includes a step of preparing an electrode sheet, a melting step of melting the insulating layer, and a cutting step of cutting the electrode sheet. Specifically, in the step of preparing the electrode sheet, the current collector, the active material layer formed on the surface of the current collector and containing the electrode active material, and the insulating material are covered so as to cover the active material layer. An electrode sheet provided with a porous insulating layer in which resin particles having the same are laminated is prepared. Next, in the melting step, the insulating layer is melted along a predetermined line. In the cutting step, the electrode sheet is cut along the line where the insulating layer is melted in the melting step. According to such a method for manufacturing a secondary battery, before the electrode sheet is cut, the insulating layer is melted at the portion to be cut. For this reason, the insulating layer is hardly peeled off partially in the cutting step.
  • the insulating layer may be melted by irradiating the insulating layer with a laser.
  • the portion where the insulating layer is melted for example, there are few voids through which the electrolytic solution can pass. For this reason, it is thought that the said part can inhibit the effect
  • the width of melting the insulating layer can be more appropriately controlled by irradiating the laser to melt the insulating layer. For this reason, the extent to which the action of the active material layer is inhibited can be reduced.
  • the laser is, for example, a CO 2 laser.
  • the CO 2 laser has a wavelength (approximately 10.6 ⁇ m) at which a resin (for example, polyethylene) easily absorbs energy. For this reason, the CO 2 laser is suitable for melting the resin particles, and can efficiently melt the resin particles. Further, a cooling step for cooling the electrode sheet may be provided between the melting step and the cutting step. Thereby, the resin melted in the melting step can be solidified more reliably before the cutting step. Thereby, the tact time between the melting step and the cutting step can be shortened.
  • a resin for example, polyethylene
  • the electrode sheet cutting device is arranged so that the heater arranged to heat the electrode sheet along a predetermined line and the electrode sheet heated by the heater are cut along the line And a cutter.
  • the heater arranged to heat the electrode sheet along a predetermined line and the electrode sheet heated by the heater are cut along the line And a cutter.
  • the insulating layer is melted. Can be cut.
  • the heater may be, for example, a laser device that irradiates the electrode sheet with laser.
  • the laser may be, for example, a CO 2 laser.
  • the electrode sheet cutting device may include a transport device that transports the electrode sheet along a predetermined transport path. In this case, when the heater and the cutter are fixedly arranged along the conveyance path, it is preferable to provide a position adjustment mechanism that adjusts the position of the electrode sheet with respect to the heater and the cutter.
  • the electrode sheet may be a belt-like sheet
  • the transport device may be a device that continuously transports the electrode sheet along the transport path.
  • the conveying device may include a plurality of guide rolls that convey the electrode sheet while supporting it. And it is good to arrange
  • the heater may be displaced in a range of 1 mm or more and 10 mm or less downstream from the site where the electrode sheet is supported by the guide roll.
  • a cooling device for cooling the electrode sheet may be provided after being heated by the heater and before being cut by the cutter. Thereby, the tact time can be shortened.
  • the cooling device may be a blower that blows air onto the electrode sheet.
  • the cooling device may include a metal roll pressed against the electrode sheet and a cooling unit that cools the metal roll.
  • FIG. 1 is a diagram illustrating an example of the structure of a lithium ion secondary battery.
  • FIG. 2 is a view showing a wound electrode body of a lithium ion secondary battery.
  • FIG. 3 is a cross-sectional view showing a III-III cross section in FIG.
  • FIG. 4 is a diagram schematically illustrating a state of the lithium ion secondary battery during charging.
  • FIG. 5 is a diagram schematically illustrating a state of the lithium ion secondary battery during discharge.
  • FIG. 6 is a plan view showing a state where an active material layer and an insulating layer are formed on a current collector in a secondary battery according to an embodiment of the present invention.
  • FIG. 1 is a diagram illustrating an example of the structure of a lithium ion secondary battery.
  • FIG. 2 is a view showing a wound electrode body of a lithium ion secondary battery.
  • FIG. 3 is a cross-sectional view showing a III-III cross section in FIG.
  • FIG. 4 is
  • FIG. 7 is a cross-sectional view of a negative electrode sheet in a secondary battery according to an embodiment of the present invention.
  • FIG. 8 is a plan view showing a melting step and a cutting step in the method for manufacturing a secondary battery according to the embodiment of the present invention.
  • FIG. 9 is a side view showing a configuration example of an electrode sheet cutting device according to an embodiment of the present invention.
  • FIG. 10 is a side view showing a configuration example of an electrode sheet cutting device according to another embodiment of the present invention.
  • FIG. 11 is a side view showing a configuration example of an electrode sheet cutting device according to another embodiment of the present invention.
  • FIG. 12 is a side view showing a configuration example of an electrode sheet cutting device according to another embodiment of the present invention.
  • FIG. 13 is a schematic view showing a cross section of an electrode sheet according to an embodiment of the present invention.
  • FIG. 14 is a schematic view showing a cross section of an electrode sheet according to an embodiment of the present invention.
  • FIG. 15 is a plan view of an electrode sheet according to an embodiment of the present invention.
  • FIG. 16 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 17 is a plan view of an electrode sheet according to another embodiment of the present invention.
  • FIG. 18 is a cross-sectional view showing the AA cross section of FIG.
  • FIG. 19 is a diagram showing a mother sheet from which the electrode sheet shown in FIG. 17 is cut out.
  • FIG. 20 is a side view showing a configuration example of an electrode sheet cutting device according to an embodiment of the present invention.
  • FIG. 20 is a side view showing a configuration example of an electrode sheet cutting device according to an embodiment of the present invention.
  • FIG. 21 is a plan view showing a cooling step in a method for manufacturing a secondary battery according to another embodiment of the present invention.
  • FIG. 22 is a plan view showing a cooling step in a method for manufacturing a secondary battery according to another embodiment of the present invention.
  • FIG. 23 is a diagram showing a vehicle equipped with a lithium ion secondary battery.
  • FIG. 1 shows a lithium ion secondary battery 100 as a secondary battery according to an embodiment of the present invention.
  • the lithium ion secondary battery 100 includes a wound electrode body 200, a battery case 300, and an electrolytic solution (not shown).
  • FIG. 2 is a view showing a wound electrode body 200.
  • FIG. 3 shows a III-III cross section in FIG.
  • the wound electrode body 200 includes a belt-like positive electrode sheet 220 and a belt-like negative electrode sheet 240 that are stacked and wound.
  • the positive electrode sheet 220 includes a positive electrode current collector 221 and a positive electrode active material layer 223.
  • a metal foil suitable for the positive electrode can be suitably used.
  • a strip-shaped aluminum foil having a predetermined width and a thickness of approximately 10 ⁇ m is used for the positive electrode current collector 221.
  • the positive electrode active material layer 223 is held by the positive electrode current collector 221 and contains at least a positive electrode active material.
  • the positive electrode active material layer 223 is a layer in which a positive electrode mixture containing a positive electrode active material is applied to the positive electrode current collector 221.
  • an uncoated portion 222 is set along an edge portion on one side in the width direction of the positive electrode current collector 221.
  • the positive electrode active material layer 223 is formed on both surfaces of the positive electrode current collector 221 except for the uncoated portion 222 set on the positive electrode current collector 221.
  • LiNiCoMnO 2 lithium nickel cobalt manganese composite oxide
  • LiNiO 2 lithium nickelate
  • LiCoO 2 lithium cobaltate
  • LiMn 2 O 4 lithium manganate
  • LiFePO 4 Lithium transition metal oxides such as lithium iron phosphate
  • LiMn 2 O 4 has a spinel structure.
  • LiNiO 2 and LiCoO 2 have a layered rock salt structure.
  • LiFePO 4 has, for example, an olivine structure.
  • LiFePO 4 having an olivine structure includes, for example, nanometer order particles.
  • LiFePO 4 having an olivine structure can be further covered with a carbon film.
  • the positive electrode active material layer 223 may contain optional components such as a conductive material and a binder (binder) in addition to the positive electrode active material.
  • a conductive material include carbon materials such as carbon powder and carbon fiber. One kind selected from such conductive materials may be used alone, or two or more kinds may be used in combination.
  • carbon powder various carbon blacks (for example, acetylene black, oil furnace black, graphitized carbon black, carbon black, graphite, ketjen black), graphite powder, and the like can be used.
  • a polymer that can be dissolved or dispersed in a solvent to be used can be used.
  • cellulosic polymers such as carboxymethylcellulose (CMC) and hydroxypropylmethylcellulose (HPMC) (for example, polyvinyl alcohol (PVA) and polytetrafluoroethylene (PTFE)), tetra Fluorine resins such as fluoroethylene-hexafluoropropylene copolymer (FEP) (for example, vinyl acetate copolymer and styrene butadiene rubber (SBR)), rubbers such as acrylic acid-modified SBR resin (SBR latex); A water-soluble or water-dispersible polymer such as can be preferably used.
  • CMC carboxymethylcellulose
  • HPMC hydroxypropylmethylcellulose
  • PVA polyvinyl alcohol
  • PTFE polytetrafluoroethylene
  • FEP fluoroethylene-hexafluoropropylene copolymer
  • SBR styren
  • polymers such as polyvinylidene fluoride (PVDF) and polyvinylidene chloride (PVDC) can be preferably used.
  • PVDF polyvinylidene fluoride
  • PVDC polyvinylidene chloride
  • the polymer material illustrated above may be used for the purpose of exhibiting functions as a thickener and other additives of the composition in addition to the function as a binder.
  • the solvent any of an aqueous solvent and a non-aqueous solvent can be used.
  • a preferred example of the non-aqueous solvent is N-methyl-2-pyrrolidone (NMP).
  • Thickness of positive electrode active material layer 223 is about 27 ⁇ m per side.
  • the thickness t1 of the positive electrode active material layer 223 may be measured with reference to the uncoated part 222 of the positive electrode sheet 220, for example.
  • the negative electrode sheet 240 includes a negative electrode current collector 241, a negative electrode active material layer 243, and an insulating layer 245.
  • a metal foil suitable for the positive electrode can be suitably used.
  • a strip-shaped copper foil having a predetermined width and a thickness of approximately 10 ⁇ m is used for the negative electrode current collector 241.
  • the negative electrode active material layer 243 is held by the negative electrode current collector 241 and contains at least a negative electrode active material.
  • the negative electrode active material layer 243 is a layer in which a negative electrode mixture containing a negative electrode active material is applied to the negative electrode current collector 241.
  • an uncoated part 242 is set along the edge.
  • the negative electrode active material layer 243 is formed on both surfaces of the negative electrode current collector 241 except for the uncoated portion 242 set on the negative electrode current collector 241.
  • ⁇ Negative electrode active material As the negative electrode active material included in the negative electrode active material layer 243, one or more materials conventionally used for lithium ion secondary batteries can be used without any particular limitation.
  • a particulate carbon material carbon particles including a graphite structure (layered structure) at least in part. More specifically, so-called graphitic (graphite), non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon), and a carbon material that combines these can be used.
  • graphite particles such as natural graphite can be used.
  • an appropriate amount of a thickener is mixed in the negative electrode mixture in order to maintain the dispersion of the negative electrode active material.
  • the same thickener, binder and conductive material as those used for the positive electrode mixture can be used.
  • Thickness of negative electrode active material layer 243 is about 35 ⁇ m per side.
  • the thickness t2 of the negative electrode active material layer 243 may be measured, for example, based on the uncoated portion 242 of the negative electrode sheet 240 after the negative electrode active material layer 243 is formed.
  • the insulating layer 245 is a porous layer in which insulating resin particles are laminated so as to cover the negative electrode active material layer.
  • the resin particles used for the insulating layer 245 are preferably thermoplastic resin particles.
  • polyethylene, polypropylene, a copolymerized polyolefin having a structural unit derived from ethylene of 85 mol% or more, or a polyolefin ball moving body may be used. it can.
  • the resin particles may be a mixture of a plurality of different thermoplastic resin particles at an appropriate ratio.
  • the resin particle may be added with an appropriate ratio of an insulating material such as an inorganic filler or rubber.
  • polyethylene is used for the resin particles.
  • the resin particles may be bonded with a binder.
  • a binder for example, a binder similar to the binder used for the positive electrode active material layer or the negative electrode active material layer can be used.
  • the particle size of the resin particles may be such that an appropriate gap is formed between the particles when the particles are laminated so that a porous layer is formed so that the electrolyte can be sufficiently passed.
  • the particle size of the resin particles is, for example, about 1 ⁇ m to 10 ⁇ m. More preferably, it is about 1 ⁇ m to 3 ⁇ m.
  • the median diameter (d50) obtained from the particle size distribution measured by the particle size distribution measuring instrument based on the light scattering method is adopted as the particle size.
  • the average thickness t3 of the insulating layer 245 is about 25 ⁇ m per side.
  • the insulating layer 245 has resin particles laminated as described above. When the temperature inside the battery becomes abnormally high, the resin particles melt at a predetermined temperature, and a film that blocks the flow of the electrolytic solution is formed on the surface of the negative electrode active material layer 243. This can reduce the reaction in the battery (this function is called “shutdown” as appropriate).
  • a melted portion 246 is formed at the edge of the insulating layer 245.
  • the melting part 246 is a part where the resin particles forming the insulating layer 245 are melted. According to the lithium ion secondary battery 100, since the melted portion 246 in which the resin particles are melted is formed at the edge of the insulating layer 245, the edge of the insulating layer 245 is firmly solidified. 245 is difficult to peel off.
  • the width b1 (not including the melted portion 246) of the negative electrode active material layer 243 is slightly wider than the width a1 of the positive electrode active material layer 223.
  • the positive electrode sheet 220 and the negative electrode sheet 240 are overlapped with each other as shown in FIG.
  • the positive electrode active material layer 223 and the negative electrode active material layer 243 are overlaid.
  • the uncoated part 222 of the positive electrode sheet 220 and the uncoated part 242 of the negative electrode sheet 240 are overlapped so as to protrude on opposite sides.
  • the width b1 of the negative electrode active material layer 243 is slightly wider than the width a1 of the positive electrode active material layer 223, and the negative electrode active material layer 243 is stacked so as to cover the positive electrode active material layer 223.
  • the stacked sheet material (for example, the positive electrode sheet 220) is wound around the winding axis set in the width direction of the sheet material, and the negative electrode active material layer 243 remains the positive electrode active material layer 223 even after winding.
  • the state of covering is maintained.
  • FIG. 2 shows a state in which the positive electrode sheet 220 and the negative electrode sheet 240 are wound and a part of the wound electrode body 200 deformed into a flat shape is developed.
  • the positive electrode active material layer 223 and the negative electrode active material layer 243 are physically separated by an insulating layer 245 covering the negative electrode active material layer 243.
  • electrical insulation between the positive electrode active material layer 223 and the negative electrode active material layer 243 is maintained.
  • the insulating layer 245 can function as a separator that allows the electrolyte to pass back and forth while physically and electrically separating the positive electrode active material layer 223 and the negative electrode active material layer 243. For this reason, in this embodiment, a separator is not separately disposed between the positive electrode sheet 220 and the negative electrode sheet 240.
  • the battery case 300 is a so-called square battery case, and includes a container body 320 and a lid 340.
  • the container main body 320 has a bottomed rectangular tube shape and is a flat box-shaped container having one side surface (upper surface) opened.
  • the lid 340 is a member that is attached to the opening (opening on the upper surface) of the container body 320 and closes the opening.
  • the battery case 300 has a flat rectangular internal space as a space for accommodating the wound electrode body 200.
  • the flat internal space of the battery case 300 is slightly wider than the wound electrode body 200.
  • the wound electrode body 200 is accommodated in the internal space of the battery case 300.
  • the wound electrode body 200 is accommodated in the battery case 300 in a state of being flatly deformed in one direction orthogonal to the winding axis.
  • the battery case 300 includes a bottomed rectangular tube-shaped container body 320 and a lid 340 that closes the opening of the container body 320. Electrode terminals 420 and 440 are attached to the lid 340 of the battery case 300. The electrode terminals 420 and 440 pass through the battery case 300 (lid 340) and come out of the battery case 300.
  • the lid 340 is provided with a safety valve 360.
  • electrode terminals 420 and 440 are attached to the battery case 300 (in this example, the lid 340).
  • the wound electrode body 200 is attached to the electrode terminals 420 and 440.
  • the wound electrode body 200 is housed in the battery case 300 in a state of being flatly pushed and bent in one direction orthogonal to the winding axis.
  • the uncoated part 222 of the positive electrode sheet 220 and the uncoated part 242 of the negative electrode sheet 240 protrude on opposite sides on both sides of the wound electrode body 200 in the winding axis direction.
  • one electrode terminal 420 is fixed to the uncoated part 222 of the positive electrode current collector 221
  • the other electrode terminal 440 is fixed to the uncoated part 242 of the negative electrode current collector 241 (for example, Welding).
  • the wound electrode body 200 is attached to the electrode terminals 420 and 440 fixed to the lid body 340 in a state where the wound electrode body 200 is flatly pushed and bent.
  • the wound electrode body 200 is accommodated in the flat internal space of the container body 320.
  • the container body 320 is closed by the lid 340 after the wound electrode body 200 is accommodated.
  • the joint 322 (see FIG. 1) between the lid 340 and the container main body 320 is welded and sealed, for example, by laser welding.
  • the wound electrode body 200 is positioned in the battery case 300 by the electrode terminals 420 and 440 fixed to the lid 340 (battery case 300).
  • an electrolytic solution is injected into the battery case 300 from a liquid injection hole provided in the lid 340.
  • a so-called non-aqueous electrolytic solution that does not use water as a solvent is used.
  • an electrolytic solution in which LiPF 6 is contained at a concentration of about 1 mol / liter in a mixed solvent of ethylene carbonate and diethyl carbonate (for example, a mixed solvent having a volume ratio of about 1: 1) is used. Yes.
  • a metal sealing cap is attached to the injection hole (for example, by welding) to seal the battery case 300.
  • electrolyte solution it is not limited to this Example, The nonaqueous electrolyte solution conventionally used for a lithium ion secondary battery can be used.
  • the positive electrode active material layer 223 has a minute gap that should be referred to as a cavity, for example, between the particles of the positive electrode active material and the conductive material.
  • An electrolytic solution (not shown) can penetrate into the minute gaps of the positive electrode active material layer 223.
  • the negative electrode active material layer 243 has minute gaps that should also be referred to as cavities, for example, between particles of the negative electrode active material.
  • the insulating layer 245 formed so as to cover the negative electrode active material layer 243 is laminated with resin particles, and has a minute gap that should be referred to as a cavity into which the electrolytic solution can permeate.
  • a gap (cavity) is appropriately referred to as a “hole”.
  • the positive electrode active material layer 223 and the negative electrode active material layer 243 are infiltrated with the electrolytic solution.
  • the flat internal space of the battery case 300 is slightly wider than the wound electrode body 200 deformed flat.
  • gaps 310 and 312 are provided between the wound electrode body 200 and the battery case 300.
  • the gaps 310 and 312 serve as a gas escape path.
  • the lithium ion secondary battery 100 having such a configuration has a high temperature when overcharge occurs.
  • the electrolyte solution is decomposed to generate gas.
  • the generated gas is smoothly discharged to the outside through the gaps 310 and 312 between the wound electrode body 200 and the battery case 300 on both sides of the wound electrode body 200 and the safety valve 360.
  • the positive electrode current collector 221 and the negative electrode current collector 241 are electrically connected to an external device through electrode terminals 420 and 440 that penetrate the battery case 300.
  • the operation of the lithium ion secondary battery 100 during charging and discharging will be described.
  • FIG. 4 schematically shows the state of the lithium ion secondary battery 100 during charging.
  • the electrode terminals 420 and 440 (see FIG. 1) of the lithium ion secondary battery 100 are connected to the charger 290. Due to the action of the charger 290, lithium ions (Li) are released from the positive electrode active material in the positive electrode active material layer 223 to the electrolytic solution 280 during charging. In addition, charges are released from the positive electrode active material layer 223. As shown in FIG. 4, the released charge is sent to the positive electrode current collector 221 through a conductive material (not shown), and further sent to the negative electrode 240 through the charger 290. In the negative electrode 240, charges are stored, and lithium ions (Li) in the electrolyte solution 280 are absorbed and stored in the negative electrode active material in the negative electrode active material layer 243.
  • FIG. 5 schematically shows the state of the lithium ion secondary battery 100 during discharge.
  • electric charge is sent from the negative electrode 240 to the positive electrode 220, and lithium ions (Li ions) stored in the negative electrode active material layer 243 are released into the electrolytic solution 280.
  • lithium ions (Li) in the electrolytic solution 280 are taken into the positive electrode active material in the positive electrode active material layer 223.
  • lithium ions travel between the positive electrode active material layer 223 and the negative electrode active material layer 243 through the electrolytic solution 280.
  • electric charge is sent from the positive electrode active material to the positive electrode current collector 221 through the conductive material.
  • the charge is returned from the positive electrode current collector 221 to the positive electrode active material through the conductive material.
  • the lithium ion secondary battery 100 includes a positive electrode current collector 221 and a positive electrode that is applied to the positive electrode current collector 221 and includes at least a positive electrode active material, as shown in FIGS. An active material layer 223. Furthermore, the lithium ion secondary battery 100 includes a negative electrode current collector 241 disposed so as to face the positive electrode current collector 221, and a negative electrode active material that is applied to the negative electrode current collector 241 and includes at least a negative electrode active material. A material layer 243. Further, as shown in FIG. 3, the lithium ion secondary battery 100 covers at least one of the positive electrode active material layer 223 and the negative electrode active material layer 243 (in the example shown in FIG.
  • a porous insulating layer 245 is formed by laminating resin particles having insulating properties. Further, the lithium ion secondary battery 100 includes a melting portion 246 where resin particles are melted at the edge of the insulating layer 245.
  • the positive electrode active material layer 223 and the negative electrode active material layer 243 are physically separated by an insulating layer 245 that covers the negative electrode active material layer 243.
  • the insulating layer 245 maintains electrical insulation between the positive electrode active material layer 223 and the negative electrode active material layer 243.
  • the insulating layer 245 allows the electrolytic solution 280 to flow between the positive electrode active material layer 223 and the negative electrode active material layer 243.
  • the insulating layer 245 forms a film by melting resin particles at a predetermined temperature when the temperature inside the battery becomes abnormally high. Since such a membrane blocks the flow of the electrolyte, the reaction of the battery is suppressed.
  • the insulating layer 245 has a so-called shutdown function that suppresses the reaction of the battery when the temperature inside the battery becomes abnormally high.
  • no separate separator is disposed between the positive electrode sheet 220 and the negative electrode sheet 240. For this reason, when a part of the insulating layer 245 is peeled off, electrical insulation between the positive electrode active material layer 223 and the negative electrode active material layer 243 may not be maintained, and the lithium ion secondary battery 100 may not function as a battery. There is.
  • a melted portion 246 in which resin particles are melted is formed at the edge of the insulating layer 245.
  • melting part 246 has strong joining force with the insulating layer 245 except the negative electrode active material layer 243 and the fusion
  • the edge of the insulating layer 245 is strong, the insulating layer 245 is hardly peeled off at the edge of the insulating layer 245. Further, since the resin particles are unlikely to fall off from the edge of the insulating layer 245, it is possible to suppress the occurrence of foreign matters in the lithium ion secondary battery 100 due to the resin particles dropping off from the edge of the insulating layer 245.
  • the edge of the insulating layer 245 is not melted on the side where the uncoated portion 242 of the negative electrode sheet 240 is provided, but the edge of the insulating layer 245 is melted in other portions.
  • the part where the melted portion 246 is formed may be a part where the negative electrode sheet 240 is cut in the process of manufacturing the negative electrode sheet 240 as described later.
  • the porous insulating layer 245 is formed by stacking insulating resin particles so as to cover the negative electrode active material layer 243.
  • the method for manufacturing a secondary battery includes a step of preparing an electrode sheet, a melting step, and a cutting step.
  • Such a method for manufacturing a secondary battery can be applied to, for example, the process of manufacturing the negative electrode sheet 240 in the above-described lithium ion secondary battery 100 (see FIG. 1).
  • FIG. 6 is a plan view of the electrode sheet (negative electrode sheet 240) at the stage prepared in the step of preparing the electrode sheet.
  • the electrode sheet 10A prepared in the step of preparing the electrode sheet includes a current collector 10 (mother current collector of the negative electrode current collector 241) and an active material layer (negative electrode active material layer 243). And an insulating layer (insulating layer 245).
  • the electrode sheet 10A means a mother sheet from which a plurality of negative electrode sheets 240 are cut out.
  • the current collector 10 means a current collector from which the negative electrode current collectors 241 of the plurality of negative electrode sheets 240 can be cut out.
  • the current collector 10 is a copper foil, and the negative electrode active material layer 243 is formed on the surface of the negative electrode current collector 241.
  • the insulating layer 245 covers the negative electrode active material layer 243 (active material layer) and is laminated with resin particles having insulating properties.
  • the inventor considers obtaining a plurality of negative electrode sheets 240 from the current collector 10 (mother sheet) as shown in FIG.
  • insulating layers 245 (a) to (c) are formed in the active material layers 243 (a) to (c), respectively.
  • the insulating layers 245 (a) to (c) cover the active material layers 243 (a) to (c), respectively.
  • symbol is attached
  • the active material layers 243 (a) to (c) are made of, for example, an electrode mixture obtained by mixing the above-described electrode active materials (positive electrode active material, negative electrode active material), conductive material, binder, thickener, and the like in a solvent.
  • the electrode mixture prepared in the composite preparation step is applied to the current collector 10 (application step).
  • a conventionally known suitable coating device for example, a slit coater, a die coater, a comma coater, a gravure coater, or the like can be used.
  • a long strip-shaped current collector 10 (mother sheet) is used. For this reason, it is good to apply
  • the electrode mixture applied to the current collector 10 in the application process is dried (drying process).
  • the current collector 10 may be conveyed to a drying furnace set to predetermined drying conditions. At this time, an appropriate drying condition may be set to prevent migration from occurring in the electrode mixture.
  • the positive electrode active material layer 223 and the negative electrode active material layer 243 dried in the drying step are pressed in the thickness direction (rolling step). In such a rolling process, a conventionally known roll press method, flat plate press method, or the like can be appropriately employed. In this manner, predetermined active material layers 243 (a) to (c) can be formed on the current collector 10.
  • the insulating layers 245 (a) to (c) are formed so as to cover the active material layers 243 (a) to (c).
  • the insulating layers 245 (a) to (c) are porous layers in which resin particles are laminated.
  • the method for producing the insulating layers 245 (a) to (c) is, for example, preparing a slurry in which resin particles are dispersed in a solvent and placing the slurry on the active material layers 243 (a) to (c) with a predetermined thickness. It is better to apply it and then dry it.
  • the slurry may be applied by a gravure printing technique.
  • FIG. 7 shows a cross section of a portion where the active material layers 243 (a) to (c) and the insulating layers 245 (a) to (c) are applied to the electrode sheet 10A.
  • active material layers 243 (a) to (c) and insulating layers 245 (a) to (c) are coated on both surfaces of the current collector 10. .
  • cutting lines z1 to z5 are provided in the middle in the width direction of the active material layers 243 (a) to (c) and in the middle of the uncoated portion between the active material layers 243 (a) to (c). ing.
  • an electrode sheet having an uncoated portion on one side in the width direction here, the negative electrode sheets 240 (a) to (f) )
  • Can be cut out in the width direction (six in the example shown in FIG. 6).
  • the cutting lines z2 and z4 set in the middle of the uncoated portion between the active material layers 243 (a) to 243 (c) are simply cutters (slitters) because the current collector 10 is exposed. May also be referred to as a).
  • the insulating layers 245 (a) to (c) on which the resin particles are laminated cover the active material layers 243 (a) to (c). Is formed. Therefore, when the cutting lines z1, z3, and z5 set in the middle in the width direction of the active material layers 243 (a) to (c) are simply cut with a cutter, the insulating layers 245 (a) to 245 (a) to 245 (a) to (c) are cut. Part of the resin particles forming (c) falls off. In some cases, part of the insulating layers 245 (a) to (c) may be peeled off.
  • the melting step is necessary in the step of cutting the intermediate cutting lines z1, z3, z5 in the width direction of the active material layers 243 (a) to (c) on which the insulating layers 245 (a) to (c) are formed. Become.
  • FIG. 8 is a plan view showing a step of melting the insulating layer of the electrode sheet and a step of cutting.
  • the electrode sheet 10A is cut along cutting lines z2 and z4 set in the middle of the uncoated portion between the active material layers 243 (a) to (c). . Thereafter, as shown in FIG. 8, the cut electrode sheets 10A (a) to (c) are supplied to the melting step (S1) and the cutting step (S2).
  • the electrode sheets 10A (a) to (c) are transported along a predetermined transport path by the transport device 40 (see FIG. 9).
  • the heater 20 and the cutter 30 are fixedly disposed on the conveyance path.
  • the electrode sheets 10A (a) to (c) are belt-like sheets
  • the transport device 40 is a device that continuously transports the electrode sheets 10A (a) to (c) along the transport path. It is.
  • the transport device 40 includes a plurality of guide rolls 41 and 42 (see FIG. 9) that transport the electrode sheets 10A (a) to (c) while supporting them.
  • the insulating layers 245 (a) to (c) of the electrode sheets 10A (a), 10A (b), and 10A (c) prepared in the step of preparing the electrode sheet are converted into predetermined lines z1, This is a step of melting along z3 and z5.
  • a width of about 0.1 mm to 5.0 mm for example, about 0.1 mm to 5.0 mm
  • the insulating layers 245 (a) to (c) are preferably melted with a width of about 0.5 mm to 1.5 mm. Therefore, in this embodiment, the melting step melts the insulating layers 245 (a) to (c) by irradiating the insulating layers 245 (a) to (c) with the lasers 20A (a) to (c). I am letting.
  • the laser has high directivity.
  • the width at which the insulating layers 245 (a) to (c) are melted can be adjusted.
  • the insulating layer 116 can be melted with a width of about 0.1 mm to 5.0 mm.
  • the insulating layers 245 (a) to (c) can be melted without contact with the electrode sheets 10A (a) to (c). Therefore, the active material layers 243 (a) to (c) are hardly affected.
  • a CO 2 laser can be preferably used as the laser.
  • polyethylene resin particles are used for the insulating layers 245 (a) to 245 (c).
  • the wavelength of the CO 2 laser is set to approximately 10.5 so as to be suitable for melting the resin particles.
  • the output is 6 ⁇ m and the output is 5 W to 25 W.
  • the CO 2 laser has a wavelength of 10.6 ⁇ m, in which a resin (for example, polyethylene) easily absorbs energy.
  • the CO 2 laser is suitable for melting the resin particles, and can efficiently melt the resin particles. According to such a CO 2 laser, heat can be efficiently applied to the resin particles constituting the insulating layers 245 (a) to (c).
  • the insulating layers 245 (a) to (c) are formed on both surfaces of the electrode sheets 10A (a) to (c). For this reason, as shown in FIG. 9, both surfaces of the electrode sheets 10A (a) to (c) are irradiated with laser, and the insulating layers 245 (a) to (245) on both surfaces of the electrode sheets 10A (a) to (c). c) is melted.
  • the insulating layer 245 is porous and has many pores between resin particles. When the insulating layer 245 is melted, it forms a film, and there are almost no voids. For this reason, in the fusion
  • the insulating layers 245 (a) to (c) (see FIG. 8) formed on the surfaces irradiated with the lasers 20A (a) to (c) are melted.
  • the surface on which the insulating layers 245 (a) to (c) are melted is supported by the back roll.
  • reference numerals 20A (a) to (c) and 20B (a) to (c) indicate lasers directly applied to the electrode sheets 10A (a) to (c). Note that a laser device for irradiating the laser is omitted for convenience of illustration.
  • the illustrated lasers 20A (a) to (c) and lasers 20B (a) to (c) indirectly indicate the existence of a laser device that irradiates the laser and a device that controls the laser device.
  • the insulating layers 245 (a) to (c) are formed on both surfaces of the electrode sheets 10A (a) to (c), the insulating layers 245 (a) to (c) on the both surfaces are formed. It should be melted.
  • lasers 20A (a) to (c) and lasers 20B (a) to (c) are sequentially applied to both surfaces of the electrode sheets 10A (a) to (c), so that the insulating layers 245 ( a) to (c) are melted.
  • the laser sheets 20A (a) to (c) are irradiated at the portions where the electrode sheets 10A (a) to (c) are supported by the back roll 41 (guide roll).
  • Lasers 20A (a) to (c) and lasers 20B (a) to (c) are irradiated to 245 (a) to (c).
  • the insulating layers 245 (a) to 245 (a) to (C) can also be melted. If the insulating layers 245 (a) to (c) on the surface supported by the back rolls 41 and 42 are melted, the molten resin adheres to the back rolls 41 and 42, which may cause a problem.
  • the lasers 20A (a) to (c) and the lasers 20B (a) to 20C (a) to the portions where the electrode sheets 10A (a) to (c) are supported by the back rolls 41 and 42 are provided.
  • irradiating (c) it is necessary to adjust the outputs of the lasers 20B (a) to (c).
  • the insulating layers 245 (a) to (c) on the surface directly irradiated with the lasers 20B (a) to (c) are melted, but the laser is not adhered to the back rolls 41 and 42.
  • the outputs of 20A (a) to (c) and lasers 20B (a) to (c) may be adjusted.
  • the laser 20A (a) is applied to the electrode sheets 10A (a) to (c) at a position shifted from the portion where the electrode sheets 10A (a) to (c) are supported by the back roll 41.
  • a laser device (not shown) may be arranged so that (c) to (c) are irradiated.
  • the lasers 20B (a) to (c) are applied to the electrode sheets 10A (a) to (c) at positions shifted from the portions where the electrode sheets 10A (a) to (c) are supported by the back roll 42. You may arrange
  • the resin in which the insulating layers 245 (a) to (c) are melted on the back rolls 41 and 42 are obtained. Does not adhere.
  • the laser irradiation position is too close to the back rolls 41 and 42, there is a high possibility that the molten resin adheres to the back rolls 41 and 42.
  • the conveyed electrode sheets 10A (a) to (c) may flutter.
  • the electrode sheets 10A (a) to (c) conveyed at the positions where the lasers 20A (a) to (c) and the lasers 20B (a) to (c) are irradiated flutter the electrode sheets 10A (a) to (c)
  • the positions where the lasers 20A (a) to (c) and the lasers 20B (a) to (c) are irradiated to c) are not stable. Therefore, the positions at which the lasers 20A (a) to (c) and the lasers 20B (a) to (c) are irradiated to the electrode sheets 10A (a) to (c) are set at the electrode sheets 10A (a) to (c).
  • the positions at which the lasers 20A (a) to (c) and the lasers 20B (a) to (c) are irradiated are determined from, for example, the portions where the electrode sheets 10A (a) to (c) are supported by the back rolls 41 and 42. It may be shifted by about 1 mm to 10 mm, more preferably by about 1.5 mm to 8 mm.
  • lasers 20A (a) to (c) and lasers 20B (a) to (c) are irradiated on both surfaces of the electrode sheets 10A (a) to (c), respectively.
  • a position adjustment mechanism 62 such as an EPC device (edge position control device) or a CPC device (center position control device).
  • the position adjusting mechanism 62 supplies the electrode sheet 10A supplied to the position where the laser is irradiated so that the insulating layers 245 (a) to (c) are melted along the lines z1, z3, and z5. The positions in the width direction of (a) to (c) are adjusted.
  • the position adjustment mechanism 62 may be disposed in front of the back rolls 41 and 42.
  • the insulating layers 245 (a) to (c) on both surfaces of the electrode sheets 10A (a) to (c) are simultaneously melted. May be.
  • lasers 20A (a) to (c) are irradiated to one surface of the electrode sheets 10A (a) to (c) at a position deviated from the portion supported by the back roll 41.
  • a laser device (not shown) may be disposed.
  • the outputs of the lasers 20A (a) to (c) may be adjusted so that the insulating layers 245 (a) to (c) on both surfaces of the electrode sheets 10A (a) to (c) can be melted. Accordingly, the positions where the insulating layers 245 (a) to (c) are melted on both surfaces of the electrode sheets 10A (a) to (c) are difficult to shift.
  • lasers 20A (a) to (c) and lasers 20A (a) to (c) are respectively formed on both surfaces of the electrode sheets 10A (a) to (c) at positions shifted from the parts supported by the back roll 41.
  • a laser device (not shown) may be arranged so that 20B (a) to (c) are irradiated.
  • the lasers 20A (a) to (c) and the lasers 20B (a) to (c) may be adjusted in focus at the same position with respect to the conveyed electrode sheets 10A (a) to (c).
  • the positions irradiated with laser on both surfaces of the electrode sheets 10A (a) to (c) are difficult to shift.
  • the insulating layers 245 (a) are formed on both surfaces of the electrode sheets 10A (a) to (c) by adjusting the outputs of the lasers 20A (a) to (c) and the lasers 20B (a) to (c). ) To (c) can be melted to the same extent.
  • the insulating layers 245 (a) to (c) may be melted along predetermined lines z1, z3, and z5.
  • the width for melting the insulating layers 245 (a) to (c) is preferably adjusted according to the width to be cut by the cutters 30 (a) to (c) in the subsequent cutting step (Sc). . That is, when the insulating layers 245 (a) to (c) are melted, the pores of the insulating layers 245 (a) to (c) disappear, so that the electrolyte does not flow through the portions.
  • the width at which the insulating layers 245 (a) to (c) are melted depends on the width that the cutters 30 (a) to (c) cut, and the effect of suppressing the falling off of the resin particles is small. It is desirable that the thickness is as thin as possible so that the effects of (a) to (c) are difficult to peel off.
  • the laser irradiation method can be adjusted, for example, with a width of about 0.1 mm to 5.0 mm by adjusting the focal length and output of the laser. Thus, the laser irradiation method can easily adjust the position and width at which the insulating layers 245 (a) to (c) are melted.
  • a laser device is exemplified as a heater for heating the electrode sheets 10A (a) to (c).
  • a heater is not limited to a laser device.
  • the heater may be configured by a hot air blower that applies hot air to the electrode sheet, although illustration is omitted.
  • a hot air blower that applies hot air to the electrode sheet, although illustration is omitted.
  • the temperature of the hot air it is possible to set the temperature of the hot air to about 300 ° C., the wind speed to 30 m / s, and the width to which the hot air is concentrated is about 2 mm.
  • the width at which the insulating layers 245 (a) to (c) are melted is likely to vary. For this reason, the melted portions on both surfaces of the electrode sheets 10A (a) to (c) are likely to shift. For this reason, it is necessary to widen the width to be melted.
  • the heater may be configured to include a metal roll pressed against the electrode sheet and a heat source for heating the metal roll, although illustration is omitted.
  • the width of the metal roll can be set to, for example, about 2 mm, and the surface temperature of the roll can be set to about 300 ° C.
  • the melt may adhere to the metal roll and cause a problem.
  • the width at which the insulating layers 245 (a) to (c) are melted is likely to vary. For this reason, the melted portions on both surfaces of the electrode sheets 10A (a) to (c) are likely to shift. For this reason, it is necessary to widen the width to be melted.
  • the position and width at which the insulating layers 245 (a) to (c) are melted are adjusted by adjusting the focal length of the laser and the output, for example. It can be adjusted more finely. Further, the insulating layers 245 (a) to (c) can be heated without contact with the electrode sheets 10A (a) to (c), and the influence on the active material layers 243 (a) to (c) is small. Therefore, a laser device that irradiates the electrode sheets 10A (a) to (c) with a laser is suitable as the heater for heating the electrode sheets 10A (a) to (c).
  • the electrode sheets 10A (a) to (c) obtained by melting the insulating layers 245 (a) to (c) along the preset lines z1, z3, and z5 are supplied to the cutting step.
  • the laser irradiation apparatus can be installed in a relatively small space, and the equipment cost can be reduced.
  • the laser device detects the position of the electrode sheets 10A (a) to (c), and controls the laser to follow the portion where the insulating layers 245 (a) to (c) are to be melted (not shown). May be added. Accordingly, the laser can appropriately follow the portion where the insulating layers 245 (a) to (c) are to be melted.
  • the positions and widths at which the insulating layers 245 (a) to (c) are melted can be adjusted more finely with respect to the fluttering and movement of the electrode sheets 10A (a) to (c).
  • FIG. 13 is a schematic diagram illustrating states of the active material layers 243 (a) to (c) and the insulating layers 245 (a) to (c) before being irradiated with the laser.
  • FIG. 14 is a schematic diagram showing the states of the active material layers 243 (a) to (c) and the insulating layers 245 (a) to (c) after the laser irradiation.
  • the insulating layers 245 (a) to (c) before the laser irradiation are in a state where the resin particles 250 are generally laminated on the active material layers 243 (a) to (c). is there.
  • the insulating layers 245 (a) to (c) melt the resin particles 250 at the center of the portion (246) irradiated with the laser, as shown in FIG.
  • a part of the molten resin enters the pores of the active material layers 243 (a) to 243 (c) and then solidifies. Therefore, the negative electrode active material layer 243 is firmly bonded. Further, the resin 250 b partially melted around the periphery is bonded to the surrounding resin particles 250.
  • the resin particles of the insulating layers 245 (a) to (c) are melted. A part of the molten resin is bonded to the negative electrode active material layer 243 and the surrounding resin particles. For this reason, the fusion
  • the edge of the cut insulating layer 245 is strong, the insulating layer 245 is hardly peeled off at the edge of the insulating layer 245.
  • the resin particles are unlikely to drop off from the edge of the insulating layer 245, it is possible to suppress the generation of foreign matter in the lithium ion secondary battery 100 due to the resin particles dropping off from the edge of the insulating layer 245.
  • the cutting step is a step of cutting the electrode sheet 10A along the lines z1, z3, and z5 in which the insulating layers 245 (a) to (c) are melted by the melting step.
  • the electrode sheets 10A (a) to (c) are cut by the cutters 30 (a) to (c).
  • the cutters 30 (a) to (c) those capable of appropriately cutting the electrode sheets 10A (a) to (c) from various cutters (also referred to as slitters) may be employed.
  • the electrode sheets 10A (a) to (c) are belt-like sheets.
  • the transport device 40 continuously transports the electrode sheets 10A (a) to (c) along a predetermined transport path.
  • the cutters 30 (a) to (c) are fixedly arranged with respect to the conveyance path of the electrode sheets 10A (a) to (c).
  • the fixed cutters 30 (a) to 30 (a) to (c) are cut so that the electrode sheet 10A is cut along the lines z1, z3, and z5 in which the insulating layers 245 (a) to (c) are melted in the melting step.
  • the positions of the electrode sheets 10A (a) to (c) may be adjusted with respect to c). Therefore, a position adjusting mechanism 64 such as an EPC device (edge position control device) or a CPC device (center position control device) is arranged in front of the cutters 30 (a) to 30 (c).
  • the electrode sheets 10A (a) to (c) cut by the cutters 30 (a) to (c) are melted portions 246 in which resin particles are melted at the edges of the insulating layers 245 (a) to (c), respectively. (A) to (f) are formed. Further, since the edges of the insulating layers 245 (a) to (c) are cut by the cutters 30 (a) to (c), there are cut marks (not shown).
  • the electrode sheets 10A (a) to (c) cut by the cutters 30 (a) to (c) are made up of different winding shafts 82 (a) as shown in FIGS. 9 to 12, for example. ) To (c), 84 (a) to (c).
  • the insulating layers 245 (a) to (c) are melted at the cut portions. Yes.
  • the resin particles are unlikely to fall off from the insulating layers 245 (a) to (c), and the insulating layers 245 (a) to (c) are not easily peeled off.
  • the insulating layers 245 (a) to (c) are irradiated with the lasers 20A (a) to (c) as shown in FIG. It is good to melt.
  • the position and width at which the insulating layers 245 (a) to (c) are melted can be adjusted more finely. Therefore, the width to be melted can be appropriately narrowed according to the width cut by the cutters 30 (a) to (c).
  • the electrode sheet cutting device may include a heater (in the above-described embodiment, a laser device) and cutters 30 (a) to (c).
  • the heater may be arranged so as to heat the electrode sheets 10A (a) to (c) along predetermined lines z1, z3, and z5.
  • the cutters 30 (a) to (c) can cut the electrode sheets 10A (a) to (c) along the lines z1, z3, and z5 where the insulating layers 245 (a) to (c) are melted.
  • the electrode sheet cutting apparatus in the step of cutting the electrode sheets 10A (a) to (c) having the insulating layers 245 (a) to (c) on which the resin particles are laminated, the insulating layer 245 (a) It can be cut after melting (c).
  • a transport device 40 for transporting the electrode sheets 10A (a) to (c) along a predetermined transport path may be provided.
  • the heater (laser device) and the cutters 30 (a) to (c) may be fixed along the conveyance path.
  • position adjusting mechanisms 62 and 64 for adjusting the positions of the electrode sheets 10A (a) to (c) with respect to the heater (laser device) and the cutters 30 (a) to (c) may be provided.
  • the electrode sheets 10A (a) to (c) are appropriately conveyed by the position adjusting mechanisms 62 and 64. Therefore, the electrode sheets 10A (a) to (c) can be melted and cut at appropriate positions.
  • the transport device 40 uses the electrode sheets 10A (a) to (c) as a transport path. It is good that it is an apparatus which conveys continuously along. Thereby, the electrode sheets 10A (a) to (c) can be continuously melted and cut along the lines z1, z3, and z5. Thereby, an electrode sheet can be obtained efficiently.
  • the transport device 40 may include a plurality of guide rolls 41 and 42 that transport the electrode sheets 10A (a) to (c) while supporting them.
  • the electrode sheets 10A (a) to (c) are heated by the guide rolls 41 and 42 at positions shifted from the portion where the electrode sheets 10A (a) to (c) are supported to the downstream side in the transport direction.
  • a heater laser device that irradiates the lasers 20A (a) to (c)
  • the insulating layers 245 (a) to (c) on both surfaces of the electrode sheets 10A (a) to (c) can be melted simultaneously. Therefore, the positions where the insulating layers 245 (a) to (c) are melted on both surfaces of the electrode sheets 10A (a) to (c) are difficult to shift.
  • the electrode sheets 10A (a) to (c) are belt-like sheets, and the electrode sheets 10A (a) to (c) are conveyed and cut in the length direction.
  • the electrode sheets 10A (a) to (c) are further cut to a predetermined length.
  • the resin particles of the insulating layer 245 are preferably melted at the portion to be cut and then cut. Thereby, the resin particles hardly fall off and a part of the insulating layer 245 is hardly peeled off from the edge of the insulating layer 245.
  • 16 is a cross-sectional view taken along line AA in FIG.
  • the electrode sheet is a belt-like sheet, and the uncoated portion 242 is set along the edge on one side in the width direction.
  • the structure of the electrode sheet is a secondary battery. It depends on the structure.
  • an electrode sheet 110A shown in FIG. 17 has an uncoated portion 112 formed in the middle portion in the length direction of the strip-shaped current collector 110, and active material layers on both sides thereof. 114 (a) and (b) are formed.
  • a tab 120 (a foil serving as an electrical outlet) is attached to an uncoated portion 112 formed in the middle portion of the current collector 110 in the length direction. Also called a center tab.
  • FIG. 18 is a cross-sectional view showing an AA cross section in FIG.
  • a wide band-shaped current collector 110 (mother current collector) is prepared, and an active material layer 114 is intermittently formed thereon, covering the active material layer 114.
  • the insulating layer 116 is formed.
  • cutting lines z ⁇ b> 21 and z ⁇ b> 22 are set in the middle between the uncoated portion 112 and the uncoated portion 112.
  • cutting lines z ⁇ b> 23 and z ⁇ b> 24 are set along the length direction of the current collector 110 with an interval in the width direction of the current collector 110.
  • the electrode sheet 110A is cut along the cutting lines z21 to z24.
  • the insulating layer 116 is preferably melted along the cutting lines z21 to z24 before cutting.
  • the electrode sheet 110A in which the melted portion 118 is formed at the edges 110a and 110b on both sides in the width direction of the electrode sheet 110A and the edges 110c and 110d on both sides in the length direction is cut out.
  • the winding shaft 410 of the winding device 400 for manufacturing the wound electrode body 200 is used. It is preferable that a laser 412 for melting the insulating layer 116 and a cutter 414 for cutting the melted portion are provided in the vicinity of.
  • the electrode sheet 110A is not limited to the above-described embodiment, and can take various forms. Regardless of the form of the electrode sheet 110A, for example, as shown in FIG. 18, when the insulating layer 116 in which the resin particles are laminated so as to cover the active material layer 114 is formed, the insulating layer 116 is formed. When cutting the formed portion, the insulating layer 116 may be melted before cutting. Accordingly, the resin particles are unlikely to drop off from the insulating layer 116, and a part of the insulating layer 116 is difficult to peel off from the edge of the insulating layer 116. Note that as described above, as a means for melting the insulating layer 116, the insulating layer 116 may be irradiated with a laser. At this time, a CO 2 laser is preferably used.
  • the portions (insulating layers 245 (a) to (c) are melted by the heater (laser device that irradiates the lasers 20A (a) to (c) and the lasers 20B (a) to (c)).
  • the heater laser device that irradiates the lasers 20A (a) to (c)
  • the lasers 20B a) to (c)
  • the method for manufacturing a secondary battery includes a cooling step (Sr) for cooling the electrode sheet between the melting step (Sm) and the cutting step (Sc). May be.
  • a cooling step (Sr) for cooling the electrode sheet between the melting step (Sm) and the cutting step (Sc) the resin melted in the melting step is solidified more reliably before the cutting step. be able to. Thereby, the tact time between the melting step and the cutting step can be shortened.
  • the cutters 30 (a) to (c) ) Is provided with a cooling device 36 for cooling the electrode sheets 10A (a) to (c).
  • the electrode sheets 10A (a) to (c) are belt-like sheets
  • the transport device 40 is a device that continuously transports the electrode sheets 10A (a) to (c) along the transport path. is there.
  • the cooling device 36 includes a heater (laser device that irradiates lasers 20A (a) to (c) and lasers 20B (a) to (c)), and cutters 30 (a) to (c) along the conveyance path. It is provided between.
  • the cooling device 36 can be constituted by, for example, a blower that blows air onto the electrode sheets 10A (a) to (c). In this case, the electrode sheets 10A (a) to (c) are cooled in a non-contact manner.
  • the cooling device 36 may include a metal roll 37 pressed against the electrode sheets 10A (a) to (c) and a cooling unit 38 for cooling the metal roll 37.
  • the cooling unit 38 may cool the metal roll 37 in a portion that is not pressed against the electrode sheets 10A (a) to (c).
  • the structure of the cooling unit 38 may be any structure that absorbs heat from the metal roll 37.
  • the cooling unit 38 may have a structure in which cold air is applied to the metal roll 37 in a portion that is not pressed against the electrode sheets 10A (a) to (c).
  • the cooling unit 38 may have a structure in which the metal roll 37 has a hollow structure and the coolant is circulated in the metal roll 37. In this case, the electrode sheets 10A (a) to (c) can be quickly cooled. This shortens the tact time.
  • the width of the negative electrode active material layer 243 is wider than that of the positive electrode active material layer 223. Further, the negative electrode active material layer 243 is disposed to face the positive electrode active material layer 223.
  • the insulating layer 245 covers the negative electrode active material layer 243 of the negative electrode sheet 240. Accordingly, lithium ions (Li) released from the positive electrode active material layer 223 are easily absorbed by the negative electrode active material layer 243, and more lithium ions (Li) are generated between the positive electrode active material layer 223 and the negative electrode active material layer 243. Go back and forth stably.
  • the insulating layer 245 may be formed so as to cover the positive electrode active material layer 223, or may be formed on both the positive electrode active material layer 223 and the negative electrode active material layer 243. As described above, the insulating layer 245 may be formed on any of the positive electrode active material layer 223 and the negative electrode active material layer 243.
  • the structure of the secondary battery is not limited to the structure shown in FIGS.
  • the insulating layer 245 functions as a separator, and no separator is provided separately.
  • the structure of the secondary battery is not limited to such a form.
  • the structure of the positive electrode sheet 220 and the negative electrode sheet 240 is provided.
  • a separator may be provided between them.
  • the melted portion 246 in which the resin particles are melted is formed at the edge of the insulating layer 245.
  • the secondary battery has the melted portion 246 in which the resin particles are melted at the edge of the insulating layer 245. Therefore, the insulating layer 245 is difficult to peel off from the edge of the insulating layer 245, and is highly safe. In addition to this, safety can be further improved by providing a separate separator between the positive electrode sheet 220 and the negative electrode sheet 240.
  • the insulating layer 245 includes resin particles laminated, for example, when the temperature inside the battery becomes abnormally high, the resin particles melt at a predetermined temperature, and the negative electrode active material layer 243 A film that blocks the flow of the electrolytic solution is formed on the surface of the substrate. Thereby, reaction can be stopped within a battery.
  • the insulating layer 245 is preferably formed on each side of the negative electrode sheet 240 with a predetermined thickness (for example, a thickness of about 20 ⁇ m to 40 ⁇ m).
  • the insulating layer 245 is a porous layer in which resin particles having insulating properties are laminated.
  • the insulating layer 245 has an appropriate amount (for example, 50 wt% or less, more preferably 40 wt% or less) such that the insulating particles do not interfere with the shutdown function of the insulating layer 245. It may be mixed. Examples of the particles mixed in the insulating layer 245 include insulating inorganic fillers and rubber particles.
  • the inorganic filler has heat resistance against abnormal heat generation of the lithium ion secondary battery and is electrochemically stable within the use range of the battery.
  • Such inorganic fillers include metal oxide particles and other metal compound particles.
  • the inorganic filler include alumina (Al 2 O 3 ), alumina hydrate (for example, boehmite (Al 2 O 3 .H 2 O)), zirconia (ZrO 2 ), magnesia (MgO), aluminum hydroxide (Al ( Examples thereof include metal compounds such as OH) 3 ), magnesium hydroxide (Mg (OH) 2 ), and magnesium carbonate (MgCO 3 ).
  • One or more of such inorganic fillers may be added to the inorganic filler contained in the insulating layer 245.
  • rubber particles are added to the insulating layer 245, one kind or two or more kinds of rubber particles may be added.
  • the heat resistance of the insulating layer 245 is improved.
  • the particle size of the inorganic filler may be, for example, about 0.1 ⁇ m to 6 ⁇ m, more preferably about 0.5 ⁇ m to 4 ⁇ m.
  • the insulating inorganic filler may be contained in the insulating layer 245, for example, 5 wt% or more, preferably 10 wt% or more, more preferably 15 wt% or more. Only an inorganic filler may be added to the insulating layer 245, or only rubber particles may be added. In addition, both the inorganic filler and rubber particles may be added to the insulating layer 245.
  • the active material layers 243 (a) to (c) are arranged in three rows, and six negative electrode sheets 240 can be cut out in the width direction, but the example shown in FIG. 6 is an example. There is no limitation to this. More simply, as shown in FIG. 8, an active material layer 243 is formed at the center in the width direction of the current collector 10 having a width corresponding to two electrode sheets, and the active material layer 243 is covered. Alternatively, the insulating layer 245 may be formed. As a simple form, for example, an active material layer 243 is formed in the center portion in the width direction of the current collector 10 having a width of two electrode sheets (negative electrode sheet 240) to be obtained, and the active material layer 243 is formed. The insulating layer 245 may be formed so as to cover the surface.
  • the above shows an example of a lithium ion secondary battery.
  • the lithium ion secondary battery is not limited to the above form.
  • an electrode sheet in which an electrode mixture is applied to a metal foil is used in various other battery forms.
  • cylindrical batteries and laminated batteries are known as other battery types.
  • a cylindrical battery is a battery in which a wound electrode body is accommodated in a cylindrical battery case.
  • a laminate type battery is a battery in which a positive electrode sheet and a negative electrode sheet are stacked with a separator interposed therebetween.
  • the method for manufacturing a secondary battery and the electrode sheet cutting device described above are used when an insulating layer in which resin particles are laminated is formed so as to cover the active material layer of the electrode sheet. It can be widely applied to the process of cutting.
  • the electrode sheets 10A (a) to (c) are band-shaped sheets, but the electrode sheets may not be band-shaped sheets.
  • a laminate type secondary battery a plurality of electrode sheets having a predetermined shape are prepared. In this case, the mother sheet of the electrode sheet does not necessarily have a belt shape.
  • the secondary battery, the method for manufacturing the secondary battery, and the electrode sheet cutting device according to the embodiment of the present invention have been described. Note that the present invention is not limited to any of the above-described embodiments unless otherwise specified.
  • the method for manufacturing a secondary battery and the electrode sheet cutting apparatus cut the electrode sheet when an insulating layer in which resin particles are laminated is formed so as to cover the active material layer.
  • the process Widely applicable to the process.
  • stacked the resin particle is formed so that an active material layer may be covered, it contributes to the reliability improvement of a secondary battery.
  • it can be particularly suitably applied to secondary batteries for vehicles such as hybrid vehicles and electric vehicles that require high output and stable performance.
  • the secondary battery according to the embodiment of the present invention is suitably used as a battery 1000 (vehicle driving battery) for driving a motor (electric motor) of a vehicle 1 such as an automobile as shown in FIG. obtain.
  • the vehicle driving battery 1000 may be an assembled battery in which a plurality of secondary batteries are combined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 二次電池100は、正極集電体221と、正極集電体221に塗工され、少なくとも正極活物質が含まれた正極活物質層223とを備えている。さらに、リチウムイオン二次電池100は、正極集電体221に対向するように配置された負極集電体241と、負極集電体241に塗工され、少なくとも負極活物質が含まれた負極活物質層243とを備えている。また、リチウムイオン二次電池100は、正極活物質層223または負極活物質層243の少なくとも一方(ここでは、負極活物質層243)を覆うように、絶縁性を有する樹脂粒子を積層した多孔質の絶縁層245が形成されている。さらに、このリチウムイオン二次電池100は、かかる絶縁層245の縁に、樹脂粒子が溶融した溶融部246を備えている。

Description

二次電池、および、電極シートの切断装置
 本発明は二次電池および電極シートの切断装置に関する。
 ここで、本明細書において「二次電池」とは、繰り返し充電可能な蓄電デバイス一般をいい、リチウムイオン二次電池(lithium-ion secondary battery)、ニッケル水素電池、ニッケルカドミウム電池などのいわゆる蓄電池ならびに電気二重層キャパシタなどの蓄電素子を包含する用語である。
 また、本明細書において「リチウムイオン二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間におけるリチウムイオンに伴う電荷の移動により充放電が実現される二次電池をいう。一般に「リチウム二次電池」と称される電池は、本明細書におけるリチウムイオン二次電池に包含される。
 かかる二次電池について、例えば、特許文献1には、正極および負極よりなる群から選ばれる少なくとも1つの電極の表面に接着された多孔質電子絶縁層を具備する二次電池が開示されている。ここで、多孔質電子絶縁層は、微粒子フィラーと樹脂結着剤を含み、微粒子フィラーは、複数個の一次粒子が連結固着した不定形粒子を含む粒子である。ここで、微粒子フィラーには、酸化チタン(チタニア)、酸化アルミニウム(アルミナ)、酸化ジルコニウム(ジルコニア)、酸化タングステンが挙げられている。
 また、特許文献2には、正極および/または負極の表面に、正極と負極とを隔離するための多孔性の隔離材を有する非水電解質二次電池が開示されている。ここで、隔離材は、架橋樹脂を含有しており、十分な強度と非水電解液に対する耐性とを有している。架橋樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、共重合ポリオレフィン、ポリオレフィン誘導体(塩素化ポリエチレンなど)、スチレンブタジエン共重合体、アクリル樹脂[ポリメチルメタクリレート、ポリメチルアクリレートなどのポリアルキル(メタ)アクリレートおよびその誘導体]、ポリアルキレンオキシド[ポリエチレンオキシド(PEO)など]、フッ素樹脂[ポリフッ化ビニリデン(PVDF)など]、およびこれらの誘導体からなる群から選ばれる少なくとも1種の樹脂、尿素樹脂、ポリウレタン、エポキシ樹脂、不飽和ポリエステル樹脂、ポリアミドイミド、ポリイミドなどの架橋体が挙げられている。
 また、特許文献2には、隔離材は、その強度を高めるために、各種無機微粒子を含有させてもよいことが記載されている。無機微粒子としては、電気化学的に安定で電気絶縁性のものであれば特に制限はないが、酸化鉄、SiO(シリカ)、Al(アルミナ)、TiO、BaTiOなどの酸化物粉末;窒素化アルミニウム、窒素化ケイ素などの窒素化物粉末;シリコン、ダイヤモンドなどの共有結合性結晶粉末;硫酸バリウム、フッ化カルシウム、フッ化バリウムなどの難溶性イオン結晶粉末;モンモリロナイト;などが挙げられている。
 また、特許文献2には、電池にシャットダウン特性を持たせるために、ポリオレフィン微粒子などの、80~150℃で溶融する微粒子を隔離材に含有させることが開示されている。また、このような微粒子を構成する樹脂としては、例えば、PE、共重合ポリオレフィン、ポリオレフィン誘導体(塩素化ポリエチレンなど)、ポリオレフィンワックス、石油ワックス、カルナウバワックスなどの微粒子が挙げられている。また、共重合ポリオレフィンとしては、エチレン-ビニルモノマー共重合体、より具体的には、エチレン-酢酸ビニル共重合体(EVA)、エチレン-アクリル酸共重合体(エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体など)などが例示されている。
 また、特許文献3には、電極活物質をバインダと混合して電極形成用塗布液を調製し、この塗布液を集電体に塗布した後、塗布液を乾燥させて、集電体に活物質含有層を形成したシート状の電極を形成することが開示されている。また、シート状電極は、その後、圧延され、所定の寸法に切断されることが開示されている。特許文献3には、シート状電極の切断時に、集電体の切断屑が上刃側面に融着することを十分に抑制し、且つ、集電体の切断面にバリが発生することを十分に抑制することが可能なスリッター装置が提案されている。
国際公開第05/078828号 日本国特許出願公開2010-170770号公報 日本国特許出願公開2006-7404号公報
 ところで、本発明者は、絶縁層として、例えば、ポリエチレンのような絶縁性を有する樹脂粒子を、正極や負極の活物質層に積層することを考えている。そして、かかる活物質層と絶縁層が形成された集電箔を所定の寸法に切断して、活物質層に絶縁層を積層した電極を得ることを考えている。かかる絶縁層は、例えば、樹脂粒子同士をバインダによって接合することを考えている。
 さらに、製造工程においては、幅の広い集電体のマザーシートを用意し、活物質層、絶縁層を順に形成して、その後、所定寸法に切断することを考えている。この際、かかる絶縁層は、そのままでは切断されると、樹脂粒子同士の接合が取れ、部分的に剥がれる場合が起こり得ると考えられる。
 また、製造段階だけでなく、電極シートの縁に、樹脂粒子を積層させた絶縁層の縁が露出していると、当該絶縁層の縁から絶縁層が剥がれ易く、二次電池内で異物を発生させる要因になり得る。
 本発明の一形態に係る二次電池は、正極集電体と、正極集電体に保持され、少なくとも正極活物質が含まれた正極活物質層と、正極集電体に対向するように配置された負極集電体と、負極集電体に保持され、少なくとも負極活物質が含まれた負極活物質層とを備えている。この二次電池は、さらに正極活物質層または負極活物質層の少なくとも一方を覆うように、絶縁性を有する樹脂粒子を積層した多孔質の絶縁層を備えている。そして、当該絶縁層の縁には、樹脂粒子が溶融した溶融部が形成されている。
 かかる二次電池によれば、絶縁層の縁に樹脂粒子が溶融した溶融部が形成されているので、絶縁層の縁が強固である。このため、樹脂粒子の脱落が少なく抑えられ、当該絶縁層が剥がれ難い。絶縁層の縁は切断痕を有していてもよい。また、絶縁層は、負極活物質層に積層されていてもよい。絶縁層が正極活物質層を覆っていると、正極活物質層から電池の反応に関わる電解質が放出されるのを阻害し得る。このため、絶縁層は、負極活物質層に積層されているとよい。
 例えば、絶縁層は、絶縁性を有する無機フィラーやゴムの粒子が含まれていてもよい。また、例えば、負極活物質層は、正極活物質層よりも幅が広く、かつ、正極活物質層に対向させて配置されており、絶縁層が正極活物質層に対向する側において、負極活物質層に積層されていてもよい。この場合、負極活物質層は、正極活物質層よりも幅が広いので、負極活物質層に積層された絶縁層の縁を溶融させても、正極活物質層に対して負極活物質層が対向し得るので、正極活物質層の機能が阻害されない。
 また、本発明に係る二次電池の製造方法には、電極シートを用意する工程と、絶縁層を溶融させる溶融工程と、電極シートを切断する切断工程とが含まれている。詳しくは、電極シートを用意する工程では、集電体と、当該集電体の表面に形成され、電極活物質が含まれた活物質層と、当該活物質層を覆うように、絶縁性を有する樹脂粒子を積層した多孔質の絶縁層とを備えた電極シートが用意される。次に、溶融工程では、予め定められたラインに沿って絶縁層が溶融される。そして、切断工程では、溶融工程によって絶縁層を溶融させたラインに沿って、電極シートが切断される。かかる二次電池の製造方法によれば、電極シートを切断する前に、切断される部分において絶縁層が溶融している。このため、切断工程において、絶縁層が部分的に剥がれ難い。
 かかる二次電池の製造方法では、例えば、溶融工程では、絶縁層にレーザを照射することによって絶縁層を溶融させるとよい。絶縁層が溶融した部分は、例えば、電解液が通過し得る空隙が少ない。このため当該部分は、電池の反応に実質的に寄与するべき活物質層の作用を阻害し得ると考えられる。これに対して、溶融工程において、レーザを照射して絶縁層を溶融させることによって、絶縁層を溶融させる幅をより適切に細く制御できる。このため、活物質層の作用が阻害される程度を小さくできる。また、レーザとして好ましい一形態は、例えば、COレーザである。COレーザは、樹脂(例えば、ポリエチレン)がエネルギーを吸収しやすい波長(凡そ10.6μm)を持っている。このため、COレーザは、樹脂粒子を溶融させるのに適しており、樹脂粒子を効率よく溶融させることができる。また、溶融工程と、切断工程との間に、電極シートを冷却する冷却工程を備えていてもよい。これにより、溶融工程で溶融した樹脂を切断工程の前に、より確実に固化させることができる。これにより、溶融工程と切断工程との間のタクトタイムを短くできる。
 また、電極シートの切断装置は、予め定められたラインに沿って電極シートを加熱するように配置されたヒーターと、ヒーターによって加熱された電極シートがラインに沿って切断されるように配置されたカッターとを備えている。この場合、例えば、集電体に活物質層が形成されており、当該活物質層に、樹脂粒子を積層した絶縁層が形成された電極シートを切断する場合において、絶縁層を溶融してから切断することができる。
 また、この場合、ヒーターは、例えば、電極シートに対してレーザを照射するレーザ装置であるとよい。さらに、レーザは、例えば、COレーザであるとよい。また、電極シートの切断装置は、電極シートを予め定められた搬送経路に沿って搬送する搬送装置を備えていてもよい。この場合、ヒーターとカッターとが搬送経路に沿って固定的に配置されている場合には、ヒーターとカッターに対して、電極シートの位置を調整する位置調整機構を備えているとよい。
 また、電極シートは帯状のシートであり、搬送装置は、当該電極シートを搬送経路に沿って連続的に搬送する装置であってもよい。この場合、搬送装置は、電極シートを支持しつつ搬送するガイドロールを複数備えているとよい。そして、当該ガイドロールによって電極シートが支持された部位から搬送方向下流側にずれた位置において、電極シートが加熱されるようにヒーターが配置されているとよい。これにより、ガイドロールへの溶融樹脂の付着を防止できる。この場合、ヒーターは、ガイドロールによって電極シートが支持された部位から搬送方向下流側に1mm以上10mm以下の範囲でずれているとよい。
 また、ヒーターによって加熱された後、カッターによって切断される前に、前記電極シートを冷却する冷却装置を備えていてもよい。これによりタクトタイムを短縮できる。この場合、冷却装置は、電極シートに空気を吹き付ける送風機であってもよい。また、冷却装置は、電極シートに押し当てられる金属ロールと、当該金属ロールを冷やす冷却部とを備えていてもよい。
図1は、リチウムイオン二次電池の構造の一例を示す図である。 図2は、リチウムイオン二次電池の捲回電極体を示す図である。 図3は、図2中のIII-III断面を示す断面図である。 図4は、リチウムイオン二次電池の充電時の状態を模式的に示す図である。 図5は、リチウムイオン二次電池の放電時の状態を模式的に示す図である。 図6は、本発明の一実施形態に係る二次電池において、集電体に活物質層と絶縁層を形成した状態を示す平面図である。 図7は、本発明の一実施形態に係る二次電池において、負極シートの断面図である。 図8は、本発明の一実施形態に係る二次電池の製造方法において、溶融工程と切断工程を示す平面図である。 図9は、本発明の一実施形態に係る電極シートの切断装置の構成例を示す側面図である。 図10は、本発明の他の実施形態に係る電極シートの切断装置の構成例を示す側面図である。 図11は、本発明の他の実施形態に係る電極シートの切断装置の構成例を示す側面図である。 図12は、本発明の他の実施形態に係る電極シートの切断装置の構成例を示す側面図である。 図13は、本発明の一実施形態に係る電極シートの断面を示す模式図である。 図14は、本発明の一実施形態に係る電極シートの断面を示す模式図である。 図15は、本発明の一実施形態に係る電極シートの平面図である。 図16は、図15のA-A断面示す断面図である。 図17は、本発明の他の実施形態に係る電極シートの平面図である。 図18は、図17のA-A断面を示す断面図である。 図19は、図17に示す電極シートが切り出されるマザーシートを示す図である。 図20は、本発明の一実施形態に係る電極シートの切断装置の構成例を示す側面図である。 図21は、本発明の他の実施形態に係る二次電池の製造方法において、冷却工程を示す平面図である。 図22は、本発明の他の実施形態に係る二次電池の製造方法において、冷却工程を示す平面図である。 図23は、リチウムイオン二次電池を搭載した車両を示す図である。
 以下、本発明の一実施形態に係る二次電池および二次電池の製造方法を図面に基づいて説明する。なお、同じ作用を奏する部材、部位には適宜に同じ符号を付している。また、各図面は、模式的に描いており、必ずしも実物を反映しない。
≪リチウムイオン二次電池100の構造≫
 図1は、本発明の一実施形態に係る二次電池としてのリチウムイオン二次電池100を示している。リチウムイオン二次電池100は、図1に示すように、捲回電極体200と電池ケース300と電解液(図示省略)とを備えている。また、図2は、捲回電極体200を示す図である。図3は、図2中のIII-III断面を示している。この実施形態では、捲回電極体200は、図2に示すように、帯状の正極シート220と帯状の負極シート240とが重ねられ、かつ、捲回されている。
≪正極シート220≫
 正極シート220は、正極集電体221と、正極活物質層223とを備えている。正極集電体221には、正極に適する金属箔が好適に使用され得る。この実施形態では、正極集電体221には、所定の幅を有し、厚さが凡そ10μmの帯状のアルミニウム箔が用いられている。正極活物質層223は、正極集電体221に保持され、少なくとも正極活物質が含まれている。この実施形態では、正極活物質層223は、正極活物質を含む正極合剤が正極集電体221に塗工された層である。この実施形態では、正極集電体221の幅方向片側の縁部に沿って未塗工部222が設定されている。正極活物質層223は、正極集電体221に設定された未塗工部222を除いて、正極集電体221の両面に形成されている。
≪正極活物質≫
 正極活物質層223に含まれる正極活物質には、リチウムイオン二次電池の正極活物質として用いられる物質を使用することができる。正極活物質の例を挙げると、LiNiCoMnO(リチウムニッケルコバルトマンガン複合酸化物)、LiNiO(ニッケル酸リチウム)、LiCoO(コバルト酸リチウム)、LiMn(マンガン酸リチウム)、LiFePO(リン酸鉄リチウム)などのリチウム遷移金属酸化物が挙げられる。ここで、LiMnは、例えば、スピネル構造を有している。また、LiNiOやLiCoOは層状の岩塩構造を有している。また、LiFePOは、例えば、オリビン構造を有している。オリビン構造のLiFePOには、例えば、ナノメートルオーダーの粒子がある。また、オリビン構造のLiFePOは、さらにカーボン膜で被覆することができる。
≪導電材≫
 正極活物質層223には、正極活物質の他に、導電材、バインダ(結着剤)などの任意成分を必要に応じて含有し得る。導電材としては、例えば、カーボン粉末やカーボンファイバーなどのカーボン材料が例示される。このような導電材から選択される一種を単独で用いてもよく二種以上を併用してもよい。カーボン粉末としては、種々のカーボンブラック(例えば、アセチレンブラック、オイルファーネスブラック、黒鉛化カーボンブラック、カーボンブラック、黒鉛、ケッチェンブラック)、グラファイト粉末などのカーボン粉末を用いることができる。
≪バインダ、増粘剤、溶媒≫
 また、バインダとしては、使用する溶媒に溶解または分散可能なポリマーを用いることができる。例えば、水性溶媒を用いた正極合剤においては、カルボキシメチルセルロース(CMC)、ヒドロキシプロピルメチルセルロース(HPMC)などのセルロース系ポリマー(例えば、ポリビニルアルコール(PVA)やポリテトラフルオロエチレン(PTFE)など)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系樹脂(例えば、酢酸ビニル共重合体やスチレンブタジエンゴム(SBR)など)、アクリル酸変性SBR樹脂(SBR系ラテックス)などのゴム類;などの水溶性または水分散性ポリマーを好ましく採用することができる。また、非水溶媒を用いた正極合剤においては、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)などのポリマーを好ましく採用することができる。なお、上記で例示したポリマー材料は、バインダとしての機能の他に、上記組成物の増粘剤その他の添加剤としての機能を発揮する目的で使用されることもあり得る。溶媒としては、水性溶媒および非水溶媒の何れも使用可能である。非水溶媒の好適例として、N-メチル-2-ピロリドン(NMP)が挙げられる。
≪正極活物質層223の厚さ≫
 この実施形態では、正極活物質層223の平均の厚さt1は、片面当り27μm程度である。かかる正極活物質層223の厚さt1は、例えば、正極シート220の未塗工部222を基準にして測定するとよい。
≪負極シート240≫
 負極シート240は、負極集電体241と、負極活物質層243と、絶縁層245とを備えている。負極集電体241には、正極に適する金属箔が好適に使用され得る。この実施形態では、この負極集電体241には、所定の幅を有し、厚さが凡そ10μmの帯状の銅箔が用いられている。負極活物質層243は、負極集電体241に保持され、少なくとも負極活物質が含まれている。この実施形態では、負極活物質層243は、負極活物質を含む負極合剤が負極集電体241に塗工された層である。負極集電体241の幅方向片側には、縁部に沿って未塗工部242が設定されている。負極活物質層243は、負極集電体241に設定された未塗工部242を除いて、負極集電体241の両面に形成されている。
≪負極活物質≫
 負極活物質層243に含まれる負極活物質には、従来からリチウムイオン二次電池に用いられる材料の一種または二種以上を特に限定なく使用することができる。例えば、少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が挙げられる。より具体的には、いわゆる黒鉛質(グラファイト)、難黒鉛化炭素質(ハードカーボン)、易黒鉛化炭素質(ソフトカーボン)、これらを組み合わせた炭素材料を用いることができる。例えば、天然黒鉛のような黒鉛粒子を使用することができる。また、負極合剤には、負極活物質の分散を維持するべく、負極合剤には適量の増粘剤が混ぜられている。負極合剤には、正極合剤に使われるのと同様の増粘剤やバインダや導電材を使用することができる。
≪負極活物質層243の厚さ≫
 この実施形態では、負極活物質層243の平均の厚さt2は、片面当り35μm程度である。かかる負極活物質層243の厚さt2は、例えば、負極活物質層243が形成された後において、負極シート240の未塗工部242を基準にして測定するとよい。
≪絶縁層245≫
 絶縁層245は、この実施形態では、負極活物質層を覆うように、絶縁性を有する樹脂粒子を積層した多孔質の層である。絶縁層245に用いられる樹脂粒子は、好適には、熱可塑性樹脂の粒子であり、例えば、ポリエチレン、ポリプロピレン、エチレン由来の構造単位が85mol%以上の共重合ポリオレフィンまたはポリオレフィン球動体などを用いることができる。また、樹脂粒子は、複数の異なる熱可塑性樹脂の粒子を適当な割合で混合してもよい。また、樹脂粒子は、無機フィラーやゴムなどで絶縁性を有する材料が適当な割合で添加されていてもよい。この実施形態では、樹脂粒子には、ポリエチレンが用いられている。樹脂粒子は、例えば、バインダで接着するとよい。かかるバインダには、例えば、正極活物質層または負極活物質層に用いられるバインダと同様のバインダを用いることができる。
 樹脂粒子の粒径は、電解液の流通が十分に可能な程度の多孔質の層が形成されるように、積層させた際に粒子間に適当な隙間が形成されるとよい。このため、樹脂粒子の粒径は、例えば、約1μm~10μm程度である。より好ましくは約1μm~3μmである。なお、ここで、粒径には、光散乱法に基づく粒度分布測定器によって測定される粒度分布から求められるメジアン径(d50)が採用されている。
≪絶縁層245の厚さ≫
 この実施形態では、絶縁層245の平均の厚さt3は、片面当り25μm程度である。かかる絶縁層245の厚さt3は、例えば、絶縁層245が形成された後において、負極シート240の未塗工部242を基準に、負極活物質層243と絶縁層245と合わせた厚さt4を測定し、上述した負極活物質層243の厚さt2との差分(t3=t4-t2)により算出するとよい。
 かかる絶縁層245は、上述したように樹脂粒子が積層されている。電池内部の温度が異常に高くなった際に、所定の温度で樹脂粒子が溶融し、負極活物質層243の表面に、電解液の流通を遮断する膜を形成する。これにより、電池内で反応を低下させることができる(このような機能を、適宜に「シャットダウン」という。)。
≪溶融部246≫
 また、この実施形態では、絶縁層245の縁には溶融部246が形成されている。溶融部246は、絶縁層245を形成する樹脂粒子が溶融した部分である。かかるリチウムイオン二次電池100によれば、絶縁層245の縁に、樹脂粒子が溶融した溶融部246が形成されているので、絶縁層245の縁が強固に固まっており、当該縁から絶縁層245が剥がれ難い。図2および図3に示す例では、負極活物質層243の幅b1(溶融部246を含まず)は、正極活物質層223の幅a1よりも少し広い。
≪捲回電極体200≫
 この例では、正極シート220と負極シート240は、図2に示すように、長さ方向を揃えて重ねられている。この際、正極活物質層223と負極活物質層243が重ねられる。また、正極シート220と負極シート240の幅方向において、正極シート220の未塗工部222と負極シート240の未塗工部242とが互いに反対側にはみ出るように重ねられている。また、負極活物質層243の幅b1は正極活物質層223の幅a1よりも少し広く、負極活物質層243は正極活物質層223を覆うように重ねられている。重ねられたシート材(例えば、正極シート220)は、当該シート材の幅方向に設定された捲回軸周りに捲回されており、捲回後も負極活物質層243が正極活物質層223を覆う状態が維持されている。なお、図2は、正極シート220と負極シート240を捲回し、扁平に変形した捲回電極体200の一部展開した状態を示している。
 この捲回電極体200では、図1から図3に示すように、負極活物質層243を覆う絶縁層245によって、正極活物質層223と負極活物質層243とが物理的に隔てられており、かつ、正極活物質層223と負極活物質層243との間の電気的な絶縁が保たれている。換言すると、かかる絶縁層245は、正極活物質層223と負極活物質層243とを物理的かつ電気的に隔てつつ、電解質の行き来を許容するセパレータとして機能し得る。このため、この実施形態では、正極シート220と負極シート240との間にセパレータは別途配置されていない。
≪電池ケース300≫
 また、この例では、電池ケース300は、図1に示すように、いわゆる角型の電池ケースであり、容器本体320と、蓋体340とを備えている。容器本体320は、有底四角筒状を有しており、一側面(上面)が開口した扁平な箱型の容器である。蓋体340は、当該容器本体320の開口(上面の開口)に取り付けられて当該開口を塞ぐ部材である。
 車載用の二次電池では、車両の燃費を向上させるため、重量エネルギー効率(単位重量当りの電池の容量)を向上させることが望まれる。このため、この実施形態では、電池ケース300を構成する容器本体320と蓋体340は、アルミニウムやアルミニウム合金などの軽量金属が採用されている。これにより重量エネルギー効率を向上させることができる。
 この電池ケース300は、捲回電極体200を収容する空間として、扁平な矩形の内部空間を有している。また、図1に示すように、当該電池ケース300の扁平な内部空間は、捲回電極体200よりも横幅が少し広い。この実施形態では、電池ケース300の内部空間には、捲回電極体200が収容されている。捲回電極体200は、図1に示すように、捲回軸に直交する一の方向において扁平に変形した状態で電池ケース300に収容されている。
 この実施形態では、電池ケース300は、有底四角筒状の容器本体320と、容器本体320の開口を塞ぐ蓋体340とを備えている。また、電池ケース300の蓋体340には、電極端子420、440が取り付けられている。電極端子420、440は、電池ケース300(蓋体340)を貫通して電池ケース300の外部に出ている。また、蓋体340には安全弁360が設けられている。
 この例では、電池ケース300(この例では、蓋体340)に電極端子420、440が取り付けられている。捲回電極体200は、かかる電極端子420、440に取り付けられている。捲回電極体200は、捲回軸に直交する一の方向において扁平に押し曲げられた状態で電池ケース300に収納されている。また、捲回電極体200の捲回軸方向の両側には、正極シート220の未塗工部222と負極シート240の未塗工部242とが互いに反対側にはみ出ている。このうち、一方の電極端子420は、正極集電体221の未塗工部222に固定されており、他方の電極端子440は、負極集電体241の未塗工部242に固定(例えば、溶接)されている。
 また、この捲回電極体200は、扁平に押し曲げられた状態で、蓋体340に固定された電極端子420、440に取り付けられる。かかる捲回電極体200は、容器本体320の扁平な内部空間に収容される。容器本体320は、捲回電極体200が収容された後、蓋体340によって塞がれる。蓋体340と容器本体320の合わせ目322(図1参照)は、例えば、レーザ溶接によって溶接されて封止されている。このように、この例では、捲回電極体200は、蓋体340(電池ケース300)に固定された電極端子420、440によって、電池ケース300内に位置決めされている。
≪電解液≫
 その後、蓋体340に設けられた注液孔から電池ケース300内に電解液が注入される。電解液は、水を溶媒としていない、いわゆる非水電解液が用いられている。この例では、電解液は、エチレンカーボネートとジエチルカーボネートとの混合溶媒(例えば、体積比1:1程度の混合溶媒)にLiPFを約1mol/リットルの濃度で含有させた電解液が用いられている。その後、注液孔に金属製の封止キャップを取り付けて(例えば溶接して)電池ケース300を封止する。なお、電解液としては、かかる実施例に限定されず、従来からリチウムイオン二次電池に用いられる非水電解液を使用することができる。
≪空孔≫
 ここで、正極活物質層223は、例えば、正極活物質と導電材の粒子間などに、空洞とも称すべき微小な隙間を有している。かかる正極活物質層223の微小な隙間には電解液(図示省略)が浸み込み得る。また、負極活物質層243は、例えば、負極活物質の粒子間などに、空洞とも称すべき微小な隙間を有している。また、負極活物質層243を覆うように形成された絶縁層245は、樹脂粒子が積層されており、電解液がしみこみうる空洞とも称すべき微小な隙間を有している。ここでは、かかる隙間(空洞)を適宜に「空孔」と称する。このように、リチウムイオン二次電池100の内部では正極活物質層223と負極活物質層243には、電解液が染み渡っている。
≪ガス抜け経路≫
 また、この例では、当該電池ケース300の扁平な内部空間は、扁平に変形した捲回電極体200よりも少し広い。捲回電極体200の両側には、捲回電極体200と電池ケース300との間に隙間310、312が設けられている。当該隙間310、312は、ガス抜け経路になる。
 かかる構成のリチウムイオン二次電池100は、過充電が生じた場合に温度が高くなる。リチウムイオン二次電池100の温度が高くなると、電解液が分解されてガスが発生する。発生したガスは、捲回電極体200の両側における捲回電極体200と電池ケース300との隙間310、312、および、安全弁360を通して、スムーズに外部に排気される。かかるリチウムイオン二次電池100では、正極集電体221と負極集電体241は、電池ケース300を貫通した電極端子420、440を通じて外部の装置に電気的に接続される。以下、充電時と放電時のリチウムイオン二次電池100の動作を説明する。
≪充電時の動作≫
 図4は、かかるリチウムイオン二次電池100の充電時の状態を模式的に示している。充電時においては、図4に示すように、リチウムイオン二次電池100の電極端子420、440(図1参照)は、充電器290に接続される。充電器290の作用によって、充電時には、正極活物質層223中の正極活物質からリチウムイオン(Li)が電解液280に放出される。また、正極活物質層223からは電荷が放出される。放出された電荷は、図4に示すように、導電材(図示省略)を通じて正極集電体221に送られ、さらに、充電器290を通じて負極240へ送られる。また、負極240では電荷が蓄えられるとともに、電解液280中のリチウムイオン(Li)が、負極活物質層243中の負極活物質に吸収され、かつ、貯蔵される。
≪放電時の動作≫
 図5は、かかるリチウムイオン二次電池100の放電時の状態を模式的に示している。放電時には、図5に示すように、負極240から正極220に電荷が送られるとともに、負極活物質層243に貯蔵されたリチウムイオン(Liイオン)が、電解液280に放出される。また、正極では、正極活物質層223中の正極活物質に電解液280中のリチウムイオン(Li)が取り込まれる。
 このように、リチウムイオン二次電池100の充放電において、電解液280を介して、正極活物質層223と負極活物質層243との間でリチウムイオン(Li)が行き来する。また、充電時においては、正極活物質から導電材を通じて正極集電体221に電荷が送られる。これに対して、放電時においては、正極集電体221から導電材を通じて正極活物質に電荷が戻される。
≪リチウムイオン二次電池100≫
 上述したように、このリチウムイオン二次電池100は、図1および図2に示すように、正極集電体221と、正極集電体221に塗工され、少なくとも正極活物質が含まれた正極活物質層223とを備えている。さらに、リチウムイオン二次電池100は、正極集電体221に対向するように配置された負極集電体241と、負極集電体241に塗工され、少なくとも負極活物質が含まれた負極活物質層243とを備えている。また、リチウムイオン二次電池100は、図3に示すように、正極活物質層223または負極活物質層243の少なくとも一方(図3に示す例では、負極活物質層243)を覆うように、絶縁性を有する樹脂粒子を積層した多孔質の絶縁層245が形成されている。さらに、このリチウムイオン二次電池100は、かかる絶縁層245の縁に、樹脂粒子が溶融した溶融部246を備えている。
 かかるリチウムイオン二次電池100では、負極活物質層243を覆う絶縁層245によって、正極活物質層223と負極活物質層243とが物理的に隔てられている。また、かかる絶縁層245によって、正極活物質層223と負極活物質層243との、電気的な絶縁が保たれている。また、絶縁層245は、正極活物質層223と負極活物質層243との間で電解液280が流通することを許容する。また、絶縁層245は、電池内部の温度が異常に高くなった際に、所定の温度で樹脂粒子が溶融することによって膜を形成する。かかる膜は電解液の流通を遮断されるので、電池の反応が抑えられる。このように、絶縁層245は、電池内部の温度が異常に高くなった際に電池の反応を抑える、いわゆるシャットダウン機能を有している。
 特に、この実施形態では、正極シート220と負極シート240との間に別途セパレータが配置されていない。このため、絶縁層245の一部が剥がれることによって、正極活物質層223と負極活物質層243との電気的な絶縁が保たれず、リチウムイオン二次電池100が電池として機能しなくなる可能性がある。
 これに対して、このリチウムイオン二次電池100では、絶縁層245の縁に樹脂粒子が溶融した溶融部246が形成されている。当該溶融部246では、溶融した樹脂粒子の一部が負極活物質層243や周囲の樹脂粒子と結合している。このため、溶融部246は、負極活物質層243や溶融部246を除く絶縁層245との接合力が強い。また、絶縁層245の縁が強固であるため、当該絶縁層245の縁において絶縁層245が剥がれ難い。また、絶縁層245の縁から樹脂粒子が脱落し難いので、絶縁層245の縁から樹脂粒子が脱落して、リチウムイオン二次電池100内の異物が発生するのを抑制できる。
 なお、この実施形態では、負極シート240の未塗工部242が設けられた側では、絶縁層245の縁は溶融していないが、それ以外の部分において絶縁層245の縁は溶融している。かかる溶融部246が形成された部位は、後述するが負極シート240が製造される過程において、負極シート240が切断される部位であり得る。絶縁層245を形成する場合には、負極活物質層243を覆うように、絶縁性を有する樹脂粒子を積層することによって多孔質の絶縁層245が形成される。しかし、このような多孔質の絶縁層245を単純に形成したのみでは、負極シート240を切断する際に、当該切断部位において樹脂粒子が脱落したり、当該切断部位から絶縁層245が剥がれたりする場合がある。そこで、かかる絶縁層245が形成された負極シート240を切断する場合には、負極シート240が切断される前に、当該切断部位において絶縁層245の樹脂粒子を溶融させておくとよい。以下に、本発明の一実施形態に係る二次電池の製造方法を説明する。
≪二次電池の製造方法≫
 以下、本発明の一実施形態に係る二次電池の製造方法および電極シートの切断装置を説明する。この実施形態では、二次電池の製造方法は、電極シートを用意する工程と、溶融工程と、切断工程とを含んでいる。かかる二次電池の製造方法は、例えば、上述したリチウムイオン二次電池100(図1参照)のうち負極シート240を製造する工程に適用することができる。以下、上述したリチウムイオン二次電池100の負極シート240を例に挙げて、本発明の一実施形態に係る二次電池の製造方法および電極シートの切断装置を説明する。図6は、電極シートを用意する工程で用意される段階での電極シート(負極シート240)の平面図である。
≪電極シートを用意する工程≫
 電極シートを用意する工程で用意される電極シート10Aは、図6に示すように、集電体10(負極集電体241のマザー集電体)と、活物質層(負極活物質層243)と、絶縁層(絶縁層245)とを備えている。ここでは、電極シート10Aは、複数の負極シート240が切り出されるマザーシートを意味している。また、集電体10は、複数の負極シート240の負極集電体241が切り出され得る集電体を意味している。
 この実施形態では、集電体10は銅箔であり、負極活物質層243は、当該負極集電体241の表面に形成されている。絶縁層245は、当該負極活物質層243(活物質層)を覆い、絶縁性を有する樹脂粒子が積層されている。ここで、本発明者は、図6に示すように、集電体10(マザーシート)から複数の負極シート240を得ることを考えている。
 図6に示す形態では、幅が広い帯状の集電体10(マザーシート)に対して、幅方向に所定の間隔をあけて複数列(図6に示す例では3列)の活物質層243(a)~(c)が塗工されている。また、図6に示す形態では、集電体10(マザーシート)の幅方向の両側、および、活物質層243(a)~(c)の間に、未塗工部242(a)~(d)が設けられている。活物質層243(a)~(c)は、集電体10(マザーシート)の長さ方向に沿って塗工されている。さらに、この実施形態では、図6に示すように、活物質層243(a)~(c)には、それぞれ絶縁層245(a)~(c)が形成されている。絶縁層245(a)~(c)は、それぞれ活物質層243(a)~(c)を覆っている。なお、本明細書において、符号に付したカッコ内のアルファベットは、当該符号で示される複数の部材や部位を区別するために付している。
 活物質層243(a)~(c)は、例えば、上述した電極活物質(正極活物質、負極活物質)や導電材やバインダや増粘剤などを溶媒中で混ぜ合わせた電極合材を用意する(合材用意工程)。次に、かかる合材用意工程で用意された電極合剤を集電体10に塗布する(塗布工程)。かかる塗布工程には、従来公知の適当な塗布装置、例えば、スリットコーター、ダイコーター、コンマコーター、グラビアコーターなどを用いることができる。この実施形態では、図6に示すように、長尺帯状の集電体10(マザーシート)が用いられている。このため、集電体10を搬送しつつ、搬送される集電体10の所定位置に電極合剤を連続して塗布するとよい。
 次に、かかる塗布工程で集電体10に塗布された電極合材を乾燥させる(乾燥工程)。かかる乾燥工程では、所定の乾燥条件に設定された乾燥炉に集電体10を搬送するとよい。この際、電極合材中でマイグレーションが生じるのを防止するべく、適当な乾燥条件を設定するとよい。次に、かかる乾燥工程で乾燥した正極活物質層223や負極活物質層243を、厚み方向にプレスする(圧延工程)。かかる圧延工程では、従来公知のロールプレス法、平板プレス法などを適宜に採用することができる。このように集電体10に所定の活物質層243(a)~(c)を形成することができる。
 絶縁層245(a)~(c)は、活物質層243(a)~(c)を覆うように形成されている。絶縁層245(a)~(c)は、樹脂粒子を積層した多孔質の層である。絶縁層245(a)~(c)の製造方法は、例えば、樹脂粒子を溶媒に分散させたスラリーを用意し、かかるスラリーを活物質層243(a)~(c)の上に所定の厚さで塗布し、その後に乾燥させるとよい。この際、かかるスラリーを活物質層243(a)~(c)の上に所定の厚さで塗布する工程では、スラリーをグラビア印刷技術によって塗布するとよい。また、絶縁層245(a)~(c)は、所定の厚さになるように圧延してもよい。図7は、電極シート10Aに活物質層243(a)~(c)と絶縁層245(a)~(c)が塗工された部位の断面を示している。この電極シート10Aは、図7に示すように、集電体10の両面に、活物質層243(a)~(c)と、絶縁層245(a)~(c)が塗工されている。
 この場合、活物質層243(a)~(c)の幅方向の中間と、活物質層243(a)~(c)の間の未塗工部の中間に切断ラインz1~z5が設けられている。かかる切断ラインz1~z5に沿って、集電体10(マザーシート)を切断することによって、幅方向の片側に未塗工部を有する電極シート(ここでは、負極シート240(a)~(f))を、幅方向に複数本(図6に示す例では6本)切り出すことができる。このうち、活物質層243(a)~(c)の間の未塗工部の中間に設定された切断ラインz2、z4は、集電体10が露出しているので、単純にカッター(スリッターとも称され得る)によって切断するとよい。
 これに対して、活物質層243(a)~(c)には、樹脂粒子が積層した絶縁層245(a)~(c)が、活物質層243(a)~(c)を覆うように形成されている。このため、活物質層243(a)~(c)の幅方向の中間に設定された切断ラインz1、z3、z5を切断する際に、単純にカッターによって切断すると、絶縁層245(a)~(c)を形成する樹脂粒子の一部が脱落する。また、場合によっては、絶縁層245(a)~(c)の一部が剥がれることもある。溶融工程は、かかる絶縁層245(a)~(c)が形成された活物質層243(a)~(c)の幅方向の中間の切断ラインz1、z3、z5を切断する工程において必要になる。
 図8は、電極シートの絶縁層を溶融する工程と、切断する工程と示す平面図である。この実施形態では、図示は省略するが、活物質層243(a)~(c)の間の未塗工部の中間に設定された切断ラインz2、z4に沿って、電極シート10Aを切断する。その後、図8に示すように、切断された電極シート10A(a)~(c)が溶融工程(S1)、切断工程(S2)に供給される。
 この実施形態では、電極シート10A(a)~(c)は、搬送装置40(図9参照)によって、予め定められた搬送経路に沿って搬送される。ヒーター20とカッター30とは、かかる搬送経路に固定的に配置されている。この実施形態では、電極シート10A(a)~(c)は帯状のシートであり、搬送装置40は、当該電極シート10A(a)~(c)を搬送経路に沿って連続的に搬送する装置である。この実施形態では、搬送装置40は、電極シート10A(a)~(c)を支持しつつ搬送するガイドロール41、42(図9参照)を複数備えている。
≪溶融工程(Sm)≫
 溶融工程は、電極シートを用意する工程で用意された電極シート10A(a)、10A(b)、10A(c)の絶縁層245(a)~(c)を、予め定められたラインz1、z3、z5に沿って溶融させる工程である。
 かかる溶融工程では、絶縁層245(a)~(c)を切断工程でカッター30(a)~(c)が切断する幅に応じて、例えば、0.1mm~5.0mm程度の幅(例えば、0.5mm~1.5mm程度の幅)で、絶縁層245(a)~(c)を溶融するとよい。このため、この実施形態では、溶融工程は、絶縁層245(a)~(c)にレーザ20A(a)~(c)を照射することによって、絶縁層245(a)~(c)を溶融させている。レーザは指向性が高い。また、レーザによれば、例えば、レーザの焦点距離やレーザの出力(強さ)を調整することによって、絶縁層245(a)~(c)が溶融する幅を調整することができる。例えば、0.1mm~5.0mm程度の幅で、絶縁層116を溶融させることが可能である。また、レーザによれば、電極シート10A(a)~(c)に非接触で、絶縁層245(a)~(c)を溶融させることができる。このため、活物質層243(a)~(c)がほとんど影響を受けない。
 この場合、レーザは、好ましくはCOレーザを採用することができる。この実施形態では、絶縁層245(a)~(c)にポリエチレンの樹脂粒子が用いられており、かかる樹脂粒子を溶融させるのに好適なように、例えば、COレーザの波長を凡そ10.6μm、出力を5W~25Wにしている。COレーザは、樹脂(例えば、ポリエチレン)がエネルギーを吸収しやすい10.6μmの波長を持っている。このため、COレーザは、樹脂粒子を溶融させるのに適しており、樹脂粒子を効率よく溶融させることができる。かかるCOレーザによれば、絶縁層245(a)~(c)を構成する樹脂粒子に効率よく熱を与えることができる。
 この実施形態では、上述したように電極シート10A(a)~(c)の両面に絶縁層245(a)~(c)が形成されている。このため、図9に示すように、電極シート10A(a)~(c)の両面にレーザを照射して、電極シート10A(a)~(c)の両面で絶縁層245(a)~(c)を溶融させている。絶縁層245は、多孔質であり、樹脂粒子間に多くの空孔を有している。かかる絶縁層245が溶融すると膜状になり、空孔がほとんどなくなる。このため、溶融部246では、絶縁層245の体積が減り、絶縁層245が薄くなる。
≪レーザ装置の配置≫
 図9に示す例では、電極シート10A(a)~(c)をバックロール41(ガイドロール)に支持させた状態で、バックロール41とは反対側の面に形成された絶縁層245(a)~(c)にレーザ20A(a)~(c)を照射している。そして、当該レーザ20A(a)~(c)が照射された面に形成された絶縁層245(a)~(c)(図8参照)を溶融させる。次に、当該絶縁層245(a)~(c)を溶融させた面をバックロール42に支持させる。そして、当該バックロール42に支持させた状態で、バックロール42とは反対側の面に形成された絶縁層245(a)~(c)にレーザ20B(a)~(c)を照射している。ここでは、符号20A(a)~(c)および20B(a)~(c)は、直接的には電極シート10A(a)~(c)に照射されるレーザを示している。なお、当該レーザを照射するレーザ装置は、図示の便宜上、省略されている。図示されるレーザ20A(a)~(c)およびレーザ20B(a)~(c)は、当該レーザを照射するレーザ装置およびレーザ装置を制御する装置の存在を間接的に示している。
 このように、電極シート10A(a)~(c)の両面に絶縁層245(a)~(c)が形成されている場合には、当該両面の絶縁層245(a)~(c)を溶融させるとよい。図9に示す例では、電極シート10A(a)~(c)の両面に順にレーザ20A(a)~(c)、レーザ20B(a)~(c)を当てて、両面の絶縁層245(a)~(c)を溶融させている。また、図9に示す例では、電極シート10A(a)~(c)がバックロール41(ガイドロール)に支持された部位においてレーザ20A(a)~(c)を照射している。バックロール41(ガイドロール)に支持された部位では、電極シート10A(a)~(c)のバタつきがなく、電極シート10A(a)~(c)に対してより適切な位置にレーザ20A(a)~(c)を照射することができる。
 なお、図9に示す例では、バックロール41、42によって電極シート10A(a)~(c)が支持されている部位において、バックロール41、42とは反対側の面に形成された絶縁層245(a)~(c)にレーザ20A(a)~(c)、レーザ20B(a)~(c)を照射している。この場合、レーザ20A(a)~(c)、レーザ20B(a)~(c)の出力を高くし過ぎると、バックロール41、42に支持された側の面の絶縁層245(a)~(c)も溶融し得る。バックロール41、42に支持された側の面の絶縁層245(a)~(c)が溶融すると、バックロール41、42に溶融した樹脂が付着し、不具合を生じさせる要因になり得る。
 このため、図9に示すように、バックロール41、42によって電極シート10A(a)~(c)が支持されている部位において、レーザ20A(a)~(c)、レーザ20B(a)~(c)を照射する場合には、レーザ20B(a)~(c)の出力を調整することが必要である。この場合、レーザ20B(a)~(c)が直接照射された面の絶縁層245(a)~(c)を溶融させるけれども、バックロール41、42に溶融した樹脂が付着しない程度に、レーザ20A(a)~(c)、レーザ20B(a)~(c)の出力を調整するとよい。
 また、図10に示すように、バックロール41によって電極シート10A(a)~(c)が支持された部位からずれた位置において、電極シート10A(a)~(c)にレーザ20A(a)~(c)が照射されるようにレーザ装置(図示省略)を配置してもよい。また、バックロール42によって電極シート10A(a)~(c)が支持された部位からずれた位置において、電極シート10A(a)~(c)に対してレーザ20B(a)~(c)が照射されるようにレーザ装置(図示省略)を配置してもよい。この場合、レーザ20A(a)~(c)、レーザ20B(a)~(c)の出力を高くしても、バックロール41、42に絶縁層245(a)~(c)の溶融した樹脂が付着しない。この場合、レーザを照射する位置がバックロール41、42に近すぎると、溶融した樹脂がバックロール41、42に付着する可能性が高くなる。また、バックロール41、42から離れた位置では、搬送される電極シート10A(a)~(c)がバタつく場合がある。レーザ20A(a)~(c)やレーザ20B(a)~(c)を照射する位置で搬送される電極シート10A(a)~(c)がバタつくと、電極シート10A(a)~(c)にレーザ20A(a)~(c)やレーザ20B(a)~(c)が照射される位置が安定しない可能性がある。このため、電極シート10A(a)~(c)に対してレーザ20A(a)~(c)やレーザ20B(a)~(c)を照射する位置は、電極シート10A(a)~(c)がバックロール41、42に支持された部位から離れすぎない方がよい。レーザ20A(a)~(c)やレーザ20B(a)~(c)を照射する位置は、電極シート10A(a)~(c)がバックロール41、42に支持された部位から、例えば、1mm~10mm程度、より好ましくは、1.5mm~8mm程度ずれているとよい。
 バックロール41、42に支持された部位からずれた位置にレーザ20A(a)~(c)やレーザ20B(a)~(c)を照射する場合には、図10に示すように、バックロール41、42の下流側(電極シート10A(a)~(c)の搬送方向下流側)にレーザ20A(a)~(c)やレーザ20B(a)~(c)を照射する位置をずらすとよい。バックロール41、42の下流側にレーザ20A(a)~(c)やレーザ20B(a)~(c)を照射する位置をずらすことによって、バックロール41、42に溶融した樹脂が付着するのを、より確実に防止できる。
 なお、図9および図10に示す形態では、それぞれ電極シート10A(a)~(c)の両面にそれぞれレーザ20A(a)~(c)、レーザ20B(a)~(c)を照射する。この場合、電極シート10A(a)~(c)の幅方向において、電極シート10A(a)~(c)に対してレーザ20A(a)~(c)とレーザ20B(a)~(c)が照射される位置を合わせる必要がある。このため、かかる位置合わせは、EPC装置(edge position control device)やCPC装置(center position control device)などの位置調整機構62(図8参照)によって行なうとよい。この実施形態では、かかる位置調整機構62によって、ラインz1、z3、z5に沿って絶縁層245(a)~(c)が溶融するように、レーザが照射される位置に供給される電極シート10A(a)~(c)の幅方向の位置が調整される。図9および図10に示す形態では、位置調整機構62はバックロール41、42の前に配置するとよい。
 また、バックロール41に支持された部位からずれた位置にレーザを照射する場合には、電極シート10A(a)~(c)の両面の絶縁層245(a)~(c)を同時に溶融させてもよい。例えば、図11に示すように、バックロール41に支持された部位からずれた位置において、電極シート10A(a)~(c)の片面にレーザ20A(a)~(c)が照射されるように、レーザ装置(図示省略)を配置するとよい。そして、電極シート10A(a)~(c)の両面の絶縁層245(a)~(c)が溶融し得るように、レーザ20A(a)~(c)の出力を調整するとよい。これにより、電極シート10A(a)~(c)の両面で絶縁層245(a)~(c)が溶融した位置がずれ難い。
 また、例えば、図12に示すように、バックロール41に支持された部位からずれた位置において、電極シート10A(a)~(c)の両面にそれぞれレーザ20A(a)~(c)、レーザ20B(a)~(c)が照射されるように、レーザ装置(図示省略)を配置してもよい。この場合、レーザ20A(a)~(c)、レーザ20B(a)~(c)は、搬送される電極シート10A(a)~(c)に対して、同じ位置で焦点を調整するとよいので、電極シート10A(a)~(c)の両面においてレーザが照射される位置がずれ難い。また、この場合、レーザ20A(a)~(c)、レーザ20B(a)~(c)の出力を調整することによって、電極シート10A(a)~(c)の両面において絶縁層245(a)~(c)を同程度に溶融させることができる。
 溶融工程では、予め定められたラインz1、z3、z5に沿って絶縁層245(a)~(c)を溶融させるとよい。ここで、絶縁層245(a)~(c)を溶融させる幅は、後の切断工程(Sc)において、カッター30(a)~(c)が切断する幅に応じて調整されることが望ましい。すなわち、絶縁層245(a)~(c)を溶融させると、絶縁層245(a)~(c)の空孔が消失するので、当該部分では、電解液が流通しない。このため、絶縁層245(a)~(c)を溶融させる幅は、カッター30(a)~(c)が切断する幅に応じて、また、樹脂粒子の脱落を少なく抑える効果や絶縁層245(a)~(c)が剥がれ難くなる効果が認められる程度にできる限り細い方がよい。レーザを照射する方法は、例えば、レーザの焦点距離や、出力を調整することによって、例えば、0.1mm~5.0mm程度の幅で調整できることが可能である。このように、レーザを照射する方法は、絶縁層245(a)~(c)を溶融させる位置や幅を容易に調整できる。
 なお、かかる溶融工程において、電極シート10A(a)~(c)を加熱するヒーターとしてレーザ装置を例示した。かかるヒーターはレーザ装置に限定されない。
 他の形態として、例えば、ヒーターは、図示は省略するが、電極シートに対して熱風を当てる熱風送風器で構成してもよい。この場合、熱風の温度を300℃程度、風速を30m/s、熱風を集中的に当てる幅を2mm程度にすることが可能である。しかし、熱風を当てる場合には、熱が空気中に広がるため、狭い範囲に集束しない。このため、電極シートの狭い範囲だけを熱することが難しい。また、この場合、絶縁層245(a)~(c)が溶融する幅は変動し易い。このため、電極シート10A(a)~(c)の両面で溶融する部分がずれ易い。このため、溶融させる幅を広くする必要がある。
 また、他の形態として、ヒーターは、図示は省略するが、電極シートに押し当てられる金属ロールと、当該金属ロールを加熱する熱源とを備えた構成でもよい。この場合、金属ロールの幅を、例えば、2mm程度、ロールの表面温度を300℃程度にすることが可能である。この場合、熱した金属ロールを電極シート10A(a)~(c)に直接押し当てるので、金属ロールに溶融物が付着して不具合を生じさせる場合がある。また、この場合、絶縁層245(a)~(c)が溶融する幅は変動し易い。このため、電極シート10A(a)~(c)の両面で溶融する部分がずれ易い。このため、溶融させる幅を広くする必要がある。
 これに対して、上述したようにレーザを照射する方法や装置では、例えば、レーザの焦点距離や、出力を調整することによって、絶縁層245(a)~(c)を溶融させる位置や幅をより細かく調整できる。また、電極シート10A(a)~(c)に対して非接触で絶縁層245(a)~(c)を加熱でき、活物質層243(a)~(c)への影響は小さい。このため、電極シート10A(a)~(c)を加熱するヒーターとしては、レーザを電極シート10A(a)~(c)に照射するレーザ装置が好適である。かかる溶融工程で、予め設定されたラインz1、z3、z5に沿って絶縁層245(a)~(c)を溶融させた電極シート10A(a)~(c)は、切断工程に供給される。また、レーザを照射する装置は、比較的、省スペースに設置でき、また、設備コストも安価に済む。また、レーザ装置は、電極シート10A(a)~(c)の位置を検出して、絶縁層245(a)~(c)を溶融させるべき部分に、レーザを追従させる制御機構(図示省略)を付加してもよい。これにより、絶縁層245(a)~(c)を溶融させるべき部分に対してレーザを適切に追従させることができる。電極シート10A(a)~(c)のバタつきや移動に対して、絶縁層245(a)~(c)を溶融させる位置や幅をより細かく調整できる。
≪模式図≫
 図13は、レーザが照射される前の活物質層243(a)~(c)と絶縁層245(a)~(c)の状態を示す模式図である。また、図14は、レーザが照射された後の活物質層243(a)~(c)と絶縁層245(a)~(c)の状態を示す模式図である。
 レーザが照射される前の絶縁層245(a)~(c)は、図13に示すように、樹脂粒子250が活物質層243(a)~(c)の上に概ね積層された状態である。これに対して、レーザが照射された後では、絶縁層245(a)~(c)は、図14に示すように、レーザが照射された部位(246)の中心に、樹脂粒子250が溶融した部分250aが形成される当該部分では溶融した樹脂の一部が、活物質層243(a)~(c)の空孔に入り込み、その後固化する。このため、負極活物質層243と強固に結合する。さらにその周囲で一部が溶融した樹脂250bは、周囲の樹脂粒子250と結合している。
 このようにレーザ20A(a)~(c)(図8参照)を照射して溶融させた場合、絶縁層245(a)~(c)の樹脂粒子が溶融する。溶融した樹脂の一部は、負極活物質層243や周囲の樹脂粒子と結合している。このため、溶融部246は、負極活物質層243や溶融部246を除く絶縁層245との接合力が強い。また、溶融部246は、後の切断工程(Sc)において、カッター30(a)~(c)で切断される。この際、切断された絶縁層245の縁が強固であるため、当該絶縁層245の縁において絶縁層245が剥がれ難い。また、絶縁層245の縁から樹脂粒子が脱落し難いので、絶縁層245の縁から樹脂粒子が脱落することによってリチウムイオン二次電池100内で異物が発生するのを抑制できる。
≪切断工程(Sc)≫
 次に切断工程を説明する。
 切断工程は、溶融工程によって絶縁層245(a)~(c)を溶融させたラインz1、z3、z5に沿って、電極シート10Aを切断する工程である。この実施形態では、電極シート10A(a)~(c)は、カッター30(a)~(c)によって切断される。当該カッター30(a)~(c)には、種々のカッター(スリッターとも称される)から、電極シート10A(a)~(c)を適切に切断できるものを採用するとよい。
 この実施形態では、図8に示すように、電極シート10A(a)~(c)は帯状のシートである。搬送装置40は、当該電極シート10A(a)~(c)を予め定められた搬送経路に沿って連続的に搬送する。カッター30(a)~(c)は、電極シート10A(a)~(c)の搬送経路に対して固定的に配置されている。
 切断工程では、溶融工程で絶縁層245(a)~(c)を溶融させたラインz1、z3、z5に沿って電極シート10Aが切断されるように、固定されたカッター30(a)~(c)に対して、電極シート10A(a)~(c)の位置を調整するとよい。このため、カッター30(a)~(c)の前にEPC装置(edge position control device)やCPC装置(center position control device)などの位置調整機構64が配置されている。位置調整機構64によって、ラインz1、z3、z5に沿って電極シート10A(a)~(c)が切断されるように、カッター30(a)~(c)に供給される電極シート10A(a)~(c)の幅方向の位置が調整される。
 このようなカッター30(a)~(c)によって切断された電極シート10A(a)~(c)は、それぞれ絶縁層245(a)~(c)の縁に樹脂粒子が溶融した溶融部246(a)~(f)が形成されている。また、かかる絶縁層245(a)~(c)の縁は、カッター30(a)~(c)によって切断されるので切断痕(図示省略)がある。
 このように切断工程で切断されるラインz1、z3、z5では、前工程の溶融工程において、両面に形成された絶縁層245(a)~(c)において樹脂粒子が溶融している。このため、当該ラインz1、z3、z5に沿って切断した場合でも、樹脂粒子の粒子は実質的に脱落しない。また、当該ラインz1、z3、z5では、活物質層243(a)~(c)に溶融した樹脂が強固に付着している。このため、切断工程において、当該ラインz1、z3、z5に沿って切断された場合でも、絶縁層245(a)~(c)は実質的に剥がれない。
 この実施形態では、カッター30(a)~(c)によって切断された電極シート10A(a)~(c)は、例えば、図9~図12に示すように、それぞれ異なる巻取り軸82(a)~(c),84(a)~(c)に巻き取られるとよい。
 このように、この二次電池の製造方法によれば、電極シート10A(a)~(c)を切断する前に、切断される部分において絶縁層245(a)~(c)が溶融している。このため、切断工程において、絶縁層245(a)~(c)から樹脂粒子が脱落し難く、また絶縁層245(a)~(c)が部分的に剥がれ難い。
 この場合、溶融工程では、図8に示すように、絶縁層245(a)~(c)にレーザ20A(a)~(c)を照射することによって、絶縁層245(a)~(c)を溶融させるとよい。レーザを照射する方法や装置では、例えば、レーザの焦点距離や、出力を調整することによって、絶縁層245(a)~(c)を溶融させる位置や幅をより細かく調整できる。このため、カッター30(a)~(c)で切断される幅に応じて、溶融させる幅を適切に狭くできる。
 また、かかる電極シートの切断装置は、ヒーター(上述した実施形態では、レーザ装置)と、カッター30(a)~(c)とを備えているとよい。ここで、ヒーターは、予め定められたラインz1、z3、z5に沿って電極シート10A(a)~(c)を加熱するように配置されているとよい。また、カッター30(a)~(c)は、絶縁層245(a)~(c)が溶融したラインz1、z3、z5に沿って、電極シート10A(a)~(c)を切断しうるように配置されている。かかる電極シートの切断装置によれば、樹脂粒子が積層された絶縁層245(a)~(c)を有する電極シート10A(a)~(c)を切断する工程において、絶縁層245(a)~(c)を溶融させてから切断することができる。
 この場合、図8および図9に示すように、電極シート10A(a)~(c)を予め定められた搬送経路に沿って搬送する搬送装置40を備えていてもよい。この場合、ヒーター(レーザ装置)とカッター30(a)~(c)とを搬送経路に沿って固定してもよい。そして、ヒーター(レーザ装置)とカッター30(a)~(c)に対して、電極シート10A(a)~(c)の位置を調整する位置調整機構62、64を備えていてもよい。この場合、位置調整機構62、64によって、電極シート10A(a)~(c)が適切に搬送される。このため、電極シート10A(a)~(c)を適切な位置で溶融し、かつ、切断できる。
 また、上述した実施形態のように、電極シート10A(a)~(c)が帯状のシートである場合には、搬送装置40は、当該電極シート10A(a)~(c)を搬送経路に沿って連続的に搬送する装置であるとよい。これにより、電極シート10A(a)~(c)をラインz1、z3、z5に沿って、連続的に溶融し、かつ、切断できる。これにより、効率よく電極シートを得ることができる。
 また、搬送装置40は、電極シート10A(a)~(c)を支持しつつ搬送するガイドロール41、42を複数備えていてもよい。この場合、かかるガイドロール41、42によって、電極シート10A(a)~(c)が支持された部位から搬送方向下流側にずれた位置において、電極シート10A(a)~(c)が加熱されるようにヒーター(レーザ20A(a)~(c)を照射するレーザ装置)が配置するとよい。これにより、ガイドロール41、42に溶融した樹脂が付着し難い。また、この場合、電極シート10A(a)~(c)の両面の絶縁層245(a)~(c)を同時に溶融させることができる。このため、電極シート10A(a)~(c)の両面で絶縁層245(a)~(c)が溶融した位置がずれ難い。
 上述した例では、電極シート10A(a)~(c)が帯状のシートであり、電極シート10A(a)~(c)を搬送しつつ、長さ方向に切断する場合について説明した。この場合において、図15に示すように、電極シート10A(a)~(c)は、さらに所定の長さで切断される。この場合、長さ方向の端部を切断する際にも、切断される部分において、絶縁層245の樹脂粒子を溶融させてから切断するとよい。これにより、樹脂粒子が脱落し難く、かつ、絶縁層245の縁から絶縁層245の一部が剥がれ難い。図16は、図15のA-A断面図である。
 また、上述した実施形態では、電極シートが帯状のシートであり、幅方向片側の縁部に沿って未塗工部242が設定された形態を例示したが、電極シートの構造は、二次電池の構造によって異なる。例えば、電極シートの他の形態として、図17に示す電極シート110Aは、帯状の集電体110の長さ方向の中間部に未塗工部112が形成されており、その両側に活物質層114(a)、(b)が形成されている。かかる形態は、集電体110の長さ方向の中間部に形成された未塗工部112に、タブ120(電気の取り出し口となる箔)が取り付けられる。いわゆるセンタータブとも呼ばれる。かかる形態においては、未塗工部112の両側に形成された活物質層114(a)、(b)を覆うように、さらに絶縁層116(a)、(b)が形成されている。ここで、図18は、図17中のA-A断面を示す断面図である。
 かかる形態では、図19に示すように、幅が広い帯状の集電体110(マザー集電体)を用意し、これに間欠的に活物質層114を形成し、かかる活物質層114を覆うように、絶縁層116を形成する。そして、図19に破線で示すように、未塗工部112と未塗工部112の間の中間に切断ラインz21、z22を設定する。さらに、集電体110の幅方向に間隔をあけて、集電体110の長さ方向に沿って切断ラインz23、z24を設定する。電極シート110Aは、かかる切断ラインz21~z24に沿って切断される。この際、切断ラインz21~z24を切断する際には、切断する前に、当該切断ラインz21~z24に沿って、絶縁層116を溶融するとよい。これにより、図17に示すように、電極シート110Aの幅方向両側の縁110a、110b、および、長さ方向の両側の縁110c、110dに溶融部118が形成された電極シート110Aが切り出される。
 また、電極シート110Aの長さ方向の両側の端部110c、110dを切断する場合には、例えば、図20に示すように、捲回電極体200を製造する捲回装置400の巻取軸410の近傍に位置に、絶縁層116を溶融させるレーザ412と、溶融した部位を切断するカッター414とを設けるとよい。
 このように、電極シート110Aは、上述した実施形態に限定されず、種々の形態を採り得る。電極シート110Aは、その形態に関わらず、例えば、図18に示すように、活物質層114を覆うように、樹脂粒子を積層した絶縁層116が形成される場合において、当該絶縁層116が形成された部位を切断する場合には、絶縁層116を溶融させてから切断するとよい。これにより、絶縁層116から樹脂粒子が脱落し難く、絶縁層116の縁から絶縁層116の一部が剥がれ難い。なお、上述したように、この際、絶縁層116を溶融させる手段として、絶縁層116にレーザを照射するとよい。また、この際、好適にはCOレーザを用いると良い。
 以下、二次電池の製造方法及び電極シートの切断装置の変形例を説明する。
 上述した実施形態では、ヒーター(レーザ20A(a)~(c)やレーザ20B(a)~(c)を照射するレーザ装置)によって、絶縁層245(a)~(c)を溶融させる部位と、電極シート10A(a)~(c)を切断する部位との間は少し距離がある。このため、電極シート10A(a)~(c)が当該距離を進む間に温度が下がり、電極シート10A(a)~(c)が切断される前に溶融工程で溶融した樹脂が十分に固化し得る。この場合、絶縁層245(a)~(c)を溶融させる部位と、電極シート10A(a)~(c)を切断する部位との間は、常温(約25度)において、少なくとも0.5秒以上、より好ましくは、0.8秒以上掛けて搬送するとよい。
≪冷却工程≫
 溶融工程で溶融した樹脂が十分に固化する前に、切断工程に供給されると、カッター30(a)~(c)に樹脂が付着するなど不具合を生じさせうる。また、溶融工程と切断工程との間で十分な間隔をあけるには、タクトタイムが長くなる。このため、二次電池の製造方法は、例えば、図21に示すように、溶融工程(Sm)と、切断工程(Sc)との間に、電極シートを冷却する冷却工程(Sr)を備えていてもよい。溶融工程(Sm)と、切断工程(Sc)との間に、電極シートを冷却する冷却工程(Sr)を設けることによって、溶融工程で溶融した樹脂を切断工程の前に、より確実に固化させることができる。これにより、溶融工程と切断工程との間のタクトタイムを短くできる。
≪冷却装置≫
 例えば、図21に示す形態では、ヒーター(レーザ20A(a)~(c)やレーザ20B(a)~(c)を照射するレーザ装置)によって加熱された後、カッター30(a)~(c)によって切断される前に、電極シート10A(a)~(c)を冷却する冷却装置36を備えている。この実施形態では、電極シート10A(a)~(c)は帯状のシートであり、搬送装置40は、電極シート10A(a)~(c)を搬送経路に沿って連続的に搬送する装置である。冷却装置36は、搬送経路に沿って、ヒーター(レーザ20A(a)~(c)やレーザ20B(a)~(c)を照射するレーザ装置)と、カッター30(a)~(c)との間に設けられている。冷却装置36は、例えば、電極シート10A(a)~(c)に空気を吹き付ける送風機で構成することができる。この場合、電極シート10A(a)~(c)は非接触で冷却される。
≪冷却装置の他の形態≫
 また、冷却装置36は、図22に示すように、電極シート10A(a)~(c)に押し当てられる金属ロール37と、金属ロール37を冷やす冷却部38とを備えているとよい。当該冷却部38は、電極シート10A(a)~(c)に押し付けられていない部分において、金属ロール37を冷却するとよい。冷却部38の構成としては、金属ロール37から吸熱する構造であれば良い。冷却部38は、例えば、電極シート10A(a)~(c)に押し付けられていない部分において、金属ロール37に冷気を当てる構造でもよい。また、冷却部38は、金属ロール37を中空構造とし、金属ロール37内に冷媒を循環させる構造でもよい。この場合、電極シート10A(a)~(c)を早急に冷却することができる。これにより、タクトタイムが短くなる。
 また、上述した実施形態では、例えば、図1~図3に示すように、このリチウムイオン二次電池100は、正極活物質層223よりも負極活物質層243の幅が広い。さらに、負極活物質層243は、正極活物質層223に対向させて配置されている。絶縁層245は、負極シート240の負極活物質層243を覆っている。これにより、正極活物質層223から放出されるリチウムイオン(Li)が負極活物質層243に吸収されやすく、正極活物質層223と負極活物質層243との間でリチウムイオン(Li)がより安定して行き来する。なお、これに限らず、絶縁層245は、正極活物質層223を覆うように形成してもよいし、正極活物質層223と負極活物質層243の両方にそれぞれ形成してもよい。このように、絶縁層245は、正極活物質層223と負極活物質層243の何れに形成してもよい。
 また、二次電池の構造は、図1~図3に示す構造に限定されない。例えば、上述した実施形態では、絶縁層245がセパレータとして機能し、セパレータが別途設けられていない。二次電池の構造は、かかる形態に限定されず、正極活物質層223と負極活物質層243の少なくとも何れか一方に絶縁層245を設けることに加えて、正極シート220と負極シート240との間に、別途セパレータを設けてもよい。上述したように、本発明の一実施形態に係る二次電池では、絶縁層245の縁に樹脂粒子が溶融した溶融部246が形成されている。かかる二次電池は、上述したように、絶縁層245の縁に樹脂粒子が溶融した溶融部246が形成されているので、絶縁層245の縁から絶縁層245が剥がれ難く、安全性が高い。これに加えて、正極シート220と負極シート240との間に、別途セパレータを設けることによって、さらに安全性を向上させることができる。
≪絶縁層の他の形態≫
 また、絶縁層245は、例えば、上述したように、樹脂粒子が積層されており、電池内部の温度が異常に高くなった際に、所定の温度で樹脂粒子が溶融し、負極活物質層243の表面に、電解液の流通を遮断する膜を形成する。これにより、電池内で反応を停止させることができる。絶縁層245は、負極シート240の両面にそれぞれ所定の厚さ(例えば、20μm~40μm程度の厚さ)で形成するとよい。
 このため、この実施形態では、絶縁層245は絶縁性を有する樹脂粒子を積層した多孔質の層である。かかる絶縁層245には、樹脂粒子以外にも、絶縁性を有する粒子が、絶縁層245のシャットダウン機能を妨げない程度に適当な量(例えば、50wt%以下、より適当には40wt%以下)が混ざっていてもよい。かかる絶縁層245に混ぜられる粒子としては、例えば、絶縁性を有する無機フィラーや、ゴムの粒子が挙げられる。
 ここで、無機フィラーは、リチウムイオン二次電池の異常発熱に対して耐熱性があり、かつ電池の使用範囲内で電気化学的に安定していることが好ましい。かかる無機フィラーには、金属酸化物の粒子やその他の金属化合物の粒子が含まれる。かかる無機フィラーとしては、アルミナ(Al)、アルミナ水和物(例えばベーマイト(Al・HO))、ジルコニア(ZrO)、マグネシア(MgO)、水酸化アルミニウム(Al(OH))、水酸化マグネシウム(Mg(OH))、炭酸マグネシウム(MgCO)、等の金属化合物が例示される。絶縁層245に含まれる無機フィラーには、このような無機フィラーを一種または二種以上添加してもよい。また、絶縁層245にゴムの粒子を添加する場合には、一種または二種以上のゴムの粒子を添加してもよい。
 このうち、絶縁層245に絶縁性を有する無機フィラーが混ぜられている場合には、絶縁層245の耐熱性が向上する。この場合、無機フィラーの粒径は、例えば、約0.1μm~6μm程度、より好ましくは約0.5μm~4μm程度でもよい。このように絶縁性を有する無機フィラーが混ざっていることによって、電池内部の温度が異常に高くなって樹脂粒子が溶融した際でも、絶縁層245に含まれる無機フィラーが解けずに残留する。かかる無機フィラーによって、正極活物質層223と負極活物質層243とが直接接触するのを防止できる。絶縁層245の耐熱性を向上させることができる。かかる機能を奏するべく、絶縁性を有する無機フィラーは、例えば、5wt%以上、好ましくは10wt%以上、より好ましくは15wt%以上、絶縁層245に含まれているとよい。絶縁層245には無機フィラーのみを添加してもよいし、ゴムの粒子のみを添加してもよい。また、絶縁層245には無機フィラーとゴムの粒子とを両方添加してもよい。
 また、図6に示す例では活物質層243(a)~(c)は3列であり、負極シート240が幅方向に6本切り出すことができるが、図6に示す例は、一例でありこれには何ら限定されない。より単純には、図8に示すように、電極シート、2本分の幅を有する集電体10の幅方向の中央部に活物質層243を形成し、かかる活物質層243を覆うように、絶縁層245を形成してもよい。単純な形態として、例えば、得ようとする電極シート(負極シート240)、2本分の幅を有する集電体10の幅方向の中央部に活物質層243を形成し、かかる活物質層243を覆うように、絶縁層245を形成した形態でもよい。
≪他の電池形態≫
 なお、上記はリチウムイオン二次電池の一例を示すものである。リチウムイオン二次電池は上記形態に限定されない。また、同様に金属箔に電極合剤が塗工された電極シートは、他にも種々の電池形態に用いられる。例えば、他の電池形態として、円筒型電池やラミネート型電池などが知られている。円筒型電池は、円筒型の電池ケースに捲回電極体を収容した電池である。また、ラミネート型電池は、正極シートと負極シートとをセパレータを介在させて積層した電池である。
 また、上述した二次電池の製造方法および電極シートの切断装置は、上述したように、電極シートの活物質層を覆うように、樹脂粒子を積層した絶縁層を形成する場合に、かかる電極シートを切断する工程に広く適用できる。上述した実施形態では、電極シート10A(a)~(c)は帯状のシートであるが、電極シートは帯状のシートでなくてもよい。例えば、ラミネート型の二次電池では、所定の形状の電極シートを複数枚用意する。この場合、電極シートのマザーシートは、必ずしも帯状でなくてもよい。
 以上、本発明の一実施形態に係る二次電池、二次電池の製造方法、および、電極シートの切断装置を説明した。なお、本発明は、特に言及がない限りにおいて上述した何れの実施形態にも限定されない。
 また、上述したように、二次電池の製造方法および電極シートの切断装置は、活物質層を覆うように、樹脂粒子を積層した絶縁層が形成されている場合に、かかる電極シートを切断する工程に広く適用できる。かかる二次電池の製造方法および電極シートの切断装置では、樹脂粒子の脱落によって異物が発生し難く、かつ、絶縁層が剥がれ難い。このため、活物質層を覆うように、樹脂粒子を積層した絶縁層が形成されている場合において、二次電池の信頼性向上に寄与する。このため、高出力と安定した性能が求められる、ハイブリッド車や電気自動車などの車両用の二次電池にも、特に好適に適用され得る。すなわち、本発明の一実施形態に係る二次電池は、例えば、図23に示すように、自動車などの車両1のモータ(電動機)を駆動させる電池1000(車両駆動用電池)として好適に利用され得る。車両駆動用電池1000は、複数の二次電池を組み合わせた組電池としてもよい。
10 集電体
10A 電極シート
20 ヒーター
20A レーザ
20B レーザ
30 カッター
36 冷却装置
37 金属ロール
38 冷却部
40 搬送装置
41、42 ガイドロール(バックロール)
62、64 位置調整機構
82、84 巻取り軸
100 リチウムイオン二次電池(二次電池)
110 集電体
110A 電極シート
110a、110b、110c、110d 電極シートの縁
112 未塗工部
114 活物質層
116 絶縁層
118 溶融部
120 タブ
200 捲回電極体
220 正極シート
221 正極集電体
222 未塗工部
223 正極活物質層
240 負極シート
241 負極集電体
242 未塗工部
243 活物質層
243 負極活物質層
245 絶縁層
246 溶融部
250 樹脂粒子
250a 樹脂粒子250が溶融した部分
250b 一部が溶融した樹脂
280 電解液
290 充電器
300 電池ケース
310 隙間
320 容器本体
322 蓋体340と容器本体320の合わせ目
340 蓋体
360 安全弁
400 捲回装置
410 巻取軸
412 レーザ
414 カッター
420 電極端子
440 電極端子
1000 車両駆動用電池(二次電池)
z1-z5 ライン(切断ライン)
z21-z24 ライン(切断ライン)
Sm 溶融工程
Sc 切断工程
Sf 冷却工程

Claims (22)

  1.  正極集電体と、
     前記正極集電体に保持され、少なくとも正極活物質が含まれた正極活物質層と、
     前記正極集電体に対向するように配置された負極集電体と、
     前記負極集電体に保持され、少なくとも負極活物質が含まれた負極活物質層と、
     前記正極活物質層または前記負極活物質層の少なくとも一方を覆うように、絶縁性を有する樹脂粒子を積層した多孔質の絶縁層と、
     前記絶縁層の縁に形成され、前記樹脂粒子が溶融した溶融部と
    を備えた、二次電池。
  2.  前記絶縁層は、絶縁性を有する無機フィラーが含まれている、請求項1に記載された二次電池。
  3.  前記絶縁層は、絶縁性を有するゴムの粒子が含まれている、請求項1又は2に記載された二次電池。
  4.  前記絶縁層の縁は切断痕を有する、請求項1から3までの何れか一項に記載された二次電池。
  5.  前記絶縁層は、前記負極活物質層に積層された、請求項1から4までの何れか一項に記載された二次電池。
  6.  前記負極活物質層は、前記正極活物質層よりも幅が広く、かつ、前記正極活物質層に対向させて配置されており、前記絶縁層が前記正極活物質層に対向する側において、前記負極活物質層に積層された、請求項1から5までの何れか一項に記載された二次電池。
  7.  集電体、前記集電体の表面に形成され、電極活物質が含まれた活物質層、および、前記活物質層を覆うように、絶縁性を有する樹脂粒子を積層した多孔質の絶縁層を備えた電極シートを用意する工程;
     前記電極シートを用意する工程で用意された前記電極シートの絶縁層を、予め定められたラインに沿って溶融させる溶融工程;および、
     前記溶融工程によって前記絶縁層を溶融させた前記ラインに沿って、前記電極シートを切断する切断工程;を含む二次電池の製造方法。
  8.  前記溶融工程では、前記絶縁層にレーザを照射することによって、前記絶縁層を溶融させる、請求項7に記載された二次電池の製造方法。
  9.  前記レーザは、COレーザである、請求項8に記載された二次電池の製造方法。
  10.  前記溶融工程と、前記切断工程との間に、前記電極シートを冷却する冷却工程を備えた、請求項7から9までの何れか一項に記載された二次電池の製造方法。
  11.  前記電極シートを用意する工程において用意される電極シートは、前記絶縁層に絶縁性を有する無機フィラーが含まれている、請求項7から10までの何れか一項に記載された二次電池の製造方法。
  12.  前記電極シートを用意する工程において用意される電極シートは、前記絶縁層に絶縁性を有するゴムの粒子が含まれている、請求項7から11までの何れか一項に記載された二次電池の製造方法。
  13.  予め定められたラインに沿って電極シートを加熱するように配置された前記ヒーターと、
     前記ヒーターによって加熱された電極シートが前記ラインに沿って切断されるように配置されたカッターと、
    を備えた、電極シートの切断装置。
  14.  前記ヒーターが、前記電極シートに対してレーザを照射するレーザ装置である、請求項13に記載された電極シートの切断装置。
  15.  前記レーザ装置がCOレーザを照射する装置である、請求項14に記載された電極シートの切断装置。
  16.  前記電極シートを予め定められた搬送経路に沿って搬送する搬送装置を備えており、
     前記ヒーターとカッターとが前記搬送経路に沿って固定的に配置されており、前記ヒーターとカッターに対して、電極シートの位置を調整する位置調整機構を備えた、請求項13から15までの何れか一項に記載された電極シートの切断装置。
  17.  前記電極シートは帯状のシートであり、前記搬送装置は、当該電極シートを搬送経路に沿って連続的に搬送する装置である、請求項16に記載された電極シートの切断装置。
  18.  前記搬送装置は、前記電極シートを支持しつつ搬送するガイドロールを複数備えており、
     前記ガイドロールによって前記電極シートが支持された部位から搬送方向下流側にずれた位置において、前記電極シートが加熱されるように前記ヒーターが配置されている、請求項17に記載された電極シートの切断装置。
  19.  前記ヒーターは、前記ガイドロールによって前記電極シートが支持された部位から搬送方向下流側に1mm以上10mm以下の範囲でずれている、請求項18に記載された電極シートの切断装置。
  20.  前記ヒーターによって加熱された後、前記カッターによって切断される前に、前記電極シートを冷却する冷却装置を備えた、請求項13から19までの何れか一項に記載された電極シートの切断装置。
  21.  前記冷却装置は、電極シートに空気を吹き付ける送風機である、請求項20に記載された電極シートの切断装置。
  22.  前記冷却装置は、前記電極シートに押し当てられる金属ロールと、当該金属ロールを冷やす冷却部とを備えた、請求項21に記載された電極シートの切断装置。
PCT/JP2011/051764 2011-01-28 2011-01-28 二次電池、および、電極シートの切断装置 WO2012101816A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020157018798A KR101660203B1 (ko) 2011-01-28 2011-01-28 이차 전지의 제조 방법 및 전극 시트의 절단 장치
PCT/JP2011/051764 WO2012101816A1 (ja) 2011-01-28 2011-01-28 二次電池、および、電極シートの切断装置
US13/981,673 US9548483B2 (en) 2011-01-28 2011-01-28 Secondary battery, and electrode sheet cutting apparatus
CN201180066156.4A CN103339766B (zh) 2011-01-28 2011-01-28 二次电池和电极片的切断装置
KR1020137022591A KR101556047B1 (ko) 2011-01-28 2011-01-28 이차 전지
JP2012554595A JP5856571B2 (ja) 2011-01-28 2011-01-28 二次電池、および、電極シートの切断装置
US15/283,905 US9660250B2 (en) 2011-01-28 2016-10-03 Secondary battery, and electrode sheet cutting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/051764 WO2012101816A1 (ja) 2011-01-28 2011-01-28 二次電池、および、電極シートの切断装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/981,673 A-371-Of-International US9548483B2 (en) 2011-01-28 2011-01-28 Secondary battery, and electrode sheet cutting apparatus
US15/283,905 Division US9660250B2 (en) 2011-01-28 2016-10-03 Secondary battery, and electrode sheet cutting apparatus

Publications (1)

Publication Number Publication Date
WO2012101816A1 true WO2012101816A1 (ja) 2012-08-02

Family

ID=46580417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051764 WO2012101816A1 (ja) 2011-01-28 2011-01-28 二次電池、および、電極シートの切断装置

Country Status (5)

Country Link
US (2) US9548483B2 (ja)
JP (1) JP5856571B2 (ja)
KR (2) KR101556047B1 (ja)
CN (1) CN103339766B (ja)
WO (1) WO2012101816A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082455A (ja) * 2013-10-24 2015-04-27 株式会社豊田自動織機 積層型電池
JP2015103394A (ja) * 2013-11-25 2015-06-04 株式会社Gsユアサ 蓄電素子
JP2016119183A (ja) * 2014-12-19 2016-06-30 トヨタ自動車株式会社 電極体および正極の製造方法
JP2017054793A (ja) * 2015-09-11 2017-03-16 トヨタ自動車株式会社 セパレータ層付き電極の製造方法、及び、セパレータ層付き電極の製造装置
JP2017062871A (ja) * 2015-09-21 2017-03-30 トヨタ自動車株式会社 電極体の製造方法および製造装置
WO2017130821A1 (ja) * 2016-01-27 2017-08-03 日立オートモティブシステムズ株式会社 二次電池及びその製造方法
JP2017535910A (ja) * 2014-10-16 2017-11-30 エルジー・ケム・リミテッド 電気絶縁層がコーティングされている電極タブ及びこれを含む二次電池
JP2018060631A (ja) * 2016-10-03 2018-04-12 トヨタ自動車株式会社 セパレータ一体電極板、及びこれを用いた蓄電素子
JP2018081857A (ja) * 2016-11-17 2018-05-24 トヨタ自動車株式会社 セパレータ一体電極板、電極板対、積層型蓄電素子、及びセパレータ一体電極板の製造方法
JPWO2016208679A1 (ja) * 2015-06-24 2018-05-24 株式会社豊田自動織機 電極の製造方法、及び、電極
US10062921B2 (en) 2014-12-19 2018-08-28 Toyota Jidosha Kabushiki Kaisha Electrode body and electrode body manufacturing method
JP2019110111A (ja) * 2017-12-19 2019-07-04 株式会社リコー 電極及びその製造方法、電極素子、非水電解液蓄電素子
RU2694365C1 (ru) * 2017-11-28 2019-07-12 Тойота Дзидося Кабусики Кайся Устройство для производства листа электрода и способ производства устройства накопления энергии
CN114497432A (zh) * 2017-12-19 2022-05-13 株式会社理光 电极及制作方法、电极元件和非水电解质蓄电元件
WO2023175544A1 (en) * 2022-03-17 2023-09-21 Ricoh Company, Ltd. Method of manufacturing laminate for battery, apparatus for manufacturing laminate for battery, method of manufacturing member for battery, and apparatus for manufacturing member for battery

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080305A1 (ko) * 2013-11-27 2015-06-04 주식회사 엘지화학 전극조립체 및 이를 포함하는 전기화학소자
JP6137550B2 (ja) * 2014-01-08 2017-05-31 トヨタ自動車株式会社 リチウムイオン二次電池およびその製造方法
US10297867B2 (en) * 2014-03-19 2019-05-21 Sekisui Chemical Co., Ltd. Sheet-laminated lithium ion secondary battery and production method for sheet-laminated lithium ion secondary battery
JP6264163B2 (ja) 2014-04-08 2018-01-24 住友化学株式会社 セパレータの製造方法
KR20170036004A (ko) * 2014-09-12 2017-03-31 동관 엠프렉스 테크놀로지 리미티드 폴피스 코팅층의 제거 장치
KR102177507B1 (ko) * 2015-06-19 2020-11-11 삼성에스디아이 주식회사 극판 권취 시스템
JP6288065B2 (ja) * 2015-12-24 2018-03-07 トヨタ自動車株式会社 二次電池の製造方法
JP5965094B1 (ja) * 2016-01-06 2016-08-03 オー・エム・シー株式会社 原反の分割方法とその分割機構及び分割装置
JP6948601B2 (ja) * 2017-03-31 2021-10-13 パナソニックIpマネジメント株式会社 二次電池
CN208173722U (zh) * 2017-08-24 2018-11-30 日立汽车系统株式会社 二次电池
US20190148692A1 (en) * 2017-11-16 2019-05-16 Apple Inc. Direct coated separators and formation processes
JP7447406B2 (ja) 2018-11-09 2024-03-12 株式会社リコー 電極、電極素子、非水電解液蓄電素子
WO2020095824A1 (en) * 2018-11-09 2020-05-14 Ricoh Company, Ltd. Inorganic particle layer, electrode, electrode element, and non-aqueous electrolyte power storage element
JP7342446B2 (ja) * 2019-06-19 2023-09-12 トヨタ自動車株式会社 蓄電素子
KR102091274B1 (ko) 2019-12-02 2020-03-19 (주)피엔티 이차전지 전극막 트리밍용 금형장치
KR20210069485A (ko) 2019-12-03 2021-06-11 (주)피엔티 이차전지용 전극 활물질 도포장치
KR102091273B1 (ko) 2019-12-04 2020-03-19 (주)피엔티 이차전지용 전극막 트리밍장치
KR20230014436A (ko) * 2021-07-21 2023-01-30 주식회사 엘지에너지솔루션 전극의 제조 방법 및 이 방법에 사용되는 전극 제조 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11138327A (ja) * 1997-11-07 1999-05-25 Tdk Corp 電池用電極の切断方法
JPH11339783A (ja) * 1998-04-22 1999-12-10 Mitsubishi Chemical Corp 赤外線照射を利用した電池用電極の製造方法
WO2005078828A1 (ja) * 2004-02-18 2005-08-25 Matsushita Electric Industrial Co., Ltd. 二次電池
JP2011018637A (ja) * 2009-06-08 2011-01-27 Panasonic Corp 電気化学素子用電極の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195563A (ja) * 1985-02-25 1986-08-29 Toshiba Battery Co Ltd 積層乾電池
JPH0636801A (ja) 1992-07-13 1994-02-10 Nippon Telegr & Teleph Corp <Ntt> 角形非水電解液二次電池
JP3553417B2 (ja) 1999-05-14 2004-08-11 松下電器産業株式会社 電池用電極の製造方法
JP4602254B2 (ja) 2003-09-18 2010-12-22 パナソニック株式会社 リチウムイオン二次電池
CN100394632C (zh) * 2004-03-30 2008-06-11 松下电器产业株式会社 非水电解液二次电池
JP5011632B2 (ja) 2004-06-29 2012-08-29 Tdk株式会社 スリッター装置及び電極の製造方法
KR100772305B1 (ko) 2005-03-02 2007-11-02 마쯔시다덴기산교 가부시키가이샤 리튬이온 이차전지 및 그 제조법
KR101223081B1 (ko) 2006-09-07 2013-01-17 히다치 막셀 가부시키가이샤 전지용 세퍼레이터 및 리튬 2차 전지
JP5268673B2 (ja) 2009-01-21 2013-08-21 日立マクセル株式会社 非水電解質二次電池の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11138327A (ja) * 1997-11-07 1999-05-25 Tdk Corp 電池用電極の切断方法
JPH11339783A (ja) * 1998-04-22 1999-12-10 Mitsubishi Chemical Corp 赤外線照射を利用した電池用電極の製造方法
WO2005078828A1 (ja) * 2004-02-18 2005-08-25 Matsushita Electric Industrial Co., Ltd. 二次電池
JP2011018637A (ja) * 2009-06-08 2011-01-27 Panasonic Corp 電気化学素子用電極の製造方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082455A (ja) * 2013-10-24 2015-04-27 株式会社豊田自動織機 積層型電池
JP2015103394A (ja) * 2013-11-25 2015-06-04 株式会社Gsユアサ 蓄電素子
JP2017535910A (ja) * 2014-10-16 2017-11-30 エルジー・ケム・リミテッド 電気絶縁層がコーティングされている電極タブ及びこれを含む二次電池
US10062921B2 (en) 2014-12-19 2018-08-28 Toyota Jidosha Kabushiki Kaisha Electrode body and electrode body manufacturing method
JP2016119183A (ja) * 2014-12-19 2016-06-30 トヨタ自動車株式会社 電極体および正極の製造方法
JPWO2016208679A1 (ja) * 2015-06-24 2018-05-24 株式会社豊田自動織機 電極の製造方法、及び、電極
JP2017054793A (ja) * 2015-09-11 2017-03-16 トヨタ自動車株式会社 セパレータ層付き電極の製造方法、及び、セパレータ層付き電極の製造装置
US11673209B2 (en) 2015-09-11 2023-06-13 Toyota Jidosha Kabushiki Kaisha Manufacturing method for an electrode with a separator layer and manufacturing apparatus for an electrode with a separator layer
US10646958B2 (en) 2015-09-11 2020-05-12 Toyota Jidosha Kabushiki Kaisha Manufacturing method for an electrode with a separator layer and manufacturing apparatus for an electrode with a separator layer
JP2017062871A (ja) * 2015-09-21 2017-03-30 トヨタ自動車株式会社 電極体の製造方法および製造装置
WO2017130821A1 (ja) * 2016-01-27 2017-08-03 日立オートモティブシステムズ株式会社 二次電池及びその製造方法
US11189861B2 (en) 2016-01-27 2021-11-30 Vehicle Energy Japan Inc. Secondary battery and manufacturing method thereof
US10665843B2 (en) 2016-10-03 2020-05-26 Toyota Jidosha Kabushiki Kaisha Separator-integrated electrode plate and capacitor element
JP2018060631A (ja) * 2016-10-03 2018-04-12 トヨタ自動車株式会社 セパレータ一体電極板、及びこれを用いた蓄電素子
US10644288B2 (en) 2016-11-17 2020-05-05 Toyota Jidosha Kabushiki Kaisha Separator-integrated electrode plate, electrode plate pair, stacked electric power storage element, and method of manufacturing separator-integrated electrode plate
JP2018081857A (ja) * 2016-11-17 2018-05-24 トヨタ自動車株式会社 セパレータ一体電極板、電極板対、積層型蓄電素子、及びセパレータ一体電極板の製造方法
RU2694365C1 (ru) * 2017-11-28 2019-07-12 Тойота Дзидося Кабусики Кайся Устройство для производства листа электрода и способ производства устройства накопления энергии
JP2019110111A (ja) * 2017-12-19 2019-07-04 株式会社リコー 電極及びその製造方法、電極素子、非水電解液蓄電素子
CN114497432A (zh) * 2017-12-19 2022-05-13 株式会社理光 电极及制作方法、电极元件和非水电解质蓄电元件
JP7206763B2 (ja) 2017-12-19 2023-01-18 株式会社リコー 電極及びその製造方法、電極素子、非水電解液蓄電素子
WO2023175544A1 (en) * 2022-03-17 2023-09-21 Ricoh Company, Ltd. Method of manufacturing laminate for battery, apparatus for manufacturing laminate for battery, method of manufacturing member for battery, and apparatus for manufacturing member for battery

Also Published As

Publication number Publication date
KR101556047B1 (ko) 2015-09-25
JPWO2012101816A1 (ja) 2014-06-30
KR20130118971A (ko) 2013-10-30
US20170084903A1 (en) 2017-03-23
US9660250B2 (en) 2017-05-23
US9548483B2 (en) 2017-01-17
CN103339766B (zh) 2015-07-29
US20130309566A1 (en) 2013-11-21
JP5856571B2 (ja) 2016-02-10
CN103339766A (zh) 2013-10-02
KR101660203B1 (ko) 2016-09-26
KR20150088905A (ko) 2015-08-03

Similar Documents

Publication Publication Date Title
JP5856571B2 (ja) 二次電池、および、電極シートの切断装置
CN101730952B (zh) 非水电解质二次电池用电极板及使用了其的非水电解质二次电池
JP6384729B2 (ja) 非水電解液二次電池とその製造方法
JP5761582B2 (ja) 二次電池
WO2012150635A1 (ja) 非水電解質二次電池
JP6086260B2 (ja) 非水電解質二次電池
KR101944443B1 (ko) 비수 전해질 이차 전지, 상기 비수 전해질 이차 전지에 사용되는 전극체, 및 상기 전극체의 제조방법
JP2008251250A (ja) アノード及びリチウムイオン二次電池
WO2013153619A1 (ja) 非水電解質二次電池
US11757084B2 (en) Non-aqueous electrolyte secondary battery
JP6057124B2 (ja) 二次電池
KR20130105362A (ko) 전기 디바이스용 정극 및 이것을 사용한 전기 디바이스
US20230395807A1 (en) Non-aqueous electrolyte secondary battery
JP5880964B2 (ja) 非水電解質二次電池
CN104810503B (zh) 二次电池
JP6108187B2 (ja) 二次電池
JP6008188B2 (ja) 非水電解液二次電池
JP6489360B2 (ja) 二次電池
JP2011100603A (ja) リチウムイオン二次電池
JP5148142B2 (ja) 非水電解質電池
JP2011134589A (ja) 二次電池用電極の製造方法
JP2006179205A (ja) 非水電解質電池
JP2016015245A (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012554595

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13981673

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137022591

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11856748

Country of ref document: EP

Kind code of ref document: A1