WO2012100444A1 - 彩色滤光片构造及其制造方法 - Google Patents

彩色滤光片构造及其制造方法 Download PDF

Info

Publication number
WO2012100444A1
WO2012100444A1 PCT/CN2011/071213 CN2011071213W WO2012100444A1 WO 2012100444 A1 WO2012100444 A1 WO 2012100444A1 CN 2011071213 W CN2011071213 W CN 2011071213W WO 2012100444 A1 WO2012100444 A1 WO 2012100444A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
spacer
forming
black matrix
layer
Prior art date
Application number
PCT/CN2011/071213
Other languages
English (en)
French (fr)
Inventor
伍浚铭
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2012100444A1 publication Critical patent/WO2012100444A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars

Definitions

  • the present invention relates to the field of liquid crystal panel technology, and in particular, to a color filter structure and a method of fabricating the same.
  • Liquid crystal display (Liquid Crystal Display, LCD) is a flat panel display device that uses the characteristics of liquid crystal materials to display images (Flat Panel) Display, FPD), which is more lightweight, lower drive voltage and lower power consumption than other display devices, has become the mainstream product in the entire consumer market.
  • LCD Liquid Crystal Display
  • FPD Full Panel Display
  • liquid crystal displays In the production process of liquid crystal displays, it can be roughly divided into an Array process, a middle cell process, and a rear module process.
  • the matrix process in the previous paragraph is to produce thin film transistor (TFT) substrates and color filters (Color Film) substrate.
  • TFT thin film transistor
  • Color Film Color Film
  • the middle-stage box-forming process is responsible for combining the TFT substrate with the CF plate, and injecting liquid crystal between the two to cut the panel of the product size.
  • the rear-end modular process is responsible for the assembly process of the assembled panel with the backlight module, the panel drive circuit, and the outer frame.
  • the liquid crystal display can display color images, mainly relying on the function produced by the color filter: when the backlight of the liquid crystal display passes through the control of the liquid crystal and the driving IC to form a gray-scale light source, the color filter is coated on the color filter. The red, green, and blue color pigments resist, and the light source then forms red, green, and blue light through the color filter, and finally mixes to form a color image. Therefore, the color filter is a key component of the liquid crystal display, and the basic structure of the color filter is made of a glass substrate (Glass Substrate), Black Matrix, Color Layer, and Transparent Conductive Layer (ITO, indium tin) Oxide indium tin oxide) and the like.
  • the color filter is a key component of the liquid crystal display, and the basic structure of the color filter is made of a glass substrate (Glass Substrate), Black Matrix, Color Layer, and Transparent Conductive Layer (ITO, indium tin) Oxide indium tin oxide) and
  • FIG. 1A to FIG. 1G are schematic diagrams showing a process of manufacturing a conventional color filter.
  • a glass substrate 11 is prepared to form a black matrix layer 12 on the glass substrate 11, and the black matrix layer 12 has a plurality of voids.
  • a first color resist unit 13a is formed in a corresponding space of the black matrix layer 12 on the glass substrate 11.
  • a second color resist unit 13b is formed in the corresponding space of the black matrix layer 12 on the glass substrate 11.
  • a third color resist unit 13c is formed in the corresponding space of the black matrix layer 12 on the glass substrate 11.
  • the color resist units 13a, 13b, and 13c have the same horizontal height and are respectively located in corresponding spaces of the black matrix layer 12.
  • One of the first color resisting unit 13a, one of the second color resisting unit 13b and one of the third color resisting units 13c form a set of pixel units 130, and all of the pixel units 130 together form a color pixel.
  • Layer 13
  • a transparent conductive layer 14 is formed to cover the black matrix layer 12 and the color pixel layer 13.
  • a photoresist layer 15 is formed on the transparent conductive layer 14.
  • the photoresist layer 15 is exposed and developed in a photomask (not shown) to define a plurality of spacers 15a.
  • the conventional color filter structure 10 includes a glass substrate 11, a black matrix layer 12, a color pixel layer 13, a transparent conductive layer 14, and a plurality of spacers 15a.
  • the glass substrate 11 is used as a material of a substrate, the black matrix layer 12 is disposed on the glass substrate 11, and the black matrix layer 12 has a plurality of voids (not labeled);
  • the color pixel layer 13 includes a plurality of a color resisting unit 13a, a plurality of second color resisting units 13b and a plurality of third color resisting units 13c, wherein the first, second and third color resisting units 13a, 13b and 13c are respectively located on the black matrix layer 12 Corresponding to the gap.
  • the materials of the color resist units 13a, 13b, and 13c are preferably red (R) photoresist, green (G) photoresist, and blue (B) photoresist.
  • the transparent conductive layer 14 covers the black matrix layer 12 and the color pixel layer 13; the plurality of spacers 15a are disposed on the transparent conductive layer 14, and the plurality of spacers 15a Having a height greater than the height of the color resisting units 13a, 13b, and 13c, the plurality of spacers 15a are used to hold two when the color filter structure 10 is further assembled with another thin film transistor TFT substrate. The distance between the substrates is to uniformly fill the liquid crystal.
  • a primary object of the present invention is to provide a method of fabricating a color filter capable of reducing a step of forming a photoresist layer and partially exposing the photoresist layer to form a spacer.
  • the present invention provides a method of fabricating a color filter structure comprising the steps of:
  • first color resisting units Forming a plurality of first color resisting units, a second color resisting unit and a third color resisting unit in corresponding spaces of the black matrix layer, wherein the first, second and third color resisting units together form a color pixel layer ;
  • a third spacer is formed on the second spacer by the same color resist material as the third color resisting unit, by the first interval of the stack a second spacer and a third spacer forming the gap;
  • the forming a plurality of first color resisting units are located in corresponding spaces of the black matrix layer, and in the same process as forming the first color resisting unit,
  • the step of forming the first spacer on the black matrix layer by the same color resist material of the color resisting unit comprises: forming a first color resist layer on the glass substrate and the black matrix layer, and the first color resist The layer performs an exposure development process to simultaneously form a first color resisting unit in a corresponding space of the black matrix layer, and a first spacer on the black matrix layer.
  • an area of the first spacing portion is larger than an area of the second spacing portion, and an area of the second spacing portion is larger than an area of the third spacing portion.
  • the manufacturing method forms the first, second, and third color resisting units by a transfer method, and forms the first, second, and third color resisting units
  • the spacer is formed on the black matrix layer with the same color resist material as the one color resistive unit.
  • the present invention provides a color filter construction, the color filter construction comprising:
  • a black matrix layer disposed on the glass substrate and having a plurality of voids
  • a color pixel layer disposed on the glass substrate, comprising a plurality of first color resisting units, a plurality of second color resisting units and a plurality of third color resisting units, the first, second and third color resisting layers
  • the cells are respectively located in corresponding spaces of the black matrix layer;
  • each of the spacers being formed of at least one of the same color resistive materials of the first, second, and third color resisting units, wherein the gap a height of each of the first, second, and third color resisting units is greater than a height of each of the first, second, and third color resisting units;
  • a transparent conductive layer covering the black matrix layer, the color pixel layer, and the plurality of spacers.
  • the color filter structure further includes a transparent planarization photoresist layer overlying the transparent conductive layer.
  • the spacer includes first, second, and third spacers, and the first, second, and third spacers are respectively formed by the first, second, and third colors
  • the resistive unit is formed of the same color resist material.
  • the first, second and third spacers are sequentially stacked from bottom to top, the area of the first spacer is larger than the area of the second spacer, the second The area of the spacer is larger than the area of the third spacer.
  • the present invention provides a method of fabricating a color filter structure comprising the following steps:
  • first color resisting units Forming a plurality of first color resisting units, a second color resisting unit, and a third color resisting unit in corresponding spaces of the black matrix layer; the first, second, and third color resisting units collectively forming a color pixel layer ;
  • the same color resist material as the at least one color resisting unit is on the black matrix layer Forming a plurality of spacers;
  • the method further comprises: forming a transparent planarization photoresist layer overlying the transparent conductive layer.
  • the same process as the at least one color resisting unit forming the first, second, and third color resisting units is the same as the at least one color resisting unit
  • the step of forming a plurality of spacers on the black matrix layer by the color resist material comprises:
  • a third spacer is formed on the second spacer by the same color resist material as the third color resisting unit, by the first interval of the stack
  • the portion, the second spacer, and the third spacer constitute the gap.
  • the forming a plurality of first color resisting units are located in corresponding spaces of the black matrix layer, and in the same process as forming the first color resisting unit,
  • the step of forming the first spacer on the black matrix layer by the same color resist material of the color resisting unit comprises: forming a first color resist layer on the glass substrate and the black matrix layer, and the first color resist The layer performs an exposure development process to simultaneously form a first color resisting unit in a corresponding space of the black matrix layer, and a first spacer on the black matrix layer.
  • an area of the first spacing portion is larger than an area of the second spacing portion, and an area of the second spacing portion is larger than an area of the third spacing portion.
  • the manufacturing method forms the first, second, and third color resisting units by a transfer method, and forms the first, second, and third color resisting units
  • the spacer is formed on the black matrix layer by multiple coatings with the same color resist material as the one color resisting unit.
  • the formation of the spacer requires a separate exposure and development process.
  • the spacer is formed by the same color resist material while the color pixel layer is formed, thereby reducing
  • a step of forming a photoresist layer and partially exposing the photoresist layer to form a spacer is relatively simple in manufacturing process and requires low manufacturing cost, thereby saving manufacturing cost of the color filter.
  • FIGS. 1A to 1G are schematic flow charts showing a method of manufacturing a conventional color filter.
  • FIGS. 2A to 2F are schematic views showing a method of manufacturing a color filter according to a first embodiment of the present invention.
  • Fig. 3 is a flow chart showing a method of manufacturing a color filter according to a first embodiment of the present invention.
  • Figure 4 is a partial schematic view showing the construction of a color filter of a second embodiment of the present invention.
  • Figure 5 is a partial schematic view showing the configuration of a color filter of a third embodiment of the present invention.
  • FIG. 2A to FIG. 2F and FIG. 3, FIG. 2A to FIG. 2F are schematic diagrams showing a method of manufacturing a color filter structure 20 according to a first embodiment of the present invention
  • FIG. 3 discloses a first embodiment of the present invention.
  • a glass substrate 21 is prepared to form a black matrix layer 22 on the glass substrate 21, the black matrix layer 22 having a plurality of voids.
  • the black matrix layer 22 on the glass substrate 21 is formed by the first color resisting unit 23a, the second color resisting unit 23b, and the third color resisting unit 23c, respectively.
  • a color pixel layer 23 is formed in common. While forming the color pixel layer 23, that is, in the same process as forming at least one color resisting unit of the first, second, and third color resist units 23a, 23b, and 23c, The same color resist material of at least one color resistive unit forms a plurality of spacers 24 on the black matrix layer 22.
  • Step S021 forming a first color resist layer (not shown) on the glass substrate 21 and the black matrix layer 22, performing an exposure and development process on the first color resist layer to simultaneously form the first color resist unit 23a.
  • the corresponding spaces in the black matrix layer 22 and the first spacers 24a are on the black matrix layer 22 (Fig. 2B). That is, in the same process as the formation of the first color resist unit 23a, the first spacer 24a is formed on the black matrix layer 22 with the same color resist material as the first color resist unit 23a.
  • Step S022 forming a second color resist layer (not shown) on the glass substrate 21 and the black matrix layer 22, and performing an exposure and development process on the second color resist layer to simultaneously form the second color resist unit 23b.
  • the corresponding gaps of the black matrix layer 22 and the second spacers 24b are on the first spacers 24a (Fig. 2C). That is, in the same process as the formation of the second color resist unit 23b, the second spacer 24b is formed on the first spacer 24a with the same color resist material as the second color resist unit 23b.
  • Step S023 Next, a third color resist layer (not shown) is formed on the glass substrate 21 and the black matrix layer 22, and the third color resist layer is subjected to an exposure and development process to simultaneously form a third color resistive unit.
  • 23c is in the corresponding gap of the black matrix layer 22, and the third spacer 24c is on the second spacer 24b (Fig. 2D). That is, in the same process as the formation of the third color resist unit 23c, the third spacer 24c is formed on the second spacer 24b with the same color resist material as the third color resist unit 23c.
  • the adjacent one of the first color resisting unit 23a, the second color resisting unit 23b and the third color resisting unit 23c form a group of pixel units 230, and all the pixel units 230 are combined.
  • the first color resisting unit 23a, the second color resisting unit 23b, and the third color resisting unit 23c are located at the same level and slightly higher than the height of the black matrix layer 22.
  • the first spacer portion 24a, the second spacer portion 24b, and the third spacer portion 24c are sequentially stacked on the surface of the black matrix layer 22, and their heights are sequentially increased. Therefore, one of the first spacers 24a, one of the second spacers 24b, and one of the third spacers 24c are sequentially stacked to form one of the spacers 24.
  • a transparent conductive layer 25 is formed to cover the black matrix layer 22, the color pixel layer 23, and the spacer 24.
  • a transparent planarization photoresist layer 26 is formed to cover the transparent conductive layer 25.
  • the said first color resisting unit 23a, the second color resisting unit 23b or the third color resisting unit 23c are formed on the glass substrate 21. While in the plurality of voids of the black matrix layer 22, in the same process as the at least one color resisting unit forming the first, second, and third color resists 23a, 23b, and 23c, A color resist material of the same color resistive unit 23a, 23b or 23c forms a plurality of spacers on the black matrix layer 22. That is, at least one spacer 24a, 24b or 24c is produced in at least one of the three steps to form the spacer 24.
  • each of the gaps 24 is formed by at least one of the spacers 24a, 24b or 24c, and the height of the spacers 24 is greater than the first, second and third color resist units 23a
  • the respective heights of 23b and 23c thus satisfy the basic requirements of the spacers 24 of the color filter construction 20 of the present invention.
  • the method for forming the first, second, and third color resisting units 23a, 23b, and 23c is, for example, forming respective color resist layers on the glass substrate 21 and the black matrix layer 22, and then using a photomask (mask). Opening a hole at a position of a corresponding gap of the black matrix layer 22, and also opening a hole at the position of the spacer 24, so that a position at a corresponding gap of the black matrix layer 22 can be simultaneously formed during exposure development.
  • the respective color resisting units 23a, 23b, and 23c also form the respective spacer portions 24a, 24b, and 24c on the black matrix layer 22.
  • the method of forming the respective color resist units 23a, 23b, and 23c and the respective partition portions 24a, 24b, and 24c of the present invention is not limited thereto.
  • the present invention can be, for example, by Lithography, Dry Film, Transfer or Inkjet (Inkjet). Printing and the like to form the respective color resisting units 23a, 23b, and 23c in the plurality of voids of the black matrix layer 22 on the glass substrate 21, and forming the respective partition portions 24a, 24b on the black matrix layer 22 And 24c, but the invention is not limited thereto.
  • the transparent conductive layer 25 or the transparent planarizing resist layer 26 is formed by evaporation or evaporation, but the invention is not limited thereto.
  • the user can select a suitable method according to actual needs, so as to form the first, second, and third color resist units 23a, 23b, and 23c while forming the color pixel layer 23.
  • a suitable method according to actual needs, so as to form the first, second, and third color resist units 23a, 23b, and 23c while forming the color pixel layer 23.
  • a plurality of spacers are formed on the black matrix layer 22 with the same color resist material as the at least one color resisting unit 23a, 23b or 23c. Therefore, the manufacturing method of the color filter structure of the present invention is summarized as follows:
  • the same color resist material as the at least one color resisting unit is Forming a plurality of spacers 24 on the black matrix layer 22;
  • a transparent conductive layer 25 is formed to cover the black matrix layer 22, the color pixel layer 23, and the spacer 24.
  • a color filter structure 20 includes a glass substrate 21, a black matrix layer 22, a color pixel layer 23, a plurality of spacers 24, and a transparent conductive layer. 25 and a transparent planarization photoresist layer 26.
  • the glass substrate 21 is used as a material of a substrate, and the black matrix layer 22 is disposed on the glass substrate 21, and the black matrix layer 22 has a plurality of voids (not labeled).
  • the color pixel layer 23 is disposed on the glass substrate 22, and includes a plurality of first color resist units 23a, a plurality of second color resist units 23b, and a plurality of third color resist units 23c, the first and second And a third color resisting unit 23a, 23b, 23c are respectively located in corresponding spaces of the black matrix layer 22.
  • the plurality of spacers 24 are disposed on the black matrix layer 22, and each of the spacers 24 is the same color as at least one of the first, second, and third color resist units 23a, 23b, and 23c.
  • a resist material is formed, wherein a height of the spacer 24 is greater than a height of each of the first, second, and third color resist units 23a, 23b, and 23c.
  • the transparent conductive layer 25 covers the black matrix layer 22, the color pixel layer 23, and the plurality of spacers 24.
  • the transparent planarization photoresist layer 26 covers the transparent conductive layer 25.
  • the materials of the color resist units 23a, 23b, and 23c are preferably red photoresist, green photoresist, and blue photoresist, and are respectively located in corresponding spaces of the black matrix layer 22.
  • the first spacer 24a is preferably formed of a material of the first color resist unit 23a; the second spacer 24b is preferably formed of a material of the second color resist unit 23b; and the third The spacer 24c is preferably formed of the material of the third color resist unit 23c.
  • the plurality of spacers 24 of the color filter structure 20 of the present invention have a height greater than a height of each of the first, second, and third color resist units 23a, 23b, and 23c, and further When the color filter structure 20 is assembled with another thin film transistor TFT substrate (not shown), the distance between the two substrates can be kept to uniformly fill the liquid crystal. Furthermore, the transparent planarization photoresist layer 26 of the color filter structure 20 can prevent the surface of the transparent conductive layer 25 and the surface of the TFT TFT substrate when assembled with the TFT transistor TFT substrate. A short circuit occurs due to direct contact.
  • the color filter structure 20 of the present invention and the manufacturing method thereof may omit the transparent flatness.
  • the photoresist layer 26 is formed.
  • the spacer is finally formed by exposure and development (a step of forming a photoresist layer, making a mask, and exposing and developing), the existing color filter is made.
  • the manufacturing process of the film is complicated and the manufacturing cost is high.
  • the present invention is achieved by forming the color pixel layer 23, that is, in the same process as forming at least one color resisting unit of the first, second, and third color resist units 23a, 23b, and 23c.
  • a plurality of spacers are formed on the black matrix layer 22 in the same color resist material as the at least one color resistive unit.
  • the step of forming a photoresist layer and partially exposing the photoresist layer to form a spacer can be reduced compared to the prior art.
  • the present invention may also prevent the occurrence of a short circuit when the transparent conductive layer 25 is assembled, it is necessary to increase the provision of the transparent planarization photoresist layer 26, but the transparent planarization photoresist layer 26 is provided to form a photoresist.
  • the steps and costs required for the layer and exposure development are still relatively simple and relatively low cost, thereby saving the manufacturing cost of the color filter construction 20.
  • FIG. 4 discloses a color filter construction of a second embodiment of the present invention.
  • the color filter structure 20 of the second embodiment of the present invention is similar to the color filter structure 20 of the first embodiment of the present invention, so that the same component symbols and names are used, but the difference is that
  • the spacer 24 is formed only by a single color resist material (spacer) by forming the first color resist unit 23a and the second color resist.
  • the unit 23b or the third color resisting unit 23c is formed in one of the color resist materials (the spacers 24a, 24b or 24c) while being formed in the gap of the black matrix layer 22 on the glass substrate 21.
  • the gap 24 is.
  • the single spacer portion 24a, 24b or 24c must have a relatively high thickness, and this height is greater than the respective heights of the first, second and third color resist units 23a, 23b and 23c in order to create an interval.
  • the color filter structure 20 functions as a thin film transistor TFT substrate.
  • the manufacturing method is to form the first, second, and third color resist units 23a, 23b, and 23c by a transfer method, and to form the first, second, and third color resist units 23a,
  • the spacer 24 is formed on the black matrix layer 22 with the same color resist material as the one color resisting unit.
  • the present invention does not limit the spacer portion 24a, The number, thickness or stacking order of 24b or 24c can be flexibly adjusted according to actual needs when used.
  • FIG. 5 discloses a color filter construction of a third embodiment of the present invention.
  • the color filter structure 20 of the third embodiment of the present invention is similar to the color filter structure 20 of the first embodiment of the present invention, so that the same component symbols and names are used, but the difference is that
  • the first, second, and third spacers 24a, 24b, and 24c are sequentially stacked from bottom to top, and the area of the first spacer 24a is larger than the area of the second spacer 24b, and the second interval
  • the area of the portion 24b is larger than the area of the third partition portion 24c.
  • the spacer 24a, 24b, and 24c located at a relatively lower level is slightly larger than the spacing portion 24a located at a relatively high level, The area of 24b and 24c.
  • the bottom area of the spacer 24 is larger than the area of the top of the spacer 24. Therefore, the spacer 24 can be relatively firmly fixed to the black matrix layer 22.
  • the present invention forms a spacer 24 while forming the color pixel layer 23, and the present invention can reduce the step of forming a photoresist layer and partially exposing the photoresist layer to fabricate a spacer as compared with the prior art.
  • the color filter construction 20 and its method of manufacture are relatively simple and relatively low cost, thereby saving manufacturing costs of the color filter construction 20.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Description

彩色滤光片构造及其制造方法 技术领域
本发明涉及液晶面板技术领域,特别是涉及一种彩色滤光片构造及其制造方法。
背景技术
液晶显示器(Liquid Crystal Display,LCD)是利用液晶材料的特性来显示图像的一种平板显示装置(Flat Panel Display,FPD),其相较于其他显示装置而言更具轻薄、低驱动电压及低功耗等优点,已经成为整个消费市场上的主流产品。
现今液晶显示器的制作过程中,大致可分为前段矩阵(Array)工艺、中段成盒(Cell)工艺及后段模块化(Module)工艺。前段的矩阵工艺为生产薄膜式晶体管(TFT)基板及彩色滤光片(Color Film)基板。中段成盒工艺则负责将TFT基板与CF板组合,并两者之间注入液晶与切割合乎产品尺寸之面板。后段模块化工艺则负责将组合后的面板与背光模块、面板驱动电路、外框等做组装的工艺。
液晶显示器所以能呈现彩色的影像,主要就是靠着彩色滤光片所产生的功能:当液晶显示器的背光源透过液晶及驱动IC的控制形成灰阶光源,彩色滤光片上因涂布着红、绿、蓝三色颜料光阻,此光源再通过彩色滤光片即形成红、绿、蓝色光,最后混合形成彩色影像。因此,彩色滤光片是液晶显示器的关键组件,而彩色滤光片的基本结构是由玻璃基板(Glass Substrate)、黑色矩阵层(Black Matrix)、彩色画素层(Color Layer)及透明导电层(ITO, indium tin oxide铟锡氧化物)等所组成。
请参照图1A至图1G所示,图1A至图1G揭示一种现有的彩色滤光片的制造方法的流程示意图。
首先,如图1A所示,准备一玻璃基板11,形成一黑色矩阵层12于所述玻璃基板11上,所述黑色矩阵层12具有多个空隙。
接着,如图1B所示,形成第一色阻单元13a于所述玻璃基板11上的所述黑色矩阵层12的对应空隙内。
接着,如图1C所示,形成第二色阻单元13b于所述玻璃基板11上的所述黑色矩阵层12的对应空隙内。
接着,如图1D所示,形成第三色阻单元13c于所述玻璃基板11上的所述黑色矩阵层12的对应空隙内。
其中,所述各色阻单元13a、13b及13c具有相同水平高度,并分别位于所述黑色矩阵层12的对应空隙内。一个所述第一色阻单元13a、一个所述第二色阻单元13b及一个所述第三色阻单元13c形成一组画素(pixel)单元130,而所有的画素单元130共同组成一彩色画素层13。
接着,如图1E所示,形成一透明导电层14覆盖于所述黑色矩阵层12及所述彩色画素层13。
接着,如图1F所示,形成一光阻层15于所述透明导电层14上。
最后,如图1G所示,以一光掩膜(mask)(未绘示)对所述光阻层15进行曝光显影以定义形成若干间隙子15a。
通过上述步骤可完成一现有的彩色滤光片构造10。如图1G所示,所述现有彩色滤光片构造10包含:一玻璃基板11、一黑色矩阵层12、一彩色画素层13、一透明导电层14及多个间隙子15a。所述玻璃基板11作为基底的材料,所述黑色矩阵层12设于所述玻璃基板11上,所述黑色矩阵层12具有多个空隙(未标示);所述彩色画素层13包含数个第一色阻单元13a、数个第二色阻单元13b及数个第三色阻单元13c,所述第一、第二及第三色阻单元13a、13b及13c分别位于所述黑色矩阵层12的对应空隙内。所述色阻单元13a、13b及13c的材料优选是红色(R)光阻、绿色(G)光阻及蓝色(B)光阻。
再者,所述透明导电层14覆盖于所述黑色矩阵层12及所述彩色画素层13上;所述多个间隙子15a设于所述透明导电层14上,所述多个间隙子15a具有一高度大于所述色阻单元13a、13b及13c的高度,在进一步将所述彩色滤光片构造10与另一薄膜式晶体管TFT基板组装时,所述多个间隙子15a用以保持两个基板的间隔距离,以均匀填充液晶。
然而,在现有的彩色滤光片构造10的制造方法中,因为最后要通过曝光显影的方式来制作间隙子15a,必需执行形成光阻层15、制作掩膜及曝光显影的步骤。因此,其制造过程较为复杂及所需制造成本较高,从而提高所述彩色滤光片构造10的制造成本。
故,有必要提供一种彩色滤光片构造及其制造方法,以解决现有技术所存在的问题。
技术问题
本发明的主要目的是提供一种彩色滤光片的制造方法,能够减少一道形成光阻层以及将所述光阻层局部曝光以制造间隙子的步骤。
技术解决方案
为达上述目的,本发明提供一种彩色滤光片构造的制造方法,其包含以下步骤:
准备一玻璃基板,形成一黑色矩阵层于所述玻璃基板上,所述黑色矩阵层具有多个空隙;
形成数个第一色阻单元、第二色阻单元和第三色阻单元位于所述黑色矩阵层的对应空隙内,所述第一、第二及第三色阻单元共同构成一彩色画素层;
在与形成所述第一色阻单元的同一道工序中,以与第一色阻单元相同的色阻材料在所述黑色矩阵层上形成第一间隔部;
在与形成所述第二色阻单元的同一道工序中,以与第二色阻单元相同的色阻材料在所述第一间隔部上形成第二间隔部;
在与形成所述第三色阻单元的同一道工序中,以与第三色阻单元相同的色阻材料在所述第二间隔部上形成第三间隔部,由堆叠的所述第一间隔部、第二间隔部和第三间隔部组成所述间隙子;
形成一透明导电层覆盖于所述黑色矩阵层、所述彩色画素层及所述间隙子;以及
形成一透明平坦化光阻层覆盖于所述透明导电层上。
在本发明的一实施例中,所述形成数个第一色阻单元位于所述黑色矩阵层的对应空隙内,以及在与形成所述第一色阻单元的同一道工序中,以与第一色阻单元相同的色阻材料在所述黑色矩阵层上形成第一间隔部的步骤包括:形成一第一色阻层于所述玻璃基板及黑色矩阵层上,对所述第一色阻层进行曝光显影制程以同时形成第一色阻单元于所述黑色矩阵层的对应空隙内,以及第一间隔部于所述黑色矩阵层上。
在本发明的一实施例中,所述第一间隔部的面积大于所述第二间隔部的面积,所述第二间隔部的面积大于所述第三间隔部的面积。
在本发明的一实施例中,所述制造方法是以转印法形成所述第一、第二及第三色阻单元,并且在与形成所述第一、第二及第三色阻单元的一种色阻单元的同一道工序中,以与所述一种色阻单元相同的色阻材料在所述黑色矩阵层上形成所述间隙子。
为达上述另一目的,本发明提供一种彩色滤光片构造,所述彩色滤光片构造包含:
一玻璃基板;
一黑色矩阵层,设于所述玻璃基板上,具有多个空隙;
一彩色画素层,设于所述玻璃基板上,包含数个第一色阻单元、数个第二色阻单元及数个第三色阻单元,所述第一、第二及第三色阻单元分别位于所述黑色矩阵层的对应空隙内;
多个间隙子,设于所述黑色矩阵层上,每一所述间隙子是由所述第一、第二及第三色阻单元中至少一相同的色阻材料所形成,其中所述间隙子的高度大于所述第一、第二及第三色阻单元各自的高度;及
一透明导电层,覆盖所述黑色矩阵层、所述彩色画素层及所述多个间隙子。
在本发明的一实施例中,所述彩色滤光片构造另包含一透明平坦化光阻层,覆盖于所述透明导电层上。
在本发明的一实施例中,所述间隙子包含第一、第二及第三间隔部,所述第一、第二及第三间隔部分别由所述第一、第二及第三色阻单元相同的色阻材料所形成。
在本发明的一实施例中,所述第一、第二及第三间隔部依次从下到上堆叠,所述第一间隔部的面积大于所述第二间隔部的面积,所述第二间隔部的面积大于所述第三间隔部的面积。
为达上述再一目的,本发明提供一种彩色滤光片构造的制造方法,其包含以下步骤:
准备一玻璃基板,形成一黑色矩阵层于所述玻璃基板上,所述黑色矩阵层具有多个空隙;
形成数个第一色阻单元、第二色阻单元和第三色阻单元位于所述黑色矩阵层的对应空隙内;所述第一、第二及第三色阻单元共同构成一彩色画素层;
在与形成所述第一、第二及第三色阻单元的至少一种色阻单元的同一道工序中,以与该至少一种色阻单元相同的色阻材料在所述黑色矩阵层上形成多个间隙子;以及
形成一透明导电层覆盖于所述黑色矩阵层、所述彩色画素层及所述间隙子。
在本发明的一实施例中,在形成所述透明导电层的步骤后,另包含:形成一透明平坦化光阻层覆盖于所述透明导电层上。
在本发明的一实施例中,所述在与形成所述第一、第二及第三色阻单元的至少一种色阻单元的同一道工序中,以与该至少一种色阻单元相同的色阻材料在所述黑色矩阵层上形成多个间隙子的步骤包括:
在与形成所述第一色阻单元的同一道工序中,以与第一色阻单元相同的色阻材料在所述黑色矩阵层上形成第一间隔部;
在与形成所述第二色阻单元的同一道工序中,以与第二色阻单元相同的色阻材料在所述第一间隔部上形成第二间隔部;以及
在与形成所述第三色阻单元的同一道工序中,以与第三色阻单元相同的色阻材料在所述第二间隔部上形成第三间隔部,由堆叠的所述第一间隔部、第二间隔部和第三间隔部组成所述间隙子。
在本发明的一实施例中,所述形成数个第一色阻单元位于所述黑色矩阵层的对应空隙内,以及在与形成所述第一色阻单元的同一道工序中,以与第一色阻单元相同的色阻材料在所述黑色矩阵层上形成第一间隔部的步骤包括:形成一第一色阻层于所述玻璃基板及黑色矩阵层上,对所述第一色阻层进行曝光显影制程以同时形成第一色阻单元于所述黑色矩阵层的对应空隙内,以及第一间隔部于所述黑色矩阵层上。
在本发明的一实施例中,所述第一间隔部的面积大于所述第二间隔部的面积,所述第二间隔部的面积大于所述第三间隔部的面积。
在本发明的一实施例中,所述制造方法是以转印法形成所述第一、第二及第三色阻单元,并且在与形成所述第一、第二及第三色阻单元的一种色阻单元的同一道工序中,以与所述一种色阻单元相同的色阻材料通过多次涂布在所述黑色矩阵层上形成所述间隙子。
有益效果
相对于现有技术中,间隙子的形成需要一道单独的曝光显影制程,本发明的彩色滤光片的制造方法中,在制作彩色画素层的同时以相同色阻材料形成间隙子,从而可减少一道形成光阻层以及将所述光阻层局部曝光以制造间隙子的步骤,因此制造过程较为简单及所需制造成本较低,从而节省彩色滤光片的制造成本。
附图说明
图1A至图1G:一种现有的彩色滤光片的制造方法的流程示意图。
图2A至图2F:本发明第一实施例的彩色滤光片的制造方法示意图。
图3:本发明第一实施例的彩色滤光片的制造方法流程图。
图4:本发明第二实施例的彩色滤光片构造的局部示意图。
图5:本发明第三实施例的彩色滤光片构造的局部示意图。
本发明的最佳实施方式
为让本发明上述目的、特征及优点更明显易懂,下文特举本发明较佳实施例,并配合附图,作详细说明如下:
请参照图2A至图2F及图3所示,图2A至图2F揭示本发明第一实施例的一种彩色滤光片构造20的制造方法的流程示意图;图3揭示本发明第一实施例的彩色滤光片的制造方法流程图。
首先,如图2A所示的步骤S01,准备一玻璃基板21,形成一黑色矩阵层22于所述玻璃基板21上,所述黑色矩阵层22具有多个空隙。
接着,如图2B至图2D所示的步骤S02,分别形成第一色阻单元23a、第二色阻单元23b及第三色阻单元23c于所述玻璃基板21上的所述黑色矩阵层22的对应空隙内,以共同构成一彩色画素层23。在形成所述彩色画素层23的同时,也就是在与形成所述第一、第二及第三色阻单元23a、23b及23c的至少一种色阻单元的同一道工序中,以与所述至少一种色阻单元相同的色阻材料在所述黑色矩阵层22上形成多个间隙子24。
在本发明第一实施例的此步骤中可细分为以下三步骤:
(1) 步骤S021:形成一第一色阻层(未绘示)于所述玻璃基板21及黑色矩阵层22上,对所述第一色阻层进行曝光显影制程以同时形成第一色阻单元23a于所述黑色矩阵层22的对应空隙内,以及第一间隔部24a于所述黑色矩阵层22上(图2B)。也就是说,在与形成所述第一色阻单元23a的同一道工序中,以与第一色阻单元23a相同的色阻材料在所述黑色矩阵层22上形成第一间隔部24a。
(2) 步骤S022:形成一第二色阻层(未绘示)于所述玻璃基板21及黑色矩阵层22上,对所述第二色阻层进行曝光显影制程以同时形成第二色阻单元23b于所述黑色矩阵层22的对应空隙内,以及第二间隔部24b于所述第一间隔部24a上(图2C)。也就是说,在与形成所述第二色阻单元23b的同一道工序中,以与第二色阻单元23b相同的色阻材料在所述第一间隔部24a上形成第二间隔部24b。
(3) 步骤S023:接着,形成一第三色阻层(未绘示)于所述玻璃基板21及黑色矩阵层22上,对所述第三色阻层进行曝光显影制程以同时形成第三色阻单元23c于所述黑色矩阵层22的对应空隙内,以及第三间隔部24c于所述第二间隔部24b上(图2D)。也就是说,在与形成所述第三色阻单元23c的同一道工序中,以与第三色阻单元23c相同的色阻材料在所述第二间隔部24b上形成第三间隔部24c。
其中,相邻的一个所述第一色阻单元23a、一个所述第二色阻单元23b及一个所述第三色阻单元23c形成一组画素单元230,而所有的画素单元230共同组成了一所述彩色画素层23。所述第一色阻单元23a、第二色阻单元23b及第三色阻单元23c位于同一水平高度,且稍高于所述黑色矩阵层22的高度。另外,所述第一间隔部24a、所述第二间隔部24b及所述第三间隔部24c依序堆叠在所述黑色矩阵层22的表面上,且其高度依序递增。因此,一个所述第一间隔部24a、一个所述第二间隔部24b及一个所述第三间隔部24c依序堆叠形成了一个所述间隙子24。
最后,如图2E所示的步骤S03,形成一透明导电层25覆盖于所述黑色矩阵层22、所述彩色画素层23及所述间隙子24。
并且,如图2F所示的步骤S04,形成一透明平坦化光阻层26,覆盖于所述透明导电层25上。
在本发明的第一实施例中,是通过在形成所述第一色阻单元23a、所述第二色阻单元23b或所述第三色阻单元23c于所述玻璃基板21上的所述黑色矩阵层22的多个空隙内的同时,在与形成所述第一、第二及第三色阻23a、23b及23c单元的至少一种色阻单元的同一道工序中,以与该至少一种色阻单元23a、23b或23c相同的色阻材料在所述黑色矩阵层22上形成多个间隙子。也就是说,在此三个步骤的至少一个步骤中产生至少一个间隔部24a、24b或24c以形成所述间隙子24。或换句话说,所述每一间隙子24由至少一个所述间隔部24a、24b或24c所形成,并且所述间隙子24的高度大于所述第一、第二及第三色阻单元23a、23b及23c各自的高度,如此就可满足本发明的彩色滤光片构造20的所述间隙子24的基本需求。
上述形成所述第一、第二及第三色阻单元23a、23b及23c的方法,例如是先形成各色阻层于所述玻璃基板21及黑色矩阵层22上,再以光掩膜(mask)在所述黑色矩阵层22的对应空隙的位置开孔,并且在所述间隙子24的位置也开孔,因此在进行曝光显影时可同时在所述黑色矩阵层22的对应空隙的位置形成所述各色阻单元23a、23b及23c,并且也在所述黑色矩阵层22上形成所述各间隔部24a、24b及24c。然而,本发明形成所述各色阻单元23a、23b及23c以及所述各间隔部24a、24b及24c的方法并不限于此。承上所述,本发明例如可通过微影法(Lithography)、干膜法(Dryfilm)、转印法(Transfer)或喷墨印刷法(Inkjet Printing)等方式来形成各色阻单元23a、23b及23c于所述玻璃基板21上的所述黑色矩阵层22的多个空隙内,并且在所述黑色矩阵层22上形成各间隔部24a、24b及24c,但本发明不限于此。
另外,在本发明中,例如是通过溅镀法(Sputter)、涂布法(Spin Coating)或蒸镀法(Evaporation)来形成所述透明导电层25或所述透明平坦化光阻层26,但本发明亦不限于此。
综上所述,使用者可依据实际需要选用适宜的方法,以达到在形成所述彩色画素层23的同时,在与形成所述第一、第二及第三色阻单元23a、23b及23c的至少一种色阻单元的同一道工序中,以与该至少一种色阻单元23a、23b或23c相同的色阻材料在所述黑色矩阵层22上形成多个间隙子的目的。因此,本发明的所述的彩色滤光片构造的制造方法归纳如下:
(1) 准备一玻璃基板21,形成一黑色矩阵层22于所述玻璃基板21上,所述黑色矩阵层22具有多个空隙;
(2) 形成数个第一色阻单元23a、第二色阻单元23b和第三色阻单元23c位于所述黑色矩阵层22的对应空隙内;所述第一、第二及第三色阻单元23a、23b及23c共同构成一彩色画素层23;
(3) 在与形成所述第一、第二及第三色阻单元23a、23b及23c的至少一种色阻单元的同一道工序中,以与该至少一种色阻单元相同的色阻材料在所述黑色矩阵层22上形成多个间隙子24;以及
(4) 形成一透明导电层25覆盖于所述黑色矩阵层22、所述彩色画素层23及所述间隙子24。
(5) 形成一透明平坦化光阻层26覆盖于所述透明导电层25上。
通过上述步骤,可完成本发明第一实施例的所述彩色滤光片构造20。如图2F所示,本发明第一实施例的一种彩色滤光片构造20包含:一玻璃基板21、一黑色矩阵层22、一彩色画素层23、多个间隙子24、一透明导电层25及一透明平坦化光阻层26。所述玻璃基板21作为基底的材料,所述黑色矩阵层22设于所述玻璃基板21上,所述黑色矩阵层22具有多个空隙(未标示)。所述彩色画素层23设于所述玻璃基板22上,包含数个第一色阻单元23a、数个第二色阻单元23b及数个第三色阻单元23c,所述第一、第二及第三色阻单元23a, 23b, 23c分别位于所述黑色矩阵层22的对应空隙内。所述多个间隙子24设于所述黑色矩阵层22上,每一所述间隙子24是由所述第一、第二及第三色阻单元23a、23b及23c中至少一相同的色阻材料所形成,其中所述间隙子24的高度大于所述第一、第二及第三色阻单元23a、23b及23c各自的高度。所述透明导电层25覆盖所述黑色矩阵层22、所述彩色画素层23及所述多个间隙子24。所述透明平坦化光阻层26覆盖于所述透明导电层25上。
另外,在本发明中,所述色阻单元23a、23b及23c的材料优选是红色光阻、绿色光阻及蓝色光阻,并分别位于所述黑色矩阵层22的对应空隙内。相应的,所述第一间隔部24a优选是由第一色阻单元23a的材料所形成;所述第二间隔部24b优选是由第二色阻单元23b的材料所形成;以及所述第三间隔部24c优选是由第三色阻单元23c的材料所形成。
本发明的所述彩色滤光片构造20的所述多个间隙子24具有一高度大于所述第一、第二及第三色阻单元23a、23b及23c各自的高度,在进一步将所述彩色滤光片构造20与另一薄膜式晶体管TFT基板(未绘示)组装时,可保持两个基板的间隔距离以均匀填充液晶。再者,所述彩色滤光片构造20的所述透明平坦化光阻层26,在与薄膜式晶体管TFT基板组装时,可防止所述透明导电层25的表面与薄膜式晶体管TFT基板的表面直接接触而产生短路。然而,在本发明另一个可能的实施例中,若薄膜式晶体管TFT基板已具有防止表面短路的设计,则本发明的所述彩色滤光片构造20及其制造方法,可省略所述透明平坦化光阻层26。
相较于现有彩色滤光片的制造方法中,因为最后要通过曝光显影的方式来制作间隙子(必需执行形成光阻层、制作掩膜及曝光显影的步骤),使得现有彩色滤光片的制造过程较为复杂及所需制造成本较高。本发明通过在形成所述彩色画素层23的同时,也就是在与形成所述第一、第二及第三色阻单元23a、23b及23c的至少一种色阻单元的同一道工序中,以与该至少一种色阻单元相同的色阻材料在所述黑色矩阵层22上形成多个间隙子。相较于现有技术可减少一道形成光阻层以及将所述光阻层局部曝光以制造间隙子的步骤。虽然本发明也可能因为要防止所述透明导电层25组装时发生短路,而需要增加设置所述透明平坦化光阻层26,但设置所述透明平坦化光阻层26相较于形成光阻层以及曝光显影所需的步骤与成本,仍相对较为简单及成本较低,从而可以节省所述彩色滤光片构造20的制造成本。
请再参照图4所示,图4揭示本发明第二实施例的彩色滤光片构造。如图4所示,本发明第二实施例的彩色滤光片构造20相似于本发明第一实施例的彩色滤光片构造20,因此沿用相同的组件符号与名称,但其不同之处在于:在本发明的第二实施例中,揭示所述间隙子24仅由单一个色阻材料(间隔部)所形成,这是通过形成所述第一色阻单元23a、所述第二色阻单元23b或所述第三色阻单元23c于所述玻璃基板21上的所述黑色矩阵层22的空隙内的同时,形成其中一个色阻材料(所述间隔部24a、24b或24c)来形成所述间隙子24。当然,此单一的间隔部24a、24b或24c必需具有较高的厚度,并且此高度大于所述第一、第二及第三色阻单元23a、23b及23c各自的高度,才能产生间隔所述彩色滤光片构造20与薄膜式晶体管TFT基板的作用。例如,所述制造方法是以转印法形成所述第一、第二及第三色阻单元23a、23b及23c,并且在与形成所述第一、第二及第三色阻单元23a、23b及23c的一种色阻单元的同一道工序中,以与所述一种色阻单元相同的色阻材料在所述黑色矩阵层22上形成所述间隙子24。然而,本发明并不限制所述间隔部24a, 24b或24c的数量、厚度或堆叠顺序,使用时可依实际需求来弹性调整。
请再参照图5所示,图5揭示本发明第三实施例的彩色滤光片构造。如图5所示,本发明第三实施例的彩色滤光片构造20相似于本发明第一实施例的彩色滤光片构造20,因此沿用相同的组件符号与名称,但其不同之处在于:所述第一、第二及第三间隔部24a、24b及24c依次从下到上堆叠,所述第一间隔部24a的面积大于所述第二间隔部24b的面积,所述第二间隔部24b的面积大于所述第三间隔部24c的面积。也就是说,位于相对低层的所述间隔部24a、24b及24c的面积要略大于位于相对高层的所述间隔部24a、 24b及24c的面积。或者是说,所述间隙子24底部面积大于所述间隙子24顶部的面积。因此使得所述间隙子24可以较为稳固的固定于所述黑色矩阵层22上。
综上所述,相较于现有彩色滤光片的制造方法中,因为最后要通过曝光显影的方式来制作间隙子,其制造过程较为复杂及所需制造成本较高。本发明通过在形成所述彩色画素层23的同时形成了间隙子24,相较于现有技术可减少一道形成光阻层以及将所述光阻层局部曝光以制造间隙子的步骤,本发明的所述彩色滤光片构造20及其制造方法相对较为简单及成本较低,从而可以节省所述彩色滤光片构造20的制造成本。
本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。必需指出的是,已公开的实施例并未限制本发明的范围。相反地,包含于权利要求书的精神及范围的修改及均等设置均包括于本发明的范围内。
本发明的实施方式
工业实用性
序列表自由内容

Claims (16)

  1. 一种彩色滤光片构造的制造方法,其特征在于:其包含以下步骤:
    准备一玻璃基板,形成一黑色矩阵层于所述玻璃基板上,所述黑色矩阵层具有多个空隙;
    形成数个第一色阻单元、第二色阻单元和第三色阻单元位于所述黑色矩阵层的对应空隙内,所述第一、第二及第三色阻单元共同构成一彩色画素层;
    在与形成所述第一色阻单元的同一道工序中,以与第一色阻单元相同的色阻材料在所述黑色矩阵层上形成第一间隔部;
    在与形成所述第二色阻单元的同一道工序中,以与第二色阻单元相同的色阻材料在所述第一间隔部上形成第二间隔部;
    在与形成所述第三色阻单元的同一道工序中,以与第三色阻单元相同的色阻材料在所述第二间隔部上形成第三间隔部,由堆叠的所述第一间隔部、第二间隔部和第三间隔部组成所述间隙子;
    形成一透明导电层覆盖于所述黑色矩阵层、所述彩色画素层及所述间隙子;以及
    形成一透明平坦化光阻层覆盖于所述透明导电层上。
  2. 如权利要求1所述的彩色滤光片构造的制造方法,其特征在于:所述形成数个第一色阻单元位于所述黑色矩阵层的对应空隙内,以及在与形成所述第一色阻单元的同一道工序中,以与第一色阻单元相同的色阻材料在所述黑色矩阵层上形成第一间隔部的步骤包括:
    形成一第一色阻层于所述玻璃基板及黑色矩阵层上,对所述第一色阻层进行曝光显影制程以同时形成第一色阻单元于所述黑色矩阵层的对应空隙内,以及第一间隔部于所述黑色矩阵层上。
  3. 如权利要求1所述的彩色滤光片构造的制造方法,其特征在于:所述第一间隔部的面积大于所述第二间隔部的面积,所述第二间隔部的面积大于所述第三间隔部的面积。
  4. 如权利要求2所述的彩色滤光片构造的制造方法,其特征在于:所述第一间隔部的面积大于所述第二间隔部的面积,所述第二间隔部的面积大于所述第三间隔部的面积。
  5. 如权利要求1所述的彩色滤光片构造的制造方法,其特征在于:所述制造方法是以转印法形成所述第一、第二及第三色阻单元,并且在与形成所述第一、第二及第三色阻单元的一种色阻单元的同一道工序中,以与所述一种色阻单元相同的色阻材料在所述黑色矩阵层上形成所述间隙子。
  6. 一种彩色滤光片构造,其特征在于:所述彩色滤光片构造包含:
    一玻璃基板;
    一黑色矩阵层,设于所述玻璃基板上,具有多个空隙;
    一彩色画素层,设于所述玻璃基板上,包含数个第一色阻单元、数个第二色阻单元及数个第三色阻单元,所述第一、第二及第三色阻单元分别位于所述黑色矩阵层的对应空隙内;
    多个间隙子,设于所述黑色矩阵层上,每一所述间隙子是由所述第一、第二及第三色阻单元中至少一相同的色阻材料所形成,其中所述间隙子的高度大于所述第一、第二及第三色阻单元各自的高度;及
    一透明导电层,覆盖所述黑色矩阵层、所述彩色画素层及所述多个间隙子。
  7. 如权利要求6所述的彩色滤光片构造,其特征在于:所述彩色滤光片构造另包含一透明平坦化光阻层,覆盖于所述透明导电层上。
  8. 如权利要求6所述的彩色滤光片构造,其特征在于:所述间隙子包含第一、第二及第三间隔部,所述第一、第二及第三间隔部分别由所述第一、第二及第三色阻单元相同的色阻材料所形成。
  9. 如权利要求8所述的彩色滤光片构造,其特征在于:所述第一、第二及第三间隔部依次从下到上堆叠,所述第一间隔部的面积大于所述第二间隔部的面积,所述第二间隔部的面积大于所述第三间隔部的面积。
  10. 一种彩色滤光片构造的制造方法,其特征在于:其包含以下步骤:
    准备一玻璃基板,形成一黑色矩阵层于所述玻璃基板上,所述黑色矩阵层具有多个空隙;
    形成数个第一色阻单元、第二色阻单元和第三色阻单元位于所述黑色矩阵层的对应空隙内,所述第一、第二及第三色阻单元共同构成一彩色画素层;
    在与形成所述第一、第二及第三色阻单元的至少一种色阻单元的同一道工序中,以与该至少一种色阻单元相同的色阻材料在所述黑色矩阵层上形成多个间隙子;以及
    形成一透明导电层覆盖于所述黑色矩阵层、所述彩色画素层及所述间隙子。
  11. 如权利要求10所述的彩色滤光片构造的制造方法,其特征在于:在形成所述透明导电层的步骤后,另包含:形成一透明平坦化光阻层覆盖于所述透明导电层上。
  12. 如权利要求10所述的彩色滤光片构造的制造方法,其特征在于:所述在与形成所述第一、第二及第三色阻单元的至少一种色阻单元的同一道工序中,以与该至少一种色阻单元相同的色阻材料在所述黑色矩阵层上形成多个间隙子的步骤包括:
    在与形成所述第一色阻单元的同一道工序中,以与第一色阻单元相同的色阻材料在所述黑色矩阵层上形成第一间隔部;
    在与形成所述第二色阻单元的同一道工序中,以与第二色阻单元相同的色阻材料在所述第一间隔部上形成第二间隔部;以及
    在与形成所述第三色阻单元的同一道工序中,以与第三色阻单元相同的色阻材料在所述第二间隔部上形成第三间隔部,由堆叠的所述第一间隔部、第二间隔部和第三间隔部组成所述间隙子。
  13. 如权利要求12所述的彩色滤光片构造的制造方法,其特征在于:所述形成数个第一色阻单元位于所述黑色矩阵层的对应空隙内,以及在与形成所述第一色阻单元的同一道工序中,以与第一色阻单元相同的色阻材料在所述黑色矩阵层上形成第一间隔部的步骤包括:
    形成一第一色阻层于所述玻璃基板及黑色矩阵层上,对所述第一色阻层进行曝光显影制程以同时形成第一色阻单元于所述黑色矩阵层的对应空隙内,以及第一间隔部于所述黑色矩阵层上。
  14. 如权利要求12所述的彩色滤光片构造的制造方法,其特征在于:所述第一间隔部的面积大于所述第二间隔部的面积,所述第二间隔部的面积大于所述第三间隔部的面积。
  15. 如权利要求13所述的彩色滤光片构造的制造方法,其特征在于:所述第一间隔部的面积大于所述第二间隔部的面积,所述第二间隔部的面积大于所述第三间隔部的面积。
  16. 如权利要求10所述的彩色滤光片构造的制造方法,其特征在于:所述制造方法是以转印法形成所述第一、第二及第三色阻单元,并且在与形成所述第一、第二及第三色阻单元的一种色阻单元的同一道工序中,以与所述一种色阻单元相同的色阻材料在所述黑色矩阵层上形成所述间隙子。
PCT/CN2011/071213 2011-01-28 2011-02-23 彩色滤光片构造及其制造方法 WO2012100444A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011100329674A CN102109628A (zh) 2011-01-28 2011-01-28 彩色滤光片构造及其制造方法
CN201110032967.4 2011-01-28

Publications (1)

Publication Number Publication Date
WO2012100444A1 true WO2012100444A1 (zh) 2012-08-02

Family

ID=44173835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071213 WO2012100444A1 (zh) 2011-01-28 2011-02-23 彩色滤光片构造及其制造方法

Country Status (3)

Country Link
US (1) US20120194933A1 (zh)
CN (1) CN102109628A (zh)
WO (1) WO2012100444A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103279215A (zh) * 2012-12-31 2013-09-04 上海天马微电子有限公司 一种内嵌式触控显示面板及触控显示装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130021688A1 (en) * 2011-07-22 2013-01-24 Shenzhen China Star Optoelectronics Technology Co., Ltd Color filter and manufacturing method thereof
CN102269834B (zh) * 2011-07-22 2013-08-28 深圳市华星光电技术有限公司 一种彩色滤光片及其制造方法
CN103091905A (zh) * 2011-10-31 2013-05-08 京东方科技集团股份有限公司 一种彩膜基板及其制作方法
CN102402080B (zh) * 2011-11-18 2015-01-21 深圳市华星光电技术有限公司 液晶面板及其制作方法
CN103163580B (zh) * 2011-12-08 2016-03-16 上海天马微电子有限公司 滤光板及其制作方法、显示面板及其制作方法
CN103389593A (zh) * 2012-05-07 2013-11-13 淳安电子股份有限公司 彩色滤光基板的制作方法
CN102681068A (zh) * 2012-05-11 2012-09-19 深圳市华星光电技术有限公司 彩色滤光片及其制作方法
CN103018948B (zh) * 2012-11-26 2015-05-13 京东方科技集团股份有限公司 一种彩膜基板、设备及制造方法
CN103033981B (zh) * 2013-01-09 2016-05-11 深圳市华星光电技术有限公司 彩色滤光片基板及其制造方法和液晶面板
CN103235443B (zh) * 2013-04-24 2015-07-01 京东方科技集团股份有限公司 显示基板、显示装置及显示基板的制作方法
CN104391349B (zh) * 2014-12-01 2017-04-19 深圳市华星光电技术有限公司 用于制作彩色滤光片的方法、彩色滤光片及液晶面板
CN204667020U (zh) * 2015-05-26 2015-09-23 京东方科技集团股份有限公司 一种显示装置
CN110989251B (zh) * 2015-06-24 2023-10-03 群创光电股份有限公司 显示面板
CN105353567B (zh) * 2015-12-02 2019-01-15 深圳市华星光电技术有限公司 采用无黑色矩阵技术的va型液晶显示面板及其制作方法
CN105353555B (zh) * 2015-12-08 2018-08-14 深圳市华星光电技术有限公司 量子点彩膜基板的制作方法
US20170338290A1 (en) * 2016-05-23 2017-11-23 Shenzhen China Star Optoelectronics Technology Co. Ltd. Woled display device
CN106019686B (zh) * 2016-06-15 2019-07-02 深圳市华星光电技术有限公司 色阻层的制作方法
CN106125390A (zh) * 2016-08-19 2016-11-16 武汉华星光电技术有限公司 液晶显示面板及液晶显示装置
CN106707392B (zh) * 2016-12-07 2019-02-01 友达光电(昆山)有限公司 彩色滤光片及其膜层厚度测量方法
CN107942572B (zh) * 2017-11-17 2020-12-04 深圳市华星光电技术有限公司 一种彩膜基板及黑色矩阵材料的制备方法
CN108008567A (zh) * 2017-12-14 2018-05-08 深圳市华星光电技术有限公司 彩色滤光片基板及其制作方法
CN109188756A (zh) * 2018-09-25 2019-01-11 深圳市华星光电技术有限公司 彩膜基板及其制作方法
CN209486425U (zh) * 2018-10-31 2019-10-11 惠科股份有限公司 一种显示面板和显示装置
CN109917583B (zh) * 2019-04-30 2022-01-11 厦门天马微电子有限公司 一种彩膜基板及其制作方法、显示面板、显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030123018A1 (en) * 2001-12-31 2003-07-03 Kim Hyang Yul Method for forming post spacers in liquid crystal display
CN1497299A (zh) * 2002-09-26 2004-05-19 三星电子株式会社 液晶显示器、液晶显示器面板及其制造方法
CN1707331A (zh) * 2004-06-11 2005-12-14 夏普株式会社 彩色滤光片基板、其制造方法及包括该基板的显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2547523B2 (ja) * 1994-04-04 1996-10-23 インターナショナル・ビジネス・マシーンズ・コーポレイション 液晶表示装置及びその製造方法
JPH0980447A (ja) * 1995-09-08 1997-03-28 Toshiba Electron Eng Corp 液晶表示素子
JP3949759B2 (ja) * 1996-10-29 2007-07-25 東芝電子エンジニアリング株式会社 カラーフィルタ基板および液晶表示素子
JP2000258617A (ja) * 1999-03-10 2000-09-22 Toray Ind Inc カラーフィルターおよびその製造方法
JP4225237B2 (ja) * 2004-04-21 2009-02-18 セイコーエプソン株式会社 有機el装置及び有機el装置の製造方法並びに電子機器
JP2006267524A (ja) * 2005-03-24 2006-10-05 Sharp Corp 液晶パネル、液晶表示装置および液晶パネルの製造方法
KR101391326B1 (ko) * 2007-09-19 2014-05-07 샤프 가부시키가이샤 색변환 필터 및 색변환 필터와 유기 el 디스플레이의 제조방법
JP5544692B2 (ja) * 2007-12-07 2014-07-09 大日本印刷株式会社 カラーフィルタおよびカラーフィルタの製造方法
CN101710219A (zh) * 2009-12-16 2010-05-19 深超光电(深圳)有限公司 彩色滤光基板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030123018A1 (en) * 2001-12-31 2003-07-03 Kim Hyang Yul Method for forming post spacers in liquid crystal display
CN1497299A (zh) * 2002-09-26 2004-05-19 三星电子株式会社 液晶显示器、液晶显示器面板及其制造方法
CN1707331A (zh) * 2004-06-11 2005-12-14 夏普株式会社 彩色滤光片基板、其制造方法及包括该基板的显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103279215A (zh) * 2012-12-31 2013-09-04 上海天马微电子有限公司 一种内嵌式触控显示面板及触控显示装置
CN103279215B (zh) * 2012-12-31 2016-04-13 上海天马微电子有限公司 一种彩膜基板、内嵌式触控显示面板及触控显示装置

Also Published As

Publication number Publication date
US20120194933A1 (en) 2012-08-02
CN102109628A (zh) 2011-06-29

Similar Documents

Publication Publication Date Title
WO2012100444A1 (zh) 彩色滤光片构造及其制造方法
WO2014107890A1 (zh) 彩色滤光片基板及其制造方法和液晶面板
CN105607368B (zh) 阵列基板及其制备方法、显示装置
CN102681067B (zh) 彩色滤光片及其制备方法
WO2018032551A1 (zh) 液晶显示面板及液晶显示装置
WO2013168849A1 (ko) 와이어 그리드 편광자 및 그 제조방법, 와이어 그리드 편광자를 구비하는 액정 디스플레이 패널 및 액정 디스플레이 장치
WO2017181460A1 (zh) 一种液晶显示面板、显示装置
WO2014047982A1 (zh) 彩色滤光基板以及其相关制作方法
CN108535909A (zh) Bps型阵列基板的制作方法及bps型阵列基板
WO2019051968A1 (zh) 彩膜基板的制作方法
WO2018133134A1 (zh) Coa基板及液晶显示面板
CN107275288A (zh) Tft基板的制作方法及tft基板
WO2019015191A1 (zh) 一种显示面板及其制程
WO2020052038A1 (zh) 显示面板及显示面板的制作方法
WO2014166155A1 (zh) 一种用于封框胶固化遮挡的掩模板的制造方法
WO2016095243A1 (zh) 液晶面板及其制备方法
WO2019015146A1 (zh) 一种显示面板及其制程
US10048531B2 (en) Manufacturing method for color filter substrate and manufacturing method for liquid crystal panel
CN104932138B (zh) 一种光罩及彩膜基板的制备方法
WO2020062491A1 (zh) 彩色滤光片和显示面板
WO2016074256A1 (zh) 透明显示面板及其彩色滤光片基板
WO2019148661A1 (zh) 一种液晶显示面板及其制作方法、液晶显示装置
WO2016123819A1 (zh) 触控显示面板的制作方法
WO2017049663A1 (zh) 一种彩膜阵列基板及其制造方法、显示装置
WO2016065666A1 (zh) 一种tft基板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857340

Country of ref document: EP

Kind code of ref document: A1