WO2016065666A1 - 一种tft基板及其制造方法 - Google Patents

一种tft基板及其制造方法 Download PDF

Info

Publication number
WO2016065666A1
WO2016065666A1 PCT/CN2014/090673 CN2014090673W WO2016065666A1 WO 2016065666 A1 WO2016065666 A1 WO 2016065666A1 CN 2014090673 W CN2014090673 W CN 2014090673W WO 2016065666 A1 WO2016065666 A1 WO 2016065666A1
Authority
WO
WIPO (PCT)
Prior art keywords
black matrix
electrode
forming
capacitor electrode
contact hole
Prior art date
Application number
PCT/CN2014/090673
Other languages
English (en)
French (fr)
Inventor
连水池
熊源
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/433,628 priority Critical patent/US9645459B2/en
Publication of WO2016065666A1 publication Critical patent/WO2016065666A1/zh
Priority to US15/477,092 priority patent/US20170205674A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78669Amorphous silicon transistors with inverted-type structure, e.g. with bottom gate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/136295Materials; Compositions; Manufacture processes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/56Substrates having a particular shape, e.g. non-rectangular

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a TFT substrate and a method of fabricating the same.
  • curved TV Because of its superior contrast, wider viewing angle and immersive experience, curved TV provides users with a deeper viewing experience, so it is more and more popular.
  • FIG. 1 is a light blocking condition of the black matrix 101 when the panel 100 is not bent
  • FIG. 2 is a light blocking condition of the black matrix 101 after the panel 100 is bent, by FIG. 1 and FIG. 2 . It can be seen that after the panel 100 is bent, part of the light is emitted from the side of the black matrix 101, causing a light leakage phenomenon, which affects the light shielding effect of the black matrix 101, thereby reducing the contrast of the panel.
  • the technical problem to be solved by the present invention is to provide a TFT substrate and a method of manufacturing the same, which can sufficiently cover light when the panel composed of the TFT substrate is bent, thereby reducing the light transmission effect, thereby improving the contrast of the panel.
  • a technical solution adopted by the present invention is to provide a method for manufacturing a substrate, the method comprising the steps of: providing a substrate; forming a TFT structure on the substrate; further forming a color resist layer on the substrate, color The resist layer forms a first opening region at a corresponding position of the TFT structure; a first black matrix is formed in the first opening region to cover the TFT structure by the first black matrix; and a pixel electrode is formed on the color resist layer and the first black matrix, The pixel electrode is electrically connected to the TFT structure via the first black matrix;
  • the step of forming a TFT structure on the substrate further includes: forming a capacitor electrode on the substrate, wherein the color resist layer forms a second opening region at a corresponding position of the capacitor electrode; and the step of forming the first black matrix in the first opening region is further The method includes: forming a second black matrix in the second opening region to cover the capacitor electrode by the second black matrix;
  • the color resist layer comprises red, green and blue materials
  • the first black matrix is composed of black resin material
  • the capacitor electrode includes a first capacitor electrode and a second capacitor electrode.
  • the step of forming a TFT structure on the substrate includes: forming a gate electrode on the substrate and a scan line and a first capacitor electrode disposed in the same layer as the gate electrode; and the gate electrode Forming a first insulating layer and an active layer in sequence, the first insulating layer further covering the scan line and the first capacitor electrode, the active layer not covering the scan line and the first capacitor electrode; forming a source on the active layer An electrode and a drain electrode, and forming a second capacitor electrode disposed on the first capacitor electrode in the same layer as the source electrode and the drain electrode; forming a second insulating layer on the source, the drain, and the second capacitor electrode, wherein the color resist layer a first black matrix and a second black matrix are formed on the second insulating layer, and the pixel electrode is electrically connected to one of the source electrode and the drain electrode via the first black matrix and the second insulating layer, and further passes through the second black matrix And the second insul
  • the method further includes forming an insulating protective layer between the first black matrix, the second black matrix, and the color resist layer and the pixel electrode.
  • the step of forming the first black matrix in the first opening region comprises: forming a first contact hole at a position corresponding to one of the source electrode and the drain electrode of the first black matrix and the second insulating layer, and at the second The black matrix and the second insulating layer form a second contact hole corresponding to the position of the second capacitor electrode;
  • the step of forming an insulating protective layer between the first black matrix, the second black matrix, and the color resist layer and the pixel electrode includes: An insulating protective layer is formed in a contact hole and a second contact hole; the insulating protective layer in the first contact hole and the second contact hole respectively form a third contact hole and a fourth contact hole, wherein the pixel electrode passes through the third contact hole One of the source electrode and the drain electrode is electrically connected and electrically connected to the second capacitor electrode through the fourth contact hole.
  • another technical solution adopted by the present invention is to provide a method for manufacturing a substrate, the method comprising the steps of: providing a substrate; forming a TFT structure on the substrate; further forming a color resist layer on the substrate, The color resist layer forms a first opening region at a corresponding position of the TFT structure; a first black matrix is formed in the first opening region to cover the TFT structure by the first black matrix; and a pixel electrode is formed on the color resist layer and the first black matrix The pixel electrode is electrically connected to the TFT structure via the first black matrix.
  • the step of forming a TFT structure on the substrate further includes: forming a capacitor electrode on the substrate, wherein the color resist layer forms a second opening region at a corresponding position of the capacitor electrode; and the step of forming the first black matrix in the first opening region is further
  • the method includes forming a second black matrix in the second opening region to cover the capacitor electrode by the second black matrix.
  • the capacitor electrode includes a first capacitor electrode and a second capacitor electrode.
  • the step of forming a TFT structure on the substrate includes: forming a gate electrode on the substrate and a scan line and a first capacitor electrode disposed in the same layer as the gate electrode; and the gate electrode Forming a first insulating layer and an active layer in sequence, the first insulating layer further covering the scan line and the first capacitor electrode, the active layer not covering the scan line and the first capacitor electrode; forming a source on the active layer An electrode and a drain electrode, and forming a second capacitor electrode disposed on the first capacitor electrode in the same layer as the source electrode and the drain electrode; forming a second insulating layer on the source, the drain, and the second capacitor electrode, wherein the color resist layer a first black matrix and a second black matrix are formed on the second insulating layer, and the pixel electrode is electrically connected to one of the source electrode and the drain electrode via the first black matrix and the second insulating layer, and further passes through the second black matrix And the second insul
  • the method further includes forming an insulating protective layer between the first black matrix, the second black matrix, and the color resist layer and the pixel electrode.
  • the step of forming the first black matrix in the first opening region comprises: forming a first contact hole at a position corresponding to one of the source electrode and the drain electrode of the first black matrix and the second insulating layer, and at the second The black matrix and the second insulating layer form a second contact hole corresponding to the position of the second capacitor electrode;
  • the step of forming an insulating protective layer between the first black matrix, the second black matrix, and the color resist layer and the pixel electrode includes: An insulating protective layer is formed in a contact hole and a second contact hole; the insulating protective layer in the first contact hole and the second contact hole respectively form a third contact hole and a fourth contact hole, wherein the pixel electrode passes through the third contact hole One of the source electrode and the drain electrode is electrically connected and electrically connected to the second capacitor electrode through the fourth contact hole.
  • a TFT substrate including a substrate, a TFT structure disposed on the substrate, and a color resist layer disposed on the substrate, wherein the color resist layer Forming a first opening region at a corresponding position of the TFT structure; a first black matrix disposed in the first opening region to cover the TFT structure by the first black matrix; and a pixel electrode disposed on the color resist layer and the first black matrix The pixel electrode is electrically connected to the TFT structure via the first black matrix.
  • the TFT substrate further includes: a capacitor electrode disposed on the substrate, wherein the color resist layer forms a second opening region at a corresponding position of the signal line; and the second black matrix is disposed in the second opening region to be formed by the second black matrix Cover the capacitor electrode.
  • the capacitor electrode includes a first capacitor electrode and a second capacitor electrode
  • the TFT substrate further includes: a gate electrode disposed on the substrate; the scan line and the first capacitor electrode are disposed in the same layer as the gate electrode; the first insulating layer and the active layer a layer, sequentially disposed on the gate electrode, wherein the first insulating layer further covers the scan line and the first capacitor electrode, the active layer is not over the scan line and the first capacitor electrode; the source electrode and the drain electrode are disposed at On the active layer, the second capacitor electrode is disposed on the first capacitor electrode and disposed in the same layer as the source electrode and the drain electrode; the second insulating layer is disposed on the source, the drain and the second capacitor electrode, wherein the color The resist layer, the first black matrix and the second black matrix are formed on the second insulating layer, and the pixel electrode is electrically connected to one of the source electrode and the drain electrode via the first black matrix and the second insulating layer, and further passes through the second The black matrix and the second insulating layer are electrically
  • the TFT substrate further includes an insulating protective layer disposed between the first black matrix, the second black matrix, and the color resist layer and the pixel electrode.
  • first black matrix and the second insulating layer form a first contact hole at a position corresponding to one of the source electrode and the drain electrode, and the second black matrix and the second insulating layer correspond to the position of the second capacitor electrode Forming a second contact hole; forming an insulating protective layer in the first contact hole and the second contact hole; forming an insulating layer in the first contact hole and the second contact hole to form a third contact hole and a fourth contact hole, respectively, wherein The pixel electrode is electrically connected to one of the source electrode and the drain electrode through the third contact hole, and is electrically connected to the second capacitor electrode through the fourth contact hole.
  • the invention has the beneficial effects that the black matrix is disposed on the side of the TFT substrate, so that when the panel composed of the TFT substrate is bent, the light is sufficiently blocked, the light transmission effect is reduced, and the light transmission effect is improved.
  • the contrast of the panel is improved.
  • 1 is a shading effect diagram of a black matrix when the panel of the prior art is not bent
  • FIG. 3 is a schematic structural diagram of a TFT substrate according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of one of the pixel units of the TFT substrate shown in FIG. 3;
  • Figure 5 is a cross-sectional view of the pixel unit shown in Figure 4 taken along the line EF;
  • FIG. 6 is a light-shielding effect diagram of a black matrix when a panel composed of a TFT substrate according to an embodiment of the present invention is bent;
  • Figure 7 is a cross-sectional view of the pixel unit shown in Figure 4 taken along the dashed line of CD;
  • FIG. 8 is a flowchart of a method for manufacturing a TFT substrate according to an embodiment of the present invention.
  • 9-10 are process flow diagrams of the method of manufacturing the TFT substrate shown in Fig. 8.
  • FIG. 3 is a schematic structural diagram of a TFT substrate according to an embodiment of the present invention.
  • the TFT substrate 10 of the embodiment of the present invention includes a plurality of pixel units 110, wherein each of the pixel units 110 has the same structure. The invention will be described in detail in the structure of one of the pixel units.
  • FIG. 4 is a schematic structural view of one of the pixel units 110 in the TFT substrate 10 shown in FIG. 3.
  • FIG. 5 is a cross-sectional view of the pixel unit 110 shown in FIG.
  • the pixel unit 110 of the TFT substrate 10 of the embodiment of the present invention includes a substrate 11, a TFT structure 12, a color resist layer 13, a black matrix 140, and a pixel electrode 15.
  • the TFT structure 12 is disposed on the substrate 11, and the color resist layer 13 is disposed on the substrate 11.
  • the color resist layer 13 forms a first opening region M1 at a corresponding position of the TFT structure 12.
  • the black matrix 140 is disposed within the first opening region M1 to cover the TFT structure 12 by the black matrix 140.
  • the pixel electrode 15 is disposed on the color resist layer 13 and the black matrix 140, and the pixel electrode 15 is electrically connected to the TFT structure 12 via the black matrix 140.
  • the color resist layer 13 is composed of red, green, and blue (R, G, and B) materials
  • the black matrix 140 is composed of a black resin material.
  • the black matrix 140 is disposed on the TFT substrate 10 side, so that when the panel composed of the TFT substrate 10 is bent, the shading function of the black matrix 140 disposed on the TFT substrate 10 side is not affected, and the penetration is reduced.
  • the shading of the black matrix 140 of the embodiment of the present invention is shown in FIG. 6. Therefore, the contrast of the panel composed of the TFT substrate 10 can be effectively improved.
  • the TFT structure 12 includes a gate electrode 120, a first insulating layer 121, an active layer 122, a source electrode 123, a drain electrode 124, and a second insulating layer 125.
  • the gate electrode 120 is disposed on the substrate 11, the first insulating layer 121 and the active layer 122 are sequentially disposed on the gate electrode 120, the source electrode 123 and the drain electrode 124 are disposed on the active layer 122, and the source electrode 123 and the drain electrode
  • the poles 124 are disposed in the same layer, and the second insulating layer 125 is disposed on the source electrode 123 and the drain electrode 124.
  • the black matrix 140 is disposed on the second insulating layer 125, that is, the black matrix 140 and the second insulating layer 125 are disposed between the source electrode 123 and the drain electrode 124, and the source electrode 123 and the drain electrode 124 can be effectively protected.
  • the material of the active layer 122 includes hydrogenated amorphous silicon (a-Si:H), and the pixel electrode 15 is ITO (Indium Tin). Oxide, indium tin oxide) transparent electrode.
  • the TFT substrate 10 further includes a capacitor electrode 16 and a black matrix 141.
  • the capacitor electrode 16 is disposed on the substrate 11, and the color resist layer 13 forms a second opening region M2 at a corresponding position of the capacitor electrode 16.
  • the black matrix 141 is disposed in the second opening region M2 to cover the capacitor electrode 16 by the black matrix 141.
  • the capacitor electrode 16 includes a first capacitor electrode 161 and a second capacitor electrode 162.
  • the first capacitor electrode 161 is disposed in the same layer as the gate electrode 120.
  • the first insulating layer 121 further covers the first capacitor electrode 161, and the active layer 122 does not cover the first capacitor electrode 161.
  • the second capacitor electrode 162 is disposed on the first capacitor electrode 161 and disposed in the same layer as the source electrode 123 and the drain electrode 124.
  • the second insulating layer 125 is further disposed on the second capacitor electrode 162. Since the first insulating layer 121 covers the first capacitor electrode 161, the second capacitor electrode 162 is actually disposed on the first insulating layer 121 corresponding to the first capacitor electrode 161.
  • the TFT substrate 10 further includes an insulating protective layer 17 disposed between the black matrixes 140, 141 and the color resist layer 13 and the pixel electrode 15.
  • the liquid crystal in the panel for protecting the TFT substrate 10 is not contaminated.
  • the color resist layer 13, the black matrix 140, and the black matrix 141 are formed on the second insulating layer 125.
  • the pixel electrode 15 is electrically connected to the drain electrode 124 via the black matrix 140 and the second insulating layer 125, and is further electrically connected to the second capacitor electrode 161 via the black matrix 141 and the second insulating layer 125.
  • a first contact hole M3 is formed at a position where the black matrix 140 and the second insulating layer 125 correspond to the drain electrode 124, and a second position is formed at a position where the black matrix 141 and the second insulating layer 125 correspond to the second capacitor electrode 161.
  • Contact hole M4. an insulating protective layer 17 is formed in the first contact hole M3 and the second contact hole M4.
  • the insulating protective layer 17 in the first contact hole M3 and the second contact hole M4 respectively form a third contact hole M5 and a fourth contact hole M6, wherein the pixel electrode 15 is electrically connected to the drain electrode 124 through the third contact hole M5, and
  • the second capacitor electrode 161 is electrically connected to the second contact hole M6.
  • the pixel electrode 15 may also be electrically connected to the source electrode 123 via the black matrix 140 and the second insulating layer 125.
  • the first contact hole M3 is disposed at a position where the black matrix 140 and the second insulating layer 125 correspond to the source electrode 123.
  • the insulating protective layer 17 in the first contact hole M3 forms the third contact hole M5.
  • the pixel electrode 15 is electrically connected to the source electrode 123 through the third contact hole M5.
  • FIG. 7 is a cross-sectional view of the pixel unit 110 shown in FIG. 4 along a broken line CD.
  • the pixel unit 110 of the TFT substrate 10 further includes a scan line S and a data line D.
  • the scan line S is disposed on the substrate 11 and disposed in the same layer as the gate electrode 120 and the first capacitor electrode 161.
  • the first insulating layer 121 further covers the scan line S, and the active layer 122 does not cover the scan line S.
  • the data line D is disposed on the first insulating layer 121 and disposed in the same layer as the source electrode 123 and the drain electrode 124.
  • the second insulating layer 125 is further disposed on the data line D, and the black matrix 140 is disposed at a position of the second insulating layer 125 corresponding to the scanning line S. That is, the black matrix 140 further covers the scan line S.
  • the TFT substrate 10 of the present invention can ensure that the shading function of the black matrix 140 is not affected, and the light transmission phenomenon is reduced. Therefore, the contrast of the panel composed of the TFT substrate 10 can be effectively improved.
  • the embodiment of the present invention further provides a method for manufacturing a TFT substrate based on the TFT substrate 10 described above.
  • a method for manufacturing a TFT substrate based on the TFT substrate 10 described above please refer to FIG. 8 to FIG.
  • FIG. 8 is a flow chart of a method for manufacturing a TFT substrate according to an embodiment of the present invention
  • FIG. 9 is a process flow diagram corresponding to the method for manufacturing the TFT substrate shown in FIG. 8
  • FIG. 10 is a TFT shown in FIG. Another process recipe diagram corresponding to the method of manufacturing the substrate.
  • the method for manufacturing a TFT substrate provided by the embodiment of the present invention includes the following steps:
  • Step S1 providing a substrate 11.
  • Step S2 A TFT structure 12 is formed on the substrate 11.
  • the step is specifically: firstly forming the gate electrode 120 on the substrate 11, then sequentially forming the first insulating layer 121 and the active layer 122 on the gate electrode 120, thereby forming the source electrode 123 and the drain electrode 124 on the active layer 122, and finally A second insulating layer 125 is formed on the drain electrode 124. Thereby, the entire TFT structure 12 is formed.
  • the capacitor electrode 16 and the signal line are further formed.
  • the capacitor electrode 16 includes a first capacitor electrode 161 and a second capacitor electrode, and the signal line includes the scan line S and the data line D.
  • the specific formation process of the capacitor electrode 16 is as follows: a first capacitor electrode 161 disposed in the same layer as the gate electrode 120 is formed on the substrate 11, and then a first insulating layer 123 is formed on the first capacitor electrode 161 such that the first insulating layer 123 further covers the first capacitor electrode 161. The active layer 122 is not covered on the first capacitor electrode 161. Further, a second capacitor electrode 162 provided in the same layer as the source electrode 123 and the drain electrode 124 is formed on the first capacitor electrode 161. Since the first capacitor electrode 161 is covered by the first insulating layer 123, the second capacitor electrode 162 is specifically formed at a position corresponding to the first capacitor electrode 161 of the first insulating layer 123. Finally, a second insulating layer 125 is formed on the second capacitor electrode 162. Thereby, the manufacture of the capacitor electrode 16 is completed.
  • the specific formation process of the signal line is as follows: first, a scan line S disposed in the same layer as the gate electrode 120 is formed on the substrate 11, and then a first insulating layer 123 is formed on the scan line S, so that the first insulating layer 123 further covers the scan line. S. The active layer 122 is not covered on the scan line S. Further, a data line D is formed on the first insulating layer 123. Finally, a second insulating layer 125 is formed on the data line D.
  • Step S3 Further forming a color resist layer 13 on the substrate 11, the color resist layer 13 forming a first opening region M1 at a corresponding position of the TFT structure.
  • the color resist layer 13 also forms a second opening region M2 at a corresponding position of the capacitor electrode 16.
  • Step S4 A black matrix 140 is formed in the first opening region M2 to cover the TFT structure 12 by the black matrix 140.
  • a black matrix 141 is also formed in the second opening region M2 to cover the capacitor electrode 16 by the black matrix 141.
  • the color resist layer 13, the black matrix 140, and the black matrix 141 are disposed in the same layer.
  • the color resist layer 13, the black matrixes 140 and 141 are formed on the second insulating layer 125.
  • Step S5 A pixel electrode 15 is formed on the color resist layer 13 and the black matrix 140, and the pixel electrode 15 is electrically connected to the TFT structure 12 via the black matrix 140. Specifically, the pixel electrode 15 is electrically connected to the drain electrode 124 via the black matrix 140 and the second insulating layer 125. Further, the pixel electrode 15 is also electrically connected to the second capacitor electrode 162 via the black matrix 141 and the second insulating layer 125.
  • a first contact hole M3 is further formed at a position where the black matrix 140 and the second insulating layer 125 correspond to the drain electrode 124, and the black matrix 141 and the second insulating layer 125 correspond to the second capacitor.
  • the position of the electrode 162 forms a second contact hole M4.
  • an insulating protective layer 17 is first formed on the color resist layer 13 and the black matrices 140 and 141. Further, an insulating protective layer 17 is formed in the first contact hole M3 and the second contact hole M4. The insulating protective layer 17 in the first contact hole M3 and the second contact hole M4 respectively form a third contact hole M5 and a fourth contact hole M6.
  • the pixel electrode 15 is formed on the insulating protective layer 17, that is, the insulating protective layer 17 is formed between the black matrixes 140 and 141 and the color resist layer 13 and the pixel electrode 15.
  • the pixel electrode 15 is electrically connected to the drain electrode 124 through the third contact hole M5, and is electrically connected to the second capacitor electrode 162 through the fourth contact hole M6.
  • the pixel electrode 15 may also be electrically connected to the source electrode 123 via the black matrix 140 and the second insulating layer 125.
  • the first contact hole M3 is formed at a position where the black matrix 140 and the second insulating layer 125 correspond to the source electrode 123.
  • the insulating protective layer 17 in the first contact hole M3 forms a third contact hole M5, and the pixel electrode 15 is electrically connected to the source electrode 123 through the third contact hole M5.
  • the TFT substrate 10 of the present invention can ensure that the shading function of the black matrix 140 is not affected, and the light transmission phenomenon is reduced. Therefore, the contrast of the panel composed of the TFT substrate 10 can be effectively improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种TFT基板及其制造方法,该方法包括以下步骤:提供一基板(11);在基板(11)上形成TFT结构(12);在基板(11)上进一步形成色阻层(13),色阻层(13)在TFT结构(12)的对应位置形成第一开口区域(M1);在第一开口区域(M1)内形成第一黑色矩阵(140),以由第一黑色矩阵(140)覆盖TFT结构(12);在色阻层(13)和第一黑色矩阵(140)上形成像素电极(15),像素电极(15)经第一黑色矩阵(140)与TFT结构(12)电连接。以及通过上述方法得到的TFT基板,其将黑色矩阵设置在TFT基板侧,使得在TFT基板组成的面板发生弯曲时,充分的遮住光线,减小透光效果,提高面板的对比度。

Description

一种TFT基板及其制造方法
【技术领域】
本发明涉及显示技术领域,尤其是涉及一种TFT基板及其制造方法。
【背景技术】
曲面电视由于具有更出色的对比度、更广泛的视角以及沉浸式体验,为用户提供更具深度的观赏感受,因此其越来越受到人们的热爱。
在曲面电视应用中,由于面板会有一定程度的弯曲,使得组成面板的TFT(薄膜晶体管,Thin Film Transistor)基板和CF(彩色滤光片,color filter)基板之间会产生相对错位,导致设置在CF基板上的黑色矩阵(Black Matrix,BM)的光遮效果受到影响。具体请参阅图1和图2所示,其中,图1是面板100没有弯曲时,黑色矩阵101的遮光情况,图2为面板100弯曲后,黑色矩阵101的遮光情况,由图1和图2可知,在面板100弯曲后,有部分光从黑色矩阵101旁边射出,产生漏光现象,影响黑色矩阵101的光遮效果,从而会降低面板的对比度。
【发明内容】
本发明主要解决的技术问题是提供一种TFT基板及其制造方法,能够在TFT基板组成的面板发生弯曲时,充分的遮住光线,减小透光效果,从而提高面板的对比度。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种基板的制造方法,该方法包括以下步骤:提供一基板;在基板上形成TFT结构;在基板上进一步形成色阻层,色阻层在TFT结构的对应位置形成第一开口区域;在第一开口区域内形成第一黑色矩阵,以由第一黑色矩阵覆盖TFT结构;在色阻层和第一黑色矩阵上形成像素电极,像素电极经第一黑色矩阵与TFT结构电连接;
其中,在基板上形成TFT结构的步骤还包括:在基板上形成电容电极,其中色阻层在电容电极的对应位置形成第二开口区域;在第一开口区域内形成第一黑色矩阵的步骤还包括:在第二开口区域内形成第二黑色矩阵,以由第二黑色矩阵覆盖电容电极;
其中,色阻层包括红色、绿色以及蓝色材料组成,第一黑色矩阵由黑树脂材料组成。
其中,电容电极包括第一电容电极和第二电容电极,在基板上形成TFT结构的步骤包括:在基板上形成栅电极以及与栅电极同层设置的扫描线和第一电容电极;在栅电极上依次形成第一绝缘层和有源层,第一绝缘层进一步覆盖于扫描线和第一电容电极上,有源层未覆盖于扫描线和第一电容电极上;在有源层上形成源电极和漏电极,并在第一电容电极上形成与源电极和漏电极同层设置的第二电容电极;在源极、漏极和第二电容电极上形成第二绝缘层,其中色阻层、第一黑色矩阵和第二黑色矩阵形成于第二绝缘层上,像素电极经第一黑色矩阵和第二绝缘层与源电极和漏电极中的一者电连接,并进一步经第二黑色矩阵和第二绝缘层与第二电容电极电连接。
其中,方法还包括:在第一黑色矩阵、第二黑色矩阵和色阻层与像素电极之间形成绝缘保护层。
其中,在第一开口区域内形成第一黑色矩阵的步骤包括:在第一黑色矩阵和第二绝缘层对应于源电极和漏电极中的一者的位置形成第一接触孔,并在第二黑色矩阵和第二绝缘层对应于第二电容电极的位置形成第二接触孔;在第一黑色矩阵、第二黑色矩阵和色阻层与像素电极之间形成绝缘保护层的步骤包括:在第一接触孔和第二接触孔内形成绝缘保护层;在第一接触孔和第二接触孔内的绝缘保护层分别形成第三接触孔和第四接触孔,其中像素电极通过第三接触孔与源电极和漏电极中的一者电连接,并通过和第四接触孔与第二电容电极电连接。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种基板的制造方法,该方法包括以下步骤:提供一基板;在基板上形成TFT结构;在基板上进一步形成色阻层,色阻层在TFT结构的对应位置形成第一开口区域;在第一开口区域内形成第一黑色矩阵,以由第一黑色矩阵覆盖TFT结构;在色阻层和第一黑色矩阵上形成像素电极,像素电极经第一黑色矩阵与TFT结构电连接。
其中,在基板上形成TFT结构的步骤还包括:在基板上形成电容电极,其中色阻层在电容电极的对应位置形成第二开口区域;在第一开口区域内形成第一黑色矩阵的步骤还包括:在第二开口区域内形成第二黑色矩阵,以由第二黑色矩阵覆盖电容电极。
其中,电容电极包括第一电容电极和第二电容电极,在基板上形成TFT结构的步骤包括:在基板上形成栅电极以及与栅电极同层设置的扫描线和第一电容电极;在栅电极上依次形成第一绝缘层和有源层,第一绝缘层进一步覆盖于扫描线和第一电容电极上,有源层未覆盖于扫描线和第一电容电极上;在有源层上形成源电极和漏电极,并在第一电容电极上形成与源电极和漏电极同层设置的第二电容电极;在源极、漏极和第二电容电极上形成第二绝缘层,其中色阻层、第一黑色矩阵和第二黑色矩阵形成于第二绝缘层上,像素电极经第一黑色矩阵和第二绝缘层与源电极和漏电极中的一者电连接,并进一步经第二黑色矩阵和第二绝缘层与第二电容电极电连接。
其中,方法还包括:在第一黑色矩阵、第二黑色矩阵和色阻层与像素电极之间形成绝缘保护层。
其中,在第一开口区域内形成第一黑色矩阵的步骤包括:在第一黑色矩阵和第二绝缘层对应于源电极和漏电极中的一者的位置形成第一接触孔,并在第二黑色矩阵和第二绝缘层对应于第二电容电极的位置形成第二接触孔;在第一黑色矩阵、第二黑色矩阵和色阻层与像素电极之间形成绝缘保护层的步骤包括:在第一接触孔和第二接触孔内形成绝缘保护层;在第一接触孔和第二接触孔内的绝缘保护层分别形成第三接触孔和第四接触孔,其中像素电极通过第三接触孔与源电极和漏电极中的一者电连接,并通过和第四接触孔与第二电容电极电连接。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种TFT基板,该TFT基板包括基板;TFT结构,设在基板上;色阻层,设置在基板上,其中,色阻层在TFT结构的对应位置形成第一开口区域;第一黑色矩阵,设置在第一开口区域内,以由第一黑色矩阵覆盖TFT结构;像素电极,设置在色阻层和第一黑色矩阵上,像素电极经第一黑色矩阵与TFT结构电连接。
其中,TFT基板还包括:电容电极,设置在基板上,其中色阻层在信号线的对应位置形成第二开口区域;第二黑色矩阵,设置在第二开口区域内,以由第二黑色矩阵覆盖电容电极。
其中,电容电极包括第一电容电极和第二电容电极,TFT基板还包括:栅电极,设置在基板上;扫描线和第一电容电极,与栅电极同层设置;第一绝缘层和有源层,依次设置在栅电极上,其中,第一绝缘层进一步覆盖于扫描线和第一电容电极上,有源层未覆盖于扫描线和第一电容电极上;源电极和漏电极,设置在有源层上,第二电容电极,设置在第一电容电极上,并与源电极和漏电极同层设置;第二绝缘层,设置在源极、漏极和第二电容电极上,其中色阻层、第一黑色矩阵和第二黑色矩阵形成于第二绝缘层上,像素电极经第一黑色矩阵和第二绝缘层与源电极和漏电极中的一者电连接,并进一步经第二黑色矩阵和第二绝缘层与第二电容电极电连接。
其中,TFT基板还包括:绝缘保护层,设置在第一黑色矩阵、第二黑色矩阵和色阻层与像素电极之间。
其中,在第一黑色矩阵和第二绝缘层对应于源电极和漏电极中的一者的位置形成第一接触孔,并在第二黑色矩阵和第二绝缘层对应于第二电容电极的位置形成第二接触孔;在第一接触孔和第二接触孔内形成绝缘保护层;在第一接触孔和第二接触孔内的绝缘保护层分别形成第三接触孔和第四接触孔,其中像素电极通过第三接触孔与源电极和漏电极中的一者电连接,并通过和第四接触孔与第二电容电极电连接。
本发明的有益效果是:区别于现有技术的情况,本发明将黑色矩阵设置在TFT基板侧,使得在TFT基板组成的面板发生弯曲时,充分的遮住光线,减小透光效果,提高面板的对比度。
【附图说明】
图1是现有技术的面板没有弯曲时黑色矩阵的遮光效果图;
图2是现有技术的面板在发生弯曲时黑色矩阵的遮光效果图;
图3本发明实施例提供的一种TFT基板的结构示意图;
图4是图3所示的TFT基板的其中一个像素单元的结构示意图;
图5是图4所示的像素单元沿EF虚线的剖视图;
图6本发明实施例的TFT基板组成的面板在发生弯曲时黑色矩阵的遮光效果图;
图7是图4所示的像素单元沿CD虚线的剖视图;
图8是本发明实施例提供的一种TFT基板的制造方法的流程图;
图9-10是图8所示的TFT基板制造方法的工艺制程图。
【具体实施方式】
请参阅图3,图3是本发明实施例的一种TFT基板的结构示意图。如图3所示,本发明实施例的TFT基板10包括多个像素单元110,其中每个像素单元110的结构都相同。本发明将以其中一个像素单元的结构进行详细描述。
请参阅图4-图5,图4是图3所示的TFT基板10中的其中一个像素单元110的结构示意图,图5是图4所示的像素单元110沿虚线EF的剖视图。如图4和图5所示,本发明实施例的TFT基板10的像素单元110包括基板11、TFT结构12、色阻层13、黑色矩阵140以及像素电极15。其中,TFT结构12设置在基板11上,色阻层13设置在基板11上,其中,色阻层13在TFT结构12的对应位置形成第一开口区域M1。黑色矩阵140设置在第一开口区域M1内,以由黑色矩阵140覆盖TFT结构12。像素电极15设置在色阻层13和黑色矩阵140上,像素电极15经黑色矩阵140与TFT结构12电连接。
其中,色阻层13包括红色、绿色以及蓝色(R、G以及B)材料组成,黑色矩阵140由黑树脂材料组成。
因此,本实施例中,在TFT基板10侧设置了黑色矩阵140,使得在TFT基板10组成的面板发生弯曲时,设置在TFT基板10侧的黑色矩阵140的遮光功能不受影响,减小透光现象,本发明实施例的黑色矩阵140的遮光情况请参阅图6所示。因此,可以有效提高TFT基板10组成的面板的对比度。
本实施例中,TFT结构12包括栅电极120、第一绝缘层121、有源层122、源电极123、漏电极124以及第二绝缘层125。
其中,栅电极120设置在基板11上,第一绝缘层121和有源层122依次设置在栅电极120上,源电极123和漏电极124设置在有源层122上,并且源电极123和漏电极124为同层设置,第二绝缘层125设置在源电极123和漏电极124上。黑色矩阵140设置在第二绝缘层125上,也就是说,黑色矩阵140和源电极123和漏电极124之间设置了第二绝缘层125,可以有效的保护源电极123和漏电极124。
其中,有源层122的材料包括氢化非晶硅(a-Si∶H),像素电极15为ITO(Indium Tin Oxide,铟锡氧化物)透明电极。
本实施例中,TFT基板10还包括电容电极16和黑色矩阵141。其中,电容电极16设置在基板11上,色阻层13在电容电极16的对应的位置形成第二开口区域M2。黑色矩阵141设置在第二开口区域M2内,以由黑色矩阵141覆盖电容电极16。
其中,电容电极16包括第一电容电极161和第二电容电极162。第一电容电极161与栅电极120同层设置。第一绝缘层121进一步覆盖于第一电容电极161上,有源层122未覆盖于第一电容电极161上。第二电容电极162设置在第一电容电极161上,并与源电极123和漏电极124同层设置。第二绝缘层125进一步设置在第二电容电极162上。由于第一绝缘层121覆盖于第一电容电极161上,因此,第二电容电极162实际是设置在第一电容电极161对应的第一绝缘层121上。
其中,TFT基板10还包括绝缘保护层17,其设置在黑色矩阵140、141和色阻层13与像素电极15之间。用于保护TFT基板10组成的面板中的液晶不被污染。
本实施例中,色阻层13、黑色矩阵140和黑色矩阵141形成于第二绝缘层125上。像素电极15经黑色矩阵140和第二绝缘层125与漏电极124电连接,并进一步经黑色矩阵141和第二绝缘层125与第二电容电极161电连接。
具体的,在黑色矩阵140和第二绝缘层125对应于漏电极124的位置形成第一接触孔M3,并在黑色矩阵141和第二绝缘层125对应于第二电容电极161的位置形成第二接触孔M4。其中,在第一接触孔M3和第二接触孔M4内形成绝缘保护层17。在第一接触孔M3和第二接触孔M4内的绝缘保护层17分别形成第三接触孔M5和第四接触孔M6,其中像素电极15通过第三接触孔M5与漏电极124电连接,并通过第四接触孔M6与第二电容电极161电连接。
在其他实施例中,像素电极15还可以经黑色矩阵140和第二绝缘层125与源电极123电连接。具体的,第一接触孔M3设置在黑色矩阵140和第二绝缘层125对应于源电极123的位置,同样,在第一接触孔M3内的绝缘保护层17形成第三接触孔M5。像素电极15通过第三接触孔M5与源电极123电连接。
请参阅图4和图7所示,其中,图7是图4所示的像素单元110沿虚线CD的剖视图。如图4和图7所示,TFT基板10的像素单元110还进一步包括扫描线S和数据线D。其中,扫描线S设置在基板11上,并与栅电极120以及第一电容电极161同层设置。其中,第一绝缘层121进一步覆盖于扫描线S上,有源层122未覆盖于扫描线S上。数据线D设置在第一绝缘层121上,并与源电极123和漏电极124同层设置。其中,在数据线D上进一步设置第二绝缘层125,并在第二绝缘层125的对应于扫描线S的位置设置黑色矩阵140。也就是说,黑色矩阵140进一步覆盖扫描线S。
承前所述,本发明的TFT基板10可以保证黑色矩阵140的遮光功能不受影响,减小透光现象,因此,可以有效提高TFT基板10组成的面板的对比度。
本发明实施例还基于前文所述的TFT基板10提供一种TFT基板的制造方法,具体请参阅图8-图10所示。
其中,图8是本发明实施例提供的一种TFT基板的制造方法的流程图;图9是图8所示的TFT基板的制造方法对应的工艺制程图;图10是图8所示的TFT基板的制造方法对应的另一工艺制程图。如图8-图10所示,本发明实施例提供的TFT基板的制造方法包括以下步骤:
步骤S1:提供一基板11。
步骤S2:在基板11上形成TFT结构12。
本步骤具体为:首先在基板11形成栅电极120,然后在栅电极120上依次形成第一绝缘层121和有源层122,进而在有源层122上形成源电极123和漏电极124,最后在漏电极124上形成第二绝缘层125。由此就形成了整个TFT结构12。
本步骤中,在形成TFT结构12的同时,还进一步形成电容电极16以及信号线,其中,电容电极16包括第一电容电极161和第二电容电极,信号线包括扫描线S和数据线D。
其中,电容电极16的具体形成过程如下:在基板11上形成与栅电极120同层设置的第一电容电极161,然后在第一电容电极161上形成第一绝缘层123,使得第一绝缘层123进一步覆盖于第一电容电极161上。其中,有源层122未覆盖于第一电容电极161上。进而在第一电容电极161上形成与源电极123和漏电极124同层设置的第二电容电极162。由于第一电容电极161被第一绝缘层123覆盖,因此,第二电容电极162具体是形成在第一绝缘层123的对应于第一电容电极161的位置上。最后在第二电容电极162上形成第二绝缘层125。由此,完成电容电极16的制造。
信号线的具体形成过程如下:首先在基板11上形成与栅电极120同层设置的扫描线S,然后在扫描线S上形成第一绝缘层123,使得第一绝缘层123进一步覆盖于扫描线S上。其中,有源层122未覆盖于扫描线S上。进而在第一绝缘层123上形成数据线D。最后在数据线D上形成第二绝缘层125。
步骤S3:在基板11上进一步形成色阻层13,色阻层13在TFT结构的对应位置形成第一开口区域M1。
本步骤中,色阻层13还在电容电极16的对应位置形成第二开口区域M2。
步骤S4:在第一开口区域M2内形成黑色矩阵140,以由黑色矩阵140覆盖TFT结构12。
本步骤中,还在第二开口区域M2内形成黑色矩阵141,以由黑色矩阵141覆盖电容电极16。
其中,色阻层13、黑色矩阵140和黑色矩阵141是同层设置的。色阻层13、黑色矩阵140和141形成于第二绝缘层125上。
步骤S5:在色阻层13和黑色矩阵140上形成像素电极15,像素电极15经黑色矩阵140与TFT结构12电连接。具体的,像素电极15经黑色矩阵140和第二绝缘层125与漏电极124电连接。进一步的,像素电极15还经黑色矩阵141和第二绝缘层125与第二电容电极162电连接。
具体而言,在步骤S4中,进一步在黑色矩阵140和第二绝缘层125对应于漏电极124的位置形成第一接触孔M3,并在黑色矩阵141和第二绝缘层125对应于第二电容电极162的位置形成第二接触孔M4。
在本步骤中,首先在色阻层13和黑色矩阵140和141上形成绝缘保护层17。进一步的,在第一接触孔M3和第二接触孔M4内形成绝缘保护层17。在第一接触孔M3和第二接触孔M4内的绝缘保护层17分别形成第三接触孔M5和第四接触孔M6。
进一步的,在绝缘保护层17上形成像素电极15,也就是说,绝缘保护层17形成在黑色矩阵140和141和色阻层13与像素电极15之间。其中像素电极15通过第三接触孔M5与漏电极124电连接,并通过和第四接触孔M6与第二电容电极162电连接。
在其他实施例中,像素电极15还可以经黑色矩阵140和第二绝缘层125与源电极123电连接。具体的,在黑色矩阵140和第二绝缘层125对应于源电极123的位置形成第一接触孔M3,同样,在第一接触孔M3内的绝缘保护层17形成第三接触孔M5,像素电极15通过第三接触孔M5与源电极123电连接。
综上所述,本发明的TFT基板10可以保证黑色矩阵140的遮光功能不受影响,减小透光现象,因此,可以有效提高TFT基板10组成的面板的对比度。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (14)

  1. 一种TFT基板的制造方法,其中,所述方法包括以下步骤:
    提供一基板;
    在所述基板上形成TFT结构;
    在所述基板上进一步形成色阻层,所述色阻层在所述TFT结构的对应位置形成第一开口区域;
    在所述第一开口区域内形成第一黑色矩阵,以由所述第一黑色矩阵覆盖所述TFT结构;
    在所述色阻层和所述第一黑色矩阵上形成像素电极,所述像素电极经所述第一黑色矩阵与所述TFT结构电连接;
    其中,所述在所述基板上形成TFT结构的步骤还包括:
    在所述基板上形成电容电极,其中所述色阻层在所述电容电极的对应位置形成第二开口区域;
    所述在所述第一开口区域内形成第一黑色矩阵的步骤还包括:
    在所述第二开口区域内形成第二黑色矩阵,以由所述第二黑色矩阵覆盖所述电容电极;
    其中,所述色阻层包括红色、绿色以及蓝色材料组成,所述第一黑色矩阵由黑树脂材料组成。
  2. 根据权利要求1所述的方法,其中,所述电容电极包括第一电容电极和第二电容电极,所述在所述基板上形成TFT结构的步骤包括:
    在所述基板上形成栅电极以及与所述栅电极同层设置的扫描线和第一电容电极;
    在所述栅电极上依次形成第一绝缘层和有源层,所述第一绝缘层进一步覆盖于所述扫描线和所述第一电容电极上,所述有源层未覆盖于所述扫描线和所述第一电容电极上;
    在所述有源层上形成源电极和漏电极,并在所述第一电容电极上形成与所述源电极和漏电极同层设置的第二电容电极;
    在所述源极、所述漏极和所述第二电容电极上形成第二绝缘层,其中所述色阻层、所述第一黑色矩阵和所述第二黑色矩阵形成于所述第二绝缘层上,所述像素电极经所述第一黑色矩阵和所述第二绝缘层与所述源电极和漏电极中的一者电连接,并进一步经所述第二黑色矩阵和所述第二绝缘层与所述第二电容电极电连接。
  3. 根据权利要求2所述的方法,其中,所述方法还包括:
    在所述第一黑色矩阵、第二黑色矩阵和色阻层与所述像素电极之间形成绝缘保护层。
  4. 根据权利要求3所述的方法,其中,所述在所述第一开口区域内形成第一黑色矩阵的步骤包括:
    在所述第一黑色矩阵和所述第二绝缘层对应于所述源电极和漏电极中的所述一者的位置形成第一接触孔,并在所述第二黑色矩阵和所述第二绝缘层对应于所述第二电容电极的位置形成第二接触孔;
    在所述第一黑色矩阵、第二黑色矩阵和色阻层与所述像素电极之间形成绝缘保护层的步骤包括:
    在所述第一接触孔和所述第二接触孔内形成所述绝缘保护层;
    在所述第一接触孔和所述第二接触孔内的所述绝缘保护层分别形成第三接触孔和第四接触孔,其中所述像素电极通过所述第三接触孔与所述源电极和漏电极中的所述一者电连接,并通过和所述第四接触孔与所述第二电容电极电连接。
  5. 一种TFT基板的制造方法,其中,所述方法包括以下步骤:
    提供一基板;
    在所述基板上形成TFT结构;
    在所述基板上进一步形成色阻层,所述色阻层在所述TFT结构的对应位置形成第一开口区域;
    在所述第一开口区域内形成第一黑色矩阵,以由所述第一黑色矩阵覆盖所述TFT结构;
    在所述色阻层和所述第一黑色矩阵上形成像素电极,所述像素电极经所述第一黑色矩阵与所述TFT结构电连接。
  6. 根据权利要求5所述的方法,其中,所述在所述基板上形成TFT结构的步骤还包括:
    在所述基板上形成电容电极,其中所述色阻层在所述电容电极的对应位置形成第二开口区域;
    所述在所述第一开口区域内形成第一黑色矩阵的步骤还包括:
    在所述第二开口区域内形成第二黑色矩阵,以由所述第二黑色矩阵覆盖所述电容电极。
  7. 根据权利要求6所述的方法,其中,所述电容电极包括第一电容电极和第二电容电极,所述在所述基板上形成TFT结构的步骤包括:
    在所述基板上形成栅电极以及与所述栅电极同层设置的扫描线和第一电容电极;
    在所述栅电极上依次形成第一绝缘层和有源层,所述第一绝缘层进一步覆盖于所述扫描线和所述第一电容电极上,所述有源层未覆盖于所述扫描线和所述第一电容电极上;
    在所述有源层上形成源电极和漏电极,并在所述第一电容电极上形成与所述源电极和漏电极同层设置的第二电容电极;
    在所述源极、所述漏极和所述第二电容电极上形成第二绝缘层,其中所述色阻层、所述第一黑色矩阵和所述第二黑色矩阵形成于所述第二绝缘层上,所述像素电极经所述第一黑色矩阵和所述第二绝缘层与所述源电极和漏电极中的一者电连接,并进一步经所述第二黑色矩阵和所述第二绝缘层与所述第二电容电极电连接。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    在所述第一黑色矩阵、第二黑色矩阵和色阻层与所述像素电极之间形成绝缘保护层。
  9. 根据权利要求8所述的方法,其中,所述在所述第一开口区域内形成第一黑色矩阵的步骤包括:
    在所述第一黑色矩阵和所述第二绝缘层对应于所述源电极和漏电极中的所述一者的位置形成第一接触孔,并在所述第二黑色矩阵和所述第二绝缘层对应于所述第二电容电极的位置形成第二接触孔;
    在所述第一黑色矩阵、第二黑色矩阵和色阻层与所述像素电极之间形成绝缘保护层的步骤包括:
    在所述第一接触孔和所述第二接触孔内形成所述绝缘保护层;
    在所述第一接触孔和所述第二接触孔内的所述绝缘保护层分别形成第三接触孔和第四接触孔,其中所述像素电极通过所述第三接触孔与所述源电极和漏电极中的所述一者电连接,并通过和所述第四接触孔与所述第二电容电极电连接。
  10. 一种TFT基板,其中,所述TFT基板包括:
    基板;
    TFT结构,设在所述基板上;
    色阻层,设置在所述基板上,其中,所述色阻层在所述TFT结构的对应位置形成第一开口区域;
    第一黑色矩阵,设置在所述第一开口区域内,以由所述第一黑色矩阵覆盖所述TFT结构;
    像素电极,设置在所述色阻层和所述第一黑色矩阵上,所述像素电极经所述第一黑色矩阵与所述TFT结构电连接。
  11. 根据权利要求10所述的TFT基板,其中,所述TFT基板还包括:
    电容电极,设置在所述基板上,其中所述色阻层在所述电容电极的对应位置形成第二开口区域;
    第二黑色矩阵,设置在所述第二开口区域内,以由所述第二黑色矩阵覆盖所述电容电极。
  12. 根据权利要求11所述的TFT基板,其中,所述电容电极包括第一电容电极和第二电容电极,所述TFT基板还包括:
    栅电极,设置在所述基板上;
    扫描线和第一电容电极,与所述栅电极同层设置;
    第一绝缘层和有源层,依次设置在所述栅电极上,其中,所述第一绝缘层进一步覆盖于所述扫描线和所述第一电容电极上,所述有源层未覆盖于所述扫描线和所述第一电容电极上;
    源电极和漏电极,设置在所述有源层上,
    第二电容电极,设置在所述第一电容电极上,并与所述源电极和漏电极同层设置;
    第二绝缘层,设置在所述源极、所述漏极和所述第二电容电极上,其中所述色阻层、所述第一黑色矩阵和所述第二黑色矩阵形成于所述第二绝缘层上,所述像素电极经所述第一黑色矩阵和所述第二绝缘层与所述源电极和漏电极中的一者电连接,并进一步经所述第二黑色矩阵和所述第二绝缘层与所述第二电容电极电连接。
  13. 根据权利要求12所述的TFT基板,其中,所述TFT基板还包括:
    绝缘保护层,设置在所述第一黑色矩阵、第二黑色矩阵和色阻层与所述像素电极之间。
  14. 根据权利要求13所示的TFT基板,其中,在所述第一黑色矩阵和所述第二绝缘层对应于所述源电极和漏电极中的所述一者的位置形成第一接触孔,并在所述第二黑色矩阵和所述第二绝缘层对应于所述第二电容电极的位置形成第二接触孔;
    在所述第一接触孔和所述第二接触孔内形成所述绝缘保护层;
    在所述第一接触孔和所述第二接触孔内的所述绝缘保护层分别形成第三接触孔和第四接触孔,其中所述像素电极通过所述第三接触孔与所述源电极和漏电极中的所述一者电连接,并通过和所述第四接触孔与所述第二电容电极电连接。
PCT/CN2014/090673 2014-10-31 2014-11-10 一种tft基板及其制造方法 WO2016065666A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/433,628 US9645459B2 (en) 2014-10-31 2014-11-10 TFT substrate and method for manufacturing the same
US15/477,092 US20170205674A1 (en) 2014-10-31 2017-04-02 Tft substrate and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410608304.6A CN104393003A (zh) 2014-10-31 2014-10-31 一种tft基板及其制造方法
CN201410608304.6 2014-10-31

Publications (1)

Publication Number Publication Date
WO2016065666A1 true WO2016065666A1 (zh) 2016-05-06

Family

ID=52610878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090673 WO2016065666A1 (zh) 2014-10-31 2014-11-10 一种tft基板及其制造方法

Country Status (3)

Country Link
US (2) US9645459B2 (zh)
CN (1) CN104393003A (zh)
WO (1) WO2016065666A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105068343B (zh) * 2015-05-25 2018-11-23 京东方科技集团股份有限公司 显示基板和显示装置
US10488699B2 (en) * 2017-12-29 2019-11-26 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Method for manufacturing black matrix and spacer
CN109471307A (zh) 2018-09-11 2019-03-15 惠科股份有限公司 一种显示面板及其第一基板的制作方法
CN113138487B (zh) * 2021-04-13 2022-08-05 深圳市华星光电半导体显示技术有限公司 显示面板及显示装置
CN114217483B (zh) * 2021-12-17 2023-03-24 惠科股份有限公司 阵列基板、阵列基板的制作方法和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1624548A (zh) * 2003-12-01 2005-06-08 Lg.菲利浦Lcd株式会社 薄膜晶体管上滤色器型液晶显示器件及其制造方法
CN1637555A (zh) * 2003-12-30 2005-07-13 Lg.菲利浦Lcd株式会社 用于液晶显示器件的基板及其制造方法
CN1716062A (zh) * 2004-06-30 2006-01-04 Lg.菲利浦Lcd株式会社 液晶显示器件的阵列基板的制造方法
CN101030586A (zh) * 2006-06-05 2007-09-05 友达光电股份有限公司 薄膜晶体管阵列基板结构及其制造方法
CN102722056A (zh) * 2011-03-29 2012-10-10 京东方科技集团股份有限公司 彩色滤光阵列基板及其制造方法和液晶显示面板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122768A (ja) * 1994-10-19 1996-05-17 Sony Corp 表示装置
KR100209277B1 (ko) * 1996-04-25 1999-07-15 구자홍 박막트랜지스터 어레이 기판 및 그 제조방법
GB2396244B (en) * 2002-12-09 2006-03-22 Lg Philips Lcd Co Ltd Array substrate having color filter on thin film transistor s tructure for LCD device and method of fabricating the same
KR100905409B1 (ko) * 2002-12-26 2009-07-02 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
US7612373B2 (en) * 2004-06-30 2009-11-03 Lg Display Co., Ltd. Liquid crystal display device and method of manufacturing liquid crystal display device with color filter layer on thin film transistor
KR100955382B1 (ko) * 2004-12-31 2010-04-29 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
US7688419B2 (en) * 2006-05-11 2010-03-30 Au Optronics Corp. Thin film transistor array substrate structures and fabrication method thereof
KR101479998B1 (ko) * 2008-08-12 2015-01-09 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
US20100059752A1 (en) * 2008-09-11 2010-03-11 Jeong-Ho Lee Display substrate, method of manufacturing the same
KR101604650B1 (ko) * 2009-10-27 2016-03-28 삼성디스플레이 주식회사 표시 기판, 이의 제조 방법 및 표시패널의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1624548A (zh) * 2003-12-01 2005-06-08 Lg.菲利浦Lcd株式会社 薄膜晶体管上滤色器型液晶显示器件及其制造方法
CN1637555A (zh) * 2003-12-30 2005-07-13 Lg.菲利浦Lcd株式会社 用于液晶显示器件的基板及其制造方法
CN1716062A (zh) * 2004-06-30 2006-01-04 Lg.菲利浦Lcd株式会社 液晶显示器件的阵列基板的制造方法
CN101030586A (zh) * 2006-06-05 2007-09-05 友达光电股份有限公司 薄膜晶体管阵列基板结构及其制造方法
CN102722056A (zh) * 2011-03-29 2012-10-10 京东方科技集团股份有限公司 彩色滤光阵列基板及其制造方法和液晶显示面板

Also Published As

Publication number Publication date
US9645459B2 (en) 2017-05-09
US20170205674A1 (en) 2017-07-20
CN104393003A (zh) 2015-03-04
US20160274427A1 (en) 2016-09-22

Similar Documents

Publication Publication Date Title
JP5372900B2 (ja) 液晶表示装置
WO2014036730A1 (zh) 一种显示面板及液晶显示装置
WO2016065666A1 (zh) 一种tft基板及其制造方法
WO2014082326A1 (zh) 液晶显示装置及其彩色滤光片基板
WO2018006479A1 (zh) 阵列基板及其制作方法、以及液晶显示面板
WO2021244202A1 (zh) 触控显示面板及其制备方法、触控显示装置
WO2016201729A1 (zh) 一种阵列基板及其制作方法、液晶显示器
WO2018133134A1 (zh) Coa基板及液晶显示面板
WO2016187903A1 (zh) 一种液晶面板和阵列基板
WO2017166331A1 (zh) 一种石墨烯显示模组及液晶显示装置
WO2019041476A1 (zh) 一种阵列基板及其制作方法、显示面板
WO2012151792A1 (zh) 液晶显示器、彩色滤光片基板、薄膜晶体管基板及其制法
WO2015006959A1 (zh) 显示面板及显示装置
WO2019015146A1 (zh) 一种显示面板及其制程
WO2019015077A1 (zh) 一种阵列基板及其制造方法、液晶显示装置
WO2017008341A1 (zh) 一种阵列基板及液晶显示面板
WO2016074256A1 (zh) 透明显示面板及其彩色滤光片基板
WO2016082250A1 (zh) 一种tft基板及其制造方法
WO2020062491A1 (zh) 彩色滤光片和显示面板
WO2017177537A1 (zh) 一种液晶显示面板及液晶显示器
WO2020134995A1 (zh) 显示装置的阵列基板制作方法和显示装置
WO2016041216A1 (zh) 一种液晶显示面板
WO2019179151A1 (zh) 阵列基板及显示面板
WO2016065675A1 (zh) 曲面显示面板及曲面显示装置
WO2015168927A1 (zh) 阵列面板及其制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14433628

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14905169

Country of ref document: EP

Kind code of ref document: A1