WO2012098632A1 - スイッチング電源装置 - Google Patents

スイッチング電源装置 Download PDF

Info

Publication number
WO2012098632A1
WO2012098632A1 PCT/JP2011/050660 JP2011050660W WO2012098632A1 WO 2012098632 A1 WO2012098632 A1 WO 2012098632A1 JP 2011050660 W JP2011050660 W JP 2011050660W WO 2012098632 A1 WO2012098632 A1 WO 2012098632A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
power supply
circuit
switching power
chopper circuit
Prior art date
Application number
PCT/JP2011/050660
Other languages
English (en)
French (fr)
Inventor
宏 久留島
松原 真人
城所 仁志
鈴木 昭弘
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/050660 priority Critical patent/WO2012098632A1/ja
Priority to CN201180064786.8A priority patent/CN103299523B/zh
Priority to JP2012515844A priority patent/JP5052705B2/ja
Priority to US13/988,917 priority patent/US8737104B2/en
Publication of WO2012098632A1 publication Critical patent/WO2012098632A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade

Definitions

  • the present invention relates to a switching power supply device applicable to, for example, a power supply device of a laser processing apparatus.
  • a smoothing capacitor is attached to the output side of a step-up chopper circuit as one of power factor improvement techniques for a switching power supply device having a converter circuit, a chopper circuit, an inverter circuit, and the like.
  • a surge absorbing capacitor for the purpose of absorbing the surge of the switching element is often connected in parallel to the smoothing capacitor for smoothing the voltage.
  • Patent Document 1 is provided with a surge absorbing capacitor (first capacitor) for preventing a ripple phenomenon of output voltage due to resonance vibration at the start of operation, and forms a ⁇ -type smoothing circuit via an inductance.
  • Two smoothing capacitors (second and third capacitors) are connected in parallel to each other, and a damping resistor is connected in series to the third capacitor.
  • the present invention has been made in view of the above, and provides a switching power supply device that can suppress loss in efficiency by reducing loss in a damping resistor even when the capacity of a smoothing capacitor is increased.
  • the purpose is to provide.
  • the present invention provides a chopper circuit that adjusts a DC voltage input through a reactor to a desired DC voltage, and converts the output of the chopper circuit to a desired AC voltage.
  • An inverter circuit a first capacitor inserted between a DC bus connecting the chopper circuit and the inverter circuit, and connected in parallel to the first capacitor, having a capacitance value higher than that of the first capacitor.
  • a large second capacitor and a resistor inserted between the DC buses and connected only to the first capacitor are provided.
  • the loss at the damping resistor can be reduced to suppress the decrease in efficiency.
  • FIG. 1 is a diagram illustrating a circuit configuration example of a switching power supply device common to the first and second embodiments.
  • FIG. 2 is a diagram illustrating a current path when the switching element of the chopper circuit is turned on.
  • FIG. 3 is a diagram illustrating a current path when the switching element of the chopper circuit is turned off.
  • FIG. 4 is a diagram illustrating a resonance current that can be generated by the surge absorbing capacitor and the wiring inductance.
  • FIG. 5 is a diagram illustrating an example of an element arrangement on the circuit board of the switching power supply according to the first embodiment.
  • FIG. 6 is a diagram showing an example of a wiring pattern of a certain layer in the multilayer substrate on which the element shown in FIG.
  • FIG. 7 is a diagram illustrating an example of a wiring pattern of a layer different from that in FIG. 6 in the multilayer substrate of FIG. 8 is a diagram showing the positions of the wiring patterns shown in FIGS. 6 and 7 on the circuit diagram of FIG.
  • FIG. 9 is a diagram schematically showing a cross-sectional structure of a portion of the multilayer substrate shown in FIGS.
  • FIG. 10 is a top view showing an example of an element arrangement different from FIG.
  • FIG. 1 is a diagram showing a circuit configuration example of a switching power supply device common to the embodiments described below.
  • the switching power supply device is divided into three circuit blocks including a power supply circuit 100, a chopper circuit 110, and an inverter circuit 120.
  • the power supply circuit 100 is a DC power supply source, and the chopper circuit 110 adjusts the input DC voltage to a desired DC voltage.
  • the inverter circuit 120 converts the output of the chopper circuit 110 into a desired AC voltage.
  • the power supply circuit 100 includes a DC input power supply 1.
  • the DC input power supply 1 is a concept including, for example, a rectifier circuit that rectifies an AC voltage, a converter that converts the AC voltage into a desired DC voltage, or a DC / DC converter that adjusts the DC voltage to a desired DC voltage.
  • the chopper circuit 110 includes a reactor 2, a diode 3, a switching element 5, a smoothing capacitor 8, and a surge absorbing circuit 20, and the surge absorbing circuit 20 is configured by connecting a damping resistor 6 and a surge absorbing capacitor 7 in series.
  • the In the chopper circuit 110, a switching element 5, a surge absorbing circuit 20, and a smoothing capacitor 8 are arranged in this order between a DC bus 22 that is a positive DC bus and a DC bus 24 that is a negative DC bus.
  • the DC input power supply 1 is connected in parallel.
  • the inverter circuit 120 includes switching elements 91 to 94 and a surge absorbing capacitor 10. Switching elements 91 and 94 and switching elements 92 and 93 are connected in series to form an arm for one phase, and each arm is connected in parallel between DC buses 22 and 24 to provide a single-phase inverter circuit. Is configured.
  • the surge absorbing capacitor 10 is inserted between the DC buses 22 and 24 so as to correspond to each arm.
  • the wiring inductance 4 ⁇ / b> A shown on the DC bus 22 between the surge absorbing circuit 20 and the smoothing capacitor 8 is a wiring that can be generated when the surge absorbing circuit 20 and the smoothing capacitor 8 are electrically connected.
  • the wiring inductance 4B shown on the DC bus 22 between the smoothing capacitor 8 and the inverter circuit 120 is a wiring inductance that can be generated when the smoothing capacitor 8 and the inverter circuit 120 are electrically connected.
  • the wiring inductance is shown only on the positive DC bus 22, but this includes wiring inductance that can also occur on the negative DC bus 24.
  • FIG. 2 and 3 are diagrams for explaining the operation of the chopper circuit 110 in the switching power supply device shown in FIG. 1.
  • FIG. 2 shows a current path when the switching element 5 is turned on.
  • FIG. 3 shows the switching element. 5 shows a current path when 5 is turned off.
  • the current flowing at this time is based on the electromagnetic energy accumulated in the reactor 2, and the sum of the voltage of the DC input power source 1 and the voltage generated in the reactor 2 is higher than the terminal voltage of the smoothing capacitor 8.
  • the voltage generated in the reactor 2 can be controlled by changing the on / off time ratio, which is the ratio between the on time and the off time of the switching element 5. Therefore, the current flowing through the reactor 2 and the terminal voltage of the smoothing capacitor 8 can be varied by controlling the on / off ratio.
  • FIG. 4 is a diagram for explaining this resonance current.
  • the resonance current as shown in FIG. 4 becomes large.
  • the inductance of the wiring inductance 4A L, C 0 and the capacitance of the smoothing capacitor 8 if put the capacitance of the surge absorbing capacitor 7 and C 1, between C 0 and C 1 are, C 0 >> C
  • the resonance frequency fr is expressed by the following equation.
  • the vibration at the resonance frequency fr determined by, as shown in equation (1), the capacitance C 1 of the surge absorbing capacitor 7 and the inductance L of the wiring inductance 4A This resonance current is added to the charging current for the smoothing capacitor 8.
  • the damping resistor 6 is inserted so as to be connected in series to the surge absorbing capacitor 7. As explained in the section, it has a big meaning.
  • a damping resistor is inserted on the smoothing capacitor side. 2 to 4 of the present application, it is equivalent that the damping resistor 6 is connected in series to the smoothing capacitor 8.
  • the damping resistor 6 When the damping resistor 6 is connected to the smoothing capacitor 8, the magnitude of the resonance current shown in FIG. 4 is almost the same, but the damping resistor 6 limits the charging current in the path of the charging current shown in FIG. For this reason, the magnitude of the damping resistor 6 cannot be increased too much.
  • the damping resistor 6 when the damping resistor 6 is small, the current (charging current) flowing through the damping resistor 6 is large, so that the amount of heat generated by the damping resistor 6 is large, and it is necessary to use the one having a large allowable power. Further, when the damping resistance 6 is small, the resonance current becomes large, so that the ability to suppress the resonance current is lowered.
  • the damping resistor is inserted not on the smoothing capacitor side having a large capacitance value but on the surge absorption capacitor side having a small capacitance value.
  • the resonance current that can flow through the smoothing capacitor can be reduced, and heat generation of the smoothing capacitor due to the resonance current can be suppressed.
  • Embodiment 1 demonstrated embodiment which inserts the damping resistance 6 in the capacitor
  • the surge absorbing capacitor 10 when the surge absorbing capacitor 10 is inserted at both ends of the arm constituting the inverter circuit 120, the wiring inductance 4B between the inverter circuit 120 and the smoothing capacitor 8, and the surge absorbing capacitor
  • the damping resistor 6 is inserted into the surge absorbing capacitor 7 .
  • the present invention is not limited to this type of surge absorbing capacitor.
  • a damping resistor is inserted as with the surge absorption capacitor It is preferable to do. That is, when there is a second capacitor connected between the DC buses and having a smaller capacitance value than the first capacitor, the first capacitor being a smoothing capacitor connected between the DC buses, An embodiment in which a damping resistor is connected in series to the second capacitor is also included in the gist of the present invention.
  • FIG. 5 is a top view showing an example of an element arrangement on the circuit board of the switching power supply according to the first embodiment
  • FIG. 6 is a wiring of a layer on the multilayer board for arranging the elements shown in FIG. 7 is a diagram showing an example of a pattern
  • FIG. 7 is a diagram showing an example of a wiring pattern of a layer (adjacent upper layer or lower layer) different from FIG. 6 in the multilayer substrate of FIG. 6, and
  • FIG. 7 is a diagram showing the position of the wiring pattern shown in FIG. 7 on the circuit diagram of FIG. 1
  • FIG. 9 is a diagram schematically showing a cross-sectional structure of a part of the multilayer substrate shown in FIGS.
  • corresponds to FIG.
  • a multilayer substrate shown in FIGS. 6 and 7 is used.
  • copper foil patterns 12 to 17 are printed on the insulating material 18.
  • the copper foil pattern 12 forms an electrode to which the positive electrode of the DC input power source 1 and one end of the reactor 2 are connected (see the circuit diagram of FIG. 8).
  • the copper foil pattern 13 forms an electrode for connecting the other end of the reactor 2, one end of the switching element 5, and the anode end of the diode 3, and the copper foil pattern 17 is connected to the other end of the switching element 5 and a surge.
  • An electrode connected to one end of the absorption capacitor 7 is formed.
  • three patterns of the copper foil pattern 14 are shown in FIG. 6, one end of the damping resistor 6 or the cathode end of the diode 3 is connected to any two patterns.
  • elements having the same reference numerals are electrically connected by vias connecting the layers.
  • the copper foil pattern 17 and the copper foil pattern 16 constituting the electrodes are also electrically connected between the layers.
  • the copper foil patterns 15 and 16 are printed so as to be parallel with the circuit board interposed therebetween as shown in FIG.
  • a reciprocating current folding current
  • the direction of the magnetic field generated by the current flowing through the copper foil pattern 15 is opposite to the direction of the magnetic field generated by the current flowing through the copper foil pattern 16, and the mutual magnetic fields can be canceled out. Therefore, if the copper foil patterns 15 and 16 are arranged as shown in FIG. 9, the wiring inductances 4A and 4B can be reduced.
  • the resonance frequency shown in the above equation (1) can be shifted to a higher side, the resonance current can be reduced, and the loss of the damping resistor 6 can be reduced. Further, since the resonance current is reduced, the resistance value of the damping resistor 6 can be reduced, and the loss of the entire circuit can be reduced.
  • the chopper circuit and the inverter circuit are arranged on the same substrate, the surge absorbing capacitor 7 is arranged near the smoothing capacitor 8, and the surge absorbing capacitor is arranged near the switching elements 91 to 94. Since the capacitor 10 is disposed, each wiring length can be shortened, and the wiring inductances 4A and 4B can be reduced.
  • the reactor 2 is not mounted. However, when the reactor 2 can be reduced in size and weight, it may be mounted on the board. In this case, the size of the entire switching power supply device can be reduced.
  • FIG. 5 shows a configuration in which a single element is arranged on a multilayer substrate.
  • a plurality of elements are arranged in parallel as shown in FIG. 10, for example.
  • the switching elements 91 to 94 in the inverter circuit are three in parallel, and the other elements are in two parallel).
  • a plurality of capacitors arranged on the substrate may be connected in parallel as shown in FIG. 10, but it may be assumed that the capacitor cannot be arranged on the substrate. In such a case, it may be connected to an external capacitor by a connector or a terminal block.
  • the damping resistor to be inserted into the resonance loop is connected to the surge absorbing capacitor instead of the smoothing capacitor.
  • the loss at the damping resistor it is possible to reduce the loss at the damping resistor to suppress the decrease in efficiency, and even when the capacity of the smoothing capacitor is increased, measures against heat generation such as increasing the number of smoothing capacitors used can be taken. In particular, there is an effect that it is not necessary to carry out.
  • FIG. 1 switching elements provided in a chopper circuit and an inverter circuit of a switching power supply device will be described.
  • a switching element used in a chopper circuit a semiconductor transistor element (IGBT, MOSFET, etc.) using silicon (Si) as a material is general, and as a switching element used in an inverter circuit, silicon (Si) is used as a material.
  • a semiconductor transistor element (IGBT, MOSFET, etc.) to be connected to a semiconductor diode element made of silicon is connected in antiparallel.
  • the technique described in the first embodiment can be used for a chopper circuit and an inverter circuit including this general switching element.
  • the technique of the first embodiment is not limited to a switching element formed using silicon as a material.
  • a switching element made of silicon carbide (SiC) which has been attracting attention in recent years, for chopper circuits and inverter circuits instead of silicon.
  • silicon carbide has a feature that it can be used at a high temperature
  • a silicon carbide material is used as a switching element provided in a chopper circuit and an inverter circuit, the switching element Since the allowable operating temperature of the module can be increased, it is possible to increase the carrier frequency and increase the switching speed.
  • switching elements made of silicon carbide have a low surge voltage resistance. For this reason, when the switching speed is increased, the rate of change of current (di / dt) increases and is strongly influenced by the wiring inductance, so it is difficult to simply perform control to increase the carrier frequency.
  • the wiring length is shortened by arranging a surge absorbing capacitor in the vicinity of each switching element of the chopper circuit and the inverter circuit.
  • This wiring for example, the positive DC bus
  • the other wiring for example, the negative DC bus
  • the voltage itself can be reduced. For this reason, it becomes possible to reinforce the weak point of the switching element made of silicon carbide having the property of low surge voltage resistance, and the characteristics of the switching element made of silicon carbide that can be used at a high temperature Can be fully utilized.
  • silicon carbide is an example of a semiconductor referred to as a wide band gap semiconductor, capturing the characteristic that the band gap is larger than that of silicon (Si).
  • SiC silicon carbide
  • a semiconductor formed using a gallium nitride-based material or diamond belongs to a wide band gap semiconductor, and their characteristics are also similar to silicon carbide. Therefore, a configuration using a wide band gap semiconductor other than silicon carbide also forms the gist of the present invention.
  • transistor elements and diode elements formed of such a wide band gap semiconductor have high voltage resistance and high allowable current density
  • the transistor elements and diode elements can be miniaturized. By using a transistor element or a diode element, it is possible to reduce the size of a semiconductor module incorporating these elements.
  • the heat sink can be miniaturized, and the switching element module can be further miniaturized.
  • transistor elements and diode elements formed of wide bandgap semiconductors have low power loss, so switching elements and diode elements can be made more efficient, and switching element modules can be made more efficient. Become.
  • the configurations shown in the first and second embodiments are examples of the configuration of the present invention, and can be combined with other known techniques, and can be combined within a range not departing from the gist of the present invention. Needless to say, the configuration may be modified by omitting the unit.
  • the present invention is useful as a switching power supply device that can reduce a loss in a damping resistor and suppress a decrease in efficiency.

Abstract

 リアクトル2を介して入力される直流電圧を所望の直流電圧に調整するチョッパ回路110と、チョッパ回路110の出力を所望の交流電圧に変換するインバータ回路120と、を備える。チョッパ回路110には、ダンピング抵抗6とサージ吸収用コンデンサ7とを直列接続してなるサージ吸収回路20が設けられる。サージ吸収回路20および平滑コンデンサ8は、チョッパ回路110とインバータ回路120とを接続する直流母線22,24間に挿入される。ダンピング抵抗6は、サージ吸収用コンデンサ7のみに接続され、平滑コンデンサ8には接続されない。

Description

スイッチング電源装置
 本発明は、例えばレーザ加工装置の電源装置等に適用可能なスイッチング電源装置に関する。
 従来、コンバータ回路、チョッパ回路、インバータ回路などを有するスイッチング電源装置に対する力率改善手法の一つとして、昇圧チョッパ回路の出力側に平滑コンデンサを取り付ける高力率コンバータ方式がある。
 この方式のスイッチング電源装置では、昇圧チョッパ回路の出力側において、電圧を平滑する平滑用コンデンサに対し、スイッチング素子のサージ吸収を目的としたサージ吸収用コンデンサが並列に接続されることが多々ある。例えば下記特許文献1には、動作開始時の共振振動による出力電圧の波打ち現象を防止するためのサージ吸収用コンデンサ(第1のコンデンサ)が設けられると共に、インダクタンスを介してπ型平滑回路を成す2つの平滑コンデンサ(第2、第3のコンデンサ)がそれぞれ並列に接続され、さらに第3のコンデンサには、直列にダンピング抵抗が接続されている。
実用新案登録第3054996号公報
 従来のチョッパ回路に使用する複数のコンデンサにおいて、平滑コンデンサとサージ吸収用コンデンサとを比較すると、一般的には平滑コンデンサの方が容量が大きくなっている。上記特許文献1に示される回路では、容量の大きな平滑コンデンサにダンピング抵抗が接続されている。
 しかしながら、容量の大きな平滑コンデンサには、この平滑コンデンサを充電する際に大きな電流が流れるのと共に、平滑コンデンサとサージ吸収用コンデンサとの間の配線線路によるインダクタンスと、サージ吸収用コンデンサのキャパシタンスとに起因する共振電流が平滑コンデンサに加わるため、平滑コンデンサに直列に接続されるダンピング抵抗での損失が大きくなり、効率が低下するという問題点があった。また、ダンピング抵抗での発熱量が多くなるため、許容電力の大きなものを使用しなければならず、コスト増に繋がるという課題があった。
 一方、ダンピング抵抗を使用しない構成も考えられるが、この場合、ダンピング抵抗がない分、平滑コンデンサに対する共振電流が大きくなり、平滑コンデンサ自体の発熱が大きくなる。このため、平滑コンデンサの使用個数(分割数)を増やして平滑コンデンサの発熱を分散するなどの対策が必要になり、装置のコストやサイズが増大するという問題点があった。
 本発明は、上記に鑑みてなされたものであって、平滑コンデンサの容量を大きくした場合であっても、ダンピング抵抗での損失を小さくして効率の低下を抑制することができるスイッチング電源装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するため、本発明は、リアクトルを介して入力される直流電圧を所望の直流電圧に調整するチョッパ回路と、前記チョッパ回路の出力を所望の交流電圧に変換するインバータ回路と、前記チョッパ回路と前記インバータ回路とを接続する直流母線間に挿入される第1のコンデンサと、前記第1のコンデンサに並列に接続され、前記第1のコンデンサよりも容量値の大きな第2のコンデンサと、前記直流母線間に挿入され、前記第1のコンデンサのみに接続される抵抗と、を備えたことを特徴とする。
 この発明によれば、平滑コンデンサの容量を大きくした場合であっても、ダンピング抵抗での損失を小さくして効率の低下を抑制することができるという効果を奏する。
図1は、実施の形態1,2に共通するスイッチング電源装置の回路構成例を示す図である。 図2は、チョッパ回路のスイッチング素子がオンするときの電流経路を示す図である。 図3は、チョッパ回路のスイッチング素子がオフするときの電流経路を示す図である。 図4は、サージ吸収用コンデンサと配線インダクタンスとによって生じ得る共振電流を説明する図である。 図5は、実施の形態1にかかるスイッチング電源装置の回路基板上における素子配置の一例を示す図である。 図6は、図5に示す素子を配置するための多層基板におけるある層の配線パターンの一例を示す図である。 図7は、図6の多層基板における図6とは異なる層の配線パターンの一例を示す図である。 図8は、図6,7に示す配線パターンの位置を図1の回路図上に示した図である。 図9は、図6,7に示す多層基板におけるある部分の断面構造を模式的に示す図である。 図10は、図5とは異なる素子配置の一例を示す上面図である。
 以下に添付図面を参照し、本発明の実施の形態にかかるスイッチング電源装置について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。
実施の形態1.
 図1は、下述する各実施の形態に共通するスイッチング電源装置の回路構成例を示す図である。このスイッチング電源装置は、図1に示すように、電源回路100、チョッパ回路110および、インバータ回路120による3つの回路ブロックに区分される。電源回路100は、直流電力の供給源であり、チョッパ回路110は、入力される直流電圧を所望の直流電圧に調整する。また、インバータ回路120は、チョッパ回路110の出力を所望の交流電圧に変換する。
 電源回路100は、直流入力電源1を備えている。この直流入力電源1は、例えば交流電圧を整流する整流回路、交流電圧を所望の直流電圧に変換するコンバータ、あるいは直流電圧を所望の直流電圧に調整するDC/DCコンバータなどを含む概念である。
 チョッパ回路110は、リアクトル2、ダイオード3、スイッチング素子5、平滑コンデンサ8および、サージ吸収回路20を備え、サージ吸収回路20は、ダンピング抵抗6とサージ吸収用コンデンサ7を直列に接続して構成される。このチョッパ回路110では、正側直流母線である直流母線22と負側直流母線である直流母線24との間に、スイッチング素子5、サージ吸収回路20、平滑コンデンサ8が、これらの順に、且つ、直流入力電源1に対して並列に接続される。
 インバータ回路120は、スイッチング素子91~94およびサージ吸収用コンデンサ10を備えている。スイッチング素子91,94およびスイッチング素子92,93はそれぞれが直列に接続されて一相分のアームを構成すると共に、各アーム同士が直流母線22,24間に並列に接続されて単相のインバータ回路を構成している。また、サージ吸収用コンデンサ10は、各アームに対応させて直流母線22,24間に挿入されている。
 なお、図1において、サージ吸収回路20と平滑コンデンサ8との間の直流母線22上に示される配線インダクタンス4Aは、サージ吸収回路20と平滑コンデンサ8とを電気的に接続する際に生じ得る配線インダクタンスである。また、平滑コンデンサ8とインバータ回路120との間の直流母線22上に示される配線インダクタンス4Bは、平滑コンデンサ8とインバータ回路120とを電気的に接続する際に生じ得る配線インダクタンスである。なお、図1では、正側の直流母線22のみに配線インダクタンスを示しているが、これは負側の直流母線24上にも生じ得る配線インダクタンスをも含んでいる。
 つぎに、実施の形態1にかかるスイッチング電源装置の動作について図2の図面を参照して説明する。図2および図3は、図1に示すスイッチング電源装置におけるチョッパ回路110の動作を説明する図であり、図2は、スイッチング素子5がオンするときの電流経路を示し、図3は、スイッチング素子5がオフするときの電流経路を示している。
 スイッチング素子5がオンするとき、図2に示すように、直流入力電源1の正極→リアクトル2→スイッチング素子5→直流入力電源1の負極という経路の電流が流れる。このとき、リアクトル2には、電磁エネルギーが蓄積される。一方、スイッチング素子5がオフするとき、図3に示すように、直流入力電源1の正極→リアクトル2→ダイオード3→配線インダクタンス4A→平滑コンデンサ8→直流入力電源1の負極という経路の電流が流れる。このときに流れる電流は、リアクトル2に蓄積された電磁エネルギーが元となっており、直流入力電源1の電圧とリアクトル2に発生する電圧との和が、平滑コンデンサ8の端子電圧よりも高い場合には、矢印の向きの電流が流れ、平滑コンデンサ8の端子電圧よりも低い場合には、矢印とは逆向きの電流が流れる。
 なお、リアクトル2に発生する電圧は、スイッチング素子5のオン時間とオフ時間との比であるオンオフ時比率を変更することにより制御できる。したがって、リアクトル2に流す電流や平滑コンデンサ8の端子電圧は、このオンオフ時比率を制御することにより、可変することができる。
 つぎに、サージ吸収用コンデンサ7と配線インダクタンス4Aとによって生じ得る共振電流について図4を参照して説明する。図4は、この共振電流を説明する図である。
 上述のように直流母線22,24には、スイッチング素子5のオンオフにより時間的に変化する電流が流れる。また、このとき流れる電流の変化率(di/dt)は、スイッチング素子5をオンオフするときのスイッチング速度によって変化するので、例えばスイッチング速度が速くなれば電流変化率が大きくなる。このため、スイッチング素子5のスイッチング速度が速くなればなるほど、平滑コンデンサ8とダンピング抵抗6との間の配線インダクタンス4Aの大きさも回路動作上無視できなくなる。
 配線インダクタンス4Aの大きさが無視できない場合、図4に示すような共振電流が大きくなる。ここで、配線インダクタンス4AのインダクタンスをL、平滑コンデンサ8のキャパシタンスをC0、サージ吸収用コンデンサ7のキャパシタンスをC1とおけば、C0とC1との間には、C0>>C1の関係があり、共振周波数frは、次式のように表される。
 fr=1/2π√(LC1)・√{1+(C1/C0)}≒1/2π√(LC1)  ……(1)
 このように、配線インダクタンス4Aの大きさが無視できない場合、上記(1)式に示されるような、サージ吸収用コンデンサ7のキャパシタンスC1と配線インダクタンス4AのインダクタンスLとによって決まる共振周波数frで振動する共振電流が流れ、この共振電流が平滑コンデンサ8に対する充電電流に加わることになる。
 つぎに、ダンピング抵抗6の役割について説明する。ダンピング抵抗6が存在しない場合、上記の共振ループには抵抗成分が存在しないので、非常に大きな共振電流が平滑コンデンサ8に流れることになる。一方、ダンピング抵抗6が存在する場合、上記の共振ループにダンピング抵抗6の抵抗成分が加わるので、共振電流の大きさをこのダンピング抵抗6によって制限することができる。よって、平滑コンデンサ8に加わる共振電流を小さくすることができる。
 また、本実施の形態のスイッチング電源装置では、ダンピング抵抗6をサージ吸収用コンデンサ7に直列に接続されるように挿入しているが、この挿入位置にも上記「発明が解決しようとする課題」の項で説明したように大きな意味がある。上述した特許文献1の回路では、平滑コンデンサ側にダンピング抵抗を挿入している。本願の図2~4の回路であれば、平滑コンデンサ8にダンピング抵抗6を直列に接続していること等価になる。
 平滑コンデンサ8にダンピング抵抗6を接続した場合、図4に示す共振電流の大きさは殆ど変わらないが、図3に示す充電電流の経路において、ダンピング抵抗6が充電電流を制限してしまう。このため、ダンピング抵抗6の大きさをあまり大きくすることはできない。一方、ダンピング抵抗6が小さい場合、ダンピング抵抗6に流れる電流(充電電流)が大きくなるので、ダンピング抵抗6での発熱量が大きくなり、許容電力の大きなものを使用しなければならなくなる。また、ダンピング抵抗6が小さい場合、共振電流が大きくなるので、共振電流の抑制能力が低下するという問題点も生ずる。
 このように、実施の形態1のスイッチング電源装置では、容量値の大きな平滑コンデンサ側ではなく、容量値の小さなサージ吸収用コンデンサ側にダンピング抵抗を挿入しているので、配線インダクタンスに起因して発生し得る共振電流を制限することができ、その結果、平滑コンデンサに流れ得る共振電流を小さくすることができ、共振電流に起因する平滑コンデンサの発熱を抑制することが可能となる。
 なお、実施の形態1では、サージ吸収用コンデンサ7にダンピング抵抗6を挿入する実施形態について説明したが、この実施形態に限定されるものではない。例えば、図1に示すように、インバータ回路120を構成するアームの両端にサージ吸収用コンデンサ10が挿入される場合において、インバータ回路120と平滑コンデンサ8との間の配線インダクタンス4Bと、サージ吸収用コンデンサ10とによる共振が無視できない場合には、サージ吸収用コンデンサ10にもダンピング抵抗を接続することが好ましい。
 また、実施の形態1では、サージ吸収用コンデンサ7にダンピング抵抗6を挿入する実施形態について説明したが、この種のサージ吸収用コンデンサに限定されるものではない。例えば、直流母線間にサージ吸収用以外の目的で挿入されるコンデンサがあり、且つ、平滑コンデンサとの間の配線インダクタンスによる共振が無視できない場合には、サージ吸収用コンデンサと同様にダンピング抵抗を挿入することが好ましい。つまり、直流母線間に接続される平滑コンデンサである第1のコンデンサに対し、同じく、直流母線間に接続され、且つ、第1のコンデンサよりも容量値の小さな第2のコンデンサが存在する場合、この第2のコンデンサに直列にダンピング抵抗を接続する実施態様も本発明の要旨に含まれる。
 つぎに、実施の形態1にかかる素子配置の一例について図5~図9の図面を参照して説明する。図5は、実施の形態1にかかるスイッチング電源装置の回路基板上における素子配置の一例を示す上面図であり、図6は、図5に示す素子を配置するための多層基板におけるある層の配線パターンの一例を示す図であり、図7は、図6の多層基板における図6とは異なる層(隣接する上層または下層)の配線パターンの一例を示す図であり、図8は、図6,7に示す配線パターンの位置を図1の回路図上に示した図であり、図9は、図6,7に示す多層基板におけるある部分の断面構造を模式的に示す図である。
 図1に示した各素子は、例えば図5に示すように、複数の層を有する多層基板11の最上面上に配置される。なお、図5に付した符号は、それぞれが図1に対応している。図5に示す回路素子を配置する場合、例えば図6,7に示す多層基板を使用する。これらの図の多層基板では、絶縁材料18に銅箔パターン12~17がプリントされている。
 銅箔パターン12は、直流入力電源1の正極とリアクトル2の一端とが接続される電極を成す(図8の回路図参照)。同様に、銅箔パターン13は、リアクトル2の他端とスイッチング素子5の一端とダイオード3のアノード端とが接続される電極を成し、銅箔パターン17は、スイッチング素子5の他端とサージ吸収用コンデンサ7の一端とが接続される電極を成す。銅箔パターン14は、図6では、3つのパターンが示されているが、何れか2つのパターンのそれぞれにダンピング抵抗6の一端もしくはダイオード3のカソード端が接続される。なお、図6,7に示す銅箔パターンにおいて、符号を同じくするものは、層間を接続するビア等により電気的に接続される。また、電極を成す銅箔パターン17と銅箔パターン16についても層間にて電気的に接続される。
 また、銅箔パターン15,16は、図9に示すように回路基板を挟んで平行となるようにプリントされている。配線インダクタンスを小さくするためには、(1)配線長を短くする、(2)電流が流れることによって発生する磁界を小さくする、ことが必要となる。図9に示すようなプリントとすることにより、銅箔パターン15,16間にて往復電流(折り返し電流)を流すことができる。この場合、銅箔パターン15に流れる電流により発生する磁界の方向と、銅箔パターン16に流れる電流により発生する磁界の方向とは反対の関係となり、相互の磁界を打ち消しあうことができる。したがって、銅箔パターン15,16を、図9に示すように配置すれば、配線インダクタンス4A,4Bを小さくすることができる。その結果、上記(1)式に示す共振周波数を高い側にシフトさせることができ、共振電流を低減してダンピング抵抗6の損失を小さくすることができる。また、共振電流が小さくなるので、ダンピング抵抗6の抵抗値を小さくすることができ、回路全体の損失を小さくすることができる。
 また、図5の基板構成によれば、チョッパ回路およびインバータ回路を同一基板に配置すると共に、平滑コンデンサ8の近くにサージ吸収用コンデンサ7を配置し、スイッチング素子91~94の近くにサージ吸収用コンデンサ10を配置しているので、それぞれの配線長を短くすることができ、配線インダクタンス4A,4Bを小さくすることができる。
 また、図5の基板構成では、リアクトル2を実装していないが、リアクトル2を小型軽量化できる場合には、基板に実装してもよい。この場合、スイッチング電源装置全体のサイズを小型化することができる。
 なお、図5は、単一の素子を多層基板上に配置する構成であったが、スイッチング電源装置を大容量化する場合には、例えば図10に示すように複数の素子を並列的に配置すればよい(インバータ回路におけるスイッチング素子91~94は3並列、その他の素子は2並列)。なお、平滑コンデンサ8を大容量化したい場合、図10に示すように基板上に配置した複数のコンデンサを並列に接続してもよいが、基板上に配置できない場合も想定される。このような場合には、コネクタまたは端子台などにより外部のコンデンサに接続してもよい。ただし、このような構成を採用する場合、配線インダクタンスが小さくなるようにプリント基板の近くに配置することが望ましい。
 以上説明したように、実施の形態1のスイッチング電源装置によれば、共振ループに挿入すべきダンピング抵抗を平滑コンデンサではなくサージ吸収用コンデンサに接続したので、平滑コンデンサの容量を大きくした場合であっても、ダンピング抵抗での損失を小さくして効率の低下を抑制することができ、また、平滑コンデンサの容量を大きくした場合であっても、平滑コンデンサの使用個数を増加させるなどの発熱対策を特に行う必要がなくなるという効果が得られる。
実施の形態2.
 実施の形態2では、スイッチング電源装置のチョッパ回路およびインバータ回路に具備されるスイッチング素子について説明する。チョッパ回路で用いられるスイッチング素子としては、珪素(Si)を素材とする半導体トランジスタ素子(IGBT、MOSFETなど)が一般的であり、インバータ回路で用いられるスイッチング素子としては、珪素(Si)を素材とする半導体トランジスタ素子(IGBT、MOSFETなど)と、同じく珪素を素材とする半導体ダイオード素子とを逆並列に接続した構成のものが一般的である。上記実施の形態1で説明した技術は、この一般的なスイッチング素子を具備するチョッパ回路およびインバータ回路に用いることができる。
 一方、上記実施の形態1の技術は、珪素を素材として形成されたスイッチング素子に限定されるものではない。この珪素に代え、近年注目されている炭化珪素(SiC)を素材とするスイッチング素子をチョッパ回路およびインバータ回路に用いることも無論可能である。
 ここで、炭化珪素は、高温度での使用が可能であるという特徴を有しているので、チョッパ回路およびインバータ回路に具備されるスイッチング素子として炭化珪素を素材とするものを用いれば、スイッチング素子モジュールの許容動作温度を高くすることができるので、キャリア周波数を高めて、スイッチング速度を増加させることが可能である。
 その一方で、炭化珪素を素材とするスイッチング素子は、サージ電圧耐性が低いという性質もある。このため、スイッチング速度を増加させた場合、電流の変化率(di/dt)が大きくなり、配線インダクタンスの影響を強く受けるので、単純にキャリア周波数を高める制御を行うことは難しい。
 ところが、実施の形態1に係る技術によれば、チョッパ回路およびインバータ回路の各スイッチング素子の近傍にサージ吸収用コンデンサを配置することで配線長を短くし、また、多層基板を使用することにより一方の配線(例えば正側直流母線)と他方の配線(例えば負側直流母線)とを隣接する上下層の配線で構成し、かつ、それらの配線間で往復電流が流れるように構成したので、サージ電圧そのものを小さくすることが可能となる。このため、サージ電圧耐性が低いという性質を有する炭化珪素を素材とするスイッチング素子の弱点を補強することが可能となり、高温度での使用が可能であるという炭化珪素を素材とするスイッチング素子の特徴を充分に活用することが可能となる。
 なお、炭化珪素(SiC)は、珪素(Si)よりもバンドギャップが大きいという特性を捉えて、ワイドバンドギャップ半導体と称される半導体の一例である。この炭化珪素以外にも、例えば窒化ガリウム系材料または、ダイヤモンドを用いて形成される半導体もワイドバンドギャップ半導体に属しており、それらの特性も炭化珪素に類似した点が多い。したがって、炭化珪素以外の他のワイドバンドギャップ半導体を用いる構成も、本発明の要旨を成すものである。
 また、このようなワイドバンドギャップ半導体によって形成されたトランジスタ素子やダイオード素子は、耐電圧性が高く、許容電流密度も高いため、トランジスタ素子やダイオード素子の小型化が可能であり、これら小型化されたトランジスタ素子やダイオード素子を用いることにより、これらの素子を組み込んだ半導体モジュールの小型化が可能となる。
 また、ワイドバンドギャップ半導体によって形成されたトランジスタ素子やダイオード素子は、耐熱性も高いため、ヒートシンクの小型化が可能となり、スイッチング素子モジュールの更なる小型化が可能になる。
 さらに、ワイドバンドギャップ半導体によって形成されたトランジスタ素子やダイオード素子は、電力損失が低いため、スイッチング素子やダイオード素子の高効率化が可能であり、延いてはスイッチング素子モジュールの高効率化が可能になる。
 なお、以上の実施の形態1,2に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。
 以上のように、本発明は、ダンピング抵抗での損失を小さくして効率の低下を抑制することができるスイッチング電源装置として有用である。
 1 直流入力電源
 2 リアクトル(チョッパ回路)
 3 ダイオード(チョッパ回路)
 4A,4B 配線インダクタンス
 5 スイッチング素子(チョッパ回路)
 6 ダンピング抵抗
 7 サージ吸収用コンデンサ(チョッパ回路)
 8 平滑コンデンサ
 10 サージ吸収用コンデンサ(インバータ回路)
 11 多層基板
 12~17 銅箔パターン
 18 絶縁材料
 20 サージ吸収回路(チョッパ回路)
 22,24 直流母線
 91~94 スイッチング素子(インバータ回路)
 100 電源回路
 110 チョッパ回路
 120 インバータ回路

Claims (9)

  1.  リアクトルを介して入力される直流電圧を所望の直流電圧に調整するチョッパ回路と、
     前記チョッパ回路の出力を所望の交流電圧に変換するインバータ回路と、
     前記チョッパ回路と前記インバータ回路とを接続する直流母線間に挿入される第1のコンデンサと、
     前記第1のコンデンサに並列に接続され、前記第1のコンデンサよりも容量値の大きな第2のコンデンサと、
     前記第1のコンデンサ、前記第2のコンデンサおよび、前記チョッパ回路と前記インバータ回路との間の配線インダクタンスの3者による共振ループ内にあって、前記第1のコンデンサに直列に接続されて前記直流母線間に挿入される抵抗と、
     を備えたことを特徴とするスイッチング電源装置。
  2.  前記第2のコンデンサは、前記チョッパ回路の出力を平滑する平滑コンデンサであることを特徴とする請求項1に記載のスイッチング電源装置。
  3.  前記第1のコンデンサは、チョッパダイオードの近傍に配置されるサージ吸収用コンデンサであることを特徴とする請求項1に記載のスイッチング電源装置。
  4.  前記第1のコンデンサは、前記インバータ回路を構成するアームの近傍に配置されるサージ吸収用コンデンサであることを特徴とする請求項1に記載のスイッチング電源装置。
  5.  前記チョッパ回路および前記インバータ回路を同一基板上に配置したことを特徴とする請求項1に記載のスイッチング電源装置。
  6.  前記チョッパ回路および前記インバータ回路を2層以上の多層基板で構成し、前記直流母線の一方と他方とを隣接する上下層の配線で構成したことを特徴とする請求項1に記載のスイッチング電源装置。
  7.  前記チョッパ回路および前記インバータ回路の各スイッチング素子は、ワイドバンドギャップ半導体にて形成されることを特徴とする請求項1~6の何れか1項に記載のスイッチング電源装置。
  8.  前記ワイドバンドギャップ半導体は、炭化ケイ素、窒化ガリウム系材料または、ダイヤモンドを用いた半導体であることを特徴とする請求項7に記載のスイッチング電源装置。
  9.  リアクトルを介して入力される直流電圧を所望の直流電圧に調整するチョッパ回路と、
     前記チョッパ回路の出力を所望の交流電圧に変換するインバータ回路と、
     前記チョッパ回路と前記インバータ回路とを接続する直流母線間に挿入される第1のコンデンサと、
     前記第1のコンデンサに並列に接続され、前記第1のコンデンサよりも容量値の大きな第2のコンデンサと、
     前記直流母線間に挿入され、前記第1のコンデンサのみに接続される抵抗と、
     を備えたことを特徴とするスイッチング電源装置。
PCT/JP2011/050660 2011-01-17 2011-01-17 スイッチング電源装置 WO2012098632A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2011/050660 WO2012098632A1 (ja) 2011-01-17 2011-01-17 スイッチング電源装置
CN201180064786.8A CN103299523B (zh) 2011-01-17 2011-01-17 开关电源装置
JP2012515844A JP5052705B2 (ja) 2011-01-17 2011-01-17 スイッチング電源装置
US13/988,917 US8737104B2 (en) 2011-01-17 2011-01-17 Switching power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/050660 WO2012098632A1 (ja) 2011-01-17 2011-01-17 スイッチング電源装置

Publications (1)

Publication Number Publication Date
WO2012098632A1 true WO2012098632A1 (ja) 2012-07-26

Family

ID=46515285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050660 WO2012098632A1 (ja) 2011-01-17 2011-01-17 スイッチング電源装置

Country Status (4)

Country Link
US (1) US8737104B2 (ja)
JP (1) JP5052705B2 (ja)
CN (1) CN103299523B (ja)
WO (1) WO2012098632A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015036280A (ja) * 2013-08-12 2015-02-23 株式会社東芝 電車給電システム、き電制御装置及び蓄電装置
JP5813184B1 (ja) * 2014-07-07 2015-11-17 三菱電機株式会社 直流変換装置
JP5911553B1 (ja) * 2014-11-21 2016-04-27 三菱電機株式会社 直流変換装置
JP2017139912A (ja) * 2016-02-04 2017-08-10 富士電機株式会社 電力変換装置
JP2018182850A (ja) * 2017-04-07 2018-11-15 三菱電機株式会社 電力変換装置
WO2020017090A1 (ja) * 2018-07-19 2020-01-23 オムロン株式会社 電力変換装置
JP7104515B2 (ja) 2017-12-25 2022-07-21 パナソニックIpマネジメント株式会社 電源装置、音響装置及び非常用装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6328002B2 (ja) * 2013-09-20 2018-05-23 株式会社東芝 電力変換装置
JP6314532B2 (ja) * 2014-02-24 2018-04-25 株式会社デンソー 電力変換システム
JP5842233B1 (ja) * 2014-09-26 2016-01-13 富士電機株式会社 直流電力変換装置
JP6786465B2 (ja) * 2017-11-07 2020-11-18 株式会社東芝 半導体装置、電力変換装置、駆動装置、車両、及び、昇降機

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166482U (ja) * 1988-05-07 1989-11-21
JP2004254355A (ja) * 2003-02-18 2004-09-09 Toshiba Corp 電力変換装置
JP2006187084A (ja) * 2004-12-27 2006-07-13 Toshiba Elevator Co Ltd 直流電動機駆動用フィルタ
JP2007318911A (ja) * 2006-05-25 2007-12-06 Toyota Industries Corp 半導体装置
JP2008271637A (ja) * 2007-04-17 2008-11-06 Toshiba Corp 電力変換回路、当該導体構造および電力用スイッチング素子
JP2009268239A (ja) * 2008-04-24 2009-11-12 Diamond Electric Mfg Co Ltd 半導体モジュール及びこれを備える電源装置
JP2010166719A (ja) * 2009-01-16 2010-07-29 Mitsubishi Electric Corp モーター駆動制御装置、圧縮機、送風機、空気調和機及び冷蔵庫又は冷凍庫

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354699A (ja) * 1989-07-22 1991-03-08 Omron Corp 取引処理装置
JP3294343B2 (ja) * 1992-11-13 2002-06-24 松下電工株式会社 電源装置
JP3054996U (ja) 1998-06-16 1998-12-22 コーセル株式会社 コンデンサ入力型整流平滑回路
DE19830368A1 (de) * 1998-07-07 2000-02-03 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Elektronisches Vorschaltgerät mit Einschaltstrombegrenzung
JP3054699B2 (ja) * 1998-08-07 2000-06-19 工業技術院長 O−シリル化含水酸基環状エーテルの製造方法
JP2006025531A (ja) * 2004-07-07 2006-01-26 Seiko Instruments Inc Dc−dcコンバータ回路
US20110037406A1 (en) * 2008-04-24 2011-02-17 Nobutoshi Matsuzaki High pressure discharge lamp lighting apparatus and lighting fixture
US8488340B2 (en) * 2010-08-27 2013-07-16 Flextronics Ap, Llc Power converter with boost-buck-buck configuration utilizing an intermediate power regulating circuit
US8193788B2 (en) * 2011-04-27 2012-06-05 Solarbridge Technologies, Inc. Method and device for controlling a configurable power supply to provide AC and/or DC power output

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166482U (ja) * 1988-05-07 1989-11-21
JP2004254355A (ja) * 2003-02-18 2004-09-09 Toshiba Corp 電力変換装置
JP2006187084A (ja) * 2004-12-27 2006-07-13 Toshiba Elevator Co Ltd 直流電動機駆動用フィルタ
JP2007318911A (ja) * 2006-05-25 2007-12-06 Toyota Industries Corp 半導体装置
JP2008271637A (ja) * 2007-04-17 2008-11-06 Toshiba Corp 電力変換回路、当該導体構造および電力用スイッチング素子
JP2009268239A (ja) * 2008-04-24 2009-11-12 Diamond Electric Mfg Co Ltd 半導体モジュール及びこれを備える電源装置
JP2010166719A (ja) * 2009-01-16 2010-07-29 Mitsubishi Electric Corp モーター駆動制御装置、圧縮機、送風機、空気調和機及び冷蔵庫又は冷凍庫

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015036280A (ja) * 2013-08-12 2015-02-23 株式会社東芝 電車給電システム、き電制御装置及び蓄電装置
US9873335B2 (en) 2013-08-12 2018-01-23 Kabushiki Kaisha Toshiba Electric railcar power feeding system, power feeding device, and power storage device
JP5813184B1 (ja) * 2014-07-07 2015-11-17 三菱電機株式会社 直流変換装置
JP2016019321A (ja) * 2014-07-07 2016-02-01 三菱電機株式会社 直流変換装置
JP5911553B1 (ja) * 2014-11-21 2016-04-27 三菱電機株式会社 直流変換装置
JP2017139912A (ja) * 2016-02-04 2017-08-10 富士電機株式会社 電力変換装置
JP2018182850A (ja) * 2017-04-07 2018-11-15 三菱電機株式会社 電力変換装置
JP7104515B2 (ja) 2017-12-25 2022-07-21 パナソニックIpマネジメント株式会社 電源装置、音響装置及び非常用装置
WO2020017090A1 (ja) * 2018-07-19 2020-01-23 オムロン株式会社 電力変換装置
JP2020014348A (ja) * 2018-07-19 2020-01-23 オムロン株式会社 電力変換装置
US11329546B2 (en) 2018-07-19 2022-05-10 Omron Corporation Power converter apparatus provided with low-pass filter circuit for reducing switching frequency components

Also Published As

Publication number Publication date
JPWO2012098632A1 (ja) 2014-06-09
US20130242630A1 (en) 2013-09-19
CN103299523A (zh) 2013-09-11
CN103299523B (zh) 2015-08-26
US8737104B2 (en) 2014-05-27
JP5052705B2 (ja) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5052705B2 (ja) スイッチング電源装置
US10116201B2 (en) High power density inverter (I)
TWI540819B (zh) 電源系統及其中的功率模塊以及製作功率模塊的方法
US8693222B2 (en) DC-DC converter, power supply unit and an information processing apparatus
JP6128135B2 (ja) 半導体装置
CN103782380B (zh) 半导体模块
JP6102297B2 (ja) 半導体装置
US10811958B2 (en) Water-cooling power supply module
JP2013219919A (ja) ノイズ低減フィルタおよびそれを用いた電力変換装置
JP6739453B2 (ja) パワー半導体モジュール
US9467067B2 (en) Power converter
JP2018130015A (ja) 低誘導性ハーフブリッジ装置
US9287765B2 (en) Power system, power module therein and method for fabricating power module
JPWO2018235484A1 (ja) 電子回路装置
EP2903149B1 (en) Semiconductor device and power conversion apparatus using same
JP6365172B2 (ja) 電力変換装置および装置部品
JP7275673B2 (ja) 電力変換装置
JP2018182880A (ja) 電力変換装置
JP6269870B2 (ja) 半導体装置
US9330826B1 (en) Integrated architecture for power converters
JP6674398B2 (ja) 電力変換装置および制御線の配線構造
JP6145073B2 (ja) 電力変換装置
JP2017192205A (ja) 電力変換装置
JP2010213436A (ja) 電力変換器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012515844

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856416

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13988917

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856416

Country of ref document: EP

Kind code of ref document: A1