WO2012091270A1 - 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오 - Google Patents
나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오 Download PDFInfo
- Publication number
- WO2012091270A1 WO2012091270A1 PCT/KR2011/008157 KR2011008157W WO2012091270A1 WO 2012091270 A1 WO2012091270 A1 WO 2012091270A1 KR 2011008157 W KR2011008157 W KR 2011008157W WO 2012091270 A1 WO2012091270 A1 WO 2012091270A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- refractive index
- light emitting
- emitting diode
- nano
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims abstract description 45
- 239000004065 semiconductor Substances 0.000 claims abstract description 122
- 150000004767 nitrides Chemical class 0.000 claims abstract description 74
- 239000000758 substrate Substances 0.000 claims abstract description 58
- 238000005530 etching Methods 0.000 claims abstract description 14
- 239000002086 nanomaterial Substances 0.000 claims description 32
- 238000001312 dry etching Methods 0.000 claims description 12
- 239000004020 conductor Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 5
- 238000003825 pressing Methods 0.000 claims description 5
- 238000012546 transfer Methods 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 4
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N CuO Inorganic materials [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 2
- 238000000605 extraction Methods 0.000 abstract description 20
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 229910002601 GaN Inorganic materials 0.000 description 8
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 239000002077 nanosphere Substances 0.000 description 4
- 238000001039 wet etching Methods 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005662 electromechanics Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0066—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
- H01L33/007—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0091—Scattering means in or on the semiconductor body or semiconductor body package
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0093—Wafer bonding; Removal of the growth substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
- H01L33/22—Roughened surfaces, e.g. at the interface between epitaxial layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/44—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
Definitions
- the present invention relates to a method for manufacturing a nanoimprint mold, a method for manufacturing a light emitting diode using the nanoimprint mold manufactured by the method, and a light emitting diode manufactured by the method.
- the white light source gallium nitride-based light emitting diodes have various forms of energy conversion efficiency, long life, high light directivity, low voltage driving, no preheating time and complicated driving circuit, and strong against shock and vibration. It is possible to implement high-quality lighting systems, and is expected to be a solid-state lighting source that will replace conventional light sources such as incandescent, fluorescent and mercury lamps in the near future. In order to use a gallium nitride-based light emitting diode as a white light source to replace a mercury lamp or a fluorescent lamp, it must not only have excellent thermal stability but also be able to emit high power at low power consumption.
- Horizontal gallium nitride-based light emitting diodes which are widely used as white light sources, have the advantages of relatively low manufacturing cost and simple manufacturing process. However, they have disadvantages of being inadequate to be used as high power sources with high applied current and large area. .
- a vertical structure light emitting diode is a device that overcomes the disadvantages of the horizontal structure light emitting diode and is easy to apply a large area high power light emitting diode. Such vertical structured light emitting diodes have various advantages compared to conventional horizontal structured devices.
- the current spreading resistance is small, so a very uniform current spreading can be obtained, resulting in a lower operating voltage and a large light output, and a smooth heat dissipation through a metal or semiconductor substrate having good thermal conductivity. Long device life and significantly improved high power operation are possible.
- the maximum applied current is increased by 3 to 4 times or more compared to the horizontal light emitting diode, and thus it is surely used as a white light source for illumination.
- an n-type semiconductor layer on the upper part of the device can greatly improve the light output of the device.
- the n-type semiconductor layer is a smooth plane, due to the large difference in refractive index between the n-type semiconductor layer and the atmosphere (the refractive index of the n-type semiconductor layer is 2.4 or less and the refractive index of the atmosphere is 1), the atmosphere and the n-type semiconductor layer High light output cannot be expected because total reflection occurs at the interface and a large part of the light generated in the active layer, that is, the light emitting layer, cannot escape to the outside. Therefore, it is necessary to artificially modify the surface of the n-type semiconductor layer to prevent total reflection from occurring and to let the light out to the outside with minimal loss.
- the nanostructure such as Silica (SiO 2 ) nanosphere or polystyrene nanosphere directly coated on the semiconductor layer, and then the semi-spherical structure is dried using a dry etching semiconductor layer It was formed to improve the light extraction efficiency of the light emitting diode.
- a conventional method has a disadvantage in that reproducibility is insufficient when coating and etching nanostructures, and that nanostructures are expensive and difficult to apply in large areas.
- the present invention provides a method for manufacturing a nanoimprint mold capable of efficiently and economically forming a nanopattern for improving light extraction efficiency of a light emitting diode, a method for manufacturing a light emitting diode using the nanoimprint mold, and a light emitting diode. do.
- the present invention provides a method of manufacturing a light emitting diode that can efficiently and precisely form a nano-pattern for improving light extraction efficiency without the use of separate wet etching and dry etching, and to provide a light emitting diode manufactured by the method It is a technical problem.
- the present invention is to provide a light emitting diode having a high light extraction efficiency and a method of manufacturing the same by forming a nano pattern on a large area at a low cost through a simplified process.
- a method for manufacturing a nanoimprint mold according to the present invention includes forming nanospheres on a semiconductor substrate through dry etching using the nanostructures as a mask and coating nanostructures on a semiconductor substrate.
- the method may further include transferring the hemispherical nanopattern formed on the semiconductor substrate to the nanoimprint mold by a nanoimprinting method and separating the nanoimprint mold on which the hemispherical nanopattern is transferred from the semiconductor substrate. It is configured to include.
- the size of the nanospheres of the hemispherical shape is controlled by adjusting at least one of the size of the nanostructures coated on the semiconductor substrate and the dry etching time.
- the size of the nanostructures coated on the semiconductor substrate is characterized in that the 100nm or more and 2000nm or less.
- the size of the nanostructures coated on the semiconductor substrate is characterized in that different.
- Method of manufacturing a light emitting diode comprises the steps of forming an n-type nitride semiconductor layer, a light emitting layer and a p-type nitride semiconductor layer on a temporary substrate, forming a p-type electrode on the p-type nitride semiconductor layer, Forming a conductive substrate on the p-type electrode, removing the temporary substrate to expose the n-type nitride semiconductor layer, and forming a nanoimprint resist layer on the n-type nitride semiconductor layer, Pressing the nanoimprint mold manufactured by the method of manufacturing a nanoimprint mold to the nanoimprint resist layer to transfer a hemispherical nanopattern formed in the nanoimprint mold to the nanoimprint resist layer, wherein the hemisphere
- the nano imprint mold is separated from the nano imprint resist layer having a nano pattern formed thereon And forming a n-type electrode by etching a portion of the nanoimprint resist layer on which
- n-type nitride semiconductor layer and the nano-imprint resist layer has a refractive index smaller than the refractive index of the n-type nitride semiconductor layer and larger than the refractive index of the nano-imprint resist layer
- Forming a refractive index control layer is characterized in that it further comprises.
- the refractive index control layer is formed by sequentially stacking the first refractive index control layer and the second refractive index control layer for refracting the light from the light emitting layer with different refractive index. It features.
- the first refractive index control layer is formed on the n-type nitride semiconductor layer and the refractive index of the first refractive index control layer is smaller than the refractive index of the n-type nitride semiconductor layer
- the second refractive index adjusting layer is formed on the first refractive index adjusting layer, and the refractive index of the second refractive index adjusting layer is smaller than the refractive index of the first refractive index adjusting layer and larger than the refractive index of the nanoimprint resist layer.
- the first refractive index adjusting layer is ZnO, Al-doped ZnO, In-doped ZnO, Ga-doped ZnO, ZrO 2 , TiO 2 , SiO 2 , SiO, Al It is characterized in that it comprises at least one selected from the group consisting of 2 O 3 , CuO X and ITO.
- the second refractive index control layer is characterized in that the MgO-based oxide.
- the MgO-based oxide constituting the second refractive index adjusting layer is a multi-element compound formed by adding another element to MgO.
- the n-type electrode is etched after etching a portion of the nano-imprint resist layer formed with the hemisphere-shaped nano pattern to expose the n-type nitride semiconductor layer It is characterized by being formed by depositing a conductive material on the.
- the light emitting diode according to an aspect of the present invention is characterized in that it is manufactured by the light emitting diode manufacturing method according to an aspect of the present invention.
- a light emitting diode manufacturing method comprising: forming an n-type nitride semiconductor layer, an emission layer, and a p-type nitride semiconductor layer on a substrate on which a pattern for scattering and reflecting incident light is formed; Exposing a portion of the n-type nitride semiconductor layer by mesa etching a portion of the nitride semiconductor layer, the light emitting layer, and the n-type nitride semiconductor layer, forming a transparent electrode on the p-type nitride semiconductor layer, the transparent electrode Forming a nanoimprint resist layer on the, press the nanoimprint mold prepared by the nanoimprint mold manufacturing method according to the present invention to the nanoimprint resist layer to form a hemispherical nanopattern formed in the nanoimprint mold Transferring to the nanoimprint resist layer, the hemispherical nano pattern is Separating the nanoimprint mold from the formed nanoimprint resist
- the transparent electrode ITO In the light emitting diode manufacturing method according to another aspect of the present invention, it is characterized in that the transparent electrode ITO.
- the p-type electrode is a portion of the nano-imprint resist layer formed with the hemispherical nano-pattern is etched so that the transparent electrode is exposed to the conductive material in the etched region It is characterized by being formed by depositing.
- the light emitting diode according to another aspect of the present invention is characterized in that it is manufactured by the light emitting diode manufacturing method according to another aspect of the present invention.
- a method of manufacturing a nanoimprint mold capable of efficiently and economically forming a nanopattern for improving light extraction efficiency of a light emitting diode a method of manufacturing a light emitting diode using the nanoimprint mold, and a light emitting diode. have.
- FIG. 1 is a view illustrating a phenomenon in which a light extraction efficiency is lowered due to total internal reflection occurring at an interface due to a difference in refractive index between a nitride semiconductor layer and the atmosphere in a conventional light emitting diode.
- FIG. 2 is a view for explaining the principle of improving the light extraction efficiency of the light emitting diode by forming a hemispherical nano-pattern on the optical path in the present invention.
- 3 to 8 is a view showing a nanoimprint mold manufacturing method according to an embodiment of the present invention.
- FIG. 9 is a photograph taken by an electron microscope of nanostructures coated on a semiconductor substrate in a method of manufacturing a nanoimprint mold according to an embodiment of the present invention.
- 10 to 18 illustrate a method of manufacturing a light emitting diode according to a first embodiment of the present invention.
- 19 to 25 illustrate a method of manufacturing a light emitting diode according to a second exemplary embodiment of the present invention.
- FIG. 1 is a view illustrating a phenomenon in which a light extraction efficiency is lowered due to total internal reflection occurring at an interface due to a difference in refractive index between a nitride semiconductor layer and the atmosphere in a conventional light emitting diode.
- the refractive index of the gallium nitride semiconductor substrate is about 2.5 and the refractive index of the atmosphere is 1, the difference in refractive index between the two layers is large so that The critical angle is only 23.5 degrees. Therefore, the light generated inside the semiconductor does not escape to the outside, there is a problem that the light extraction efficiency is lowered because it disappears inside.
- FIG. 2 is a view for explaining the principle of improving the light extraction efficiency of the light emitting diode by forming a hemispherical nano-pattern on the optical path in the present invention.
- 3 to 8 is a view showing a nanoimprint mold manufacturing method according to an embodiment of the present invention.
- a method of manufacturing a nanoimprint mold according to an embodiment of the present invention includes coating nanostructures 50 on a semiconductor substrate 40, and masking the nanostructures 50. Forming a hemispherical nanopattern on the semiconductor substrate 40 through dry etching, and transferring the hemispherical nanopattern formed on the semiconductor substrate 40 to the nanoimprint mold 60 by a nanoimprinting method. And separating the nanoimprint mold 60 from which the semi-spherical nano pattern is transferred from the semiconductor substrate 40.
- nanostructures 50 are coated on a semiconductor substrate 40.
- the semiconductor substrate 40 may include at least one selected from the group consisting of Si, Ge, SiC, Si X Ge 1-X , gallium nitride - based semiconductors, and the nanostructure 50 may be SiO 2 or polystyrene. It may be a powder.
- a semi-spherical nano pattern is formed on the semiconductor substrate 40 through dry etching using the nanostructures 50 coated on the semiconductor substrate 40 as a mask.
- 6 shows a state in which a semi-spherical nanopattern is formed on the semiconductor substrate 40 after the exposure and development processes.
- a polymer mold for nanoimprinting that is, a nano imprint mold 60 is manufactured.
- the hemispherical nano pattern formed on the semiconductor substrate 40 is transferred to the nano imprint mold 60 by a nano imprinting method.
- the nanoimprint mold 60 to which the hemispherical nanopattern is transferred is separated from the semiconductor substrate 40.
- a nano imprint mold 60 in which a hemispherical nano pattern is finally formed is manufactured, and the nano imprint mold 60 is used as a master template for forming a nano pattern in a light emitting diode manufacturing process to be described later. .
- the size of the hemispherical nanopattern may be adjusted.
- FIG. 9 is a photograph taken with an electron microscope of the nanostructures 50 coated on the semiconductor substrate 40.
- FIG. 9A illustrates a case where the size of the nanostructure is 250 nm
- FIG. 9B illustrates a case where the size of the nanostructure is 500 nm
- FIG. 9C illustrates a case where the size of the nanostructure is 1000 nm.
- the semiconductor substrate 40 is considered in consideration of the size of the nanostructures 50 affecting the size of the hemispherical nanopattern.
- the size of the nanostructures 50 coated on the substrate is preferably 100nm or more and 2000nm or less.
- the size of the hemispherical nanopattern may be irregular.
- 10 to 18 illustrate a method of manufacturing a light emitting diode according to a first embodiment of the present invention.
- a light emitting diode manufacturing method includes an n-type nitride semiconductor layer 110, a light-emitting layer 120, and a p-type nitride semiconductor layer (on a temporary substrate 100). Forming the p-type electrode 140 on the p-type nitride semiconductor layer 130, forming the conductive substrate 150 on the p-type electrode 140, and the temporary substrate 100.
- n-type nitride semiconductor layer 110 to form a nano-imprint resist layer 160 on the n-type nitride semiconductor layer 110, by the method of manufacturing a nano-imprint mold according to the present invention Pressing the prepared nanoimprint mold 60 on the nanoimprint resist layer 160 to transfer the hemispherical nanopattern to the nanoimprint resist layer 160, the nanoimprint resist layer 160 having the hemispherical nanopattern formed thereon From the nano imprint mold (60) And forming a n-type electrode 170 by etching a portion of the nanoimprint resist layer 160 having the hemisphere-shaped nano pattern formed thereon.
- the n-type nitride semiconductor layer 110, the light emitting layer 120, and the p-type nitride semiconductor layer 130 are sequentially formed on the temporary substrate 100.
- a p-type electrode 140 is formed on the p-type nitride semiconductor layer 130, and a conductive substrate 150 is formed on the p-type electrode 140.
- the p-type electrode 140 performs a function of reflecting light from the light emitting layer 120.
- the temporary substrate 100 is removed to expose the n-type nitride semiconductor layer 110 to the outside.
- the nanoimprint resist layer 160 is formed on the n-type nitride semiconductor layer 110 by, for example, a spin coating method.
- the nanoimprint mold 60 manufactured by the nanoimprint mold manufacturing method according to an embodiment of the present invention described above is pressed onto the nanoimprint resist layer 160 to form a nanopattern. Is transferred to the nanoimprint resist layer 160, and UV and heat are applied to cure the nanoimprint resist layer 160 having the hemispherical nano pattern formed thereon.
- the nanoimprint mold 60 is separated from the nanoimprint resist layer 160 having the hemispherical nanopattern formed thereon.
- a portion of the nanoimprint resist layer 160 having the hemispherical nanopattern formed thereon is etched to expose the n-type nitride semiconductor layer 110, and then an n-type electrode 170 is formed.
- the n-type electrode 170 is etched to expose the n-type nitride semiconductor layer 110, a portion of the nano-imprint resist layer 160, the hemisphere-shaped nano-pattern is formed, the conductive material in the etched region It may be formed by depositing.
- the first embodiment of the present invention may further include forming the refractive index adjusting layer 180 to further increase the light extraction efficiency.
- the refractive index of the n-type nitride semiconductor layer 110 is smaller than the refractive index of the n-type nitride semiconductor layer 110 and the nanoimprint resist layer 160.
- the refractive index adjusting layer 180 having a refractive index larger than that of the imprint resist layer 160 is formed.
- the refractive index adjusting layer 180 may be formed by sequentially stacking the first refractive index adjusting layer 181 and the second refractive index adjusting layer 182 for refracting light from the light emitting layer 120 at different refractive indices.
- the first refractive index control layer 181 is formed on the n-type nitride semiconductor layer 110, the refractive index of the first refractive index control layer 181 is smaller than the refractive index of the n-type nitride semiconductor layer 110, and the second refractive index control layer 182 is formed on the first refractive index control layer 181 and the refractive index of the second refractive index control layer 182 is smaller than the refractive index of the first refractive index control layer 181 and larger than the refractive index of the nanoimprint resist layer 160. .
- the first refractive index adjusting layer 181 and the second refractive index adjusting layer 182 having a refractive index corresponding to a median of the refractive indices of these layers are 182.
- the buffer layer it is possible to further increase the light extraction efficiency.
- the first refractive index adjusting layer 181 may include ZnO, Al-doped ZnO, In-doped ZnO, Ga-doped ZnO, ZrO 2 , TiO 2 , SiO 2 , SiO, Al 2 O 3 , CuO X, and ITO It may include one or more selected from the group consisting of, the second refractive index control layer 182 may be an MgO-based oxide.
- the MgO-based oxide constituting the second refractive index control layer 182 may be a multi-element compound formed by adding another element to MgO.
- the refractive indexes of the materials selected as the first refractive index control layer 181 and the second refractive index control layer 182 are in common between the refractive index of the n-type nitride semiconductor layer 110 and the refractive index of the nanoimprint resist layer 160.
- a method of manufacturing a nanoimprint mold capable of efficiently and economically forming a nanopattern for improving light extraction efficiency of a light emitting diode a method of manufacturing a light emitting diode using the nanoimprint mold, and a light emitting device There is an effect that a diode is provided.
- the technology of the present invention is a technique for forming hemisphere nanostructures using a nanoimprint method capable of large-area processing, and can be immediately applied to a manufacturing process of a light emitting diode.
- it can be applied not only to the vertical structure but also to the horizontal structure light emitting diode, the manufacturing process is simple, and the light output of the light emitting diode is greatly improved, which can accelerate the advent of the solid lighting era using the white light source gallium nitride-based light emitting diode. That is energy saving and eco-friendly technology.
- 19 to 25 illustrate a method of manufacturing a light emitting diode according to a second exemplary embodiment of the present invention.
- an n-type nitride semiconductor layer 210 is formed on a substrate 200 on which a pattern for scattering and reflecting incident light is formed. ), Forming the light emitting layer 220 and the p-type nitride semiconductor layer 230, mesa-etched a portion of the p-type nitride semiconductor layer 230, the light emitting layer 220 and the n-type nitride semiconductor layer 210 to n-type Exposing a portion of the nitride semiconductor layer 210, forming a transparent electrode 240 on the p-type nitride semiconductor layer 230, and forming a nanoimprint resist layer 250 on the transparent electrode 240.
- Step pressing the nano-imprint mold 60 produced by the nano-imprint mold manufacturing method according to the present invention to the nanoimprint resist layer 250 to transfer the hemispherical nano-pattern to the nanoimprint resist layer 250, Hemispherical nano pattern Separating the nanoimprint mold 60 from the nanoimprint resist layer 250 thus prepared, and etching a portion of the nanoimprint resist layer 250 in which the hemispherical nanopattern is formed to form a p-type electrode 260 and n-type. And forming an n-type electrode 270 on the nitride semiconductor layer 210.
- an n-type nitride semiconductor layer 210, a light emitting layer 220, and a p-type nitride semiconductor layer 230 are formed on a substrate 200 on which a pattern for scattering and reflecting incident light is formed.
- the substrate 200 may be a sapphire (Al 2 O 3) substrate, and the pattern formed on the substrate 200 serves to scatter and reflect light from the light emitting layer 220.
- a portion of the p-type nitride semiconductor layer 230, the light emitting layer 220, and the n-type nitride semiconductor layer 210 may be mesa-etched to expose a portion of the n-type nitride semiconductor layer 210 to the outside. Let's do it.
- a transparent electrode 240 is formed on the mesa-etched p-type nitride semiconductor layer 230, and the nanoimprint resist layer 250 is spinned on the transparent electrode 240, for example.
- the transparent electrode 240 may be indium tin oxide (ITO).
- the nanoimprint mold 60 manufactured by the nanoimprint mold manufacturing method according to an embodiment of the present invention described above is pressed onto the nanoimprint resist layer 250 to form a nanopattern. Is transferred to the nanoimprint resist layer 250, and UV and heat are applied to cure the nanoimprint resist layer 250 in which the hemispherical nanopattern is formed.
- the nanoimprint mold 60 is separated from the nanoimprint resist layer 250 in which the hemispherical nanopattern is formed.
- a portion of the nanoimprint resist layer 250 having a hemispherical nanopattern formed thereon is etched to expose the transparent electrode 240, and then a p-type electrode 260 is formed to form an n-type nitride semiconductor.
- An n-type electrode 270 is formed on the layer 210.
- the p-type electrode 260 may etch a portion of the nanoimprint resist layer 250 having the hemispherical nano pattern formed thereon to expose the transparent electrode 240, and then deposit a conductive material on the etched region.
- the n-type electrode 270 may be formed on the n-type nitride semiconductor layer 210 remaining after mesa etching.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Led Devices (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
Claims (17)
- 나노 임프린트 몰드 제조방법에 있어서,반도체 기판 상에 나노 구조체들을 코팅하는 단계;상기 나노 구조체들을 마스크로 이용한 건식 에칭을 통하여 상기 반도체 기판에 반구 형태의 나노 패턴을 형성하는 단계;상기 반도체 기판에 형성되어 있는 반구 형태의 나노 패턴을 나노 임프린팅 방식으로 나노 임프린트 몰드에 전사하는 단계; 및상기 반구 형태의 나노 패턴이 전사되어 있는 나노 임프린트 몰드를 상기 반도체 기판으로부터 분리하는 단계를 포함하는, 나노 임프린트 몰드 제조방법.
- 제1 항에 있어서,상기 반도체 기판 상에 코팅되는 나노 구조체들의 크기와 상기 건식 에칭 시간 중 적어도 하나를 조절하여 상기 반구 형태의 나노 패턴의 크기를 조절하는 것을 특징으로 하는, 나노 임프린트 몰드 제조방법.
- 제2 항에 있어서,상기 반도체 기판 상에 코팅되는 나노 구조체들의 크기는 100nm 이상 2000nm 이하인 것을 특징으로 하는, 나노 임프린트 몰드 제조방법.
- 제2 항에 있어서,상기 반도체 기판 상에 코팅되는 나노 구조체들의 크기는 서로 다른 것을 특징으로 하는, 나노 임프린트 몰드 제조방법.
- 발광다이오드 제조방법에 있어서,임시기판 상에 n형 질화물 반도체층, 발광층 및 p형 질화물 반도체층을 형성하는 단계;상기 p형 질화물 반도체층 상에 p형 전극을 형성하는 단계;상기 p형 전극 상에 도전성 기판을 형성하는 단계;상기 임시기판을 제거하여 상기 n형 질화물 반도체층을 노출시키는 단계;상기 n형 질화물 반도체층 상에 나노 임프린트 레지스트층을 형성하는 단계;제1 항의 방법에 의해 제조된 나노 임프린트 몰드를 상기 나노 임프린트 레지스트층에 가압하여 상기 나노 임프린트 몰드에 형성되어 있는 반구 형태의 나노 패턴을 상기 나노 임프린트 레지스트층에 전사하는 단계;상기 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층으로부터 상기 나노 임프린트 몰드를 분리하는 단계; 및상기 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층의 일부를 식각하여 n형 전극을 형성하는 단계를 포함하는, 발광다이오드 제조방법.
- 제5 항에 있어서,상기 n형 질화물 반도체층과 상기 나노 임프린트 레지스트층 사이에 상기 n형 질화물 반도체층의 굴절률보다 작고 상기 나노 임프린트 레지스트층의 굴절률보다 큰 굴절률을 갖는 굴절률 조절층을 형성하는 단계를 더 포함하는 것을 특징으로 하는, 발광다이오드 제조방법.
- 제6 항에 있어서,상기 굴절률 조절층은 상기 발광층으로부터의 광을 서로 다른 굴절률로 굴절시키는 제1 굴절률 조절층과 제2 굴절률 조절층을 순차적으로 적층하여 형성하는 것을 특징으로 하는, 발광다이오드 제조방법.
- 제7 항에 있어서,상기 제1 굴절률 조절층은 상기 n형 질화물 반도체층 상에 형성되고 상기 제1 굴절률 조절층의 굴절률은 상기 n형 질화물 반도체층의 굴절률보다 작고,상기 제2 굴절률 조절층은 상기 제1 굴절률 조절층 상에 형성되고 상기 제2 굴절률 조절층의 굴절률은 상기 제1 굴절률 조절층의 굴절률보다 작고 상기 나노 임프린트 레지스트층의 굴절률보다 큰 것을 특징으로 하는, 발광다이오드 제조방법.
- 제7 항에 있어서,상기 제1 굴절률 조절층은 ZnO, Al-doped ZnO, In-doped ZnO, Ga-doped ZnO, ZrO2, TiO2, SiO2, SiO, Al2O3, CuOX 및 ITO로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는, 발광다이오드 제조방법.
- 제7 항에 있어서,상기 제2 굴절률 조절층은 MgO계 산화물인 것을 특징으로 하는, 발광다이오드 제조방법.
- 제10 항에 있어서,상기 제2 굴절률 조절층을 구성하는 MgO계 산화물은 MgO에 다른 원소를 첨가하여 형성된 다원화합물인 것을 특징으로 하는, 발광다이오드 제조방법.
- 제5 항에 있어서,상기 n형 전극은 상기 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층의 일부를 상기 n형 질화물 반도체층이 노출되도록 식각한 후 상기 식각된 영역에 도전성 물질을 증착하여 형성되는 것을 특징으로 하는, 발광다이오드 제조방법.
- 제5 항 내지 제12 항 중 어느 한 항에 기재된 발광다이오드 제조방법에 의해 제조된 것을 특징으로 하는, 발광다이오드.
- 발광다이오드 제조방법에 있어서,입사되는 광을 산란시켜 반사시키기 위한 패턴이 형성되어 있는 기판 상에 n형 질화물 반도체층, 발광층 및 p형 질화물 반도체층을 형성하는 단계;상기 p형 질화물 반도체층, 상기 발광층 및 상기 n형 질화물 반도체층의 일부를 메사 식각하여 상기 n형 질화물 반도체층의 일부를 노출시키는 단계;상기 p형 질화물 반도체층 상에 투명전극을 형성하는 단계;상기 투명전극 상에 나노 임프린트 레지스트층을 형성하는 단계;제1 항의 방법에 의해 제조된 나노 임프린트 몰드를 상기 나노 임프린트 레지스트층에 가압하여 상기 나노 임프린트 몰드에 형성되어 있는 반구 형태의 나노 패턴을 상기 나노 임프린트 레지스트층에 전사하는 단계;상기 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층으로부터 상기 나노 임프린트 몰드를 분리하는 단계; 및상기 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층의 일부를 식각하여 p형 전극을 형성하고 상기 n형 질화물 반도체층 상에 n형 전극을 형성하는 단계를 포함하는, 발광다이오드 제조방법.
- 제14 항에 있어서,상기 투명전극인 ITO인 것을 특징으로 하는, 발광다이오드 제조방법.
- 제14 항에 있어서,상기 p형 전극은 상기 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층의 일부를 상기 투명전극이 노출되도록 식각한 후 상기 식각된 영역에 도전성 물질을 증착하여 형성되는 것을 특징으로 하는, 발광다이오드 제조방법.
- 제14 항 내지 제16 항 중 어느 한 항의 발광다이오드 제조방법에 의해 제조된 것을 특징으로 하는, 발광다이오드.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013521726A JP5632081B2 (ja) | 2010-12-30 | 2011-10-28 | ナノインプリントモールドを用いた発光ダイオードの製造方法、及びこの方法により製造された発光ダイオード |
US13/812,517 US8957449B2 (en) | 2010-12-30 | 2011-10-28 | Method for manufacturing nano-imprint mould, method for manufacturing light-emitting diode using the nano imprint mould manufactured thereby, and light-emitting diode manufactured thereby |
CN201180037337.4A CN103097113B (zh) | 2010-12-30 | 2011-10-28 | 制造纳米压印模具的方法、利用由此制造的纳米压印模具制造发光二极管的方法以及由此制造的发光二极管 |
EP11854018.6A EP2660036A4 (en) | 2010-12-30 | 2011-10-28 | METHOD FOR MANUFACTURING NANOIMPRESSION MOLD, METHOD FOR MANUFACTURING LIGHT EMITTING DIODE USING THE NANOIMPRESSION MOLD MADE THEREBY AND LIGHT-EMITTING DIODE MANUFACTURED THEREBY |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100139089A KR101215299B1 (ko) | 2010-12-30 | 2010-12-30 | 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드 |
KR10-2010-0139089 | 2010-12-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012091270A1 true WO2012091270A1 (ko) | 2012-07-05 |
Family
ID=46383315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/008157 WO2012091270A1 (ko) | 2010-12-30 | 2011-10-28 | 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8957449B2 (ko) |
EP (1) | EP2660036A4 (ko) |
JP (1) | JP5632081B2 (ko) |
KR (1) | KR101215299B1 (ko) |
CN (1) | CN103097113B (ko) |
WO (1) | WO2012091270A1 (ko) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140100115A (ko) * | 2013-02-05 | 2014-08-14 | 삼성전자주식회사 | 반도체 발광 소자 |
CN104241455A (zh) * | 2013-06-11 | 2014-12-24 | 展晶科技(深圳)有限公司 | Led芯片及其制造方法 |
KR101535852B1 (ko) * | 2014-02-11 | 2015-07-13 | 포항공과대학교 산학협력단 | 나노구조체 전사를 이용한 발광다이오드 제조방법과 그 발광다이오드 |
KR101606338B1 (ko) * | 2014-04-22 | 2016-03-24 | 인트리 주식회사 | 나노구조의 패턴을 구비한 광투과성 도전체를 제조하기 위한 포토마스크 및 그 제조방법 |
KR20160092635A (ko) | 2015-01-28 | 2016-08-05 | 포항공과대학교 산학협력단 | 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드 |
CN111933769B (zh) * | 2020-08-19 | 2023-04-07 | 广东技术师范大学 | 一种周期性的折射率分层渐变的纳米结构led的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100762004B1 (ko) * | 2006-08-07 | 2007-09-28 | 삼성전기주식회사 | 질화물계 발광 다이오드 소자의 제조방법 |
KR20080000884A (ko) * | 2006-06-28 | 2008-01-03 | 삼성전기주식회사 | 질화갈륨계 발광 다이오드 소자 및 그 제조방법 |
KR20090076327A (ko) * | 2008-01-08 | 2009-07-13 | 엘지전자 주식회사 | 나노 임프린트 공정을 위한 스탬프 및 이를 이용한 발광소자 제조방법 |
KR20100000404A (ko) * | 2008-06-24 | 2010-01-06 | 엘지디스플레이 주식회사 | 발광 표시 패널 및 그의 제조 방법 |
KR20100011835A (ko) * | 2008-07-25 | 2010-02-03 | 이헌 | 고효율 발광 다이오드용 기판의 제조방법 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1510765A (zh) * | 2002-12-26 | 2004-07-07 | 炬鑫科技股份有限公司 | 氮化镓基ⅲ-ⅴ族化合物半导体led的发光装置及其制造方法 |
JP2005268601A (ja) * | 2004-03-19 | 2005-09-29 | Sumitomo Chemical Co Ltd | 化合物半導体発光素子 |
TWM277111U (en) * | 2004-06-18 | 2005-10-01 | Super Nova Optoelectronics Cor | Vertical electrode structure for white-light LED |
KR100669142B1 (ko) * | 2005-04-20 | 2007-01-15 | (주)더리즈 | 발광 소자와 이의 제조 방법 |
JP2007019318A (ja) * | 2005-07-08 | 2007-01-25 | Sumitomo Chemical Co Ltd | 半導体発光素子、半導体発光素子用基板の製造方法及び半導体発光素子の製造方法 |
KR20070063731A (ko) * | 2005-12-15 | 2007-06-20 | 엘지전자 주식회사 | 나노 패턴이 형성된 기판의 제조방법 및 그 기판을 이용한발광소자 |
JP2007193249A (ja) * | 2006-01-23 | 2007-08-02 | Matsushita Electric Ind Co Ltd | 成形部品の製造方法 |
KR100736623B1 (ko) * | 2006-05-08 | 2007-07-09 | 엘지전자 주식회사 | 수직형 발광 소자 및 그 제조방법 |
CN101479031B (zh) * | 2006-06-30 | 2012-11-14 | 王子制纸株式会社 | 单粒子膜蚀刻掩模及其制造方法、使用该单粒子膜蚀刻掩模的微细结构体的制造方法及通过该制造方法得到的微细结构体 |
US7745843B2 (en) * | 2006-09-26 | 2010-06-29 | Stanley Electric Co., Ltd. | Semiconductor light emitting device |
US8128393B2 (en) * | 2006-12-04 | 2012-03-06 | Liquidia Technologies, Inc. | Methods and materials for fabricating laminate nanomolds and nanoparticles therefrom |
JP4986137B2 (ja) * | 2006-12-13 | 2012-07-25 | 独立行政法人産業技術総合研究所 | ナノ構造体を有する光学素子用又はナノ構造体用成形型の製造方法 |
KR100843342B1 (ko) * | 2007-02-12 | 2008-07-03 | 삼성전자주식회사 | Uv 나노 임프린트 리소그래피 수행 공정 및 장치 |
TWI462324B (zh) * | 2007-05-18 | 2014-11-21 | Delta Electronics Inc | 發光二極體裝置及其製造方法 |
JP5048392B2 (ja) * | 2007-05-25 | 2012-10-17 | 豊田合成株式会社 | Iii族窒化物系化合物半導体発光素子 |
TWI363435B (en) * | 2007-09-13 | 2012-05-01 | Delta Electronics Inc | Light-emitting diode apparatus and its manufacturing method |
CN101442090B (zh) * | 2007-11-21 | 2010-09-15 | 财团法人工业技术研究院 | 发光二极管及其制造方法 |
TW200929601A (en) * | 2007-12-26 | 2009-07-01 | Epistar Corp | Semiconductor device |
US20090316417A1 (en) * | 2008-06-20 | 2009-12-24 | Rohm And Haas Denmark Finance A/S | Light-redirecting article |
KR20100043541A (ko) * | 2008-10-20 | 2010-04-29 | 삼성전자주식회사 | 나노 임프린트용 몰드 제조방법 및 이를 이용한 광결정 제조방법 |
CN101900936A (zh) * | 2009-05-26 | 2010-12-01 | 鸿富锦精密工业(深圳)有限公司 | 压印模具及其制作方法 |
US7932534B2 (en) * | 2009-06-09 | 2011-04-26 | Sinmat, Inc. | High light extraction efficiency solid state light sources |
CN101740702A (zh) * | 2009-12-02 | 2010-06-16 | 武汉华灿光电有限公司 | 基于ZnO纳米球的GaN基发光二极管表面粗化方法 |
-
2010
- 2010-12-30 KR KR1020100139089A patent/KR101215299B1/ko active IP Right Grant
-
2011
- 2011-10-28 WO PCT/KR2011/008157 patent/WO2012091270A1/ko active Application Filing
- 2011-10-28 JP JP2013521726A patent/JP5632081B2/ja not_active Expired - Fee Related
- 2011-10-28 EP EP11854018.6A patent/EP2660036A4/en not_active Withdrawn
- 2011-10-28 CN CN201180037337.4A patent/CN103097113B/zh not_active Expired - Fee Related
- 2011-10-28 US US13/812,517 patent/US8957449B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080000884A (ko) * | 2006-06-28 | 2008-01-03 | 삼성전기주식회사 | 질화갈륨계 발광 다이오드 소자 및 그 제조방법 |
KR100762004B1 (ko) * | 2006-08-07 | 2007-09-28 | 삼성전기주식회사 | 질화물계 발광 다이오드 소자의 제조방법 |
KR20090076327A (ko) * | 2008-01-08 | 2009-07-13 | 엘지전자 주식회사 | 나노 임프린트 공정을 위한 스탬프 및 이를 이용한 발광소자 제조방법 |
KR20100000404A (ko) * | 2008-06-24 | 2010-01-06 | 엘지디스플레이 주식회사 | 발광 표시 패널 및 그의 제조 방법 |
KR20100011835A (ko) * | 2008-07-25 | 2010-02-03 | 이헌 | 고효율 발광 다이오드용 기판의 제조방법 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2660036A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP2660036A1 (en) | 2013-11-06 |
JP2013539419A (ja) | 2013-10-24 |
JP5632081B2 (ja) | 2014-11-26 |
KR20120077209A (ko) | 2012-07-10 |
US20130126929A1 (en) | 2013-05-23 |
US8957449B2 (en) | 2015-02-17 |
CN103097113A (zh) | 2013-05-08 |
KR101215299B1 (ko) | 2012-12-26 |
EP2660036A4 (en) | 2016-01-20 |
CN103097113B (zh) | 2016-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012091270A1 (ko) | 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오 | |
WO2012091271A2 (ko) | 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오 | |
WO2013157842A1 (ko) | 나노 급 패턴이 형성된 고효율 질화물계 발광다이오드용 기판의 제조방법 | |
WO2016056727A1 (en) | Light emitting device package and method of fabricating the same | |
WO2013157816A1 (ko) | 나노 급 패턴이 형성된 고효율 질화물계 발광다이오드용 기판의 제조방법 | |
WO2015160084A1 (ko) | 질화물 반도체 발광소자 및 이의 제조방법 | |
WO2016021971A1 (ko) | 형광체 플레이트 및 이를 포함하는 조명장치 | |
WO2015122652A1 (ko) | 나노구조체 전사를 이용한 발광다이오드 제조방법과 그 발광다이오드 | |
WO2012091325A2 (ko) | 나노 구조체를 이용한 발광다이오드 제조 방법과 이에 의해 제조된 발광다이오드 | |
WO2011021753A1 (ko) | 3족 질화물 반도체 발광소자 및 그 제조방법 | |
WO2016105018A1 (ko) | 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자 | |
WO2012091275A1 (ko) | 발광다이오드 및 그 제조방법 | |
WO2013012194A2 (ko) | 발광다이오드용 기판의 제조방법, 이에 의해 제조된 발광다이오드용 기판 및 이 발광다이오드용 기판을 구비한 발광다이오드의 제조방법 | |
KR20160092635A (ko) | 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드 | |
WO2014077523A1 (ko) | 발광 다이오드 소자의 제조방법 및 발광 다이오드 소자 | |
WO2014157772A2 (ko) | 그래핀에 의하여 광증폭된 발광 소자 및 이의 제조방법 | |
KR20140036403A (ko) | 발광 다이오드의 패턴 형성 방법 | |
WO2013122328A1 (ko) | 발광 소자 제조 방법 및 이를 이용하여 제조된 발광 소자 | |
KR101325641B1 (ko) | 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드 | |
WO2012099436A2 (ko) | 발광다이오드 제조방법 및 이에 의해 제조된 발광다이오드 | |
WO2012046991A2 (ko) | 반도체의 패터닝 방법 및 이 방법에 형성된 패턴을 포함하는 반도체 소자 | |
WO2017164592A1 (ko) | 유기발광소자용 광추출 기판, 그 제조방법 및 이를 포함하는 유기발광소자 | |
WO2014042371A1 (en) | Light emitting diode and method for manufacturing the same | |
TWI711071B (zh) | 真空轉移裝置及其形成方法 | |
KR102378757B1 (ko) | 마이크로-나노핀 led 소자를 포함하는 광원 및 이를 포함하는 기기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180037337.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11854018 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011854018 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13812517 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2013521726 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |