WO2012091325A2 - 나노 구조체를 이용한 발광다이오드 제조 방법과 이에 의해 제조된 발광다이오드 - Google Patents
나노 구조체를 이용한 발광다이오드 제조 방법과 이에 의해 제조된 발광다이오드 Download PDFInfo
- Publication number
- WO2012091325A2 WO2012091325A2 PCT/KR2011/009625 KR2011009625W WO2012091325A2 WO 2012091325 A2 WO2012091325 A2 WO 2012091325A2 KR 2011009625 W KR2011009625 W KR 2011009625W WO 2012091325 A2 WO2012091325 A2 WO 2012091325A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- emitting diode
- light emitting
- semiconductor layer
- manufacturing
- light
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 46
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 27
- 239000004065 semiconductor Substances 0.000 claims abstract description 68
- 238000001312 dry etching Methods 0.000 claims abstract description 17
- 238000001039 wet etching Methods 0.000 claims abstract description 11
- 238000000576 coating method Methods 0.000 claims abstract description 6
- 239000011248 coating agent Substances 0.000 claims abstract description 3
- 229910002601 GaN Inorganic materials 0.000 claims description 21
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 21
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 21
- 239000002073 nanorod Substances 0.000 claims description 9
- 239000002070 nanowire Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000004793 Polystyrene Substances 0.000 claims description 5
- 229920002223 polystyrene Polymers 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- -1 polyethylene Polymers 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 238000000605 extraction Methods 0.000 abstract description 13
- 238000000059 patterning Methods 0.000 abstract description 13
- 239000010410 layer Substances 0.000 description 31
- 230000008569 process Effects 0.000 description 18
- 239000000758 substrate Substances 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000005530 etching Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000004528 spin coating Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000000313 electron-beam-induced deposition Methods 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002077 nanosphere Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000003929 acidic solution Substances 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001194 electroluminescence spectrum Methods 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- OQUOOEBLAKQCOP-UHFFFAOYSA-N nitric acid;hexahydrate Chemical compound O.O.O.O.O.O.O[N+]([O-])=O OQUOOEBLAKQCOP-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
- H01L33/22—Roughened surfaces, e.g. at the interface between epitaxial layers
Definitions
- the present invention relates to a method of manufacturing a light emitting diode having improved light extraction efficiency through dry etching using a nanostructure and a light emitting diode having excellent light extraction efficiency produced by the method.
- the white light source gallium nitride-based light emitting diodes have various forms of energy conversion efficiency, long life, high light directivity, low voltage driving, no preheating time and complicated driving circuit, and strong against shock and vibration. It is possible to implement high-quality lighting systems, and is expected to be a solid-state lighting source that will replace conventional light sources such as incandescent, fluorescent and mercury lamps in the near future.
- gallium nitride-based light emitting diode As a white light source to replace a mercury lamp or a fluorescent lamp, it must not only have excellent thermal stability but also be able to emit high power at low power consumption.
- Horizontal gallium nitride-based light emitting diodes which are widely used as white light sources, have the advantages of low manufacturing cost and simple manufacturing process, but they are disadvantageous in that they are not suitable for use as high power sources with high applied current and large area. .
- the vertical light emitting diode is a device for overcoming the disadvantages of the horizontal light emitting diode and the application of a large output high power light emitting diode is a vertical light emitting diode, and the vertical light emitting diode has various advantages as compared with the conventional horizontal light emitting diode.
- the current spreading resistance is small, so that a very uniform current spreading can be obtained. Therefore, a lower operating voltage and a large light output can be obtained, and heat dissipation is possible through a metal or semiconductor substrate having good thermal conductivity. Longer device life and significantly improved high power operation are possible.
- the maximum applied current is increased as compared with the horizontal light emitting diode, and thus it is expected to be widely used as a white light source for illumination.
- a portion capable of greatly improving light output of the device is an n-type semiconductor layer on the top of the device. Since there is a large difference between the refractive index of the n-type semiconductor layer made of a smooth plane and the refractive index of the atmosphere, as shown in FIG. 1A, total reflection occurs at the air / semiconductor layer interface, and a large part of the light generated in the active layer is transferred to the outside. Because it cannot escape, high light output cannot be expected. Therefore, it is necessary to artificially deform the surface of the semiconductor layer to prevent total reflection from occurring so that the light can escape to the outside with minimal loss.
- pyramidal nanostructures are formed on the n-type semiconductor surface by wet etching using a basic solution such as KOH or NaOH, thereby greatly improving light extraction of the light emitting diode.
- the pyramid structure formation method using wet etching requires not only the formation of a protective film to prevent the n-type electrode, the conductive substrate, and the light emitting diode mesa structure from being damaged during the wet etching process, but also through the wet etching process.
- the technical problem is that it is difficult to form a uniform nanostructure of large area.
- Korean Patent Publication No. 2010-91856 discloses forming a polycrystalline oxide film on an upper surface of a stacked nitride semiconductor, and wet etching using an acidic solution on the polycrystalline oxide film to form nanospheres.
- a method of forming a hemispherical pattern on the surface of a nitride based semiconductor by dry etching using the nanosphere as a mask is disclosed.
- this method also has a problem in that the uniformity of the formed nanostructure is inferior and the improvement of light extraction efficiency is also limited.
- the present invention has been made to solve the above problems of the prior art, and an object of the present invention is to provide a method of manufacturing a light emitting diode which can form a pattern very effective for light extraction on the semiconductor surface of the light emitting diode.
- Another object of the present invention is to provide a light emitting diode having a very effective pattern for light extraction.
- the present invention provides a method of manufacturing a vertical light emitting diode in which an active layer and a second semiconductor layer are sequentially formed on a first semiconductor layer, and (a) a sphere on the second semiconductor layer. Coating a nanostructure having a shape; (b) forming an uneven portion in the second semiconductor layer by dry etching the second semiconductor layer using the nanostructure as a mask; And (c) wet etching the uneven parts to fine pattern the sub uneven parts to form the uneven parts of the uneven parts.
- the nanostructure may be made of polystyrene, polyethylene, silica or glass.
- the diameter of the spherical nanostructure is preferably 100nm ⁇ 3 ⁇ m.
- the nanostructures may be used by mixing two or more kinds having different diameters.
- the wet etching is preferably performed for 5 minutes to 60 minutes in a solution such as KOH or NaOH of 1M ⁇ 8M concentration.
- the method of manufacturing a light emitting diode according to the present invention may include the step of surface treatment of the second semiconductor layer before the step (a).
- a light emitting diode may include the step of growing a nanowire or nanorod in addition to the uneven portion.
- the second semiconductor layer may be n-type having an n-face.
- the present invention includes a first semiconductor layer, an active layer, and a second semiconductor layer as a means for solving the above-mentioned other problems, wherein the uneven portions are formed on the surface of the second semiconductor layer, and each of the uneven portions
- the uneven surface of the provides a light emitting diode, characterized in that the sub uneven portion is formed again.
- a nanowire or a nanorod may be additionally formed on the surface of the second semiconductor layer.
- the uneven portion may be formed in a hemispherical shape.
- the first semiconductor layer and the second semiconductor layer may be made of gallium nitride.
- the light output can be increased by 2.5 times or more, compared to a conventional vertical light emitting diode having a flat n-type semiconductor surface, and thus it can be particularly suitable for high power light emitting diodes.
- the present invention can be immediately applied to the manufacturing process of the gallium nitride-based light emitting diode which is widely used now, and can be applied to not only vertical but also horizontal light emitting diode structure.
- the method according to the present invention has a high manufacturing cost and does not use electron beam lithography patterning, which is difficult to apply to a large-area wafer process. Large area application, manufacturing cost reduction, and process time can be achieved.
- 1 is a view for explaining that the light extraction efficiency of the light emitting diode is improved when the hemispherical surface structure formed in the present invention is formed.
- FIG. 2 is a view for explaining a hemispherical nanostructure forming method using a spherical nanostructure in the present invention.
- FIG. 3 is an n-type gallium nitride-based vertical light emitting diode surface prepared according to an embodiment of the present invention and a spherical nanostructure formed thereon, nanostructures formed through dry etching and hemispherical nanostructures on the vertical light emitting diode surface Scanning electron microscope (SEM) images showing the structure formation.
- SEM scanning electron microscope
- Figure 4 shows the emission spectrum of the gallium nitride-based vertical light emitting diode prepared according to the embodiment of the present invention.
- FIG. 5 is a scanning electron micrograph showing that a fine pattern is additionally formed on a hemispherical nanostructure according to an embodiment of the present invention.
- FIG. 6 is a view illustrating a process of forming a hemispherical nanostructure on a gallium nitride-based horizontal light emitting diode according to another embodiment of the present invention.
- FIG. 7 is a view illustrating a gallium nitride-based vertical light emitting diode in which nanowires or nanorods are additionally grown after forming hemispherical nanostructures according to another embodiment of the present invention.
- the term 'sphere' is used to encompass not only a sphere of mathematical definition of a three-dimensional shape consisting of all points at the same distance from one point, but also all of the apparently rounded shapes.
- the "semi-spherical shape” is used to encompass all shapes including a cutting surface larger or smaller than half as well as half of the "sphere (sphere) shape”.
- FIG. 1 is a view for explaining the light extraction efficiency of the light emitting diode using the hemispherical surface structure formed in the present invention.
- the hemispherical structure is formed on the surface of the semiconductor as shown in FIG.
- the present inventors have developed a method for patterning a semiconductor surface that can realize a uniform hemispherical shape on the surface of the semiconductor substrate.
- the patterning process of the light emitting diode according to the present invention is a process for forming patterning of the light emitting diode according to the present invention. As shown, the patterning process of the light emitting diode according to the present invention, the spherical structure coating process (S10), dry etching process (S20), electrode formation process (S40) and fine patterning process (S40) on the semiconductor surface It is made to include.
- the light emitting diode used in the embodiment of the present invention is a vertical light emitting diode, from the bottom, in order to reflect the light generated by connecting to the conductive substrate 10, the p-type semiconductor layer
- the electrode 20, the p-type semiconductor layer 30, the active layer 40 and the n-type semiconductor layer 50 are sequentially formed, and the p-type and n-type semiconductor layers 30 and 50 are all made of gallium nitride. Used.
- the spherical structure of 500 nm diameter made of polystyrene on the n-type semiconductor layer 50 is spun onto the substrate with deionized water by using an amount corresponding to the area by using a micropipette. , a single layer of a uniform spherical structure is formed on the n-type semiconductor layer 50.
- spherical structures made of polystyrene are used, but polyethylene, silica (SiO 2 ) or glass may also be used.
- the dry etching process (S20) is a process of etching using a spherical structure uniformly applied through the spherical structure coating process (S10) as a mask, in the embodiment of the present invention ICP (Inductive Coupled Plasma) etching equipment (etcher) Dry etching was performed using Cl 2 : BCl 3 gas in a 7: 3 composition.
- ICP Inductive Coupled Plasma
- etcher Dry etching was performed using Cl 2 : BCl 3 gas in a 7: 3 composition.
- any method can be used as long as the spherical structure 60 and the n-type semiconductor layer 50 can be etched simultaneously.
- an n-type electrode was formed using Cr / Au as an electron beam deposition method.
- the fine patterning process (S40) is for finely patterning the surface of each hemispherical irregularities constituting the hemispherical structure formed on the surface of the n-type semiconductor layer 50 through the dry etching process (S20), As a method, wet etching was performed for 5 minutes to 60 minutes using a solution such as KOH or NaOH at a concentration of 1M to 8M. If the KOH or NaOH concentration is less than 1M concentration, the fine pattern is not formed. If the concentration exceeds 8M, the hemispherical shape disappears because the size of the fine pattern is larger than the hemispherical irregularities, so the concentration is preferably 1M to 8M. Do. Meanwhile, in the exemplary embodiment of the present invention, the fine patterning process S40 is performed after the electrode forming step S30, but may be performed before the electrode forming step S30.
- Figure 3 (a) shows a flat n-type semiconductor surface before patterning
- Figure 3 (b) is a photograph showing a spherical polystyrene nanostructure formed on the surface of the vertical light emitting diode by spin coating method. Through (b) of Figure 3 it can be seen that through the method according to an embodiment of the present invention that the spherical nanostructure is uniformly formed on the n-type semiconductor surface.
- the substrate having the nanostructure uniformly coated is subjected to dry etching using an ICP (Inductive Coupled Plasma) etching equipment. Dry etching was performed by mixing Cl 2 and BCl 3 gas in a 7: 3 ratio, and the plasma power was etched for about 2 to 3 minutes using a chuck bias of -300 Volt at about 300 Watts. 3 (c) shows a state where the hemispherical nanostructures are formed very uniformly when dry etching using the spherical nanostructures formed on the n-type semiconductor surface as a mask.
- ICP Inductive Coupled Plasma
- Figure 3 (d) is a scanning electron showing a vertical light emitting diode and a hemispherical nanostructure formed thereon after the n-type electrode is formed on the n-type gallium nitride-based vertical light emitting diode on which the hemispherical nanostructure is formed Photomicrograph.
- FIG. 4 is a diagram illustrating an n-type vertical gallium nitride light emitting diode having a hemispherical nanostructure and a flat n-type vertical gallium nitride light emitting diode electroluminescence spectrum without applying the same.
- the light output may be increased by about 2.5 times or more compared to the flat n-type semiconductor.
- n-type semiconductor nanostructure and the light emitting diode device on which the electrode was formed were immersed in a strong base solution such as KOH or NaOH, and then subjected to so-called photoenhance chemical etching (PCE), which irradiates the light emitting diode with ultraviolet light using a xenon lamp light source.
- PCE photoenhance chemical etching
- a 1 M NaOH aqueous solution was used as the base solution, and the wavelength of the ultraviolet light source was maintained in the range of 100 nm to 400 nm.
- 5 is a scanning electron micrograph showing the shape change of the surface of the n-type semiconductor layer with the etching time of the fine patterning process.
- the fine pattern is formed on the surface of the hemisphere n-type semiconductor layer through the PCE. Accordingly, the light output of the light emitting diode is greatly improved only by the nanostructure of the hemispherical n-type semiconductor surface, but when the PCE is applied together, additional light output can be obtained.
- FIG. 6 is a diagram illustrating the formation of hemispherical nanostructures applied to gallium nitride-based horizontal light emitting diodes.
- FIG. 6 (a) only a part of the gallium nitride-based light emitting diode is formed through dry etching, and then indium tin oxide is deposited on the p-type gallium nitride system.
- dry etching is performed as shown in FIG.
- (d) hemispheres are formed, and then n, p-type electrodes are formed, followed by fine patterning through a process as shown in FIG. 2.
- specific process conditions may be performed in the same manner as in Example 1. That is, the method according to the present invention can be easily applied to vertical as well as horizontal light emitting diodes.
- FIG. 7 is a diagram illustrating the formation of hemispherical nanostructures on a semiconductor surface of an n-type gallium nitride-based vertical light emitting diode according to the present invention and additionally forming nanowires or nanorods.
- an n-type electrode is formed.
- the nanowires and / or nanorods are then grown over the voids or hemispherical structures between the hemispherical nanostructures.
- the hydrothermal synthesis method which can grow large area is used.
- Zn nitrate hexahydrate, a precursor of Zn ions, and Hexame (HMT), an OH ion precursor are added to deionized water to form an aqueous reaction solution.
- HMT Hexame
- the substrate on which the hemispherical nanostructures were formed was immersed in a reaction aqueous solution and synthesized at 70 ° C. for 3 hours.
- the probability of light being emitted to the atmosphere by multiple scattering increases, which may further increase the light extraction effect.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
- Electroluminescent Light Sources (AREA)
- Weting (AREA)
Abstract
본 발명은 나노 구조체를 활용한 건식 에칭을 통해 광 추출 효율이 향상된 발광다이오드의 제조방법과 이 방법에 의해 제조된 광 추출 효율이 우수한 발광다이오드에 관한 것이다. 본 발명은, 제1 반도체층 상에 활성층 및 제2 반도체층이 순차적으로 형성된 수직형 발광다이오드의 제조방법으로서, (a) 상기 제2 반도체층의 상에 구 모양의 나노구조체를 코팅하는 단계; (b) 상기 나노구조체를 마스크로 이용하여 상기 제2 반도체층을 건식에칭하여 상기 제2 반도체층에 요철부를 형성하는 단계; 및 (c) 상기 요철부를 습식에칭하여 상기 요철부를 구성하는 각각의 요철 표면에 서브요철부가 형성되도록 미세 패터닝하는 단계;를 포함하는 방법을 제공한다.
Description
본 발명은 나노 구조체를 활용한 건식에칭을 통해 광 추출 효율이 향상된 발광다이오드를 제조하는 방법과 이 방법에 의해 제조된 광 추출 효율이 우수한 발광다이오드에 관한 것이다.
백색광원 질화갈륨계 발광다이오드는 에너지 변환 효율이 높고, 수명이 길며, 빛의 지향성이 높고, 저전압 구동이 가능하며, 예열 시간과 복잡한 구동회로가 필요하지 않고, 충격 및 진동에 강하기 때문에 다양한 형태의 고품격 조명 시스템의 구현이 가능해, 가까운 미래에 백열등, 형광등, 수은등과 같은 기존의 광원을 대체할 고체 조명(solid-state lighting) 광원으로 기대되고 있다.
질화갈륨계 발광다이오드가 기존의 수은등이나 형광등을 대체하여 백색광원으로서 쓰이기 위해서는 열적 안정성이 뛰어나야 할 뿐만 아니라 낮은 소비 전력에서도 고출력 빛을 발할 수 있어야 한다.
현재 백색광원으로 널리 이용되고 있는 수평구조의 질화갈륨계 발광다이오드는 상대적으로 제조단가가 낮고 제작 공정이 간단하다는 장점이 있으나, 인가전류가 높고 면적이 큰 고출력의 광원으로 쓰이기에는 부적절하다는 단점이 있다.
이러한 수평구조 발광다이오드의 단점을 극복하고 대면적의 고출력 발광다이오드 적용이 용이한 소자가 수직구조 발광다이오드이며, 수직구조 발광다이오드는 기존의 수평구조 소자와 비교하여 여러 가지 장점이 있다. 수직구조 발광다이오드에서는 전류 확산 저항이 작아 매우 균일한 전류 확산을 얻을 수 있어, 보다 낮은 작동 전압과 큰 광출력을 얻을 수 있으며, 열전도성이 좋은 금속 또는 반도체 기판을 통해 원활한 열방출이 가능하기 때문에 보다 긴 소자 수명과 월등히 향상된 고출력 작동이 가능하다. 이러한 수직구조 발광다이오드에서는 최대 인가전류가 수평구조 발광다이오드에 비해 증가하므로 조명용 백색광원으로 널리 이용될 것으로 전망되고 있다.
질화갈륨계 수직형 발광다이오드의 제조에 있어 소자의 광출력을 크게 향상시킬 수 있는 부분은 소자 상부의 n형 반도체층이다. 매끄러운 평면으로 이루어진 n형 반도체층의 굴절률과 대기의 굴절률에 큰 차이가 있기 때문에, 도 1a에 도시된 바와 같이 대기/반도체층 계면에서 일어나는 전반사가 발생하여 활성층에서 발생된 빛의 상당부분이 외부로 빠져나올 수 없기 때문에 높은 광출력을 기대할 수 없다. 따라서 반도체층 표면을 인위적으로 변형하여 전반사가 일어나는 것을 방지하여 최소한의 손실로 빛을 외부로 빠져나오게 하는 것이 필요하다.
이에 따라 종래에는 n형 반도체 표면을 KOH, NaOH와 같은 염기성 용액을 이용한 습식에칭을 통해 n형 반도체 표면에 피라미드 형태의 나노 구조물을 형성함으로써, 발광다이오드의 광추출을 크게 개선하고 있다.
그런데, 습식에칭을 이용한 피라미드 구조물 형성 방법의 경우, 습식에칭 과정 중에 n형 전극, 전도성 기판, 발광다이오드 메사 구조 등이 손상되는 것을 방지하기 위한 보호막의 형성이 요구될 뿐 아니라, 습식에칭 과정을 통해서는 기술적으로 대면적의 나노구조물 균일하게 형성하기 어려운 문제점이 있다.
또한, 한국공개특허공보 제2010-91856호에는, 적층된 질화물계 반도체의 상부면에 다결정 산화막을 형성하고, 상기 다결정 산화막에 산성 용액을 이용한 습식에칭을 하여 나노 구(nanosphere)를 형성한 후, 상기 나노 구를 마스크로 활용하여 건식 에칭함으로써 질화물계 반도체 표면에 반구형의 패턴이 형성되도록 하는 방법이 개시되어 있다. 그런데, 이 방법도 형성된 나노구조물의 균일도가 떨어지고 광 추출 효율의 개선도 제한적인 문제점이 있다.
본 발명은 상기한 종래 기술의 문제점을 해결하기 위한 것으로서, 본 발명의 과제는 광 추출에 매우 효과적인 패턴을 발광다이오드를 구성하는 반도체 표면에 형성할 수 있는 발광다이오드의 제조방법을 제공하는 것이다.
또한, 본 발명의 다른 과제는 광 추출에 매우 효과적인 패턴이 형성된 발광다이오드를 제공하는 것이다.
상기 과제를 해결하기 위한 수단으로 본 발명은, 제1 반도체층 상에 활성층 및 제2 반도체층이 순차적으로 형성된 수직형 발광다이오드의 제조방법으로서, (a) 상기 제2 반도체층 상에 구(sphere) 모양의 나노구조체를 코팅하는 단계; (b) 상기 나노구조체를 마스크로 이용하여 상기 제2 반도체층을 건식에칭하여 상기 제2 반도체층에 요철부를 형성하는 단계; 및 (c) 상기 요철부를 습식에칭하여 상기 요철부를 구성하는 각각의 요철 표면에 서브요철부가 형성되도록 미세 패터닝하는 단계;를 포함하는 발광다이오드의 제조방법을 제공한다.
또한, 본 발명에 따른 발광다이오드의 제조방법에 있어서, 상기 나노구조체는 폴리스틸렌, 폴리에틸렌, 실리카 또는 유리로 이루어질 수 있다.
또한, 본 발명에 따른 발광다이오드의 제조방법에 있어서, 상기 구 모양의 나노구조체의 지름은 100nm ~ 3㎛인 것이 바람직하다.
또한, 본 발명에 따른 발광다이오드의 제조방법에 있어서, 상기 나노구조체는 서로 다른 직경을 갖는 2 종 이상의 것이 혼합되어 사용될 수 있다.
또한, 본 발명에 따른 발광다이오드의 제조방법에 있어서, 상기 습식에칭은 1M ~ 8M 농도의 KOH 또는 NaOH 등의 용액에서 5분 ~ 60분간 수행되는 것이 바람직하다.
또한, 본 발명에 따른 발광다이오드의 제조방법에 있어서, 상기 (a) 단계 전에 상기 제2 반도체층을 표면처리하는 단계를 포함할 수 있다.
또한, 본 발명에 따른 발광다이오드의 제조방법에 있어서, 상기 요철부에 추가로 나노선 또는 나노막대를 성장시키는 단계를 포함할 수 있다.
또한, 본 발명에 따른 발광다이오드의 제조방법에 있어서, 상기 제2 반도체층이 n-face를 갖는 n형일 수 있다.
또한, 상기 다른 과제를 해결하기 위한 수단으로 본 발명은, 제1 반도체층, 활성층 및 제2 반도체층을 포함하며, 상기 제2 반도체층의 표면에는 요철부가 형성되어 있고, 상기 요철부를 구성하는 각각의 요철의 표면에는 다시 서브요철부가 형성되어 있는 것을 특징으로 하는 발광다이오드를 제공한다.
또한, 상기 본 발명에 따른 발광다이오드에 있어서, 상기 제2 반도체층의 표면에 추가로 나노선 또는 나노막대가 형성될 수 있다.
또한, 상기 본 발명에 따른 발광다이오드에 있어서, 상기 요철부는 반구형으로 이루어질 수 있다.
또한, 상기 본 발명에 따른 발광다이오드에 있어서, 상기 제1 반도체층 및 제2 반도체층은 질화갈륨으로 이루어질 수 있다.
본 발명에 따른 반도체의 패터닝 기술을 적용하게 되면 종래의 평편한 n형 반도체 표면을 가지는 수직 발광다이오드에 비해 광출력이 2.5배 이상 증가할 수 있어, 특히 고출력 발광다이오드에 적합하게 사용될 수 있다.
또한, 본 발명은 현재 널리 사용되고 있는 질화물갈륨계 발광다이오드의 제조공정에 즉시 적용할 수 있고, 수직형뿐만 아니라 수평형 발광 다이오드 구조에도 적용할 수 있다.
또한, 본 발명에 따른 방법은 제조단가가 높으며 대면적 웨이퍼 공정에의 적용이 어려운 전자선 리소그라피 패터닝을 사용하지 않기 때문에, 일반적인 나노구조물 형성방법에 비하여 단시간 내에 나노구조물을 형성할 수 있는 특징이 있어, 대면적 적용, 제조단가의 절감, 공정시간 단축 등의 효과를 얻을 수 있다.
도 1은 본 발명에서 형성한 반구 모양의 표면 구조물을 형성하였을 때 발광다이오드의 광 추출 효율이 향상되는 것을 설명하기 위한 도면이다.
도 2는 본 발명에서 구 모양의 나노구조체을 이용하여 반구 모양의 나노구조물 형성 방법을 설명하기 위한 도면이다.
도 3은 본 발명의 실시예에 따라 제조된 n형 질화물갈륨계 수직형 발광다이오드 표면과 그 위에 형성된 구 모양의 나노구조체, 건식에칭을 통해 형성된 나노구조물 및 수직형 발광다이오드 표면에 반구 형태의 나노구조물이 형성된 상태를 보여주는 주사전자현미경(SEM) 사진이다.
도 4는 본 발명의 실시예에 따라 제조된 질화물갈륨계 수직형 발광다이오드의 발광 스펙트럼을 나타낸 것이다.
도 5는 본 발명의 실시예에 따라 반구 모양의 나노구조물에 미세 패턴을 추가적으로 형성한 것을 보여주는 주사전자현미경 사진이다.
도 6은 본 발명의 다른 실시예에 따라 반구 모양의 나노구조물을 질화물갈륨계 수평형 발광다이오드에 형성하는 과정을 설명하는 도면이다.
도 7은 본 발명의 또 다른 실시예에 따라 반구 모양의 나노구조물을 형성한 후 추가적으로 나노선 또는 나노막대를 성장시킨 질화물갈륨계 수직형 발광다이오드를 설명하는 도면이다.
이하에서는, 본 발명의 바람직한 실시예에 기초하여 본 발명을 보다 구체적으로 설명한다. 그러나 하기 실시예는 본 발명의 이해를 돕기 위한 일 예에 불과한 것으로 이에 의해 본 발명의 권리범위가 축소 및 한정되는 것은 아니다.
본 발명에 있어서, '구(sphere) 모양'이란 한 점에서 같은 거리에 있는 모든 점으로 이루어진 입체 모양이라는 수학적 정의의 구뿐 아니라, 외견상 둥글게 생긴 형상의 것을 모두 포괄하는 의미로 사용한다. 또한, '반구 모양'이란 상기 '구(sphere) 모양'의 절반은 물론 절반보다 크기가 크거나 작은 절단면을 포함하는 모든 형상을 포괄하는 의미로 사용한다.
도 1은 본 발명에서 형성한 반구 모양의 표면 구조물을 이용해 발광다이오드의 광 추출 효율 향상을 설명하기 위한 도면이다. 도 1의 (a)에 도시된 바와 같이 매끈한 표면의 반도체 기판의 경우, 질화갈륨 반도체 기판의 굴절률(n~2.5)과 대기의 굴절률(n=1)이 크게 다르기 때문에 전반사에 대한 임계각이 23.5°에 불과하다. 이에 따라 반도체 내부에서 발생한 빛이 외부로 빠져나오지 못하고, 내부에서 소멸하여 광 추출 효율이 낮은 문제점이 있다. 이에 비해 도 1의 (b)와 같이 반도체 표면에 반구 형태의 구조물을 형성할 경우, 모든 방출 방향에 대해 임계각이 존재하지 않기 때문에 내부에서 발생한 빛이 대기 중으로 방출될 확률이 급격하게 증가하여 발광 다이오드의 광 추출 효율을 크게 향상시킬 수 있으므로, 본 발명자들은 반도체 기판의 표면에 균일한 반구형 형상을 구현할 수 있는 반도체 표면의 패터닝 방법을 개발하게 되었다.
도 2는 본 발명에 따른 발광다이오드의 패터닝 형성 공정도이다. 도시된 바와 같이, 본 발명에 따른 발광다이오드의 패터닝 형성 공정은, 반도체 표면상에 구형구조체 코팅 공정(S10), 건식에칭 공정(S20), 전극형성 공정(S40) 및 미세패터닝 공정(S40)을 포함하여 이루어진다.
먼저, 상기 구형구조체 코팅 공정(S10)에 대해 설명한다. 본 발명의 실시예에서 사용된 발광다이오드는 도 2에 도시된 바와 같이, 수직형 발광다이오드로서, 하부에서 순서대로, 전도성기판(10), p형 반도체층과 접속하며 발생한 빛을 반사할 수 있는 전극(20), p형 반도체층(30), 활성층(40) 및 n형 반도체층(50)이 순차적으로 형성된 것으로, p형과 n형 반도체층(30,50)은 모두 질화갈륨으로 이루어진 것을 사용하였다. 상기 n형 반도체층(50)의 상부에, 폴리스틸렌으로 이루어진 직경 500nm의 구형구조체를 마이크로 피펫을 이용하여 면적에 해당하는 양만큼을 이용하여 탈이온수(Deionized Water)와 함께 기판에 떨어뜨려 스핀코팅함으로써, n형 반도체층(50) 상에 균일한 구형구조체의 단일층이 형성되도록 하였다. 본 발명의 실시예에서는 폴리스틸렌으로 제조된 구형구조체를 사용하였으나, 폴리에틸렌, 실리카(SiO2) 또는 유리로 이루어진 것도 사용될 수 있다.
상기 건식에칭 공정(S20)은 상기 구형구조체 코팅 공정(S10)을 통해 균일하게 도포된 구형구조체를 마스크로 활용하여 에칭하는 공정으로서, 본 발명의 실시예에서는 ICP(Inductive Coupled Plasma) 에칭장비(etcher)를 이용하여 Cl2:BCl3 가스를 7:3의 조성으로 적용하여 건식에칭을 수행하였다. 그러나 구형구조체(60)와 n형 반도체층(50)을 동시에 에칭할 수 있는 방법이라면 어떤 것이라도 사용할 수 있다.
상기 전극 형성 공정(S30)은 공지의 리소그라피 방법을 이용하여 패턴을 형성한 이후 Cr/Au을 전자선 증착법으로 사용하여 n형 전극을 형성하였다.
상기 미세패터닝 공정(S40)은 건식에칭 공정(S20)을 통해 n형 반도체층(50)의 표면에 형성된 반구형의 구조물을 구성하는 각각의 반구 형상의 요철의 표면을 미세하게 패터닝하기 위한 것으로, 구체적으로는 1M ~ 8M 농도의 KOH 또는 NaOH 등의 용액을 사용하여 5분 ~ 60분간 습식에칭하는 방법을 사용하였다. KOH 또는 NaOH의 농도가 1M농도 미만일 경우 미세 패턴이 형성이 되지 않고, 8M 농도를 초과할 경우 미세 패턴의 크기가 반구 형상의 요철보다 커지기 때문에 반구 형상이 사라지므로, 농도는 1M ~ 8M인 것이 바람직하다. 한편 본 발명의 실시예에서는 미세패터닝 공정(S40)을 전극 형성 공정(S30) 후에 실시하였으나, 전극 형성 공정(S30) 이전에 실시할 수도 있다.
[실시예 1]
스핀 코터를 이용하여 먼저 나노구조체를 기판에 떨어뜨려 놓은 후 나노구조체들이 기판에서 분산 될 수 있도록 1분 정도를 유지한 후 스핀 코팅을 시작한다. 스핀 코팅은 단계별로 시작하면 먼저 200rpm에서 1분간 스핀 코팅을 한 후 800rpm에서 30초 마지막으로 1200rpm에서 10초간 코팅을 하여 준다. 도 3의 (a)는 패터닝 전의 평편한 n형 반도체 표면을 나타내고 있으며 도 3의 (b)는 수직 발광다이오드 표면에 스핀 코팅 방법으로 형성된 구 모양의 폴리스틸렌 재질의 나노구조체를 보여주는 사진이다. 도 3의 (b)를 통해 본 발명의 실시예에 따른 방법을 통해 구 모양의 나노구조체가 균일하게 n형 반도체 표면에 형성되었음을 확인할 수 있다.
이와 같이 나노구조체가 균일하게 코팅되어 있는 기판을 ICP(Inductive Coupled Plasma) 에칭장비를 이용하여 건식에칭을 한다. 건식에칭은 Cl2와 BCl3가스를 7:3비율로 혼합하여 사용을 하며 이때 플라즈마 파워는 약 300Watt에서 척바이어스(chuck bias) -300Volt를 이용해 약 2 ~ 3분 에칭하였다. 도 3의 (c)는 n형 반도체 표면 위에 형성하고 있는 구 모양의 나노구조체를 마스크로 사용하여 건식에칭할 경우 반구 모양의 나노구조물이 매우 균일하게 형성된 상태를 보여준다.
나노구조체를 ICP 에칭장비를 이용하여 건식 에칭을 통해 나노구조물을 형성한 후, Cr/Au을 전자선증착법을 이용하여 n형 전극을 형성하였다. 도 3의 (d)는 반구 모양의 나노구조물이 형성된 n형 질화물갈륨계 수직형 발광다이오드에 n형 전극을 형성한 후 수직형 발광다이오드와 그 위에 형성되어 있는 반구 모양의 나노구조물을 보여주는 주사 전자 현미경 사진이다.
도 4는 반구 모양의 나노구조물을 가지는 n형 수직형 질화갈륨 발광다이오드와 이를 적용하지 않은 평편한 n형 수직형 질화갈륨 발광다이오드 전기 발광 스펙트럼을 나타내는 도면이다. 본 발명의 실시예에 따라 n형 반도체 표면에 균일한 반구 모양의 나노구조물을 형성하였을 경우 평편한 n형 반도체에 비하여 광 출력이 약 2.5배 이상 증가할 수 있음이 확인되었다.
반구 모양의 n형 반도체 나노구조물과 전극을 형성한 발광다이오드 소자를 KOH 또는 NaOH 등의 강염기 용액에 담근 후 제논램프 광원을 이용하여 자외선을 발광다이오드에 조사하는 이른바 PCE(Photoenhance chemical etching)을 실시하였다. 이때 염기 용액은 1M 농도의 NaOH 수용액을 사용하였으며, 자외선 광원의 파장은 100nm ~ 400nm 범위로 유지하였다. 도 5는 상기한 미세 패터닝 공정의 에칭시간에 따른 n형 반도체층 표면의 형상변화를 보여주는 주사전자현미경 사진이다. 먼저, PCE를 통해 반구 형태의 n형 반도체층 표면에 미세 패턴이 형성됨을 볼 수 있다. 이에 따라 반구 모양의 n형 반도체 표면의 나노구조물만으로도 발광다이오드의 광 출력이 매우 크게 향상되지만, PCE를 함께 적용하였을 때 추가적인 광 출력 향상을 얻을 수 있게 된다.
[실시예 2]
도 6은 질화물갈륨계 수평형 발광다이오드에 적용한 반구 모양의 나노구조물 형성을 설명하는 도면이다.
도 6의 (a)에서는 질화물갈륨계 발광다이오드의 일부분만을 건식에칭을 통하여 매사 구조를 형성한 후, p형 질화물갈륨계에 산화인듐주석을 증착한다. 그리고 도 6의 (b)와 같이 산화인듐주석이 증착되어 있는 p형 질화물갈륨계 발광다이오드 표면에 구 모양의 나노구조체을 형성한 후, 도 6의 (c)와 같이 건식에칭을 한 후 도 6의 (d)에서와 같이 반구를 형성하게 되며, 그 후 n,p형 전극을 형성한 후, 도 2에 도시된 바와 같은 과정을 통해 미세패터닝을 한다. 이때 구체적인 공정조건은 실시예 1과 동일하게 수행할 수 있다. 즉, 본 발명에 따른 방법은 수직형은 물론 수평형 발광다이오드에도 용이하게 적용할 수 있다.
[실시예 3]
도 7은 본 발명에서의 n형 질화물갈륨계 수직형 발광다이오드의 반도체 표면에 반구 모양의 나노구조물 형성한 후 추가적으로 나노선 또는 나노막대 형성을 설명하는 도면이다.
n형 반도체 표면의 반구 모양의 나노구조물을 형성한 후, n형 전극을 형성한다. 그 후 반구 모양의 나노구조물 사이의 빈공간이나 반구 구조물 위에 나노선 및/또는 나노막대를 성장시킨다.
나노선 및/또는 나노막대를 성장시키는 방법으로는, 대면적 성장이 가능한 수열합성법을 사용한다. 수열합성법시 Zn 이온의 전구체인 질산아연6수화물(Znic nitrate hexahydrate)과 OH 이온 전구체인 Hexame(HMT)을 탈이온수에 첨가하여 반응 수용액을 만든다. 상기 반구 모양의 나노구조물을 형성시킨 기판을 반응 수용액에 침지하여 70℃에서 3시간 동안 합성시킨다.
이와 같이 추가로 나노선 및/또는 나노막대를 형성할 경우, 다중 산란에 의해 빛이 대기 중으로 방출될 확률이 증가하여 광 추출효과를 더욱 증가할 수 있다.
Claims (12)
- 제1 반도체층 상에 활성층 및 제2 반도체층이 순차적으로 형성된 수직형 발광다이오드의 제조방법으로서,(a) 상기 제2 반도체층의 상에 구 모양의 나노구조체를 코팅하는 단계;(b) 상기 나노구조체를 마스크로 이용하여 상기 제2 반도체층을 건식에칭하여 상기 제2 반도체층에 요철부를 형성하는 단계; 및(c) 상기 요철부를 습식에칭하여 상기 요철부를 구성하는 각각의 요철 표면에 서브요철부가 형성되도록 미세 패터닝하는 단계;를 포함하는 발광다이오드의 제조방법.
- 제 1 항에 있어서,상기 구 모양의 나노구조체는 폴리스틸렌, 폴리에틸렌, 실리카 또는 유리로 이루어진 것을 특징으로 하는 발광다이오드의 제조방법.
- 제 1 항에 있어서,상기 구 모양의 나노구조체의 직경은 100nm ~ 3㎛인 것을 특징으로 하는 발광다이오드의 제조방법.
- 제 1 항에 있어서,상기 구 모양의 나노구조체는 서로 다른 직경을 갖는 2 종 이상의 것이 혼합된 것을 특징으로 하는 발광다이오드의 제조방법.
- 제 1 항에 있어서,상기 습식에칭은 1M ~ 8M 농도의 KOH 또는 NaOH 등의 용액에서 5분 ~ 60분간 수행되는 것을 특징으로 하는 발광다이오드의 제조방법.
- 제 1 항에 있어서,상기 (a) 단계 전에 상기 제2 반도체 표면을 표면처리하는 것을 특징으로 하는 발광다이오드의 제조방법.
- 제 1 항에 있어서,상기 요철부에 추가로 나노선 또는 나노막대를 성장시키는 단계를 포함하는 것을 특징으로 하는 발광다이오드의 제조방법.
- 제 1 항에 있어서,상기 제2 반도체층이 n-face를 갖는 n형인 것을 특징으로 하는 발광다이오드의 제조방법.
- 제1 반도체층, 활성층 및 제2 반도체층을 포함하며,상기 제2 반도체층의 표면에는 요철부가 형성되어 있고, 상기 요철부를 구성하는 각각의 요철의 표면에는 다시 서브요철부가 형성되어 있는 것을 특징으로 하는 발광다이오드.
- 제 9 항에 있어서,상기 제2 반도체층의 표면에 추가로 나노선 또는 나노막대가 형성되어 있는 것을 특징으로 하는 발광다이오드.
- 제 9 항 또는 제 10 항에 있어서,상기 요철부는 반구형으로 이루어진 것을 특징으로 하는 발광다이오드.
- 제 9 항 또는 제 10 항에 있어서,상기 제1 반도체층 및 제2 반도체층은 질화갈륨으로 이루어진 것을 특징으로 하는 발광다이오드.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2010-0139523 | 2010-12-30 | ||
KR1020100139523A KR20120077534A (ko) | 2010-12-30 | 2010-12-30 | 나노 구조체를 이용한 발광다이오드 제조 방법과 이에 의해 제조된 발광다이오드 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012091325A2 true WO2012091325A2 (ko) | 2012-07-05 |
WO2012091325A3 WO2012091325A3 (ko) | 2012-08-23 |
Family
ID=46383626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/009625 WO2012091325A2 (ko) | 2010-12-30 | 2011-12-14 | 나노 구조체를 이용한 발광다이오드 제조 방법과 이에 의해 제조된 발광다이오드 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20120077534A (ko) |
WO (1) | WO2012091325A2 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109216171A (zh) * | 2017-06-30 | 2019-01-15 | 新加坡国立大学 | 一种降低宽禁带半导体器件欧姆接触电阻的方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140036403A (ko) * | 2012-09-13 | 2014-03-26 | 포항공과대학교 산학협력단 | 발광 다이오드의 패턴 형성 방법 |
KR101973764B1 (ko) * | 2012-09-24 | 2019-05-02 | 포항공과대학교 산학협력단 | 나노 구조 형성 방법 |
KR102091831B1 (ko) * | 2013-01-08 | 2020-03-20 | 서울반도체 주식회사 | 발광 다이오드 및 그 제조방법 |
KR101535852B1 (ko) * | 2014-02-11 | 2015-07-13 | 포항공과대학교 산학협력단 | 나노구조체 전사를 이용한 발광다이오드 제조방법과 그 발광다이오드 |
KR101720864B1 (ko) * | 2015-06-22 | 2017-04-03 | 포항공과대학교 산학협력단 | 반도체 발광 소자의 제조 방법 및 그 반도체 발광 소자 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003209283A (ja) * | 2002-01-15 | 2003-07-25 | Toshiba Corp | 半導体発光素子及びその製造方法 |
KR20060051165A (ko) * | 2004-09-10 | 2006-05-19 | 가부시끼가이샤 도시바 | 반도체 발광 장치 및 그것의 제조 방법 |
WO2006096767A1 (en) * | 2005-03-08 | 2006-09-14 | Luminus Devices, Inc. | Patterned light-emitting devices |
KR20070046024A (ko) * | 2004-08-31 | 2007-05-02 | 각코우호우징 메이조다이가쿠 | 반도체 발광 소자 제조 방법 및 반도체 발광 소자 |
KR20080031292A (ko) * | 2005-07-08 | 2008-04-08 | 스미또모 가가꾸 가부시키가이샤 | 기판 및 반도체 발광 소자 |
-
2010
- 2010-12-30 KR KR1020100139523A patent/KR20120077534A/ko not_active Application Discontinuation
-
2011
- 2011-12-14 WO PCT/KR2011/009625 patent/WO2012091325A2/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003209283A (ja) * | 2002-01-15 | 2003-07-25 | Toshiba Corp | 半導体発光素子及びその製造方法 |
KR20070046024A (ko) * | 2004-08-31 | 2007-05-02 | 각코우호우징 메이조다이가쿠 | 반도체 발광 소자 제조 방법 및 반도체 발광 소자 |
KR20060051165A (ko) * | 2004-09-10 | 2006-05-19 | 가부시끼가이샤 도시바 | 반도체 발광 장치 및 그것의 제조 방법 |
WO2006096767A1 (en) * | 2005-03-08 | 2006-09-14 | Luminus Devices, Inc. | Patterned light-emitting devices |
KR20080031292A (ko) * | 2005-07-08 | 2008-04-08 | 스미또모 가가꾸 가부시키가이샤 | 기판 및 반도체 발광 소자 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109216171A (zh) * | 2017-06-30 | 2019-01-15 | 新加坡国立大学 | 一种降低宽禁带半导体器件欧姆接触电阻的方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2012091325A3 (ko) | 2012-08-23 |
KR20120077534A (ko) | 2012-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012091325A2 (ko) | 나노 구조체를 이용한 발광다이오드 제조 방법과 이에 의해 제조된 발광다이오드 | |
US8426880B2 (en) | Semiconductor light emitting device and method of manufacturing the same | |
KR20120084839A (ko) | 패터닝된 사파이어 기판에 성장된 led 에피층을 이용하는 수직형 발광다이오드의 제조방법과 이에 의해 제조된 수직형 발광다이오드 | |
KR20120077596A (ko) | 산화아연 나노막대 마스크를 이용한 발광다이오드의 제조방법 | |
CN102683506A (zh) | 一种用于GaN基LED外延片的纳米结构层及其制备方法 | |
JP5632081B2 (ja) | ナノインプリントモールドを用いた発光ダイオードの製造方法、及びこの方法により製造された発光ダイオード | |
Leem et al. | Light‐Emitting Diodes with Hierarchical and Multifunctional Surface Structures for High Light Extraction and an Antifouling Effect | |
WO2012091271A2 (ko) | 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오 | |
WO2012091329A2 (ko) | 발광소자의 제조방법과 이 방법에 의해 제조된 발광소자 | |
KR101535852B1 (ko) | 나노구조체 전사를 이용한 발광다이오드 제조방법과 그 발광다이오드 | |
WO2014034423A1 (ja) | 電界電子放出膜、電界電子放出素子、発光素子およびそれらの製造方法 | |
JP5926750B2 (ja) | 電界電子放出膜、電界電子放出素子、発光素子およびそれらの製造方法 | |
WO2012099436A2 (ko) | 발광다이오드 제조방법 및 이에 의해 제조된 발광다이오드 | |
WO2013012194A2 (ko) | 발광다이오드용 기판의 제조방법, 이에 의해 제조된 발광다이오드용 기판 및 이 발광다이오드용 기판을 구비한 발광다이오드의 제조방법 | |
KR20140036403A (ko) | 발광 다이오드의 패턴 형성 방법 | |
CN101740704B (zh) | 一种光子晶体结构GaN基LED的制作方法 | |
KR101383097B1 (ko) | 광추출 효율을 높인 질화갈륨계 발광다이오드 소자, 광추출 효율을 높인 유기 발광다이오드 소자의 제조방법 | |
JP6130157B2 (ja) | 電界電子放出素子およびそれを用いた発光素子の製造方法 | |
WO2013122328A1 (ko) | 발광 소자 제조 방법 및 이를 이용하여 제조된 발광 소자 | |
Niu et al. | Study of GaN/InGaN light-emitting diodes with specific zirconium oxide (ZrO2) layers | |
KR101325641B1 (ko) | 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드 | |
WO2023226222A1 (zh) | 发光器件及其制备方法、显示装置 | |
KR100871649B1 (ko) | 발광 다이오드의 사파이어 기판 패터닝 방법 | |
KR101101852B1 (ko) | 반도체 발광소자 제조 방법 | |
WO2012046991A2 (ko) | 반도체의 패터닝 방법 및 이 방법에 형성된 패턴을 포함하는 반도체 소자 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11854083 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase in: |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11854083 Country of ref document: EP Kind code of ref document: A2 |