WO2023226222A1 - 发光器件及其制备方法、显示装置 - Google Patents

发光器件及其制备方法、显示装置 Download PDF

Info

Publication number
WO2023226222A1
WO2023226222A1 PCT/CN2022/115410 CN2022115410W WO2023226222A1 WO 2023226222 A1 WO2023226222 A1 WO 2023226222A1 CN 2022115410 W CN2022115410 W CN 2022115410W WO 2023226222 A1 WO2023226222 A1 WO 2023226222A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
substrate
emitting device
facing away
Prior art date
Application number
PCT/CN2022/115410
Other languages
English (en)
French (fr)
Inventor
闫华杰
孙倩
王明星
李伟
焦志强
黄清雨
孙孟娜
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280002901.7A priority Critical patent/CN117461150A/zh
Publication of WO2023226222A1 publication Critical patent/WO2023226222A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present disclosure belongs to the field of display technology, and specifically relates to a display module and a display device.
  • Quantum Dot as a new type of luminescent material, has the advantages of high light color purity, high luminescence quantum efficiency, adjustable luminescence color, and long service life, and has become a current research focus on new luminescent materials. Therefore, quantum dot light-emitting devices using quantum dot materials as the light-emitting layer have become the main direction of research on new display devices.
  • the light emitted by the light-emitting diode can be used as excitation light.
  • the excitation light is irradiated into the color conversion layer.
  • the color conversion layer can convert the excitation light into light of different colors, so that the display product can achieve full-color display. Effect.
  • the luminous efficiency of the light-emitting diodes in current quantum dot light-emitting devices is low, and the color conversion efficiency of the color conversion layer is low, which cannot meet the requirements of current display products.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art and provide a light-emitting device, a preparation method thereof, and a display device.
  • an embodiment of the present disclosure provides a light-emitting device, wherein the light-emitting device includes: a substrate, a light-emitting diode located on the substrate, and a color conversion layer located on a side of the light-emitting diode away from the substrate. ;
  • the light-emitting device also includes: nanometal particles;
  • a plurality of grooves are formed on a surface of the light-emitting diode away from the substrate;
  • the nanometal particles are filled in the groove.
  • the light-emitting device further includes: a metal layer;
  • the metal layer is located on a side of the color conversion layer facing away from the substrate.
  • the light-emitting diode includes: a first doped semiconductor layer and a second doped semiconductor layer arranged oppositely, and a quantum layer located between the first doped semiconductor layer and the second doped semiconductor layer. well layer;
  • the groove is formed on a surface of the second doped semiconductor layer facing away from the substrate.
  • the depth of the groove is less than the thickness of the second doped semiconductor layer.
  • the light-emitting diode further includes: a current spreading layer;
  • the current spreading layer is located on a side of the second doped semiconductor layer facing away from the substrate.
  • the color conversion layer includes: a transparent conductive material layer and a quantum dot material layer;
  • the transparent conductive material layer is located on the side of the current expansion layer facing away from the substrate, and the surface of the transparent conductive material layer facing away from the substrate is in the shape of a line or a grid;
  • the quantum dot material layer is located on a side of the transparent conductive layer facing away from the substrate.
  • the color conversion layer includes: a mixture of transparent conductive material and quantum dot material.
  • the transparent conductive material includes: at least one of graphene, carbon nanotubes, and nanometal particles.
  • the color conversion layer includes: quantum dot material
  • a plurality of pores are formed on the surface of the current spreading layer on the side facing away from the substrate;
  • the quantum dot material is filled in the pores.
  • the surface of the plurality of pores has an opposite charge potential to the surface of the quantum dot material.
  • the thickness of the current spreading layer is 10 nanometers to 100 nanometers.
  • the diameter of the pores is 10 nanometers to 100 nanometers.
  • the nanometal particles and the metal layer are made of the same material.
  • the material of the nanometal particles includes at least one of silver, gold, platinum, palladium, and iridium.
  • the diameter of the nanometal particles is less than or equal to 100 nanometers
  • the distance between adjacent nanometal particles is greater than or equal to 1 micron.
  • the first doped semiconductor layer has an overlapping platform;
  • the light-emitting device further includes: a passivation layer covering the overlapping platform and the metal layer, and a passivation layer located on the passivation layer away from the a first connection electrode and a second connection electrode on one side of the substrate;
  • the first connection electrode is electrically connected to the overlapping platform through a via hole penetrating the passivation layer;
  • the second connection electrode is electrically connected to the metal layer through a via hole penetrating the passivation layer.
  • embodiments of the present disclosure provide a display device, which includes a plurality of light-emitting devices as provided above.
  • embodiments of the present disclosure provide a method of manufacturing a light-emitting device, wherein the method of manufacturing a light-emitting device includes:
  • a color conversion layer is formed on a side of the light-emitting diode facing away from the substrate.
  • forming a color conversion layer on the side of the light-emitting diode away from the substrate and then further including:
  • a metal layer is formed on a side of the color conversion layer facing away from the substrate.
  • forming a light emitting diode on the substrate includes:
  • a first doped semiconductor layer, a quantum well layer and a second doped semiconductor layer are sequentially formed on the substrate.
  • filling nanometal particles into a plurality of the grooves includes:
  • the silicon oxide layer and the second doped semiconductor layer are etched, and a plurality of grooves are formed on the surface of the second doped semiconductor layer away from the substrate;
  • nanometal particle layer Form a nanometal particle layer on the silicon oxide layer, and anneal the nanometal particle layer to form nanometal particles, so that the nanometal particles fill a plurality of the grooves;
  • the silicon oxide layer is peeled off using an acid solution, so that excess nanometal particles are removed along with the peeling off of the silicon oxide layer.
  • a current spreading layer is formed on a side of the second doped semiconductor layer facing away from the substrate.
  • a color conversion layer is formed on the side of the light-emitting diode away from the substrate, including:
  • a transparent conductive layer is formed by spin coating on the side of the current spreading layer facing away from the substrate, and the surface of the transparent conductive layer facing away from the substrate is in the shape of a line or a grid;
  • a quantum dot material layer is formed by spin coating on the side of the transparent conductive layer facing away from the substrate.
  • a color conversion layer is formed on the side of the light-emitting diode away from the substrate, including:
  • a transparent conductive material and a quantum dot material are mixed to form a mixture, and a color conversion layer is formed by spin coating on the side of the current spreading layer facing away from the substrate.
  • the transparent conductive material and the quantum dot material are mixed to form a mixture, followed by:
  • the mixture is sonicated to disperse the transparent conductive material and the quantum dot material.
  • forming a current spreading layer on the side of the second doped semiconductor layer facing away from the substrate and then further including:
  • the current spreading layer is reductively etched using a zinc powder-ethanol solution, and a plurality of pores are formed on the surface of the current spreading layer facing away from the substrate.
  • forming a current spreading layer on the side of the second doped semiconductor layer facing away from the substrate and then further including:
  • the current spreading layer is etched, and a plurality of pores are formed on the surface of the current spreading layer facing away from the substrate.
  • a color conversion layer is formed on the side of the light-emitting diode away from the substrate, including:
  • the quantum dot solution is spin-coated to the surface of the current spreading layer on the side facing away from the substrate, so that the quantum dot material is filled in the pores.
  • FIG. 1 is a schematic structural diagram of a light-emitting device provided by an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of the arrangement of grooves and nanometal particles in a light-emitting device provided by an embodiment of the present disclosure.
  • FIG. 3 is a morphological view of the surface of a transparent conductive layer in a light-emitting device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of another light-emitting device provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another light-emitting device provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of a method for manufacturing a light-emitting device according to an embodiment of the present disclosure.
  • FIGS. 7a to 7y are schematic diagrams of intermediate structures corresponding to each step in the method for manufacturing a light-emitting device provided by embodiments of the present disclosure.
  • an embodiment of the present disclosure provides a light-emitting device.
  • Figure 1 is a schematic structural diagram of a light-emitting device provided by an embodiment of the present disclosure.
  • the light-emitting device includes: a substrate 101, and a light emitting device located on the substrate 101.
  • the light-emitting diode 102 and the color conversion layer 103 located on the side of the light-emitting diode 102 facing away from the substrate 101; the light-emitting device also includes: nano-metal particles 104; a plurality of grooves are formed on the surface of the light-emitting diode 102 facing away from the substrate 101; the nano-metal particles 104 are filled in the groove.
  • the substrate 101 can be made of rigid materials such as glass, which can improve the carrying capacity of other film layers on the substrate 101 .
  • the substrate 101 can also be made of flexible materials such as polyimide (PI), which can improve the overall anti-bending and tensile properties of the light-emitting device and avoid the occurrence of bending, stretching, and twisting. The stress causes the substrate 101 to break, resulting in poor circuit breaking.
  • the material of the substrate 101 can be reasonably selected according to actual needs to ensure that the light-emitting device has good performance.
  • a buffer layer is generally provided between the substrate 101 and the light-emitting diode 102, and its material may be at least one of silicon nitride, silicon oxide, or silicon oxynitride.
  • the light emitted by the light-emitting diode 102 can be used as excitation light to illuminate the color conversion layer 103, and can excite the material in the color conversion layer 103 to emit light and convert the color of the light, so that different light-emitting devices emit different colors.
  • the color of the light emitted by the light-emitting diode 102 is generally blue, and the color conversion layer 103 can emit red light or green light under the irradiation of blue light.
  • the color of the light is determined by the material of the color conversion layer 103 and can be determined according to Actual selection is required and will not be described in detail here.
  • a plurality of grooves are formed on the surface of the light-emitting diode 102 away from the substrate 101.
  • the plurality of grooves are periodically arranged, with a certain distance between adjacent grooves.
  • Nano-metal particles 104 are filled in the grooves, and the nano-metal particles 104 are filled in the grooves.
  • the particles 104 are also periodically arranged like the grooves.
  • the specific arrangement of the grooves and the nanometal particles 104 can be shown in Figure 2.
  • the diameter of the nanometal particles 104 can be 100 nanometers
  • the width of the grooves can be is 750 nanometers
  • the distance between adjacent grooves can be 250 nanometers, that is, the periodic spacing value of the grooves is 1 micron.
  • the periodic spacing value of the nanometal particles 104 is also 1 micron.
  • the nanometal particles 104 can be made of materials with good conductivity, such as at least one of silver, gold, platinum, palladium, and iridium. In the embodiments of the present disclosure and the following description, silver will be used as an example.
  • the light-emitting device when the light emitted by the light-emitting diode 102 is irradiated to the color conversion layer 103, the light can first irradiate the nano-metal particles 104 in the groove.
  • the nano-metal particles 104 are excited by the light.
  • surface plasmons Under irradiation, surface plasmons are formed, which can be excited to generate a very strong near-field magnetic field and provide extremely high photon state density, which in turn can enhance the self-luminous radiation efficiency of the luminous body.
  • the surface plasmons formed by the nanometal particles 104 can improve the brightness and luminous efficiency of the light-emitting diode 102.
  • the surface plasmons formed by the nanometal particles 104 can shorten the fluorescence lifetime of the material in the color conversion layer 103 and enhance the radiation rate of the material, thereby improving the color conversion efficiency.
  • the surface plasmons formed by the nanometal particles 104 can increase the scattering rate of light to facilitate the extraction of light, thereby improving the luminous efficiency of the color conversion layer 103 .
  • the nano-metal particles 104 are filled in periodically arranged grooves, which can ensure the action range of the surface plasmons formed by the nano-metal particles 104 in the grooves, and at the same time avoid the interference in adjacent grooves.
  • the interaction between surface plasmons formed by the nanometal particles 104 affects the luminescence performance of the light-emitting device.
  • the light-emitting device further includes: a metal layer 105; the metal layer 105 is located on a side of the color conversion layer 103 facing away from the substrate 101.
  • the metal layer 105 can be made of a material with good conductivity, such as at least one of silver, gold, platinum, palladium, and iridium.
  • the metal layer 105 and the nanometal particles 104 are made of the same material.
  • silver will be used as an example.
  • the metal layer 105 and the periodically arranged nanometal particles 104 can form a surface plasmon gap mode.
  • the material in the color conversion layer 103 can be increased nearly 10,000 times, thereby further significantly improving the luminescence. device luminous efficiency.
  • the metal layer 105 can cover the color conversion layer 103 to protect the color conversion layer 103 and avoid damage to the color conversion layer 103 by external force.
  • the light-emitting diode 102 includes: a first doped semiconductor layer 1021 and a second doped semiconductor layer 1022 arranged oppositely, and a layer located between the first doped semiconductor layer 1021 and the second doped semiconductor layer 1022 .
  • Quantum well layer 1023; grooves are formed on the surface of the second doped semiconductor layer 1022 facing away from the substrate 101.
  • the first doped semiconductor layer 1021 and the second doped semiconductor layer 1022 are made of different types of semiconductor materials.
  • the first doped semiconductor layer 1021 can be an N-type doped semiconductor layer
  • the second doped semiconductor layer 1022 can be an N-type doped semiconductor layer. It may be a P-type doped semiconductor layer.
  • the material of the first doped semiconductor layer 1021 may be N-GaN
  • the material of the second doped semiconductor layer 1022 may be P-GaN.
  • the first doped semiconductor layer 1021 and the second doped semiconductor layer 1022 can form photons in the quantum well layer 1023 and radiate the photons to achieve the function of emitting light.
  • Grooves accommodating the nanometal particles 104 are formed on the surface of the second doped semiconductor layer 1022 facing away from the substrate 101. This eliminates the need to provide a separate film layer for the nanometal particles 104, thereby reducing the number of film layers of the light-emitting device, thereby enabling Reduce the thickness of the light emitting device.
  • the depth of the groove is less than the thickness of the second doped semiconductor layer 1022.
  • the depth of the groove can be less than the thickness of the second doped semiconductor layer 1022, so that the second doped semiconductor layer 1022 can be avoided from being etched through the groove to ensure that the second doped semiconductor layer 1022 and the first doped semiconductor layer 1021, thereby avoiding the impact of the groove on the luminous efficiency of the light-emitting diode 102.
  • the light-emitting diode 102 further includes: a current spreading layer 1024 ; the current spreading layer 1024 is located on a side of the second doped semiconductor layer 1022 facing away from the substrate 101 .
  • the current expansion layer 1024 can play the role of conduction and current expansion.
  • the material of the current expansion layer 1024 can be indium tin oxide (ITO), which has good conductive properties and is a transparent structure, which can avoid damage to the quantum well layer. 1023 The occlusion of light produced.
  • ITO indium tin oxide
  • the color conversion layer 103 includes: a transparent conductive material layer 1031 and a quantum dot material layer 1032; the transparent conductive material layer 1031 is located on the side of the current spreading layer 1024 away from the substrate 101, and is transparent and conductive.
  • the surface of the material layer 1031 facing away from the substrate 101 is in the shape of a line or a grid; the quantum dot material layer 1032 is located on the side of the transparent conductive layer 1031 facing away from the substrate 101 .
  • the transparent conductive layer 1031 and the quantum dot material layer 1032 in the color conversion layer 103 are each at least one layer, and they are arranged alternately.
  • the surface of the transparent conductive layer 1031 facing away from the substrate 101 is in the shape of a line or a grid, and its topography is shown in the figure. As shown in 3, it can be seen that the surface of the transparent conductive layer 1031 facing away from the substrate is uneven, which can provide a carrying space for the quantum dot material 1030 in the quantum dot material layer 1032, so that the quantum dot material 1030 can be filled in the formed lines or grids. In a shaped space, the quantum dot material 1030 is prevented from agglomerating and causing quenching, thereby avoiding affecting the color conversion efficiency and improving the luminous efficiency of the light-emitting device.
  • FIG. 4 is a schematic structural diagram of another light-emitting device provided by an embodiment of the present disclosure.
  • the color conversion layer 103 in the light-emitting device includes: a transparent conductive material and a quantum dot material 1030. mixture.
  • the difference between the light-emitting device shown in Figure 4 and the light-emitting device shown in Figure 1 is that the color conversion layer 103 in the light-emitting device shown in Figure 4 has a single-layer structure, and the materials in it are transparent conductive materials and quantum dot materials 1030 Since the transparent conductive material is mixed into the quantum dot material 1030, the quantum dot material 1030 can be dispersed to prevent the quantum dot material 1030 from agglomerating and causing quenching, thereby avoiding affecting the color conversion efficiency and improving the performance of the light-emitting device. Luminous efficiency.
  • the color conversion layer 103 has a single-layer structure, during the preparation process, it is only necessary to mix the transparent conductive material and the quantum dot material 1030 in advance to form a mixture, and then spin-coat the color conversion layer 103 to avoid multiple spin-coatings. Therefore, process steps can be reduced and preparation costs can be saved. Moreover, the thickness of the single-layer structural color conversion layer 103 can be smaller, which can reduce the thickness of the light-emitting device, which is beneficial to the thinning of the light-emitting device and the display device.
  • the transparent conductive material includes: at least one of graphene, carbon nanotubes, and nanometal particles.
  • the transparent conductive material can specifically be at least one of graphene, carbon nanotubes, and nanometal particles, which has good conductive properties and can avoid quenching caused by the agglomeration of the quantum dot material 1030, thereby avoiding affecting the color. conversion efficiency and improve the luminous efficiency of light-emitting devices. Since the preparation process of graphene material during film formation is relatively complicated, carbon nanotubes and nanosilver particles are preferred as transparent conductive materials.
  • Figure 5 is a schematic structural diagram of another light-emitting device provided by an embodiment of the present disclosure.
  • the color conversion layer 103 includes: a quantum dot material 1030; a current spreading layer 1024 on the side facing away from the substrate 101 Multiple pores are formed on the surface; quantum dot material 1030 is filled in the pores.
  • the quantum dot material 1030 can convert light into light of different colors under the irradiation of excitation light.
  • the quantum dot material 1030 can be a material such as perovskite.
  • the quantum dot material 1030 can be filled in multiple pores on the surface of the current spreading layer 1024 facing away from the substrate 101. This eliminates the need to provide a separate layer of film for the quantum dot material 1030, thereby reducing the number of film layers of the light-emitting device. The thickness of the light emitting device can be reduced.
  • the thickness of the current expansion layer 1024 is 10 nanometers to 100 nanometers, which can ensure that the distance between the nanometal particles 104 and the metal layer 105 is maintained at 10 nanometers to 100 nanometers. This can ensure that the distance between the nanometal particles 104 and the metal layer 105 is maintained.
  • a surface plasmon gap mode can be formed between the metal layers 105, and at the same time, it can also avoid quantum dot fluorescence quenching caused by too close distance between the nanometal particles 104 and the quantum dot material 1030 in the color conversion layer 103 to ensure color conversion. The color conversion efficiency and luminous efficiency of layer 103.
  • the surface of the plurality of pores has an opposite charge potential to the surface of the quantum dot material 1030 .
  • the surface of quantum dot materials is generally negatively charged.
  • Polyethylene glycol (PEG) or polystyrene sodium sulfonate (PSS) solution is used to soak the current expansion layer 1024 so that the surface of the pores has a certain positive charge.
  • the quantum dot material 1030 can be filled into the pores using electrostatic adsorption force to ensure the thickness of the formed color conversion layer 103 and improve the color conversion efficiency and luminous efficiency of the color conversion layer 103.
  • the pores are 10 nanometers to 100 nanometers in diameter.
  • the diameter of the pores can be 10 nanometers to 100 nanometers, and the quantum dot material 1030 can be filled in the nanometer-level pores to ensure that the quantum dot materials 1030 are agglomerated at the nanometer level and reduce the quenching of the quantum dot materials 1030 caused by aggregation.
  • the depth of the pore is generally smaller than the thickness of the current spreading layer 1024 to prevent the current spreading layer 1024 from being carved through and affecting the light-emitting performance of the light-emitting device.
  • the nanometal particles 104 and the metal layer 105 are made of the same material.
  • the nanometal particles 104 and the metal layer 105 can be made of materials with good electrical conductivity, and their materials can be the same. On the one hand, it can facilitate the generation of surface plasmons, on the other hand, it can reduce the difficulty of preparation and save preparation costs.
  • the first doped semiconductor layer 1021 has an overlapping platform 1021a; the light emitting device further includes: a passivation layer 106 covering the overlapping platform 1021a and the metal layer 105 , and the first connection electrode 107 and the second connection electrode 108 located on the side of the passivation layer 106 away from the substrate 101; the first connection electrode 107 is electrically connected to the overlapping platform 1021a through a via hole penetrating the passivation layer 106; the second connection The electrode 108 is electrically connected to the metal layer 105 through a via hole penetrating the passivation layer 106 .
  • the first electrode 107 and the second connection electrode 108 can input different voltage signals. Driven by the voltage signals, an electric field can be formed between the first doped semiconductor layer 1021 and the second doped semiconductor layer 1022 so that the quantum well layer 1023 It generates photons and radiates the photons to achieve the function of emitting light.
  • an embodiment of the present disclosure provides a display device.
  • the display device includes a plurality of light-emitting devices as provided in any of the above embodiments.
  • the display device may specifically be: a mobile phone, a tablet computer, a television, a monitor, a notebook
  • the implementation principles and beneficial effects of any products or components with display functions such as computers, digital photo frames, and navigators are the same as those of the above-mentioned light-emitting devices, and will not be described again here.
  • embodiments of the present disclosure provide a method for manufacturing a light-emitting device.
  • Figure 6 is a schematic flow diagram of a method of manufacturing a light-emitting device provided by an embodiment of the disclosure.
  • Figures 7a to 7y are schematic diagrams of a method of manufacturing a light-emitting device provided by embodiments of the present disclosure.
  • a schematic diagram of the intermediate structure corresponding to each step in the method of manufacturing a light-emitting device. The method of manufacturing a light-emitting device provided by embodiments of the present disclosure will be further described in detail below with reference to the accompanying drawings.
  • the step of forming the light-emitting diode 102 on the substrate 101 may include forming a buffer layer on the substrate 101, and then sequentially forming the first doped semiconductor layer 021, the quantum well layer 1023 and the buffer layer on the buffer layer. Second doped semiconductor layer 1022.
  • the buffer layer only plays a buffering role and has no impact on the overall luminous effect of the light-emitting device. Therefore, whether to set the buffer layer can be determined according to needs.
  • S602 Form multiple grooves on the surface of the light-emitting diode away from the substrate.
  • a layer of 120 nm thick silicon oxide (SiO2) is evaporated on the epitaxial wafer on the surface of the light-emitting diode 102 facing away from the substrate 101 , that is, the surface of the second semiconductor doped layer 1022 . layer.
  • SiO2 silicon oxide
  • a circular hole-shaped nanoimprint template is used to imprint the substrate spin-coated with the embossing glue through IPS using a two-step method, so that the round hole pattern is transferred to the embossing glue.
  • oxygen plasma is used to remove the residual glue, that is, a hole pattern of the imprinted glue is formed on the epitaxial wafer of the light-emitting diode 102 .
  • ICP inductively coupled plasma
  • etch the silicon oxide (SiO2) layer in an atmosphere of carbon tetrafluoride (CF4) or trifluoromethane (CHF3) and etch through the second semiconductor doped layer.
  • Hybrid layer 1022 P-type GaN.
  • the second semiconductor doped layer 1022 is etched in a chlorine (Cl2)/boron trichloride (BCl3) atmosphere, and the etching time is determined according to the required etching depth.
  • a groove structure using the silicon oxide (SiO2) layer as a mask on the epitaxial wafer of the light-emitting diode 102 can be obtained.
  • a metal layer is evaporated on the groove structure.
  • the metal layer material can be silver (Ag), where the deposition thickness of silver (Ag) is 30 nanometers, and then heated at 600°C. Anneal in the annealing furnace for 10 minutes. Nano-metal particles 104 are formed on both the groove and the silicon oxide (SiO2) layer mask layer.
  • the sample was immersed in a hydrofluoric acid (HF) solution and ultrasonically cleaned with the front side (second doped semiconductor layer 1022) facing down.
  • HF hydrofluoric acid
  • the nanometal particles 104 falling on the silicon oxide (SiO2) layer mask fall from the epitaxial wafer as the silicon oxide (SiO2) layer dissolves in the hydrofluoric acid (HF) solution. At this time, the required array of nanometal particles 104 is formed in the groove.
  • S604 Form a color conversion layer on the side of the light-emitting diode facing away from the substrate.
  • a current spreading layer 1024 may be formed on the second doped semiconductor layer 1022 , and its material may specifically be indium tin oxide (ITO).
  • ITO indium tin oxide
  • a transparent conductive material is spin-coated on the current spreading layer 1024.
  • the transparent conductive material may be at least one of graphene, carbon nanotubes, and silver nanoparticles to form a transparent conductive material layer 1031. Due to the characteristics of the transparent conductive material, the surface of the formed transparent conductive material layer 1031 facing away from the substrate 101 is uneven, generally in the shape of lines or grids. Then, a quantum dot material 1030 is spin-coated on the transparent material conductive layer 1031.
  • the quantum dot material 1030 may be a perovskite material to form a quantum dot material layer 1032.
  • the surface of the transparent conductive layer 1031 facing away from the substrate 101 is in the shape of a line or a grid, which can provide a carrying space for the quantum dot material 1030 in the quantum dot material layer 1032, so that the quantum dot material 1030 can be filled in the formed line or grid.
  • the quantum dot material 1030 is prevented from agglomerating and causing quenching, thereby avoiding affecting the color conversion efficiency and improving the luminous efficiency of the light-emitting device.
  • the surface of the current spreading layer 1024 away from the substrate 101 can also be uneven, which is beneficial to increasing the light emission of the light-emitting diode and increasing the excitation effect on the quantum dot material 1030, thereby further improving the luminous efficiency. .
  • a current spreading layer 1024 may be formed on the second doped semiconductor layer 1022, and its material may specifically be indium tin oxide (ITO).
  • ITO indium tin oxide
  • the transparent conductive material and the quantum dot material 1030 are mixed to form a mixture of the two, and then the mixture of the two is spin-coated to form the color conversion layer 103 . Since the transparent conductive material is mixed in the quantum dot material 1030, the quantum dot material 1030 can be dispersed to prevent the quantum dot material 1030 from agglomerating and causing quenching, thereby avoiding affecting the color conversion efficiency and improving the luminous efficiency of the light-emitting device.
  • the color conversion layer 103 has a single-layer structure, during the preparation process, it is only necessary to mix the transparent conductive material and the quantum dot material 1030 in advance to form a mixture, and then spin-coat the color conversion layer 103 to avoid multiple spin-coatings. This can reduce process steps and save preparation costs.
  • the mixture before forming the color conversion layer 103 composed of the mixture, the mixture can be subjected to ultrasonic treatment so that the transparent conductive material and the quantum dot material 1030 are dispersed, which can further prevent the quantum dot material 1030 from agglomerating. Causes quenching, thereby avoiding affecting the color conversion efficiency and improving the luminous efficiency of the light-emitting device.
  • a current spreading layer 1024 can be formed on the second doped semiconductor layer 1022, and its material can specifically be indium tin oxide (ITO).
  • ITO indium tin oxide
  • the zinc powder-ethanol solution is spin-coated on the current expansion layer 1024.
  • the diameter of the nanopore is closely related to the zinc powder concentration. To form a pore of about 100 nanometers, the zinc powder concentration is about 60 mg/ml. Apply an amount of 30ul/cm 2 to the current expansion layer 1024 at a spin coating speed of 500-6000rad/min for 30 seconds (the spin coating speed will affect the spreading of zinc powder and further affect the pore diameter).
  • the conductive glass is immersed in the acid-ethanol mixture to perform a reduction corrosion reaction on the current spreading layer 1024 .
  • the concentration of hydrochloric acid-ethanol solution affects the reaction rate.
  • the concentration of hydrochloric acid is between 0.01-1mol/L.
  • the volume ratio of ethanol to water in hydrochloric acid is between 1-8. When it is less than 1, the reaction is too fast and uncontrollable. When it is greater than 8, the reaction speed Too slow.
  • the corrosion reaction takes a certain time. After the reaction, it is rinsed three times with deionized water and dried at 50° C. to form pores in the current expansion layer 1024 .
  • a current spreading layer 1024 can be formed on the second doped semiconductor layer 1022, and its material can specifically be indium tin oxide (ITO). .
  • ITO indium tin oxide
  • a round-hole AAO imprint template (period 100 nm)
  • IPS indium tin oxide
  • oxygen plasma is used to remove the residual glue, that is, a pore pattern of the imprinted glue is formed in the current expansion layer 1024 .
  • the imprinting glue as a mask, the current spreading layer 1024 is etched to form pores in the current spreading layer 1024 .
  • the etched current expansion layer 1024 is surface treated to change the surface zeta potential, and the quantum dot material is spin-coated into the pores by electrostatic adsorption force.
  • Surface modification According to the zeta potential of the surface of the quantum dot material, the surface of the quantum dot material is generally negatively charged.
  • the current expansion layer 1024 is soaked in PEG or PSS solution to make its surface have a certain positive charge.
  • volatile solvents such as toluene or n-octane as the quantum dot material stock solution solvent, which can evaporate naturally at room temperature and try to avoid the agglomeration of quantum dot materials caused by the heating step.
  • the method for preparing a light-emitting device also includes forming a metal layer on the side of the color conversion layer facing away from the substrate in S605 after step S604.
  • a metal layer 105 is evaporated on the color conversion layer 103.
  • the material may be silver (Ag) and the thickness is about 100 nm.
  • the metal layer 105 is removed by wet etching using a silver etching solution.
  • the current expansion layer 104 can be etched using an electrochemical method, and the quantum dot material 1030 therein will be peeled off as the current expansion layer 104 is etched.
  • the second doped semiconductor layer 1022 and the quantum well layer 1023 are removed using conventional processes. .
  • the first doped semiconductor layer 1021 is first protected with photoresist, and then the overlapping platform is etched. Use acetone, ethanol and water for ultrasonic cleaning to remove excess photoresist.
  • the first connection electrode 107 adopts thermal evaporation or E-beam electron beam evaporation.
  • the electrode metal adopts Au or Ti/Al/Ni/Au alloy.
  • the evaporation metal and annealing temperature are selected to be lower than 300°C.
  • Plasma-enhanced chemical vapor deposition of silicon oxide is used to form the passivation layer 106.
  • the thickness of the passivation layer 106 is about 300 nanometers, which forms packaging protection for the overall device, and is etched to form patterns.
  • the first connection electrode 107 is thickened and the second connection electrode 108 is formed at the same time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)

Abstract

本公开提供一种发光器件及其制备方法、显示装置,属于显示技术领域,其可解决现有的发光器件发光效率较低的问题。本公开的发光器件包括:基底、位于基底上的发光二极管、及位于发光二极管背离基底一侧的色转换层;发光器件还包括:纳米金属颗粒;发光二极管背离基底的表面形成有多个凹槽;纳米金属颗粒填充于凹槽内。

Description

发光器件及其制备方法、显示装置 技术领域
本公开属于显示技术领域,具体涉及一种显示模组及显示装置。
背景技术
量子点(Quantum Dot,QD)作为新型的发光材料,具有光色纯度高、发光量子效率高、发光颜色可调、使用寿命长等优点,成为目前新型发光材料的研究热点。因此,以量子点材料作为发光层的量子点发光器件已经成为了新型显示器件研究的主要方向。
在量子点发光器件中,发光二极管发出的光线可以作为激发光,激发光光照射至色转换层中,色转换层可以将激发光转换为不同颜色的光线,以使得显示产品达到全彩显示的效果。然而,目前的量子点发光器件中的发光二极管的发光效率较低,并且其中色转换层的色转换效率较低,不能满足目前的显示产品的要求。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一,提供一种发光器件及其制备方法、显示装置。
第一方面,本公开实施例提供了一种发光器件,其中,所述发光器件包括:基底、位于所述基底上的发光二极管、及位于所述发光二极管背离所述基底一侧的色转换层;所述发光器件还包括:纳米金属颗粒;
所述发光二极管背离所述基底的表面形成有多个凹槽;
所述纳米金属颗粒填充于所述凹槽内。
可选地,所述发光器件还包括:金属层;
所述金属层位于所述色转换层背离所述基底的一侧。
可选地,所述发光二极管包括:相对设置的第一掺杂半导体层和第二掺杂半导体层、及位于所述第一掺杂半导体层和所述第二掺杂半导体层之间的量子阱层;
所述凹槽形成于所述第二掺杂半导体层背离所述基底的表面。
可选地,所述凹槽的深度小于所述第二掺杂半导体层的厚度。
可选地,所述发光二极管还包括:电流扩展层;
所述电流扩展层位于所述第二掺杂半导体层背离所述基底的一侧。
可选地,所述色转换层包括:透明导电材料层和量子点材料层;
所述透明导电材料层位于所述电流扩展层背离所述基底的一侧,且所述透明导电材料层背离所述基底的表面呈线条状或网格状;
所述量子点材料层位于所述透明导电层背离所述基底的一侧。
可选地,所述色转换层包括:透明导电材料与量子点材料的混合物。
可选地,所述透明导电材料包括:石墨烯、碳纳米管、纳米金属颗粒中的至少一种。
可选地,所述色转换层包括:量子点材料;
所述电流扩展层背离所述基底一侧的表面形成多个孔隙;
所述量子点材料填充于所述孔隙内。
可选地,所述多个孔隙的表面与所述量子点材料的表面的电荷电位相反。
可选地,所述电流扩展层的厚度为10纳米至100纳米。
可选地,所述孔隙的直径为10纳米至100纳米。
可选地,所述纳米金属颗粒与所述金属层的材料相同。
可选地,所述纳米金属颗粒的材料包括:银、金、铂、钯、铱中的至少一种。
可选地,所述纳米金属颗粒的直径小于或等于100纳米;
相邻的所述纳米金属颗粒之间的间距值大于或等于1微米。
可选地,所述第一掺杂半导体层具有搭接平台;所述发光器件还包括:覆盖所述搭接平台和所述金属层的钝化层、及位于所述钝化层背离所述基底一侧的第一连接电极和第二连接电极;
所述第一连接电极通过贯穿所述钝化层的过孔与所述搭接平台电连接;
所述第二连接电极通过贯穿所述钝化层的过孔与所述金属层电连接。
第二方面,本公开实施例提供了一种显示装置,其中,包括多个如上述提供的发光器件。
第三方面,本公开实施例提供了一种发光器件的制备方法,其中,所述发光器件的制备方法包括:
在基底上形成发光二极管;
在发光二极管背离所述基底的表面形成多个凹槽;
将纳米金属颗粒填充于多个所述凹槽内;
在所述发光二极管背离所述基底一侧形成色转换层。
可选地,在所述发光二极管背离所述基底一侧形成色转换层,之后还包括:
在所述色转换层背离所述基底的一侧形成金属层。
可选地,在基底上形成发光二极管,包括:
在所述基底上依次形成第一掺杂半导体层、量子阱层和第二掺杂半导体层。
可选地,所述将纳米金属颗粒填充于多个所述凹槽内,包括:
在所述第二掺杂半导体层背离所述基底一侧形成氧化硅层;
在所述氧化硅层背离所述基底一侧形成图案化的光刻胶层;
以所述光刻胶层为掩膜,对所述氧化硅层和所述第二掺杂半导体层进行 刻蚀,所述第二掺杂半导体层背离所述基底的表面形成多个凹槽;
在所述氧化硅层上形成纳米金属颗粒层,并对所述纳米金属颗粒层进行退火,形成纳米金属颗粒,使得所述纳米金属颗粒填充于多个所述凹槽;
利用酸溶液将所述氧化硅层剥离,使得多余的所述纳米金属颗粒随着所述氧化硅层的剥离而去除。
可选地,在所述基底上依次形成第一掺杂半导体层、量子阱层和第二掺杂半导体层,之后还包括:
在所述第二掺杂半导体层背离所述基底一侧形成电流扩展层。
可选地,在所述发光二极管背离所述基底一侧形成色转换层,包括:
在所述电流扩展层背离所述基底一侧旋涂形成透明导电层,所述透明导电层背离所述基底的表面呈线条状或网格状;
在所述透明导电层背离所述基底一侧旋涂形成量子点材料层。
可选地,在所述发光二极管背离所述基底一侧形成色转换层,包括:
将透明导电材料与量子点材料混合形成混合物,并在所述电流扩展层背离所述基底一侧旋涂形成色转换层。
可选地,将透明导电材料与量子点材料混合形成混合物,之后还包括:
对所述混合物进行超声处理,使得所述透明导电材料与所述量子点材料分散。
可选地,在所述第二掺杂半导体层背离所述基底一侧形成电流扩展层,之后还包括:
利用锌粉-乙醇溶液对所述电流扩展层进行还原腐蚀,并在所述电流扩展层背离所述基底一侧的表面形成多个孔隙。
可选地,在所述第二掺杂半导体层背离所述基底一侧形成电流扩展层,之后还包括:
利用纳米压印模板,对光刻胶进行压印,形成图案化的光刻胶层;
以所述光刻胶层为掩膜,对所述电流扩展层进行刻蚀,并在所述电流扩展层背离所述基底一侧的表面形成多个孔隙。
可选地,在所述发光二极管背离所述基底一侧形成色转换层,包括:
对电流扩展层背离所述基底一侧的表面进行处理,以改变其表面的电位;
对量子点材料溶液进行处理,使得所述量子点材料的电位与所述电流扩展层背离所述基底一侧的表面的电位相反;
将所述量子点溶液旋涂至所述电流扩展层背离所述基底一侧的表面,使得所述量子点材料填充于所述孔隙内。
附图说明
图1为本公开实施例提供的一种发光器件的结构示意图。
图2为本公开实施例提供的一种发光器件中的凹槽与纳米金属颗粒排布方式的示意图。
图3为本公开实施例提供的一种发光器件中的透明导电层表面的形貌图。
图4为本公开实施例提供的另一种发光器件的结构示意图。
图5为本公开实施例提供的又一种发光器件的结构示意图。
图6为本公开实施例提供的一种发光器件的制备方法的流程示意图。
图7a至图7y为本公开实施例提供的发光器件的制备方法中各个步骤对应的中间结构示意图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属 领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
第一方面,本公开实施例提供了一种发光器件,图1为本公开实施例提供的一种发光器件的结构示意图,如图1所示,发光器件包括:基底101、位于基底101上的发光二极管102、及位于发光二极管102背离基底101一侧的色转换层103;发光器件还包括:纳米金属颗粒104;发光二极管102背离基底101的表面形成有多个凹槽;纳米金属颗粒104填充于凹槽内。
基底101可以采用玻璃等刚性材料制成,可以提高基底101对其上的其他膜层的承载能力。当然,基底101还可以采用聚酰亚胺(polyimide,PI)等柔性材料制成,可以提高发光器件整体的抗弯折、抗拉伸性能,避免在弯折、拉伸、扭曲过程中产生的应力使得基底101发生断裂,造成断路不良。在实际应用中,可以根据实际需要,合理选择基底101的材料,以保证发光器件具有良好的性能。在基底101与发光二极管102之间一般还设置有缓冲层,其材料可以为氮化硅、氧化硅或氮氧化硅中的至少一种。
发光二极管102发出的光线可以作为激发光照射至色转换层103,并可以激发色转换层103中的材料发出光线并转换光线的颜色,使得不同的发光器件发出不同的颜色,在应用于显示装置时以实现多彩显示。具体地,发光二极管102发出光线颜色一般为蓝色,色转换层103在蓝色光线的照射下可 以发出红色光线或者绿色光线,其光线的颜色是由色转换层103的材料决定的,可以根据实际需要进行选择,在此将不再进行赘述。
发光二极管102背离基底101的表面形成有多个凹槽,多个凹槽呈周期性排布,相邻的凹槽之间设置有一定的距离,纳米金属颗粒104填充于凹槽内,纳米金属颗粒104与凹槽一样也呈周期性排布,凹槽与纳米金属颗粒104的具体排布方式可以如图2所示,例如,纳米金属颗粒104的直径可以为100纳米,凹槽的宽度可以为750纳米,相邻的凹槽之间的距离可以为250纳米,即凹槽的周期间距值为1微米,相应地,纳米金属颗粒104地周期间距值也为1微米。纳米金属颗粒104可以采用导电性良好的材料制成,例如银、金、铂、钯、铱中的至少一种,在本公开实施例及之后的描述中,将以银为例进行描述。
本公开实施例提供的发光器件中,发光二极管102发出的光线在照射至色转换层103的过程中,光线可以首先照射至凹槽中的纳米金属颗粒104上,纳米金属颗粒104在激发光的照射下,形成表面等离激元,其周围可以被激发出非常强的近场磁场,以及提供极高的光子态密度,可以反过来增强发光体的自发光辐射效率。
对于发光二极管102,纳米金属颗粒104所形成的表面等离激元可以提高发光二极管102的亮度以及发光效率。对于色转换层103,纳米金属颗粒104所形成的表面等离激元可以缩短色转换层103中材料的荧光寿命,增强其材料的辐射速率,从而提高色转换效率。同时,纳米金属颗粒104所形成的表面等离激元可以提高光线的散射率,以利于光线的取出,从而提高色转换层103的发光效率。
另外,纳米金属颗粒104填充于呈周期性排布的凹槽内,其可以保证凹槽内的纳米金属颗粒104所形成的表面等离激元的作用范围,同时避免相邻的凹槽内的纳米金属颗粒104所形成的表面等离激元之间相互作用,影响发 光器件的发光性能。
在一些实施例中,发光器件还包括:金属层105;金属层105位于色转换层103背离基底101的一侧。
金属层105可以采用导电性良好的材料制成,例如银、金、铂、钯、铱中的至少一种,优选地,金属层105与纳米金属颗粒104采用相同的材料制成,在本公开实施例及之后的描述中,将以银为例进行描述。
金属层105与周期性排布纳米金属颗粒104可以形成表面等离激元隙模式,在表面等离激元隙模式下,色转换层103中材料可以提升近10000倍,从而可以进一步大幅提升发光器件的发光效率。同时,金属层105可以覆盖于色转换层103上,以对色转换层103进行保护,避免外力对色转换层103造成损伤。
在一些实施例中,发光二极管102包括:相对设置的第一掺杂半导体层1021和第二掺杂半导体层1022、及位于第一掺杂半导体层1021和第二掺杂半导体层1022之间的量子阱层1023;凹槽形成于第二掺杂半导体层1022背离基底101的表面。
第一掺杂半导体层1021和第二掺杂半导体层1022采用不同类型的半导体材料制成,具体地,第一掺杂半导体层1021可以为N型掺杂半导体层,第二掺杂半导体层1022可以为P型掺杂半导体层,例如,第一掺杂半导体层1021的材料可以为N-GaN,第二掺杂半导体层1022的材料可以为P-GaN。第一掺杂半导体层1021和第二掺杂半导体层1022在电场的作用下,可以在量子阱层1023中形成光子,并将光子进行辐射,以实现发光的功能。容纳纳米金属颗粒104的凹槽形成于第二掺杂半导体层1022背离基底101的表面,这样以不必为纳米金属颗粒104单独设置一层膜层,以减小发光器件的膜层数量,从而可以降低发光器件的厚度。
在一些实施例中,如图1和图2所示,凹槽的深度小于第二掺杂半导体 层1022的厚度。
在实际应用中,凹槽的深度可以小于第二掺杂半导体层1022的厚度,这样在刻蚀凹槽过程中可以避免将第二掺杂半导体层1022刻穿,以保证第二掺杂半导体层1022与第一掺杂半导体层1021之间的正对面积,从而避免凹槽对于发光二极管102发光效率的影响。
在一些实施例中,如图1所示,发光二极管102还包括:电流扩展层1024;电流扩展层1024位于第二掺杂半导体层1022背离基底101的一侧。
电流扩展层1024可以起到导电及电流扩展的作用,具体地,电流扩展层1024的材料可以为氧化铟锡(ITO),其具有良好的导电性能,并且为透明结构,可以避免对量子阱层1023所产生的光线的遮挡。
在一些实施例中,如图1所示,色转换层103包括:透明导电材料层1031和量子点材料层1032;透明导电材料层1031位于电流扩展层1024背离基底101的一侧,且透明导电材料层1031背离基底101的表面呈线条状或网格状;量子点材料层1032位于透明导电层1031背离基底101的一侧。
色转换层103中的透明导电层1031和量子点材料层1032均至少为一层,二者交替设置,透明导电层1031背离基底101的表面呈线条状或网格状,其形貌图如图3所示,可见,透明导电层1031背离基底的表面凹凸不平,可以为量子点材料层1032中的量子点材料1030提供承载空间,使得量子点材料1030可以填充在所形成的线条状或网格状的空间内,避免量子点材料1030发生团聚而导致淬灭,从而可以避免影响色转换效率,提高发光器件的发光效率。
在一些实施例中,图4为本公开实施例提供的另一种发光器件的结构示意图,如图4所示,该发光器件中的色转换层103包括:透明导电材料与量子点材料1030的混合物。
图4所示的发光器件与图1所示的发光器件的不同之处在于,图4所示 的发光器件中色转换层103为单层结构,其中的材料为透明导电材料和量子点材料1030的混合物,由于透明导电材料混合于量子点材料1030之中,可以将量子点材料1030分散开来,避免量子点材料1030发生团聚而导致淬灭,从而可以避免影响色转换效率,提高发光器件的发光效率。同时,由于色转换层103为单层结构,在制备过程中仅需要提前将透明导电材料和量子点材料1030混合形成混合物,之后再旋涂形成色转换层103即可,避免多次旋涂,从而可以减少工艺步骤,节约制备成本,并且,单层结构色转换层103可以的厚度较小,可以减小发光器件的厚度,有利于发光器件及显示装置的轻薄化。
在一些实施例中,透明导电材料包括:石墨烯、碳纳米管、纳米金属颗粒中的至少一种。
透明导电材料具体可以为石墨烯、碳纳米管、纳米金属颗粒中的至少一种,其不近具有良好的导电性能,同时可以避免量子点材料1030发生团聚而导致淬灭,从而可以避免影响色转换效率,提高发光器件的发光效率。由于石墨烯材料在成膜时制备工艺较为复杂,透明导电材料优选碳纳米管和纳米银颗粒。
在一些实施例中,图5为本公开实施例提供的又一种发光器件的结构示意图,如图5所示,色转换层103包括:量子点材料1030;电流扩展层1024背离基底101一侧的表面形成多个孔隙;量子点材料1030填充于孔隙内。
量子点材料1030可以在激发光的照射下,将光线转换为不同颜色的光线,具体地,量子点材料1030可以为钙钛矿等材料。量子点材料1030可以填充于电流扩展层1024背离基底101一侧的表面的多个孔隙内,这样以不必为量子点材料1030单独设置一层膜层,以减小发光器件的膜层数量,从而可以降低发光器件的厚度。
在实际应用中,电流扩展层1024的厚度为10纳米至100纳米,其可以 保证纳米金属颗粒104与金属层105之间的距离维持在10纳米至100纳米,这样既可以保证纳米金属颗粒104与金属层105之间可以形成表面等离激元隙模式,同时还可以避免纳米金属颗粒104与色转换层103中量子点材料1030之间的距离过近造成量子点荧光淬灭,以保证色转换层103的色转换效率及发光效率。
在一些实施例中,多个孔隙的表面与量子点材料1030的表面的电荷电位相反。
量子点材料表面一般为负电荷,采用聚乙二醇(Polyethylene glycol,PEG)或聚苯乙烯磺酸钠(PSS)溶液对电流扩展层1024进行浸泡处理,使得其中孔隙的表面带一定的正电荷,这样可以利用静电吸附力将量子点材料1030填充进孔隙,以保证所形成的色转换层103的厚度,提高色转换层103的色转换效率及发光效率。
在一些实施例中,孔隙的直径为10纳米至100纳米。
孔隙的直径可以为10纳米至100纳米,量子点材料1030可以填充于纳米级别的孔隙内,保证量子点材料1030团聚在纳米级别,减小量子点材料1030因团聚导致的猝灭。同时,孔隙的深度一般小于电流扩展层1024的厚度,以避免将电流扩展层1024刻穿,影响发光器件的发光性能。
在一些实施例中,纳米金属颗粒104与金属层105的材料相同。
纳米金属颗粒104与金属层105可以均导电性能良好的材料制成,二者的材料可以相同。一方面可以利于表面等离激元的产生,另一方面可以降低制备难度,节约制备成本。
在一些实施例中,如图1、图4和图5所示,第一掺杂半导体层1021具有搭接平台1021a;发光器件还包括:覆盖搭接平台1021a和金属层105的钝化层106、及位于钝化层106背离基底101一侧的第一连接电极107和第二连接电极108;第一连接电极107通过贯穿钝化层106的过孔与搭接平 台1021a电连接;第二连接电极108通过贯穿钝化层106的过孔与金属层105电连接。
第一电极107与第二连接电极108可以输入不同的电压信号,在电压信号的驱动下,第一掺杂半导体层1021与第二掺杂半导体层1022之间可以形成电场,使得量子阱层1023中产生光子,并将光子进行辐射,以实现发光的功能。
第二方面,本公开实施例提供了一种显示装置,该显示装置包括多个如上述任一实施例提供的发光器件,该显示装置具体可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件,其实现原理及有益效果与上述的发光器件的实现原理及有益效果相同,在此不再进行赘述。
第三方面,本公开实施例提供了一种发光器件的制备方法,图6为本公开实施例提供的一种发光器件的制备方法的流程示意图,图7a至图7y为本公开实施例提供的发光器件的制备方法中各个步骤对应的中间结构示意图,下面将结合附图,对本公开实施例提供的发光器件的制备方法进行进一步详细描述。
如图6所示,本公开实施例提供的发光器件的制备方法如下步骤S601至步骤S603。
S601,在基底上形成发光二极管。
具体地,如图7a所示,在基底101上形成发光二极管102的步骤可以具体为在基底101上形成缓冲层,之后在缓冲层上依次形成第一掺杂半导体层021、量子阱层1023和第二掺杂半导体层1022。在实际应用中,缓冲层仅起到缓冲的作用,其对发光器件整体的发光效果并无影响,因此可以根据需要来确定是否来设置缓冲层。
S602,在发光二极管背离基底的表面形成多个凹槽。
具体地,如图7b至图7d所示,首先,在发光二极管102背离基底101的表面,即第二半导体掺杂层1022的表面的外延片上蒸镀一层120纳米厚的氧化硅(SiO2)层。对于凹槽模板,此时,只需旋涂单层纳米压印胶于氧化硅(SiO2)层上即可。之后,利用圆孔形纳米压印模板,使用两步法经过IPS对旋涂好压印胶的衬底进行压印,使得圆孔图形转移至压印胶上。然后,采用氧等离子体去除残胶,即在发光二极管102外延片上形成了压印胶的孔洞图形。以胶为掩膜,使用电感耦合等离子体(ICP)在四氟化碳(CF4)或三氟甲烷(CHF3)的气氛下进行氧化硅(SiO2)层刻蚀,并刻穿至第二半导体掺杂层1022(P型GaN)。然后在氯气(Cl2)/三氯化硼(BCl3)的气氛下进行第二半导体掺杂层1022刻蚀,并根据所需要的刻蚀深度来决定刻蚀时间。此时,即可获得发光二极管102外延片上以氧化硅(SiO2)层为掩膜的凹槽结构。
S603,将纳米金属颗粒填充于多个凹槽内。
具体地,如图7e至图7f所示,在凹槽结构上蒸镀一层金属层,金属层材料可以为银(Ag),其中银(Ag)的沉积厚度为30纳米,然后于600℃退火炉中退火10分钟。在凹槽以及氧化硅(SiO2)层掩膜层上均形成了纳米金属颗粒104。将该样品浸泡于氢氟酸(HF)溶液中,以正面(第二掺杂半导体层1022)朝下的方式超声清洗。在这个过程中,落在氧化硅(SiO2)层掩膜上的纳米金属颗粒104随着氧化硅(SiO2)层在氢氟酸(HF)溶液中的溶解而从该外延片上落下来。此时,就在凹槽中形成了所需要的阵列纳米金属颗粒104。
S604,在发光二极管背离基底一侧形成色转换层。
在第一种可能的实现方式中,如图7g至图7i所示,可以在第二掺杂半导体层1022上形成电流扩展层1024,其材料具体可以为氧化铟锡(ITO)。在电流扩展层1024上旋涂透明导电材料,透明导电材料具体可以为石墨烯、 碳纳米管、纳米银颗粒中的至少一种,形成一层透明导电材料层1031。由于透明导电材料的特性,所形成的透明导电材料层1031背离基底101的表面为凹凸不平的,一般呈现线条状或网格状。之后在透明材料导电层1031上旋涂量子点材料1030,量子点材料1030具体可以为钙钛矿材料,形成量子点材料层1032。透明导电层1031背离基底101的表面呈线条状或网格状,可以为量子点材料层1032中的量子点材料1030提供承载空间,使得量子点材料1030可以填充在所形成的线条状或网格状的空间内,避免量子点材料1030发生团聚而导致淬灭,从而可以避免影响色转换效率,提高发光器件的发光效率。在实际应用中,由于凹槽的存在,电流扩展层1024背离基底101的表面也可以为凹凸不平的,有利于增加发光二极管的出光,增加对量子点材料1030激发效果,从而可以进一步提高发光效率。
在第二种可能的实现方式中,如图7g和图7j所示,可以在第二掺杂半导体层1022上形成电流扩展层1024,其材料具体可以为氧化铟锡(ITO)。将透明导电材料与量子点材料1030混合形成二者的混合物,之后将二者的混合物旋涂形成色转换层103。由于透明导电材料混合于量子点材料1030之中,可以将量子点材料1030分散开来,避免量子点材料1030发生团聚而导致淬灭,从而可以避免影响色转换效率,提高发光器件的发光效率。同时,由于色转换层103为单层结构,在制备过程中仅需要提前将透明导电材料和量子点材料1030混合形成混合物,之后再旋涂形成色转换层103即可,避免多次旋涂,从而可以减少工艺步骤,节约制备成本。在第二种可能的实现方式中,在形成由混合物构成的色转换层103之前,可以对混合物进行超声处理,使得透明导电材料与量子点材料1030分散,可以进一步避免量子点材料1030发生团聚而导致淬灭,从而可以避免影响色转换效率,提高发光器件的发光效率。
在第三种可能的实现方式中,如图7g、图7k至图7m所示,可以在第 二掺杂半导体层1022上形成电流扩展层1024,其材料具体可以为氧化铟锡(ITO)。在电流扩展层1024上旋涂锌粉-乙醇溶液,纳米孔的直径与锌粉浓度密切相关,要形成100纳米左右的孔隙,锌粉浓度约在60mg/ml。取30ul/cm 2的用量涂到电流扩展层1024上,旋涂速度500-6000rad/min旋涂30s(旋涂速度会影响锌粉的铺展,进一步影响孔隙直径)。将导电玻璃浸入酸-乙醇混合液中对电流扩展层1024进行还原腐蚀反应。盐酸-乙醇溶液的浓度影响反应速率,盐酸浓度0.01-1mol/L之间,乙醇与盐酸中水的体积比在1-8之间,小于1时,反应过快不可控,大于8,反应速度太慢。腐蚀反应一定的时间,反应后用去离子水冲洗3次,50℃下烘干,以形成电流扩展层1024中的孔隙。
当然还可以利用其他方式形成上述的孔隙,如图7g、图7n至图7q所示,可以在第二掺杂半导体层1022上形成电流扩展层1024,其材料具体可以为氧化铟锡(ITO)。旋涂单层纳米压印胶于电流扩展层1024上。利用圆孔形AAO压印模板(周期100纳米),使用两步法经过IPS对旋涂好压印胶的衬底进行压印,使得圆孔图形转移至压印胶上。然后采用氧等离子体去除残胶,即在电流扩展层1024形成了压印胶的孔隙图形。以压印胶为掩膜,对电流扩展层1024进行刻蚀,以形成电流扩展层1024中的孔隙。
如图7r所示,对刻蚀后的电流扩展层1024进行表面处理,改变表面zeta电位,靠静电吸附力将量子点材料旋涂进孔隙。表面修饰根据量子点材料表面的zeta电位,量子点材料表面一般为负电荷,采用PEG或PSS溶液对电流扩展层1024进行浸泡处理,使得其表面带一定的正电荷。为避免QD团聚,选用甲苯或正辛烷等易挥发溶剂作为量子点材料原液溶剂,可在室温下自然挥发,尽量避免加热步骤造成的量子点材料团聚。
如图6所示,发光器件的制备方法还包括在步骤S604之后的S605,在色转换层背离基底的一侧形成金属层。
具体地,如图7s所示,在色转换层103上蒸镀金属层105,其材料可以为银(Ag),厚度约100nm。
在一些实施例中,在形成发光器件后还需要进行第一连接电极和第二连接电极的制备,具体如图7t至图7y所示,金属层105采用银刻蚀液进行湿法刻蚀去除,电流扩展层104可以采用电化学方法进行刻蚀,其中的量子点材料1030会随着电流扩展层104刻蚀而被剥离,后续第二掺杂半导体层1022和量子阱层1023采用常规工艺去除。对于第一掺杂半导体层1021,先用光刻胶保护,再进行搭接平台刻蚀。采用丙酮,乙醇和水超声清洗,将多余的光刻胶去除。第一连接电极107采用热蒸镀或E-beam电子束蒸镀,电极金属采用Au或者Ti/Al/Ni/Au合金,选取蒸镀金属及退火温度低于300℃。利用等离子体增强化学气相沉积氧化硅形成钝化层106,钝化层106的厚度约300纳米,对整体器件形成封装保护,刻蚀形成图形化。对第一连接电极107进行加厚,同时形成第二连接电极108。电极采用E beam电子束蒸镀,金属为Ti/Al/Ni/Au厚度为30/175/35/1000纳米或者Cr/Pt/Au=20/20/1000纳米,采用250℃退火10分钟。之后,切割成所需芯片大小。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (28)

  1. 一种发光器件,其中,所述发光器件包括:基底、位于所述基底上的发光二极管、及位于所述发光二极管背离所述基底一侧的色转换层;所述发光器件还包括:纳米金属颗粒;
    所述发光二极管背离所述基底的表面形成有多个凹槽;
    所述纳米金属颗粒填充于所述凹槽内。
  2. 根据权利要求1所述的发光器件,其中,所述发光器件还包括:金属层;
    所述金属层位于所述色转换层背离所述基底的一侧。
  3. 根据权利要求1所述的发光器件,其中,所述发光二极管包括:相对设置的第一掺杂半导体层和第二掺杂半导体层、及位于所述第一掺杂半导体层和所述第二掺杂半导体层之间的量子阱层;
    所述凹槽形成于所述第二掺杂半导体层背离所述基底的表面。
  4. 根据权利要求3所述的发光器件,其中,所述凹槽的深度小于所述第二掺杂半导体层的厚度。
  5. 根据权利要求3所述的发光器件,其中,所述发光二极管还包括:电流扩展层;
    所述电流扩展层位于所述第二掺杂半导体层背离所述基底的一侧。
  6. 根据权利要求5所述的发光器件,其中,所述色转换层包括:透明导电材料层和量子点材料层;
    所述透明导电材料层位于所述电流扩展层背离所述基底的一侧,且所述透明导电材料层背离所述基底的表面呈线条状或网格状;
    所述量子点材料层位于所述透明导电层背离所述基底的一侧。
  7. 根据权利要求5所述的发光器件,其中,所述色转换层包括:透明导电材料与量子点材料的混合物。
  8. 根据权利要求6或7所述的发光器件,其中,所述透明导电材料包 括:石墨烯、碳纳米管、纳米金属颗粒中的至少一种。
  9. 根据权利要求5所述的发光器件,其中,所述色转换层包括:量子点材料;
    所述电流扩展层背离所述基底一侧的表面形成多个孔隙;
    所述量子点材料填充于所述孔隙内。
  10. 根据权利要求9所述的发光器件,其中,所述多个孔隙的表面与所述量子点材料的表面的电荷电位相反。
  11. 根据权利要求9所述的发光器件,其中,所述电流扩展层的厚度为10纳米至100纳米。
  12. 根据权利要求11所述的发光器件,其中,所述孔隙的直径为10纳米至100纳米。
  13. 根据权利要求2所述的发光器件,其中,所述纳米金属颗粒与所述金属层的材料相同。
  14. 根据权利要求13所述的发光器件,其中,所述纳米金属颗粒的材料包括:银、金、铂、钯、铱中的至少一种。
  15. 根据权利要求2所述的发光器件,其中,所述纳米金属颗粒的直径小于或等于100纳米;
    相邻的所述纳米金属颗粒之间的间距值大于或等于1微米。
  16. 根据权利要求3所述发光器件,其中,所述第一掺杂半导体层具有搭接平台;所述发光器件还包括:覆盖所述搭接平台和所述金属层的钝化层、及位于所述钝化层背离所述基底一侧的第一连接电极和第二连接电极;
    所述第一连接电极通过贯穿所述钝化层的过孔与所述搭接平台电连接;
    所述第二连接电极通过贯穿所述钝化层的过孔与所述金属层电连接。
  17. 一种显示装置,其中,包括多个如权利要求1至16任一项所述的发光器件。
  18. 一种发光器件的制备方法,其中,所述发光器件的制备方法包括:
    在基底上形成发光二极管;
    在发光二极管背离所述基底的表面形成多个凹槽;
    将纳米金属颗粒填充于多个所述凹槽内;
    在所述发光二极管背离所述基底一侧形成色转换层。
  19. 根据权利要求18所述的发光器件的制备方法,其中,在所述发光二极管背离所述基底一侧形成色转换层,之后还包括:
    在所述色转换层背离所述基底的一侧形成金属层。
  20. 根据权利要求18所述的发光器件的制备方法,其中,在基底上形成发光二极管,包括:
    在所述基底上依次形成第一掺杂半导体层、量子阱层和第二掺杂半导体层。
  21. 根据权利要求20所述的发光器件的制备方法,其中,所述将纳米金属颗粒填充于多个所述凹槽内,包括:
    在所述第二掺杂半导体层背离所述基底一侧形成氧化硅层;
    在所述氧化硅层背离所述基底一侧形成图案化的光刻胶层;
    以所述光刻胶层为掩膜,对所述氧化硅层和所述第二掺杂半导体层进行刻蚀,所述第二掺杂半导体层背离所述基底的表面形成多个凹槽;
    在所述氧化硅层上形成纳米金属颗粒层,并对所述纳米金属颗粒层进行退火,形成纳米金属颗粒,使得所述纳米金属颗粒填充于多个所述凹槽;
    利用酸溶液将所述氧化硅层剥离,使得多余的所述纳米金属颗粒随着所述氧化硅层的剥离而去除。
  22. 根据权利要求20所述的发光器件的制备方法,其中,在所述基底上依次形成第一掺杂半导体层、量子阱层和第二掺杂半导体层,之后还包括:
    在所述第二掺杂半导体层背离所述基底一侧形成电流扩展层。
  23. 根据权利要求22所述的发光器件的制备方法,其中,在所述发光二极管背离所述基底一侧形成色转换层,包括:
    在所述电流扩展层背离所述基底一侧旋涂形成透明导电层,所述透明导电层背离所述基底的表面呈线条状或网格状;
    在所述透明导电层背离所述基底一侧旋涂形成量子点材料层。
  24. 根据权利要求22所述的发光器件的制备方法,其中,在所述发光二极管背离所述基底一侧形成色转换层,包括:
    将透明导电材料与量子点材料混合形成混合物,并在所述电流扩展层背离所述基底一侧旋涂形成色转换层。
  25. 根据权利要求24所述的发光器件的制备方法,其中,将透明导电材料与量子点材料混合形成混合物,之后还包括:
    对所述混合物进行超声处理,使得所述透明导电材料与所述量子点材料分散。
  26. 根据权利要求22所述的发光器件的制备方法,其中,在所述第二掺杂半导体层背离所述基底一侧形成电流扩展层,之后还包括:
    利用锌粉-乙醇溶液对所述电流扩展层进行还原腐蚀,并在所述电流扩展层背离所述基底一侧的表面形成多个孔隙。
  27. 根据权利要求22所述的发光器件的制备方法,其中,在所述第二掺杂半导体层背离所述基底一侧形成电流扩展层,之后还包括:
    利用纳米压印模板,对光刻胶进行压印,形成图案化的光刻胶层;
    以所述光刻胶层为掩膜,对所述电流扩展层进行刻蚀,并在所述电流扩展层背离所述基底一侧的表面形成多个孔隙。
  28. 根据权利要求26或27所述的发光器件的制备方法,其中,在所述发光二极管背离所述基底一侧形成色转换层,包括:
    对电流扩展层背离所述基底一侧的表面进行处理,以改变其表面的电位;
    对量子点材料溶液进行处理,使得所述量子点材料的电位与所述电流扩展层背离所述基底一侧的表面的电位相反;
    将所述量子点溶液旋涂至所述电流扩展层背离所述基底一侧的表面,使得所述量子点材料填充于所述孔隙内。
PCT/CN2022/115410 2022-05-26 2022-08-29 发光器件及其制备方法、显示装置 WO2023226222A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280002901.7A CN117461150A (zh) 2022-05-26 2022-08-29 发光器件及其制备方法、显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210585548.1A CN115000264A (zh) 2022-05-26 2022-05-26 发光器件及其制备方法、显示装置
CN202210585548.1 2022-05-26

Publications (1)

Publication Number Publication Date
WO2023226222A1 true WO2023226222A1 (zh) 2023-11-30

Family

ID=83028896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115410 WO2023226222A1 (zh) 2022-05-26 2022-08-29 发光器件及其制备方法、显示装置

Country Status (2)

Country Link
CN (2) CN115000264A (zh)
WO (1) WO2023226222A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120153254A1 (en) * 2010-12-17 2012-06-21 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Inverted Light Emitting Diode Having Plasmonically Enhanced Emission
CN103022288A (zh) * 2011-09-27 2013-04-03 比亚迪股份有限公司 一种发光二极管及其制造方法
CN104051587A (zh) * 2014-06-19 2014-09-17 中国科学院半导体研究所 表面等离激元增强GaN基纳米孔LED的制备方法
CN104201258A (zh) * 2014-08-22 2014-12-10 浙江大学城市学院 基于等离子体高调制带宽的可见光通信发光二极管及其制备方法
CN105405938A (zh) * 2015-12-29 2016-03-16 中国科学院半导体研究所 可见光通信用单芯片白光led及其制备方法
CN106449902A (zh) * 2016-09-13 2017-02-22 广东技术师范学院 在发光二极管芯片的量子阱附近制备纳米金属结构的方法
CN110828624A (zh) * 2019-12-13 2020-02-21 广东技术师范大学 一种具有局域等离子体增强效应的led的制备方法
CN114078897A (zh) * 2020-08-19 2022-02-22 京东方科技集团股份有限公司 发光器件及其制备方法、显示面板、背光模组和显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120153254A1 (en) * 2010-12-17 2012-06-21 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Inverted Light Emitting Diode Having Plasmonically Enhanced Emission
CN103022288A (zh) * 2011-09-27 2013-04-03 比亚迪股份有限公司 一种发光二极管及其制造方法
CN104051587A (zh) * 2014-06-19 2014-09-17 中国科学院半导体研究所 表面等离激元增强GaN基纳米孔LED的制备方法
CN104201258A (zh) * 2014-08-22 2014-12-10 浙江大学城市学院 基于等离子体高调制带宽的可见光通信发光二极管及其制备方法
CN105405938A (zh) * 2015-12-29 2016-03-16 中国科学院半导体研究所 可见光通信用单芯片白光led及其制备方法
CN106449902A (zh) * 2016-09-13 2017-02-22 广东技术师范学院 在发光二极管芯片的量子阱附近制备纳米金属结构的方法
CN110828624A (zh) * 2019-12-13 2020-02-21 广东技术师范大学 一种具有局域等离子体增强效应的led的制备方法
CN114078897A (zh) * 2020-08-19 2022-02-22 京东方科技集团股份有限公司 发光器件及其制备方法、显示面板、背光模组和显示装置

Also Published As

Publication number Publication date
CN117461150A (zh) 2024-01-26
CN115000264A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
CN100568555C (zh) 粗化电极用于高亮度正装led芯片和垂直led芯片
US7588955B2 (en) Method for promoting light emission efficiency of LED using nanorods structure
TW201418003A (zh) 金屬系粒子集合體
Fan et al. Recent developments of quantum dot based micro-LED based on non-radiative energy transfer mechanism
US11730005B2 (en) Nanoscale light emitting diode, and methods of making same
CN103996767A (zh) 表面等离激元增强型硅纳米线电致发光器件及其制作方法
CN106409994A (zh) 一种AlGaInP基发光二极管芯片及其制作方法
Gui et al. Nanoscale Ni/Au wire grids as transparent conductive electrodes in ultraviolet light-emitting diodes by laser direct writing
Park et al. Enhancement of photo-and electro-luminescence of GaN-based LED structure grown on a nanometer-scaled patterned sapphire substrate
US9484553B2 (en) Organic light-emitting diode device and manufacturing method thereof
Uthirakumar et al. Nanoscale ITO/ZnO layer-texturing for high-efficiency InGaN/GaN light emitting diodes
CN106784232A (zh) 一种利用周期性散射结构提高led芯片出光效率的方法
Chien et al. Ultrathin, transparent, flexible, and dual-side white light-responsive two-dimensional molybdenum disulfide quantum disk light-emitting diodes
CN110808315A (zh) 一种增加GaN Micro-LED颜色转换效率的方法
WO2012091325A2 (ko) 나노 구조체를 이용한 발광다이오드 제조 방법과 이에 의해 제조된 발광다이오드
Huang et al. Enhancement of the light output of GaN-based light-emitting diodes using surface-textured indium-tin-oxide transparent ohmic contacts
CN113451881B (zh) 栅状电极增强表面等离激元激光器及其制备方法
Yang et al. Formation of nanorod InGaN/GaN multiple quantum wells using nickel nano-masks and dry etching for InGaN-based light-emitting diodes
WO2023226222A1 (zh) 发光器件及其制备方法、显示装置
Zhang et al. Enhancement in the light output power of GaN-based light-emitting diodes with nanotextured indium tin oxide layer using self-assembled cesium chloride nanospheres
CN108461586B (zh) 一种基于NiO纳米点反射镜的垂直结构LED芯片及其制备方法
Cho et al. Light extraction efficiency improvement in GaN-based blue light emitting diode with two-dimensional nano-cavity structure
TW201251121A (en) Light-emitting diode structure and method for manufacturing the same
Wu et al. Light extraction improvement of InGaN light-emitting diodes with large-area highly ordered ITO nanobowls photonic crystal via self-assembled nanosphere lithography
Byeon et al. Enhancement of the photon extraction of green and blue LEDs by patterning the indium tin oxide top layer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002901.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943411

Country of ref document: EP

Kind code of ref document: A1