TW201251121A - Light-emitting diode structure and method for manufacturing the same - Google Patents

Light-emitting diode structure and method for manufacturing the same Download PDF

Info

Publication number
TW201251121A
TW201251121A TW100120206A TW100120206A TW201251121A TW 201251121 A TW201251121 A TW 201251121A TW 100120206 A TW100120206 A TW 100120206A TW 100120206 A TW100120206 A TW 100120206A TW 201251121 A TW201251121 A TW 201251121A
Authority
TW
Taiwan
Prior art keywords
layer
emitting diode
metal
semiconductor layer
light
Prior art date
Application number
TW100120206A
Other languages
Chinese (zh)
Inventor
Chang-Hsin Chu
Ming-Ji Tsai
Wen-Hung Chuang
Original Assignee
Chi Mei Lighting Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chi Mei Lighting Tech Corp filed Critical Chi Mei Lighting Tech Corp
Priority to TW100120206A priority Critical patent/TW201251121A/en
Priority to CN2011101903469A priority patent/CN102820390A/en
Publication of TW201251121A publication Critical patent/TW201251121A/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A light-emitting diode structure and a method for manufacturing the same are described. The light-emitting diode structure includes a substrate, an epitaxial structure, a metal resonance structure layer, a first electrode and a second electrode. The epitaxial structure includes a first conductivity type semiconductor layer, an active layer and a second conductivity type semiconductor layer stacked on the substrate in sequence. The epitaxial structure includes a mesa located on a first portion of the first conductivity type semiconductor layer. The first conductivity type semiconductor layer and the second conductivity type semiconductor layer are of different conductivity types. The metal resonance structure layer is at least disposed a portion of a sidewall of the mesa. The first electrode is disposed on a second portion of the first conductivity type semiconductor layer. The second electrode is disposed on the second conductivity type semiconductor layer.

Description

201251121 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種發光結構,且特別是有關於一種 發光二極體(LED)結構及其製造方法。 【先前技術】 請參照第1圖,其係繪示一種傳統水平導通型發光二 極體結構之剖面圖。此水平導通型發光二極體結構1〇〇包 含基板102、磊晶結構110、電流擴散層112、η型電極114、 以及ρ型電極116。其中,磊晶結構110包含依序堆叠在基 板102上之η型半導體層104、主動層1〇6與?型$導體 層108。電流擴散層112設於ρ型半導體層1〇8上而 型電極116則設於電流擴散層112上。η型電極Π4設於η 型半導體層104之暴露部分上。 X ' 11 目,的水平導通型發光二極體結構的發光效率主要係 由内部篁子效率與外部量子效率所控制。内部量子效率主 要係由例如磊晶材料等磊晶參數所決定。而外部量子效率 則受ρ艮於半導體材料,例如氮化銦|s^nA1GaN)系列半導 體材料的高折射率,造成全反射而使得光取出率不佳, 而導致外部量子效率差。 【發明内容】 因此,本發明之一態樣就是在提供一種發光二極體結 構及其製造方法,其在Μ結構之平台側壁上設置金屬^ 振結構層。藉由此金屬共振結構層在接收主動層發出之光 201251121 子所傳遞之熱量後可產生電磁場的效果,可反向激發主動 層,而使主動層發出更多的光,進而可提高發光二極體結 構之發光效率。 ° 本發明之另一態樣是在提供一種發光二極體結構及其 製造方法,其共振金屬結構層鄰設於主動層之外侧面,因 此共振金屬結構層所產生之局部電磁場可有效激發主 層。 ,、本發明之又一態樣是在提供一種發光二極體結構及其 製4方法,由於共振金屬結構層係設置在平台之側壁上, 因此可避免共振金屬結構層遮住發光二極體結構之正向出 光,而可提高發光二極體結構之光取出率。 生本發明之再一態樣是在提供一種發光二極體結構及其 =法,其共振金屬結構層可由數個奈米金屬粒子所構 成,這樣的共振金屬結構不僅可降低吸光率,且這些奈米 子更可幫助光的散射’因此有利於發光二極 之側光取出。 屮狢!^據本發明之上述目的’提出-種發光二極體結構。 結構#構包含—基板、—遙晶結構一金屬共振 二二一電極以及-第二電極。磊晶結構包含依序 電性半導體層、一主動層與-第二 ΐ:半i體ΐ:: 分上:前述之第-電性半導體層與第二 平Α之—^ 性^同。金屬共振結構層至少位於前述 層:第二部分一電極設於第一電性半導體 第一電極设於第二電性半導體層上。 201251121 依據本發明之一實施例,上述之發光二極體結構更包 含一電流擴散層介於第二電性半導體層與第二電極之間。 依據本發明之另一實施例,上述之發光二極體結構更 包包含一絕緣層介於平台之側壁與金屬共振結構層之間, 以電性隔離金屬共振結構層與平台。 依據本發明之又一實施例,上述之金屬共振結構層係 一奈米金屬連續層。 依據本發明之再一實施例,上述之金屬共振結構層包 含複數個奈米金屬粒子散佈在平台之侧壁。 依據本發明之再一實施例,上述之金屬共振結構層之 材料包含銀、金、銘、鈦、或上述金屬之組合。 依據本發明之再一實施例,上述之金屬共振結構層至 少位於主動層之外側面上。 根據本發明之上述目的,另提出一種發光二極體結構 之製造方法,其包含下列步驟。形成一磊晶結構於一基板 上。其中,此磊晶結構包含依序堆疊在基板上之一第一電 性半導體層、一主動層與一第二電性半導體層。而且,此 磊晶結構包含一平台位於第一電性半導體層之第一部分 上。第一電性半導體層與第二電性半導體層之電性不同。 形成一第一電極與一第二電極分別位於第一電性半導體層 之第二部分與第二電性半導體層上。形成一金屬共振結構 層至少位於平台之側壁的一部分上。 依據本發明之一實施例,於形成磊晶結構之步驟和形 成第一電極與該第二電極之步驟之間,上述發光二極體結 構之製造方法更包含形成一電流擴散層於第二電性半導體 201251121 . 層上。 _ 依據本發明之另一實施例,於形成第一電極與第二電 極之步驟和形成金屬共振結構層之步驟之間,上述發光二 極體結構之製造方法更包含形成一絕緣層覆蓋在平台之側 壁上。 σ 依據本發明之又一實施例,上述之金屬共振结 含複數個奈米金屬粒子散佈在平台之側壁。在一實施例 中,上述形成金屬共振結構層之步驟包含:形成一金屬薄 膜於平台之側壁上;以及對金屬薄膜進行一回火步驟,以 使金屬薄膜轉變成奈米金屬粒子。 【實施方式】 凊參照第2圖,其係緣示另一種傳統水平導通型發光 二極體結構之剖面圖。水平導通型發光二極體結構2〇〇主 要包含基板202、遙晶結構210、共振金屬層212、第一電 性電極214、以及第二電性電極216。其中,第一電性與第 二電性為不同電性。在發光二極體結構200中,磊晶結構 210包含依序堆疊在基板202上之第一電性半導體層204、 主動層206與第二電性半導體層208。共振金屬層212設 於第二電性半導體層208上。第二電性電極216設於第二 電性半導體層208上方之共振金屬層212上。第一電性電 極214設於第一電性半導體層204之暴露部分上。 在發光二極體結構200中,主動層206發出之光子可 . 將其能里傳遞至第二電性半導體層208上之共振金屬層 212。共振金屬層212吸收光子所傳遞之能量後,會以光子 201251121 模態或表面電漿子(surface plasmon)模態呈現,並產生電磁 場。共振金屬層212所產生之電磁場反過來激發主動層 206,如此可使主動層206發出更多的光子,進而可提升發 光二極體結構200之發光效率。 然而’本案發明人發現設於第二電性半導體層2〇8上 之共振金屬層212會有遮光效果,而造成發光二極體結構 200之正向出光減少,進而導致發光二極體結構2〇〇之光 取出效率下降。此外,發明人更發現在發光二極體結構2〇〇 中,由於共振金屬層212係設於第二電性半導體層2〇8上, 共振金屬層212距主動層206仍有一段距離,因此共振金 屬層212所產生之電磁場對主動層2〇6之激發效果有限。 有鑑於此,本案發明人提出一種發光二極體結構及其 製造方法,不僅可避免影響發光二極體結構的正向出光,' 並可更有效地提兩主動層之發光效率。 請參照第3圖,其係繪示依照本發明之一實施方式的 一種發光二極體結構的剖面圖。在本實施方式中,發光二 極體結構300a為一水平導通型發光二極體結構。發光二極 體結構300a可例如包含基板3〇2、磊晶結構31〇、金屬共 振結構層314a、第一電極318與第二電極32〇。基板搬 可用以供磊晶結構310成長於其上。在一些例子中,基板 302之材料可例如包含藍寶石、碳化邦ic)、氮化錄(⑽) 或石夕(Si)。基板302之表面可選擇性地包含規則狀結構或不 規則狀結構,以幫助光散射,進而可提高光取出率。 在實知例中’蠢晶結構31〇可包含依序堆疊在基板 302上之第一電性半導體層304、主動層3〇6與第二電性半 201251121 導體層308。在本發明中,第一電性與第二電性為不同之 電性。例如,第一電性與第二電性之其中一者為n型,另 一者則為p型。在本示範實施例中,第一電性為n型,第 二電性為ρ型。在一些例子中,磊晶結構31〇之材料可例 如包含氮化鎵系列材料,例如氮化鎵、氮化鋁鎵、氮化銦 鎵及氮化銦鋁鎵等材料。 蟲晶結構310包含平台(mesa)326。如第3圖所示,平 口 326可由第一電性半導體層308、主動層306與部分之 第一電性半導體層304所構成。因此,平台326位於第一 電性半導體層304之部分322上,而第一電性半導體層3〇4 之另一部分324則遭暴露出。 金屬共振結構層314a至少位於平台326之側壁328的 一部分上。在一實施例中,金屬共振結構層314a較佳係至 少位於主動層306之外側面上。在第3圖所示之實施例中, 金屬共振結構層314a延伸在平台326之整個側壁328上, 金屬共振結構層314a亦即延伸在平台326之第一電性半導 體層304、主動層306與第二電性半導體層期之外側面 上。在其他實施例中,金屬共振結構層314a亦可設置在 台之第二電性半導體層之外侧面、第一電性半導體層之 側面、及/或主動層之外側面。金屬共振結構層3ι牦之 料可例如包含銀、I、鋁、鈦、或上述金屬之任意組合。 舉例而言,金屬共振結構層314a之材料為銀時, 與藍光產生共振;金屬共振結構層314a之材料為金、 可與綠光產生共振;而金屬共振結構層3l4a之料其 時,其可與紫外光產生共振。 4马在呂 201251121 在本實施方式中,金屬共振結構層314a包含數個奈米 金屬粒子316,這些奈米金屬粒子316散佈在平台326之 側壁328上。這些奈米金屬粒子316之分佈愈密集,所能 提供之共振效果愈佳。但這些奈米金屬粒子316之間較佳 係避免彼此接觸’以避免p型、n型電性導通而引起短路。 适些奈米金屬粒子316可呈週期性的規則狀排列、或者可 呈隨機性排列。奈米金屬粒子316之粒徑的範圍可例如從 50nm至500nm ’較佳可例如從5〇 ηιη至3〇〇nm。 藉由將共振金屬結構層314a設置在磊晶結構310之平 台326的側壁328上,可使共振金屬結構層314a接合或鄰 近於主動層306。如此一來,金屬共振結構層314a獲得主 動層306發出之光子所傳遞之能量後’所產生之局部電磁 場可更有效地激發主動層306。因此,主動層306可發出 更多的光’進而可提高發光二極體結構之發光效率。 此外’共振金屬結構層314a係設置在平台326之側壁 328上,因此共振金屬結構層314a不會遮住發光二極體結 構300之正向出光,進而可提高發光二極體結構300之光 取出率。另外,由於共振金屬結構層314a係由數個奈米金 屬粒子316所構成,因此不僅可降低吸光率’且這些奈米 金屬粒子316更可幫助光的散射,有利於發光二極體結構 300之側光取出。 第一電極318設於第一電性半導體層304之部分324 的暴露表面上。第二電極320則設於第二電性半導體層308 上。在一實施例中,如第3圖所示,發光二極體結構300a 更可選擇性地包含電流擴散層312,其中電流擴散層312 201251121 • 設於第二電性半導體層308上,且介於第二電極32〇與第 二電性半導體層308之間。電流擴散層312較佳係可與第 二電性半導體層308形成歐姆接觸,且具有高穿透率。電 流擴散層312可將第二電極320傳送之電流予以擴散,避 免電流壅塞現象,進而可提升發光二極體結構 300之電性 品質。電流擴散層312可為單一材料層結構、或多層材料 堆疊而成之結構。在一實施例中,電流擴散層312之材料 可包含鎳/金(Ni/Au)、鎳/銀(Ni/Ag)、氧化錮錫(ιτο)、氧化 鋅(ZnO)、氧化鋅鎵(GZO)、氧化鋅鋁(AZ〇)或氧化銦 (Ιη203)。 請參照第4圖,其係繪示依照本發明之另一實施方式 的一種發光二極體結構的剖面圖。本實施方式之發光二極 體結構300b同樣也是一種水平導通型發光二極體結構。本 實施方式之發光二極體結構3〇〇b的結構與上述實施方式 之發光二極體結構300a的結構大致相同,二者之差異僅在 於發光二極體結構300b更包含絕緣層330。 絕緣層330係至少覆蓋在平台326之侧壁328上,且 介於平台326之側壁328與金屬共振結構層M4a之間,以 電性隔離金屬共振結構層314a與磊晶結構31〇之平台 326。於本實施例中,絕緣層33〇係覆蓋於平台3%上方的 電流擴散層312上、部分之第二電極32〇上、平台326之 側壁328、第一電性半導體層3〇4之暴露部分324上以及 部分之第-電極318上。絕緣層330之材料較佳係選用透 • 明性材料。在一實施例中,絕緣層330之材料可包含二氧 化矽(Si〇2)、氮化矽(SiN)、旋塗玻璃(s〇G)、二氧化鈦 201251121 (Τι〇2)、氧化鋁(Ai2〇3)、或上述材料之任意組合。絕緣層 330之厚度僅需確保可有效電性隔離金屬共振結構層314a 與磊晶結構310之平台326即可。在一較佳實施例中,絕 緣層330之厚度可例如小於2〇〇nm,以獲得較佳金屬共振 結構層314a所產生之電磁場激發主動層306的效果。 請參照第5圖,其係繪示依照本發明之又一實施方式 的一種發光二極體結構的剖面圖。本實施方式之發光二極 體結構300c同樣也是一種水平導通型發光二極體結構。本 實施方式之發光二極體結構300c的結構與上述實施方式 之發光一極體結構300b的結構大致相同,二者之差異僅在 於發光二極體結構300c之金屬共振結構層314b係一奈米 金屬薄膜,而非不連續之奈米金屬粒子。金屬共振結構層 314b之厚度可例如小於2〇〇nm,較佳係小於5〇nm。金屬 共振結構層314b至少位於平台326之側壁328的一部分 上。在一實施例中,金屬共振結構層314b較佳係至少位於 主動層306之外側面上。在第5圖所示之實施例中,金屬 共振結構層314b延伸在平台326之整個側壁328上,亦即 延伸在平台326之第一電性半導體層3〇4、主動層3〇6與 第二電性半導體層308之外側面上,並藉由絕緣層33〇^ 免電性短路。在其他實施例中,金屬共振結構層314b亦可 设置在平台之第二電性半導體層之外側面、第一電性半導 體層之外側面、及/或主動層之外侧面。金屬共振結構層 314b之材料可例如包含銀、金、鋁、鈦、或上述金屬之任 意組合。 請參照第6A圖至第6F圖,其係繪示依照本發明之另 12 201251121 一實施方式的一種發光二極體結構的製程剖面圖。製作如 第4圖所示之發光一極體結構3〇〇b時,可先提供蟲晶芙板 302。接著,如第6A圖所示,可利用例如有機金屬氣 相沉積(MOCVD)方式,依序在基板3〇2上磊晶成長第一 性半導體層302、主動層306與第二電性半導體層扇料 以形成磊晶結構310。主動層306可例如為多重量子^ (MQW)結構。 接下來’如第6B圖所示’利用例如_與微影技術, 來進行蠢晶結構310之平台定義。在此平台定義步驟中, 藉由移除部分之第二電性半導體層308與主動層3〇6,或 者進一步移除主動層306下方之部分第一電性半導體層 304 ’而在第一電性半導體層304之部分322上形成平台 326。其中’平台326具有側壁328。經平台定義步驟後: 第一電性半導體層304之另一部分324的上表面被暴露出。 接著’如第6C圖所示’可利用例如化學氣相沉積技術 或物理氣相沉積(PVD)技術’選擇性地於第二電性半導體層 308上形成電流擴散層312。隨後,利用例如蒸鍍 (evaporation)方式,形成第一電極318與第二電極32〇分別 位於第一電性半導體層304之部分324的暴露表面、與第 二電性半導體層308上方的電流擴散層312上,如第6D 圖所示。 在本實施方式中’如第6E圖所示,利用例如化學氣相 沉積或物理氣相沉積方式’形成絕緣層330覆蓋在平台326 之側壁328上。其中,此絕緣層330可選擇性地延伸覆蓋 在電流擴散層312、部分之第一電極318、部分之第二電極 13 201251121 320以及第一電性半導體層304的暴露部分324上,並暴 露出第一電極318與第二電極320之上表面’以利第一電 極318與第二電極32〇和外部電源連接。絕緣層33〇之厚 度可例如控制在小於2〇〇ηιη。當然’製作第3圖所示之發 光'一極體結構3〇〇a時,可省略此絕緣層330之製作步驟。 接著,製作金屬共振結構層314a,使此金屬共振結構 層314a位於平台326之侧壁328的至少一部分上。在第一 實施方式與本實施方式中,製作金屬共振結構層314a時, 可先利用例如蒸鍍或濺鍍(sputtering)方式’形成一層金屬 薄膜覆蓋在平台326之側壁328的至少一部分上。其中, 此金屬薄臈之厚度的範圍可例如從5nm至30nm,較佳則 可從5nm至I5nm。隨後,可利用例如快速熱回火(RTA)技 術或爐管技術,對此金屬薄膜進行回火(annealing)處理,藉 以使金屬薄膜轉變成數個奈米金屬粒子316,而完成金屬 共振結構層314a的製作。此時’如第6F圖所示,即已大 致完成發光二極體結構300b的製作。在一實施例中,利用 快速熱回火技術對金屬薄膜進行回火處理,製程溫度的範 圍可例如控制在從150°C至1〇〇〇ΐ。 在上述之回火處理過程中,由於金屬薄膜係覆蓋在平 台326之側壁328的至少一部分上,因此經過回火處理後 所形成之金屬共振結構層314a係位於側壁328之此至少一 部分上。在一較佳實施例中,金屬共振結構層314a較佳係 至少位於主動層306之外側面上。當然,在其他實施例中, 金屬共振結構層314a亦可散佈於平台326之整個側壁328 上。 201251121 在又一實施方式中,製作上述之發光二極體結構300c 之連續性金屬共振結構層314b時,可利用蒸鍍或濺鍍方 式,直接在平台326之側壁328的至少一部分上形成奈米 金屬薄膜來做為金屬共振結構層314b,而此奈米金屬薄膜 無需經過回火處理。在此實施方式中,做為金屬共振結構 層314b之奈米金屬薄膜的厚度範圍可例如小於200nm,較 佳則可小於50nm。 由上述之實施方式可知,本發明之一優點就是因為本 發明在磊晶結構之平台側壁上設置金屬共振結構層,而藉 由此金屬共振結構層在接收主動層發出之光子所傳遞之熱 量後可產生電磁場的效果,並可進一步反向激發主動層, 而使主動層發出更多的光,因此可提高發光二極體結構之 發光效率。 由上述之實施方式可知,本發明之另一優點就是在因 為本發明之發光二極體結構中,其共振金屬結構層係鄰設 於主動層之外側面,因此共振金屬結構層所產生之局部電 磁場可更有效地激發主動層。 由上述之實施方式可知,本發明之又一優點就是因為 在本發明之發光二極體結構中,共振金屬結構層係設置在 平台之側壁上,因此可避免共振金屬結構層遮住發光二極 體結構之正向出光,而可提高發光二極體結構之光取出率。 由上述之實施方式可知,本發明之再一優點就是因為 在本發明之發光二極體結構中,共振金屬結構層可由數個 奈米金屬粒子所構成,因此不僅可降低吸光率,且這些奈 米金屬粒子更可幫助光的散射,進而可提高發光二極體結 15 201251121 構之側光取出率。 雖然本發明已以實施例揭露如上,然其並 ^發明’任何在此技術領域中具有通常知識者,在不脫離 ::月之精神和範圍内’當可作各種之更動與潤飾,因此 X明之保護範圍當視後附之申請專利範圍所界 罕n 【圖式簡單說明】 A為讓本發明之上述和其他目的、特徵、優點與實施例 月色更明顯易懂’所附圖式之說明如下: 第1圖係繪示一種傳統水平導通型發光二極體結構之 剖面圖。 第2圖係繪示一種水平導通型發光二極體結構之剖面 圖。 第3圖係繪示依照本發明之一實施方式的一種發光二 極體結構的剖面圖。 第4圖係繪示依照本發明之另一實施方式的一種發光 二極體結構的剖面圖。 第5圖係繪示依照本發明之又一實施方式的一種發光 二極體結構的剖面圖。 第6A圖至第6F圖係繪示依照本發明之另一實施方式 的一種發光二極體結構的製程剖面圖。 【主要元件符號說明】 201251121 100 :發光二極體結構 104 : η型半導體層 108 : ρ型半導體層 112 :電流擴散層 116 : ρ型電極 202 :基板 206 :主動層 210 :遙晶結構 214 :第一電性電極 300a :發光二極體結構 300c :發光二極體結構 304 :第一電性半導體層 308 ··第二電性半導體層 312 :電流擴散層 314b :金屬共振結構層 318 :第一電極 322 :部分 326 :平台 330 :絕緣層 102 :基板 106 :主動層 110 .遙晶結構 114 : η型電極 200 :發光二極體結構 204 :第一電性半導體層 208 :第二電性半導體層 212 :共振金屬層 216 :第二電性電極 300b :發光二極體結構 302 :基板 306 :主動層 310 :磊晶結構 314a :金屬共振結構層 316 :奈米金屬粒子 320 :第二電極 324 :部分 328 :側壁 17201251121 VI. Description of the Invention: [Technical Field] The present invention relates to a light-emitting structure, and more particularly to a light-emitting diode (LED) structure and a method of fabricating the same. [Prior Art] Referring to Fig. 1, there is shown a cross-sectional view of a conventional horizontal conduction type light emitting diode structure. The horizontal conduction type light emitting diode structure 1 includes a substrate 102, an epitaxial structure 110, a current diffusion layer 112, an n-type electrode 114, and a p-type electrode 116. The epitaxial structure 110 includes an n-type semiconductor layer 104, an active layer 1 and 6 stacked on the substrate 102 in sequence. Type $ conductor layer 108. The current diffusion layer 112 is provided on the p-type semiconductor layer 1〇8 and the pattern electrode 116 is provided on the current diffusion layer 112. The n-type electrode Π4 is provided on the exposed portion of the n-type semiconductor layer 104. The luminous efficiency of the horizontally-on light-emitting diode structure of X '11 mesh is mainly controlled by internal raft efficiency and external quantum efficiency. Internal quantum efficiency is primarily determined by epitaxial parameters such as epitaxial materials. The external quantum efficiency is affected by the high refractive index of semiconductor materials, such as indium nitride|s^nA1GaN series semiconductor materials, resulting in total reflection and poor light extraction rate, resulting in poor external quantum efficiency. SUMMARY OF THE INVENTION Accordingly, it is an aspect of the present invention to provide a light emitting diode structure and a method of fabricating the same that provides a metal structure layer on a sidewall of a platform of a crucible structure. The effect of the electromagnetic field can be generated by the metal resonant structure layer receiving the heat transmitted by the light generated by the active layer 201251121, and the active layer can be reversely excited, and the active layer emits more light, thereby improving the light emitting diode. The luminous efficiency of the body structure. Another aspect of the present invention provides a light emitting diode structure and a manufacturing method thereof, wherein a resonant metal structural layer is disposed adjacent to an outer side of the active layer, so that a local electromagnetic field generated by the resonant metal structural layer can effectively excite the main Floor. According to still another aspect of the present invention, a light emitting diode structure and a method for manufacturing the same are provided. Since the resonant metal structure layer is disposed on a sidewall of the platform, the resonant metal structure layer can be prevented from covering the light emitting diode. The positive light exiting the structure improves the light extraction rate of the light-emitting diode structure. Still another aspect of the present invention is to provide a light-emitting diode structure and a method thereof, wherein the resonant metal structure layer can be composed of a plurality of nano metal particles, and such a resonant metal structure can not only reduce the light absorption rate, but also The nano-child can help the scattering of light', so it is beneficial to remove the side light of the light-emitting diode.屮狢!^ According to the above object of the present invention, a light-emitting diode structure is proposed. The structure #structure comprises a substrate, a telecrystal structure, a metal resonance, a 221 electrode, and a second electrode. The epitaxial structure comprises an ordered semiconductor layer, an active layer, and a second layer: a half-body::: the first-stage electrical semiconductor layer and the second layer are the same. The metal resonant structure layer is located at least in the foregoing layer: the second portion is disposed on the first electrical semiconductor, and the first electrode is disposed on the second electrical semiconductor layer. According to an embodiment of the invention, the light emitting diode structure further includes a current diffusion layer interposed between the second electrical semiconductor layer and the second electrode. According to another embodiment of the present invention, the LED structure further includes an insulating layer interposed between the sidewall of the platform and the metal resonant structure layer to electrically isolate the metal resonant structure layer from the platform. According to still another embodiment of the present invention, the metal resonant structure layer is a continuous layer of nano metal. According to still another embodiment of the present invention, the metal resonant structure layer includes a plurality of nano metal particles dispersed on sidewalls of the platform. According to still another embodiment of the present invention, the material of the metal resonant structural layer comprises silver, gold, gold, titanium, or a combination of the above metals. In accordance with still another embodiment of the present invention, the metal resonant structure layer is disposed on at least the outer side of the active layer. According to the above object of the present invention, there is further provided a method of manufacturing a light-emitting diode structure comprising the following steps. An epitaxial structure is formed on a substrate. The epitaxial structure includes a first electrical semiconductor layer, an active layer and a second electrical semiconductor layer stacked on the substrate in sequence. Moreover, the epitaxial structure comprises a platform on the first portion of the first electrically conductive semiconductor layer. The first electrical semiconductor layer is electrically different from the second electrical semiconductor layer. A first electrode and a second electrode are formed on the second portion of the first electrical semiconductor layer and the second electrical semiconductor layer, respectively. A metal resonant structure layer is formed on at least a portion of the sidewall of the platform. According to an embodiment of the invention, between the step of forming an epitaxial structure and the step of forming the first electrode and the second electrode, the method for fabricating the LED structure further comprises forming a current diffusion layer on the second electrode Sex Semiconductor 201251121 . On the layer. According to another embodiment of the present invention, between the step of forming the first electrode and the second electrode and the step of forming the metal resonant structure layer, the manufacturing method of the light emitting diode structure further comprises forming an insulating layer covering the platform On the side wall. σ According to still another embodiment of the present invention, the metal resonance node has a plurality of nano metal particles dispersed on sidewalls of the platform. In one embodiment, the step of forming the metal resonant structure layer comprises: forming a metal film on the sidewall of the platform; and performing a tempering step on the metal film to convert the metal film into nano metal particles. [Embodiment] Referring to Fig. 2, a cross-sectional view showing another conventional horizontal conduction type light-emitting diode structure is shown. The horizontal conduction type light emitting diode structure 2 includes a substrate 202, a remote crystal structure 210, a resonant metal layer 212, a first electrical electrode 214, and a second electrical electrode 216. Wherein, the first electrical property and the second electrical property are different electrical properties. In the light emitting diode structure 200, the epitaxial structure 210 includes a first electrical semiconductor layer 204, an active layer 206, and a second electrical semiconductor layer 208 which are sequentially stacked on the substrate 202. The resonant metal layer 212 is provided on the second electrical semiconductor layer 208. The second electrical electrode 216 is disposed on the resonant metal layer 212 above the second electrical semiconductor layer 208. The first electrical electrode 214 is disposed on the exposed portion of the first electrical semiconductor layer 204. In the light emitting diode structure 200, the photons emitted by the active layer 206 can be transferred to the resonant metal layer 212 on the second electrical semiconductor layer 208. After the resonant metal layer 212 absorbs the energy transmitted by the photons, it is represented by a photon 201251121 modal or surface plasmon mode and generates an electromagnetic field. The electromagnetic field generated by the resonant metal layer 212 in turn excites the active layer 206, which allows the active layer 206 to emit more photons, thereby improving the luminous efficiency of the light-emitting diode structure 200. However, the inventors of the present invention have found that the resonant metal layer 212 disposed on the second electrical semiconductor layer 2 会有 8 has a light-shielding effect, thereby causing a decrease in the forward light emission of the light-emitting diode structure 200, thereby causing the light-emitting diode structure 2 The light extraction efficiency of the light is reduced. In addition, the inventors have further found that in the light-emitting diode structure 2, since the resonant metal layer 212 is disposed on the second electrical semiconductor layer 2〇8, the resonant metal layer 212 is still at a distance from the active layer 206, The electromagnetic field generated by the resonant metal layer 212 has a limited excitation effect on the active layer 2〇6. In view of this, the inventor of the present invention proposes a light-emitting diode structure and a manufacturing method thereof, which can not only avoid the positive light-emission which affects the structure of the light-emitting diode, but can more effectively improve the luminous efficiency of the two active layers. Referring to Figure 3, there is shown a cross-sectional view of a light emitting diode structure in accordance with an embodiment of the present invention. In the present embodiment, the light emitting diode structure 300a is a horizontal conduction type light emitting diode structure. The light emitting diode structure 300a may include, for example, a substrate 3〇2, an epitaxial structure 31〇, a metal resonant structure layer 314a, a first electrode 318, and a second electrode 32〇. The substrate can be moved to allow the epitaxial structure 310 to grow thereon. In some examples, the material of the substrate 302 may comprise, for example, sapphire, carbonized ic), nitrided ((10)) or sho (Si). The surface of the substrate 302 may optionally include a regular structure or an irregular structure to assist in light scattering, thereby increasing the light extraction rate. In an embodiment, the dormant structure 31A may include a first electrical semiconductor layer 304, an active layer 3〇6, and a second electrical half 201251121 conductor layer 308 which are sequentially stacked on the substrate 302. In the present invention, the first electrical property and the second electrical property are different electrical properties. For example, one of the first electrical property and the second electrical property is an n-type, and the other is a p-type. In the exemplary embodiment, the first electrical property is an n-type and the second electrical property is a p-type. In some examples, the material of the epitaxial structure 31 can include, for example, a gallium nitride series material such as gallium nitride, aluminum gallium nitride, indium gallium nitride, and indium aluminum gallium nitride. The insect crystal structure 310 includes a mesa 326. As shown in Fig. 3, the flat opening 326 may be composed of a first electrically conductive semiconductor layer 308, an active layer 306 and a portion of the first electrically conductive semiconductor layer 304. Thus, the platform 326 is located on portion 322 of the first electrically conductive semiconductor layer 304, while the other portion 324 of the first electrically conductive semiconductor layer 3〇4 is exposed. Metal resonant structure layer 314a is located at least on a portion of sidewall 328 of platform 326. In one embodiment, the metal resonant structure layer 314a is preferably located at least on the outer side of the active layer 306. In the embodiment shown in FIG. 3, the metal resonant structure layer 314a extends over the entire sidewall 328 of the platform 326. The metal resonant structure layer 314a extends over the first electrical semiconductor layer 304, the active layer 306 of the platform 326. The second electrical semiconductor layer is on the outer side. In other embodiments, the metal resonant structure layer 314a may also be disposed on the outer side of the second electrical semiconductor layer of the stage, the side of the first electrical semiconductor layer, and/or the outer side of the active layer. The material of the metal resonant structure layer 3ι can be, for example, silver, I, aluminum, titanium, or any combination of the above metals. For example, when the material of the metal resonant structure layer 314a is silver, it resonates with the blue light; the material of the metal resonant structure layer 314a is gold, which can resonate with the green light; and the metal resonant structure layer 3l4a can be used for the time. Resonance with ultraviolet light. 4 马在吕 201251121 In the present embodiment, the metal resonant structure layer 314a includes a plurality of nano metal particles 316 which are interspersed on the side walls 328 of the platform 326. The denser the distribution of these nano metal particles 316, the better the resonance effect can be provided. However, it is preferable that these nano metal particles 316 are prevented from contacting each other 'to avoid p-type, n-type electrical conduction to cause a short circuit. The suitable nano metal particles 316 may be arranged in a regular regular pattern or may be arranged in a random manner. The particle diameter of the nano metal particles 316 may range, for example, from 50 nm to 500 nm', preferably from 5 〇 ηηη to 3 〇〇 nm. The resonant metal structure layer 314a can be bonded or adjacent to the active layer 306 by disposing the resonant metal structure layer 314a on the sidewall 328 of the platform 326 of the epitaxial structure 310. In this way, the local electromagnetic field generated by the metal resonant structure layer 314a after obtaining the energy transmitted by the photons emitted by the active layer 306 can more effectively excite the active layer 306. Therefore, the active layer 306 can emit more light', thereby improving the luminous efficiency of the light-emitting diode structure. In addition, the 'resonant metal structure layer 314a is disposed on the sidewall 328 of the platform 326, so the resonant metal structure layer 314a does not block the forward light emission of the LED structure 300, thereby improving the light extraction of the LED structure 300. rate. In addition, since the resonant metal structure layer 314a is composed of a plurality of nano metal particles 316, not only can the light absorption rate be reduced, but these nano metal particles 316 can further assist the scattering of light, which is advantageous for the light emitting diode structure 300. Sidelights are taken out. The first electrode 318 is disposed on an exposed surface of the portion 324 of the first electrical semiconductor layer 304. The second electrode 320 is disposed on the second electrical semiconductor layer 308. In an embodiment, as shown in FIG. 3, the LED structure 300a further selectively includes a current diffusion layer 312, wherein the current diffusion layer 312 201251121 is disposed on the second electrical semiconductor layer 308. Between the second electrode 32 〇 and the second electrical semiconductor layer 308. The current spreading layer 312 is preferably in ohmic contact with the second electrical semiconductor layer 308 and has a high transmittance. The current diffusion layer 312 can diffuse the current transmitted by the second electrode 320 to avoid current stagnation, thereby improving the electrical quality of the LED structure 300. The current diffusion layer 312 may be a single material layer structure or a structure in which a plurality of layers of materials are stacked. In an embodiment, the material of the current diffusion layer 312 may include nickel/gold (Ni/Au), nickel/silver (Ni/Ag), antimony tin oxide (ITO), zinc oxide (ZnO), and zinc gallium oxide (GZO). ), zinc aluminum oxide (AZ〇) or indium oxide (Ιη203). Referring to Figure 4, there is shown a cross-sectional view of a light emitting diode structure in accordance with another embodiment of the present invention. The light-emitting diode structure 300b of the present embodiment is also a horizontal conduction type light-emitting diode structure. The structure of the light-emitting diode structure 3〇〇b of the present embodiment is substantially the same as that of the light-emitting diode structure 300a of the above-described embodiment, and the difference is only that the light-emitting diode structure 300b further includes the insulating layer 330. The insulating layer 330 is at least covered on the sidewall 328 of the platform 326 and between the sidewall 328 of the platform 326 and the metal resonant structure layer M4a to electrically isolate the metal resonant structure layer 314a from the platform 326 of the epitaxial structure 31. . In this embodiment, the insulating layer 33 is exposed on the current diffusion layer 312 above the platform 3%, the second electrode 32 on the portion, the sidewall 328 of the platform 326, and the first electrical semiconductor layer 3〇4. Portion 324 and a portion of the first electrode 318. The material of the insulating layer 330 is preferably a transparent material. In an embodiment, the material of the insulating layer 330 may include cerium oxide (Si〇2), tantalum nitride (SiN), spin-on glass (s〇G), titanium dioxide 201251121 (Τι〇2), and aluminum oxide (Ai2). 〇 3), or any combination of the above materials. The thickness of the insulating layer 330 only needs to ensure that the metal resonant structure layer 314a and the platform 326 of the epitaxial structure 310 can be effectively electrically isolated. In a preferred embodiment, the thickness of the insulating layer 330 can be, for example, less than 2 〇〇 nm to obtain the effect of the electromagnetic field generated by the preferred metal resonant structure layer 314a to excite the active layer 306. Referring to Figure 5, there is shown a cross-sectional view of a light emitting diode structure in accordance with still another embodiment of the present invention. The light-emitting diode structure 300c of the present embodiment is also a horizontal conduction type light-emitting diode structure. The structure of the light-emitting diode structure 300c of the present embodiment is substantially the same as that of the light-emitting diode structure 300b of the above-described embodiment, and the difference is only that the metal resonant structure layer 314b of the light-emitting diode structure 300c is one nanometer. Metal film, not discontinuous nano metal particles. The thickness of the metal resonant structure layer 314b can be, for example, less than 2 Å, preferably less than 5 Å. Metal resonant structure layer 314b is located at least on a portion of sidewall 328 of platform 326. In one embodiment, the metal resonant structure layer 314b is preferably located at least on the outer side of the active layer 306. In the embodiment shown in FIG. 5, the metal resonant structure layer 314b extends over the entire sidewall 328 of the platform 326, that is, the first electrical semiconductor layer 3〇4 extending over the platform 326, the active layer 3〇6 and the first The outer surface of the second electrical semiconductor layer 308 is electrically short-circuited by the insulating layer 33. In other embodiments, the metal resonant structure layer 314b may also be disposed on the outer side of the second electrical semiconductor layer of the platform, the outer side of the first electrical semiconductor layer, and/or the outer side of the active layer. The material of the metal resonant structure layer 314b may, for example, comprise silver, gold, aluminum, titanium, or any combination of the foregoing. 6A to 6F are cross-sectional views showing a process of a light emitting diode structure according to another embodiment of the present invention. When the light-emitting diode structure 3〇〇b shown in Fig. 4 is produced, the insect crystal plate 302 can be provided first. Next, as shown in FIG. 6A, the first semiconductor layer 302, the active layer 306, and the second electrical semiconductor layer may be epitaxially grown on the substrate 3〇2 by, for example, an organic metal vapor phase deposition (MOCVD) method. The fan material forms an epitaxial structure 310. The active layer 306 can be, for example, a multiple quantum ^ (MQW) structure. Next, as shown in Fig. 6B, the platform definition of the dormant structure 310 is performed using, for example, _ and lithography techniques. In the platform definition step, the first electric semiconductor layer 308 and the active layer 3〇6 are removed, or a portion of the first electrical semiconductor layer 304' under the active layer 306 is further removed. A platform 326 is formed on a portion 322 of the semiconductor layer 304. Where the 'platform 326 has a side wall 328. After the platform definition step: the upper surface of the other portion 324 of the first electrically conductive semiconductor layer 304 is exposed. Next, as shown in Fig. 6C, the current diffusion layer 312 can be selectively formed on the second electrical semiconductor layer 308 by, for example, a chemical vapor deposition technique or a physical vapor deposition (PVD) technique. Subsequently, the first electrode 318 and the second electrode 32 are respectively formed on the exposed surface of the portion 324 of the first electrical semiconductor layer 304 and the current diffusion over the second electrical semiconductor layer 308 by, for example, an evaporation method. On layer 312, as shown in Figure 6D. In the present embodiment, as shown in Fig. 6E, the insulating layer 330 is formed on the side wall 328 of the stage 326 by, for example, chemical vapor deposition or physical vapor deposition. The insulating layer 330 can selectively extend over the current diffusion layer 312, a portion of the first electrode 318, a portion of the second electrode 13 201251121 320, and the exposed portion 324 of the first electrical semiconductor layer 304, and is exposed. The first electrode 318 and the upper surface of the second electrode 320 are connected to the first electrode 318 and the second electrode 32A and the external power source. The thickness of the insulating layer 33 can be controlled, for example, to less than 2 〇〇ηη. Of course, when the illuminating 'one-pole structure 3 〇〇 a shown in Fig. 3 is produced, the manufacturing steps of the insulating layer 330 can be omitted. Next, a metal resonant structure layer 314a is formed such that the metal resonant structure layer 314a is located on at least a portion of the sidewall 328 of the platform 326. In the first embodiment and the present embodiment, when the metal resonant structure layer 314a is formed, at least a portion of the side wall 328 of the stage 326 may be first formed by, for example, vapor deposition or sputtering. The thickness of the thin metal tantalum may range, for example, from 5 nm to 30 nm, preferably from 5 nm to 1 5 nm. Subsequently, the metal thin film may be subjected to an annealing treatment using, for example, rapid thermal tempering (RTA) technology or furnace tube technology, whereby the metal thin film is converted into a plurality of nano metal particles 316, and the metal resonant structural layer 314a is completed. Production. At this time, as shown in Fig. 6F, the fabrication of the light-emitting diode structure 300b has been substantially completed. In one embodiment, the metal film is tempered using a rapid thermal tempering technique, and the range of process temperatures can be controlled, for example, from 150 ° C to 1 Torr. During the tempering process described above, since the metal film is overlaid on at least a portion of the sidewall 328 of the platform 326, the metal resonant structure layer 314a formed after the tempering process is located on at least a portion of the sidewall 328. In a preferred embodiment, the metal resonant structure layer 314a is preferably located at least on the outer side of the active layer 306. Of course, in other embodiments, the metal resonant structure layer 314a may also be interspersed throughout the sidewall 328 of the platform 326. In still another embodiment, when the continuous metal resonant structure layer 314b of the above-described light emitting diode structure 300c is fabricated, the nanometer can be directly formed on at least a portion of the side wall 328 of the platform 326 by vapor deposition or sputtering. The metal film is used as the metal resonance structure layer 314b, and the nano metal film does not need to be tempered. In this embodiment, the thickness of the nanometal thin film as the metal resonant structure layer 314b may range, for example, less than 200 nm, and preferably less than 50 nm. It can be seen from the above embodiments that one advantage of the present invention is that the present invention provides a metal resonant structure layer on the sidewall of the platform of the epitaxial structure, whereby the metal resonant structure layer receives the heat transferred by the photons emitted by the active layer. The effect of the electromagnetic field can be generated, and the active layer can be further reversely excited, and the active layer emits more light, thereby improving the luminous efficiency of the light-emitting diode structure. It can be seen from the above embodiments that another advantage of the present invention is that in the light-emitting diode structure of the present invention, the resonant metal structure layer is adjacent to the side of the active layer, and thus the portion of the resonant metal structure layer is generated. The electromagnetic field can excite the active layer more effectively. According to the above embodiments, another advantage of the present invention is that, in the LED structure of the present invention, the resonant metal structure layer is disposed on the sidewall of the platform, so that the resonant metal structure layer can be prevented from covering the LED. The positive structure of the body structure emits light, and the light extraction rate of the light-emitting diode structure can be improved. According to the above embodiments, another advantage of the present invention is that in the light-emitting diode structure of the present invention, the resonant metal structure layer can be composed of a plurality of nano metal particles, thereby not only reducing the light absorption rate, but also The metal particles can help the scattering of light, which in turn can improve the side light extraction rate of the LED junction 15 201251121. Although the present invention has been disclosed above by way of example, it is also invented that 'anyone having ordinary knowledge in the technical field can't make various changes and refinements without departing from the spirit and scope of the month. Therefore, X The scope of protection of the present invention is not limited to the scope of the patent application. [A Brief Description of the Drawings] A is to make the above-mentioned and other objects, features, advantages and embodiments of the present invention more obvious and easy to understand. The description is as follows: Fig. 1 is a cross-sectional view showing a conventional horizontal conduction type light emitting diode structure. Fig. 2 is a cross-sectional view showing the structure of a horizontal conduction type light-emitting diode. Figure 3 is a cross-sectional view showing a structure of a light emitting diode in accordance with an embodiment of the present invention. Figure 4 is a cross-sectional view showing a structure of a light emitting diode according to another embodiment of the present invention. Figure 5 is a cross-sectional view showing a structure of a light emitting diode according to still another embodiment of the present invention. 6A to 6F are cross-sectional views showing a process of a light emitting diode structure in accordance with another embodiment of the present invention. [Description of main component symbols] 201251121 100 : Light-emitting diode structure 104 : n-type semiconductor layer 108 : p-type semiconductor layer 112 : current diffusion layer 116 : p-type electrode 202 : substrate 206 : active layer 210 : remote crystal structure 214 : The first electrical electrode 300a: the light emitting diode structure 300c: the light emitting diode structure 304: the first electrical semiconductor layer 308, the second electrical semiconductor layer 312: the current diffusing layer 314b: the metal resonant structure layer 318: An electrode 322: a portion 326: a platform 330: an insulating layer 102: a substrate 106: an active layer 110. a remote crystal structure 114: an n-type electrode 200: a light emitting diode structure 204: a first electrical semiconductor layer 208: a second electrical Semiconductor layer 212: resonant metal layer 216: second electrical electrode 300b: light emitting diode structure 302: substrate 306: active layer 310: epitaxial structure 314a: metal resonant structure layer 316: nano metal particle 320: second electrode 324: Part 328: Sidewall 17

Claims (1)

201251121 • 七、申請專利範圍: 1. 一種發光二極體結構,包含: 一基板; 一磊晶結構,包含依序堆疊在該基板上之—第一電性 半導體層、一主動層與一第二電性半導體層,其中該磊晶 結構包含一平台位於該第一電性半導體層之一第一部分 上,該第一電性半導體層與該第二電性半導體層之電性^ 同; 一金屬共振結構層,至少位於該平台之一侧壁的— 分上; 一第一電極,設於該第一電性半導體層之一第二部分 上;以及 77 一第二電極,設於該第二電性半導體層上。 2·如請求項1所述之發光二極體結構,更包含一電流 擴散層介於該第二電性半導體層與該第二電極之間。* 3. 如請求項1所述之發光二極體結構,更包含一絕緣 層介於該平台之該側壁與該金屬共振結構層之間,以電性 隔離該金屬共振結構層與該平台。 4. 如請求項3所述之發光二極體結構,其中該金屬共 振結構層係一奈米金屬薄膜。 八 18 201251121 . 5.如請求項3所述之發光二極體結構,其中該金屬共 振結構層之厚度小於200nm,且該絕緣層之厚度小於 200nm。 6.如請求項3所述之發光二極體結構,其中該金屬共 振結構層包含複數個奈米金屬粒子散佈在該平台之該側 壁。 7. 如請求項1所述之發光二極體結構,其中該平台係 由該第二電性半導體層、該主動層與部分之該第一電性半 導體層所構成。 8. 如請求項1所述之發光二極體結構,其中該金屬共 振結構層包含複數個奈米金屬粒子散佈在該平台之該側 壁0 9. 如請求項8所述之發光二極體結構,其中每一該些 奈米金屬粒子的粒徑範圍從50nm至500nm。 10. 如請求項1所述之發光二極體結構,其中該金屬 共振結構層之材料包含銀、金、鋁、鈦、或其組合。 11. 如請求項1所述之發光二極體結構,其中該金屬 共振結構層至少位於該主動層之外側面上。 19 201251121 如請求項1所述之發光二極體結構,其中該金屬 ,、振、、^構層延伸在該平台之整個該側壁上。 13. —種發光二極體結構之製造方法,包含: 形成-遙晶結構於一基板上,其中該遙晶結構包含依 ^堆疊在縣板上之―第—電性半導體層…主動層與一 第-電性半導體層,m晶結構包含—平台位於該第一 Ϊ性之一第一部分上,該第-電性半導體ί與該 第一電性半導體層之電性不同; 形成-第-電極與一第二電極分別位於該第—電 導體層之-第二部分與該第二電性半導體層上;以及 形成一金屬共振結構層至少位於該平台之一側 部分上。 V 14.々口請求㉟13戶斤述之發光二極體結構之製 ’成該蠢晶結構之步驟和形成該第—雷 ::驟之間’更包含形成-電流擴散層於該第二= 15.如請求項13所述之發光二極體钟 於形成該第一電極與該第二電極之步% ° ^法, 之間,更包含形成—絕振 之 201251121 如請求項15所述之發光二極體結構之製造方法, 、中*亥金屬共振結構層係一奈米金屬薄膜。 η.如請求項13所述之發光二極體結構之製造方法, 其中該金屬共振結構層包含複數個奈米金屬粒子隨機散佈 在該平台之該側壁。 18. ,如峋求項17所述之發光二極體結構之製造方法, 其中形成該金屬共振結構層之步驟包含: 形成一金屬薄膜於該平台之該側壁上;以及 對該金屬薄膜進行一回火步驟,以使該金屬薄膜轉變 成該些奈米金屬粒子。 19.如請求項13所述之發光二極體結構之製造方法, 其中该金屬共振結構層之材料包含銀、金、鋁、鈦、 組合。 欢再 20, 如請求項13所述之發光二極體結構之製造方法, 其中形成該金屬共振結構層之步驟包含使該 層至少位於該主動層之外側面上。 、振、、、°構 21201251121 • VII. Patent application scope: 1. A light-emitting diode structure comprising: a substrate; an epitaxial structure comprising sequentially stacked on the substrate - a first electrical semiconductor layer, an active layer and a first a second electrical semiconductor layer, wherein the epitaxial structure comprises a platform on a first portion of the first electrical semiconductor layer, the first electrical semiconductor layer and the second electrical semiconductor layer being electrically identical; a metal resonant structure layer at least on a side wall of one of the platforms; a first electrode disposed on a second portion of the first electrical semiconductor layer; and a second electrode disposed on the first electrode On the second electrical semiconductor layer. 2. The light emitting diode structure of claim 1, further comprising a current spreading layer interposed between the second electrical semiconductor layer and the second electrode. 3. The light-emitting diode structure of claim 1, further comprising an insulating layer between the sidewall of the platform and the metal resonant structure layer to electrically isolate the metal resonant structure layer from the platform. 4. The light emitting diode structure of claim 3, wherein the metal resonant structure layer is a nano metal film. 8. The light-emitting diode structure of claim 3, wherein the metal-resonant structure layer has a thickness of less than 200 nm and the insulating layer has a thickness of less than 200 nm. 6. The light emitting diode structure of claim 3, wherein the metal resonant structural layer comprises a plurality of nano metal particles dispersed on the side wall of the platform. 7. The light emitting diode structure of claim 1, wherein the platform is comprised of the second electrical semiconductor layer, the active layer and a portion of the first electrical semiconductor layer. 8. The light emitting diode structure of claim 1, wherein the metal resonant structure layer comprises a plurality of nano metal particles dispersed on the sidewall of the platform. 9. The light emitting diode structure according to claim 8 Each of the nano metal particles has a particle size ranging from 50 nm to 500 nm. 10. The light emitting diode structure of claim 1, wherein the material of the metal resonant structure layer comprises silver, gold, aluminum, titanium, or a combination thereof. 11. The light emitting diode structure of claim 1, wherein the metal resonant structure layer is located at least on an outer side of the active layer. The illuminating diode structure of claim 1, wherein the metal, vibration, and structuring layer extends over the entire sidewall of the platform. 13. A method of fabricating a light emitting diode structure, comprising: forming a telecrystal structure on a substrate, wherein the telecrystal structure comprises a "first electrical semiconductor layer" stacked on a county plate, an active layer and a first-electric semiconductor layer, the m-crystal structure includes a platform on a first portion of the first polarity, the first electrical semiconductor ί being electrically different from the first electrical semiconductor layer; forming a - The electrode and a second electrode are respectively located on the second portion of the first electrical conductor layer and the second electrical semiconductor layer; and a metal resonant structural layer is formed on at least one side portion of the platform. V 14. 々口 requests 3513 households to describe the structure of the light-emitting diode structure 'the step of forming the stupid crystal structure and forming the first-thrace: between the steps' more including formation - current diffusion layer in the second = 15. The illuminating diode of claim 13, wherein the method of forming the first electrode and the second electrode is further included in the method of forming a permanent magnetization as described in claim 15 The manufacturing method of the light-emitting diode structure, and the medium-metal metal resonance structure layer is a nano metal film. The method of fabricating a light-emitting diode structure according to claim 13, wherein the metal resonant structure layer comprises a plurality of nano metal particles randomly dispersed on the sidewall of the platform. 18. The method of fabricating a light emitting diode structure according to claim 17, wherein the step of forming the metal resonant structure layer comprises: forming a metal film on the sidewall of the platform; and performing a A tempering step to convert the metal film into the nano metal particles. 19. The method of fabricating a light emitting diode structure according to claim 13, wherein the material of the metal resonant structure layer comprises silver, gold, aluminum, titanium, or a combination thereof. The method of fabricating a light emitting diode structure according to claim 13, wherein the step of forming the metal resonant structure layer comprises placing the layer at least on an outer side of the active layer. , vibration, and, structure 21
TW100120206A 2011-06-09 2011-06-09 Light-emitting diode structure and method for manufacturing the same TW201251121A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100120206A TW201251121A (en) 2011-06-09 2011-06-09 Light-emitting diode structure and method for manufacturing the same
CN2011101903469A CN102820390A (en) 2011-06-09 2011-07-08 Light emitting diode structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100120206A TW201251121A (en) 2011-06-09 2011-06-09 Light-emitting diode structure and method for manufacturing the same

Publications (1)

Publication Number Publication Date
TW201251121A true TW201251121A (en) 2012-12-16

Family

ID=47304371

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100120206A TW201251121A (en) 2011-06-09 2011-06-09 Light-emitting diode structure and method for manufacturing the same

Country Status (2)

Country Link
CN (1) CN102820390A (en)
TW (1) TW201251121A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10864453B2 (en) 2016-03-21 2020-12-15 King Mongkut's University Of Technology Thonburi Automatic mobile robot for facilitating activities to improve child development
CN107731975B (en) * 2017-10-24 2023-10-31 江门市奥伦德光电有限公司 Nanotube LED and manufacturing method thereof
CN107731972A (en) * 2017-10-24 2018-02-23 江门市奥伦德光电有限公司 A kind of strip array nano luminescent diode and preparation method thereof
CN111403566A (en) * 2020-03-27 2020-07-10 天津赛米卡尔科技有限公司 Light emitting diode device structure with side wall field plate and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7642557B2 (en) * 2004-05-11 2010-01-05 Los Alamos National Security, Llc Non-contact pumping of light emitters via non-radiative energy transfer
GB0902569D0 (en) * 2009-02-16 2009-04-01 Univ Southampton An optical device
CN101950785B (en) * 2010-07-28 2013-01-23 山东大学 Structure of P-type GaN layer of GaN-based light-emitting diode chip

Also Published As

Publication number Publication date
CN102820390A (en) 2012-12-12

Similar Documents

Publication Publication Date Title
TWI452716B (en) Gallium nitride based light emitting diode and manufacturing method thereof
US8691606B2 (en) Method for manufacturing a light emitting diode with smooth surface for reflective electrode
JP5358429B2 (en) Method for forming ohmic electrode and semiconductor light emitting device
US20090114940A1 (en) Light-Emitting Device
US8338819B2 (en) Surface plasmon enhanced light-emitting diode
TWI462334B (en) Light emitting diode structure and manufacture method thereof
WO2015101068A1 (en) Light-emitting diode chip and method for manufacturing same
JP5713856B2 (en) Light transmissive metal electrode, electronic device and optical element
US20100084682A1 (en) Ohmic electrode and method thereof, semiconductor light emitting element having this
TWI718182B (en) A method for reusing a substrate for making light-emitting device
JP2003086839A (en) Nitride semiconductor light emitting device and method for manufacturing the same
TWI459588B (en) Light-emitting diode chip and method for manufacturing the same
JP2011040739A (en) Vertical light emitting diode and manufacturing method of the same
JP2006013500A (en) Light-emitting device
TWI524551B (en) Nitride semiconductor structure and semiconductor light-emitting element
JP5434288B2 (en) SEMICONDUCTOR LIGHT EMITTING DEVICE, SEMICONDUCTOR LIGHT EMITTING DEVICE MANUFACTURING METHOD, SEMICONDUCTOR LIGHT EMITTING DEVICE LAMP, LIGHTING DEVICE, AND ELECTRONIC DEVICE
JP5318353B2 (en) GaN-based LED element and light emitting device
TW201251121A (en) Light-emitting diode structure and method for manufacturing the same
CN109346564B (en) Manufacturing method of flip light-emitting diode chip
TWI581452B (en) High light extraction rate of light-emitting diodes, conductive films, and conductive films
KR101239852B1 (en) GaN compound semiconductor light emitting element
WO2012045222A1 (en) Light emitting device and manufacturing method thereof
TW201015752A (en) Light emitting diode chip and fabricating method thereof
JP2009152530A (en) Nitride semiconductor light emitting element and method of producing the same
Ryu et al. Vertical-injection AlGaInP LEDs with n-AlGaInP nanopillars fabricated by self-assembled ITO-based nanodots