WO2012091329A2 - 발광소자의 제조방법과 이 방법에 의해 제조된 발광소자 - Google Patents

발광소자의 제조방법과 이 방법에 의해 제조된 발광소자 Download PDF

Info

Publication number
WO2012091329A2
WO2012091329A2 PCT/KR2011/009647 KR2011009647W WO2012091329A2 WO 2012091329 A2 WO2012091329 A2 WO 2012091329A2 KR 2011009647 W KR2011009647 W KR 2011009647W WO 2012091329 A2 WO2012091329 A2 WO 2012091329A2
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting diode
semiconductor layer
emitting device
substrate
Prior art date
Application number
PCT/KR2011/009647
Other languages
English (en)
French (fr)
Other versions
WO2012091329A3 (ko
Inventor
이종람
송양희
유철종
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Publication of WO2012091329A2 publication Critical patent/WO2012091329A2/ko
Publication of WO2012091329A3 publication Critical patent/WO2012091329A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape

Definitions

  • an uneven portion serving as a template having a pillar or hole shape pattern is formed on a substrate or a semiconductor layer, and the uneven portion is formed on the surface of the light emitting diode substrate using the same, thereby widening the coating area of the phosphor and applying the phosphor.
  • the present invention relates to a light emitting device in which the luminous efficiency is greatly improved by arranging the position close to the active layer (SQW or MQW).
  • the white light source gallium nitride-based light emitting diodes have various forms of energy conversion efficiency, long life, high light directivity, low voltage driving, no preheating time and complicated driving circuit, and strong against shock and vibration. It is expected to be a solid-state lighting source that will replace the existing light sources such as incandescent lamps, fluorescent lamps and mercury lamps within the next five years due to the implementation of high quality lighting systems.
  • gallium nitride-based light emitting diode As a white light source to replace a mercury lamp or a fluorescent lamp, it must not only have excellent thermal stability but also be able to emit high power even at low power consumption. Changing research is ongoing.
  • Horizontal gallium nitride-based light emitting diodes which are widely used as white light sources, have the advantages of relatively low manufacturing cost and simple manufacturing process. have.
  • a vertical structured light emitting diode that overcomes the disadvantages of the horizontal structured light emitting diode and is easy to apply a high output light emitting diode having a large area is a vertical structured light emitting diode, and the vertical structured light emitting diode has various advantages as compared with a conventional horizontal structured light emitting diode.
  • the current spreading resistance is small, so a very uniform current spreading can be obtained, resulting in a lower operating voltage and a large light output, and a smooth heat dissipation through a metal or semiconductor substrate having good thermal conductivity. Long device life and significantly improved high power operation are possible.
  • the maximum applied current is increased by 3 to 4 or more compared to the horizontal light emitting diode, and thus it is surely used as a white light source for illumination.
  • the light conversion efficiency of the phosphor and the light conversion efficiency of the phosphor must be improved simultaneously.
  • the phosphor is coated on the outside of the chip, and thus the phosphor coating area is small, and the light emitting efficiency of the phosphor is low because the phosphor is applied to the active layer (MQW).
  • An object of the present invention is to provide a method of manufacturing a light emitting device which can improve the luminous efficiency by increasing the coating area of the phosphor and disposing the phosphor at a position close to the active layer as compared with the prior art.
  • another object of the present invention is to provide a light emitting device having a high luminous efficiency because a large phosphor coating area and a phosphor are located close to the active layer.
  • the present invention by forming an uneven portion on the surface of the substrate, by sequentially forming a first semiconductor layer, an active layer, and a second semiconductor layer on the substrate to maintain the shape of the uneven portion, It provides a method of manufacturing a light emitting device comprising the step of forming a concave-convex portion on one surface of the diode, and applying a phosphor to be inserted into the concave portion of the concave-convex portion formed in the light emitting diode.
  • the active layer and the second semiconductor layer are formed on the first semiconductor layer. Forming sequentially so that the shape is maintained, the step of forming a concave-convex portion on one surface of the light emitting diode, and the step of applying a phosphor to be inserted into the concave portion of the concave-convex portion formed in the light emitting diode.
  • the uneven portion may be formed through dry etching after forming a protective layer formed with a pattern.
  • the protective layer may be made of one or more selected from MgO x , AlO x , SiO x , GaO x , TiO x .
  • the pattern of the protective layer may be formed through a lift-off method through lithography or wet etching after nanoimprinting.
  • the inclination angle between the concave portion and the convex portion formed through the dry etching is characterized in that 60 ⁇ 90 °.
  • the first semiconductor layer, the active layer and the second semiconductor layer are sequentially grown on the substrate on which the uneven portion is formed, or the active layer and the first layer on the first semiconductor layer having the uneven portion are formed. It is characterized by epitaxially growing two semiconductor layers.
  • the surface of the light emitting diode may be surface treated with UVO or plasma before applying the phosphor.
  • the present invention provides a light emitting device comprising a light emitting diode and a phosphor coated on the light emitting diode, the uneven portion is formed on the surface of the light emitting diode to which the phosphor is applied, It provides a light emitting device characterized in that the phosphor is applied in the form of being inserted into the uneven portion.
  • the light emitting diode includes a substrate having an uneven portion formed on an upper surface thereof, and a first semiconductor layer, an active layer, a second semiconductor layer, and a transparent layer formed sequentially so that the shape of the uneven portion is maintained on the substrate. It may include an electrode layer.
  • the light emitting diode is sequentially formed such that the shape of the first semiconductor layer formed on the substrate and the substrate and having the uneven portion formed on the upper surface thereof, and the uneven portion formed on the first semiconductor layer is maintained.
  • the formed active layer, the second semiconductor layer and the transparent electrode layer may be included.
  • the angle between the concave and concave portions of the concave-convex portion is 60 to 90 °.
  • the light emitting diodes are characterized by having a horizontal structure.
  • a phosphor may be inserted into a light emitting diode having an uneven portion manufactured by dry etching, thereby generating excitation light.
  • the light conversion efficiency of the phosphor can be remarkably improved, and the coating area of the phosphor can be widened to the maximum, thereby providing a high output light source.
  • FIG. 1 is a view showing a manufacturing process of a light emitting diode substrate for a light emitting device according to a first embodiment of the present invention.
  • FIG. 2 is a view illustrating a manufacturing process of a light emitting device through mesa etching, transparent electrode formation, p-pad and n-pad formation, and phosphor coating on a light emitting diode substrate manufactured according to FIG. 1.
  • FIG 3 is a view illustrating a manufacturing process of a light emitting diode substrate for a light emitting device according to a second embodiment of the present invention.
  • FIG. 1 is a view showing a manufacturing process of a light emitting diode substrate for a light emitting device according to a first embodiment of the present invention
  • Figure 2 is mesa etching, transparent electrode formation, p on the light emitting diode substrate manufactured in accordance with FIG.
  • a drawing showing a manufacturing process of a light emitting device by forming a pad and n-pad and applying a phosphor.
  • the manufacturing process of the light emitting device comprises a light emitting diode substrate manufacturing step, mesa etching step, transparent electrode forming step, n-pad and p-pad forming step and phosphor coating step, Hereinafter, each step will be described in detail.
  • a manufacturing step of the light emitting diode substrate will be described with reference to FIG. 1.
  • n-GaN n-type gallium nitride semiconductor layer
  • MOCVD MOCVD
  • S1-1 MOCVD
  • a photolithography and a lift-off method are used or an etching protective film having a pattern as shown in FIG. 1 is formed through nanoimprinting and wet etching (S1-2), wherein the etching protective film is MgO.
  • the etching protective film is MgO. It is preferable to form at least one oxide film selected from x , AlO x , SiO x , GaO x , and TiO x .
  • n-GaN n-GaN
  • MOCVD MOCVD
  • MBE n-GaN layer
  • a pn-junction light emitting diode substrate is manufactured while epitaxially growing a p-type gallium nitride (p-GaN) layer on the active layer by MOCVD or MBE (S1-5).
  • p-GaN p-type gallium nitride
  • MOCVD or MBE MOCVD or MBE
  • the mesa etching step (S1-6) is a step of mesa etching a portion to be deposited n-pad on the light emitting diode substrate manufactured by the process as shown in Figure 1, mesa etching is a known method, wherein The depth allows only some n-GaN layers to be etched.
  • the transparent electrode forming step (S1-7) is a step of forming a transparent electrode in the concave-convex portion of the horizontal structure device formed mesa etching by using a sputtering, thermal evaporation method or electron beam deposition method, ITO x , At least one material of ZnO x , CaO x , WO x , TiO x or a material having a DMD (dielectric / metal / dielectric) structure is preferable, and in the case of the DMD structure, the D (didelectric) material A structure including one of WO x , CaO x , ZnO x , TiO x , and InO x , and M (metal) material includes one of Ag, Au, and Al.
  • the p-pad and n-pad forming step (S1-8) is a step of forming an electrode for supplying power to the pn junction structure of the horizontal structured light emitting diode, and p-pad and n by Cr 20nm and Au 100nm electron beam deposition method -pad is formed, and the state after formation of p-pad and n-pad is as shown in FIG.
  • the phosphor coating step (S1-9) is a step of applying a phosphor by using a spin coating, sol-gel spin coating, electron beam deposition or thermal deposition on the uneven portion formed on the p-GaN layer, as shown in FIG. Similarly, according to the first embodiment of the present invention, it can be seen that the phosphor is disposed in the recessed portion of the recessed portion.
  • the applied phosphor is YAG, TAG, silicate, or a phosphor that emits light at a wavelength of 510 to 780 nm by excitation to light at a wavelength of 350 nm to 480 nm, a quantum dot phosphor made of CdSe, ZnS, or a material containing the same, visible light Fret phosphors, colloidal phosphors, etc. that change energy can be used.
  • UVO and plasma surface treatment may be performed before applying the phosphor.
  • FIG 3 is a view illustrating a manufacturing process of a light emitting diode substrate for a light emitting device according to a second embodiment of the present invention.
  • the manufacturing process of the light emitting diode substrate according to the second embodiment includes forming an uneven portion of the sapphire substrate and forming a pn junction on the sapphire substrate on which the uneven portion is formed.
  • the sapphire substrate is washed with acetone, IPA (Iso-propane alcohol) and deionized water, and then sapphire substrate is prepared by drying with nitrogen (S2-1).
  • an etching protection film having a pattern as shown in FIG. 3 is formed on the sapphire substrate using photolithography and a lift-off method, or through nanoimprinting and wet etching (S2-2).
  • the etching protection film preferably forms at least one oxide film selected from MgO x , AlO x , SiO x , GaO x , and TiO x .
  • an uneven portion serving as a pillar-shaped or hole-shaped template is formed on the sapphire substrate (S2-3), wherein the depth of etching is to the depth of etching to some sapphire layer. To perform.
  • n-GaN layer, an active layer (MQW), and a p-GaN layer are sequentially epitaxially grown on the sapphire substrate on which the uneven portion is formed to maintain a shape of the uneven portion, thereby manufacturing a pn junction light emitting diode substrate ( S2-4 to S2-6).
  • the process of manufacturing the light emitting device including the phosphor as the photoconversion medium using the light emitting diode substrate manufactured as described above is performed in the same manner as in the first embodiment.
  • the light emitting devices manufactured according to the first and second embodiments of the present invention are coated in a form in which organic, inorganic phosphors or quantum dot phosphors, FRET phosphors, or the like are inserted into recesses formed on the surface of the light emitting diode substrate, Since the active layer and the phosphor are located close to each other, the light conversion efficiency of the excitation light generated in the active layer can be dramatically increased, and the coating area of the phosphor is increased, so that a high output light emitting device can be obtained.
  • the method of manufacturing the light emitting device according to the present invention uses a photolithography method or a nano imprint method, it is possible to easily form a desired pattern on a large area semiconductor, and can be applied to both vertical and horizontal light emitting diode structures. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

본 발명은 발광다이오드에 도포되는 형광체의 도포면적을 넓히고 형광체의 도포위치를 활성층(SQW 또는 MQW)과 가까운 위치에 배치함으로써, 발광효율을 크게 향상시킨 발광소자에 관한 것이다. 본 발명에 따른 발광소자의 제조방법은, 기판의 표면에 요철부를 형성하고, 상기 기판상에 제1 반도체층, 활성층, 제2 반도체층을 상기 요철부의 형상이 유지되도록 순차적으로 형성함으로써, 발광다이오드의 일면에 요철부가 형성되도록 하는 단계와, 상기 발광다이오드에 형성된 요철부의 요부(凹部)에 형광체를 삽입되도록 도포하는 단계를 포함한다.

Description

발광소자의 제조방법과 이 방법에 의해 제조된 발광소자
본 발명은 필라 또는 홀 형상의 패턴을 갖는 탬플릿(template) 역할을 하는 요철부를 기판 또는 반도체층에 형성하고 이를 이용하여 발광다이오드 기판의 표면에 요철부를 형성함으로써, 형광체의 도포면적을 넓히고 형광체의 도포위치를 활성층(SQW 또는 MQW)와 가까운 위치에 배치함으로써, 발광효율을 크게 향상시킨 발광소자에 관한 것이다.
백색광원 질화갈륨계 발광다이오드는 에너지 변환 효율이 높고, 수명이 길며, 빛의 지향성이 높고, 저전압 구동이 가능하며, 예열 시간과 복잡한 구동회로가 필요하지 않고, 충격 및 진동에 강하기 때문에 다양한 형태의 고품격 조명 시스템의 구현이 가능해 향후 5년 이내에 백열등, 형광등, 수은등과 같은 기존의 광원을 대체할 고체 조명(solid-state lighting) 광원으로 기대되고 있다.
질화갈륨계 발광다이오드가 기존의 수은등이나 형광등을 대체하여 백색광원으로서 쓰이기 위해서는 열적 안정성이 뛰어나야 할 뿐만 아니라 낮은 소비 전력에서도 고출력 빛을 발할 수 있어야 하므로, 고출력의 빛을 얻을 수 있도록 발광다이오드의 구조를 바꾸는 연구가 진행되고 있다.
현재 백색광원으로 널리 이용되고 있는 수평구조의 질화물갈륨계 발광다이오드는 상대적으로 제조단가가 작고 제작 공정이 간단하다는 장점이 있으나, 인가전류가 높고 면적이 큰 고출력의 광원으로 쓰이기에는 부적절하다는 원천적 결함이 있다.
이러한 수평구조 발광다이오드의 단점을 극복하고 대면적의 고출력 발광다이오드 적용이 용이한 소자가 수직구조 발광다이오드이며, 수직구조 발광다이오드는 기존의 수평구조 소자와 비교하여 여러 가지 장점을 가지고 있다. 수직구조 발광다이오드에서는 전류 확산 저항이 작아 매우 균일한 전류 확산을 얻을 수 있어 보다 낮은 작동 전압과 큰 광출력을 얻을 수 있으며, 열전도성이 좋은 금속 또는 반도체 기판을 통해 원활한 열방출이 가능하기 때문에 보다 긴 소자 수명과 월등히 향상된 고출력 작동이 가능하다. 수직구조 발광다이오드에서는 최대 인가전류가 수평구조 발광다이오드에 비해 3 ~ 4 이상 증가되므로 조명용 백색광원으로 널리 이용될 것이 확실시된다.
이러한 발광다이오드의 구조를 바꾸는 연구뿐만 아니라 백색광원 발광다이오드를 위해 형광효율을 증가시키기 위한 연구도 진행되고 있다. 발광다이오드를 백색광원용으로 사용하기 위해서는 칩 제작 단계 이후 패키지 단계에서 발광다이오드에서 발생한 빛을 여기원으로 사용하여 파장변환을 하는 형광체 도포 공정을 거치게 된다.
고효율의 백색광원을 만들기 위해서는 칩의 광변환효율과 함께 형광체의 광변환효율이 동시에 향상되어야 한다. 그런데 종래의 백색발광소자의 경우 형광체가 칩의 외부에 도포됨에 따라 형광체 도포 면적이 작고, 빛이 발생하는 활성층(MQW)과는 상당히 거리가 있어 형광체의 광변환효율이 낮은 문제점이 있다.
본 발명의 과제는 종래기술에 비해 형광체의 도포면적을 넓히고 형광체의 도포위치를 활성층에 가까운 위치에 배치할 수 있어 발광효율이 향상될 수 있는 발광소자의 제조방법을 제공하는 것이다.
또한, 본 발명의 다른 과제는 넓은 형광체 도포면적과 형광체가 활성층에 가깝게 위치하여 발광효율이 우수한 발광소자를 제공하는 것이다.
상기 과제를 해결하기 위한 수단으로 본 발명은, 기판의 표면에 요철부를 형성하고, 상기 기판상에 제1 반도체층, 활성층, 제2 반도체층을 상기 요철부의 형상이 유지되도록 순차적으로 형성함으로써, 발광다이오드의 일면에 요철부가 형성되도록 하는 단계와, 상기 발광다이오드에 형성된 요철부의 요부(凹部)에 형광체를 삽입되도록 도포하는 단계를 포함하는 발광소자의 제조방법을 제공한다.
또한, 본 발명의 다른 형태는, 기판상에 제1 반도체층을 형성하고 상기 제1 반도체층의 표면에 요철부를 형성한 후, 제1 반도체층 상에, 활성층 및 제2 반도체층을 상기 요철부의 형상이 유지되도록 순차적으로 형성함으로써, 발광다이오드의 일면에 요철부가 형성되도록 하는 단계와, 상기 발광다이오드에 형성된 요철부의 요부(凹部)에 형광체를 삽입되도록 도포하는 단계를 포함하는 것이다.
또한, 본 발명의 일 실시형태에 따르면, 상기 요철부는 패턴이 형성된 보호층을 형성한 후 건식에칭을 통해 형성될 수 있다.
또한, 본 발명의 일 실시형태에 따르면, 상기 보호층은 MgOx, AlOx, SiOx, GaOx, TiOx 중에서 선택된 1종 이상으로 이루어질 수 있다.
또한, 본 발명의 일 실시형태에 따르면, 상기 보호층의 패턴은 리소그라피를 통한 리프트 오프(lift-off) 방법 또는 나노임프린팅 후 습식에칭을 통해 형성될 수 있다.
또한, 본 발명의 일 실시형태에 따르면, 상기 건식에칭을 통해 형성된 요철부의 요부와 철부 사이의 경사각이 60 ~ 90°인 것을 특징으로 한다.
또한, 본 발명의 일 실시형태에 따르면, 상기 요철부가 형성된 기판상에 제1 반도체층, 활성층 및 제2 반도체층을 순차적으로 에피성장시키거나, 상기 요철부가 형성된 제1 반도체층 상에 활성층 및 제2 반도체층을 순차적으로 에피성장시키는 것을 특징으로 한다.
또한, 본 발명의 일 실시형태에 따르면, 상기 형광체를 도포하기 전에 발광다이오드의 표면을 UVO 또는 플라즈마로 표면처리하는 단계를 포함할 수 있다.
또한, 상기 다른 과제를 해결하기 위한 수단으로, 본 발명은 발광다이오드와 상기 발광다이오드 상에 도포된 형광체를 포함하는 발광소자로서, 상기 형광체가 도포되는 발광다이오드의 면에 요철부가 형성되어 있고, 상기 요철부에 형광체가 삽입되는 형태로 도포되어 있는 것을 특징으로 하는 발광소자을 제공한다.
또한, 본 발명의 일 실시형태에 따르면, 상기 발광다이오드는 상면에 요철부가 형성된 기판과, 상기 기판상에 상기 요철부의 형상이 유지되도록 순차적으로 형성된 제1 반도체층, 활성층, 제2 반도체층 및 투명전극층을 포함할 수 있다.
또한, 본 발명의 일 실시형태에 따르면, 상기 발광다이오드는, 기판과 상기 기판상에 형성되며 상면에 요철부가 형성된 제1 반도체층과, 상기 제1 반도체층에 형성된 요철부의 형상이 유지되도록 순차적으로 형성된 활성층, 제2 반도체층 및 투명전극층을 포함할 수 있다.
또한, 본 발명의 일 실시형태에 따르면, 상기 요철부의 요부와 철부 사이의 각도는 60 ~ 90°인 것을 특징으로 한다.
또한, 본 발명의 일 실시형태에 따르면, 상기 발광다이오드는 수평형 구조를 갖는 것을 특징으로 한다.
본 발명은 대면적 공정이 가능한 포토 리소그라피 또는 나노 임프린트 방법을 이용하여 패턴을 형성한 후 건식 에칭을 이용하여 제작한 요철부를 구비한 발광다이오드에 형광체를 삽입하여 만들 수 있기 때문에, 여기광을 생성하는 활성층과 형광체와의 간격을 줄여 형광체의 광변환효율을 현저하게 향상시킬 수 있고 형광체의 도포면적도 최대한으로 넓힐 수 있어, 높은 출력의 광원을 제공할 수 있게 된다.
도 1은 본 발명의 제1 실시예에 따른 발광소자를 위한 발광다이오드 기판의 제조과정을 보여주는 도면이다.
도 2는 도 1에 따라 제조된 발광다이오드 기판에 순차적으로 메사 에칭, 투명전극 형성, p-pad 및 n-pad 형성 및 형광체 도포를 통한 발광소자의 제조과정을 보여주는 도면이다.
도 3은 본 발명의 제2 실시예에 따른 발광소자를 위한 발광다이오드 기판의 제조과정을 보여주는 도면이다.
이하에서는, 본 발명의 바람직한 실시예들을 기초하여 본 발명을 보다 구체적으로 설명한다. 그러나 하기 실시예들은 본 발명의 이해를 돕기 위한 일 예에 불과한 것으로 이에 의해 본 발명의 권리범위가 축소 및 한정되는 것은 아니다.
[실시예 1]
도 1은 본 발명의 제1 실시예에 따른 발광소자를 위한 발광다이오드 기판의 제조과정을 보여주는 도면이고, 도 2는 도 1에 따라 제조된 발광다이오드 기판에 순차적으로 메사 에칭, 투명전극 형성, p-pad 및 n-pad 형성 및 형광체 도포를 통한 발광소자의 제조과정을 보여주는 도면이다.
본 발명의 제1 실시예에 따른 발광소자의 제조공정은, 발광다이오드 기판 제조 단계, 메사 에칭 단계, 투명전극 형성 단계, n-pad 및 p-pad 형성 단계 및 형광체 도포 단계를 포함하여 이루어지며, 이하에서는 상기 각 단계에 대해 구체적으로 설명한다.
도 1을 참조하여 상기 발광다이오드 기판 제조 단계에 대해 설명한다.
먼저 사파이어 기판상에 MOCVD를 이용하여 n형 질화갈륨 반도체층(n-GaN)을 형성한다(S1-1). 이어서 포토 리소그라피와 리프트 오프(lift-off) 방법을 이용하거나, 나노 임프린팅과 습식에칭을 통해 도 1에 도시된 바와 같은 패턴이 형성된 에칭보호막을 형성하는데(S1-2), 상기 에칭보호막은 MgOx, AlOx, SiOx, GaOx, TiOx 중에서 선택된 1종 이상의 산화막을 형성하는 것이 바람직하다. 패턴이 형성된 에칭 보호막을 이용하여 건식에칭을 함으로써, n-GaN에 필라형 또는 홀 형상의 템플릿 역할을 하는 요철부를 형성하며(S1-3), 이때 에칭의 깊이는 일부 GaN층까지 에칭하는 깊이까지 수행한다. 요철부가 형성된 n-GaN층 상에 MOCVD 또는 MBE법을 통해 활성층(MQW)을 에피성장시켜 상기 n-GaN층의 요철부(즉, 템플릿)의 형상이 유지되도록 한다(S1-4). 또한, 상기 활성층의 상부에는 MOCVD 또는 MBE법을 통해 p형 질화갈륨(p-GaN)층을 에피성장시켜 상기 요철부 형상이 유지되도록 하면서 pn접합 발광다이오드 기판을 제조한다(S1-5). 본 발명의 제1 실시예에서는 상기한 과정을 통해 발광다이오드 기판 표면에 n-GaN층에 형성된 요철부의 형상이 전사된 형상의 요철부를 형성한다.
다음으로, 도 2를 참조하여 요철부가 형성된 발광다이오드 기판을 이용하여 발광소자를 제조하는 각 단계들을 설명한다.
상기 메사 에칭 단계(S1-6)는, 도 1과 같은 과정을 통해 제조된 발광다이오드 기판에 n-pad를 증착할 부분을 메사 에칭하는 단계로, 메사 에칭은 공지된 방법에 의하며, 이때 에칭의 깊이는 일부 n-GaN층만이 에칭이 되도록 한다.
상기 투명전극 형성 단계(S1-7)는, 스퍼터, 열 증착법 또는 전자빔 증착법을 이용하여, 메사 에칭이 이루어진 수평구조형 소자 중 요철부가 형성된 곳에 투명전극을 형성하는 단계로, 투명전극으로는 ITOx, ZnOx, CaOx, WOx, TiOx 중 적어도 하나의 물질이나, DMD(dielectric/metal/dielectric) 구조를 갖는 물질을 포함하는 것이 바람직하며, 상기 DMD 구조의 경우 상기 D(didelectric) 물질로는 WOx, CaOx, ZnOx, TiOx, InOx 중 하나의 물질을 포함하고, M(metal) 물질로는 Ag, Au, Al 중 하나의 물질을 포함하는 구조가 바람직하다.
상기 p-pad 및 n-pad 형성 단계(S1-8)는, 수평구조형 발광다이오드의 pn접합구조에 전원을 인가하는 전극을 형성하는 단계로, Cr 20nm 와 Au 100nm 전자선 증착법으로 p-pad 및 n-pad를 형성하며, p-pad 및 n-pad의 형성 후 상태는 도 2에 도시된 바와 같다.
상기 형광체 도포 단계(S1-9)는, 상기 p-GaN층 상에 형성된 요철부에 스핀코팅, 졸겔 스핀코팅, 전자선 증착 또는 열증착법을 이용하여 형광체를 도포하는 단계로, 도 2에 도시된 바와 같이, 본 발명의 제1 실시예에 의하면, 상기 요철부의 요부 내에 형광체가 삽입된 형태로 배치됨을 알 수 있다. 상기 도포되는 형광체로는 YAG, TAG, 실리케이트, 또는 350nm ~ 480nm 파장의 빛에 여기하여 510 ~ 780nm의 파장에서 발광하는 형광체, CdSe, ZnS 또는 이를 포함하는 물질로 이루어진 양자점 형광체, 열에너지를 가시광선 빛 에너지를 바꾸는 Fret 형광체, 콜로이드 형광체 등이 사용될 수 있다.
또한, 상기 형광체를 도포하기 전에 UVO 및 플라즈마 표면처리를 수행할 수도 있다.
[실시예 2]
도 3은 본 발명의 제2 실시예에 따른 발광소자를 위한 발광다이오드 기판의 제조과정을 보여주는 도면이다.
도 3에 도시된 바와 같이, 제2 실시예에 따른 발광다이오드 기판의 제조과정은, 사파이어 기판의 요철부 형성단계와, 상기 요철부가 형성된 사파이어 기판 상에 pn접합부를 형성하는 단계로 이루어진다.
상기 사파이어 기판의 요철부 형성단계는, 사파이어 기판을 아세톤, IPA(Iso-propane alcohol) 그리고 탈이온수를 이용하여 세척한 후 질소로 건조하는 사파이어 기판 준비한다(S2-1).
이어서 포토 리소그라피와 리프트 오프(lift-off) 방법을 이용하거나, 나노 임프린팅과 습식에칭을 통해 도 3에 도시된 바와 같은 패턴이 형성된 에칭보호막을 사파이어 기판상에 형성하며(S2-2), 상기 에칭보호막은 MgOx, AlOx, SiOx, GaOx, TiOx 중에서 선택된 1종 이상의 산화막을 형성하는 것이 바람직하다.
패턴이 형성된 에칭보호막을 이용하여 건식에칭을 함으로써, 사파이어 기판상에 필라형 또는 홀 형상의 템플릿 역할을 하는 요철부를 형성하며(S2-3), 이때 에칭의 깊이는 일부 사파이어층까지 에칭하는 깊이까지 수행한다.
요철부가 형성된 사파이어 기판 상에 MOCVD 또는 MBE법을 통해 n-GaN층, 활성층(MQW) 및 p-GaN층을 순차적으로 에피성장시켜 상기 요철부 형상이 유지되도록 하면서 pn접합 발광다이오드 기판을 제조한다(S2-4 ~ S2-6).
이와 같이 제조된 발광다이오드 기판을 이용하여 광변환매체인 형광체를 포함하는 발광소자를 제조하는 과정은 상기 제1 실시예와 동일하게 수행한다.
본 발명의 제1 및 제2 실시예에 따라 제조된 발광소자는, 발광다이오드 기판의 표면에 형성된 요부(凹部)에 유기, 무기 형광체 또는 양자점 형광체, FRET 형광체 등이 삽입되는 형식으로 도포되기 때문에, 활성층과 형광체가 가까운 위치가 존재하게 되어 활성층에서 발생한 여기광의 광변환효율을 획기적으로 증가시킬 수 있을 뿐 아니라 형광체의 도포면적이 증가하기 때문에, 고출력의 발광소자를 얻을 수 있다.
본 발명에 따른 발광소자의 제조방법은, 포토 리소그라피 방법 또는 나노 임프린트 방법을 사용하기 때문에 대면적의 반도체에 원하는 패턴을 쉽게 형성할 수 있으며, 수직형과 수평형 발광 다이오드 구조에 모두 적용할 수 있다.

Claims (14)

  1. 기판의 표면에 요철부를 형성하고, 상기 기판상에 제1 반도체층, 활성층, 제2 반도체층을 상기 요철부의 형상이 유지되도록 순차적으로 형성함으로써, 발광다이오드의 일면에 요철부가 형성되도록 하는 단계와,
    상기 발광다이오드에 형성된 요철부의 요부(凹部)에 형광체를 삽입되도록 도포하는 단계를 포함하는 발광소자의 제조방법.
  2. 기판상에 제1 반도체층을 형성하고 상기 제1 반도체층의 표면에 요철부를 형성한 후, 제1 반도체층 상에, 활성층 및 제2 반도체층을 상기 요철부의 형상이 유지되도록 순차적으로 형성함으로써, 발광다이오드의 일면에 요철부가 형성되도록 하는 단계와,
    상기 발광다이오드에 형성된 요철부의 요부(凹部)에 형광체를 삽입되도록 도포하는 단계를 포함하는 발광소자의 제조방법.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 요철부는 패턴이 형성된 보호층을 형성한 후 건식에칭을 통해 형성되는 것을 특징으로 하는 발광소자의 제조방법.
  4. 제 3 항에 있어서,
    상기 보호층은 MgOx, AlOx, SiOx, GaOx, TiOx 중에서 선택된 1종 이상으로 이루어진 것을 특징으로 하는 발광소자의 제조방법.
  5. 제 3 항에 있어서,
    상기 보호층의 패턴은 리소그라피를 통한 리프트 오프(lift-off) 방법 또는 나노임프린팅 후 습식에칭을 통해 형성되는 것을 특징으로 하는 발광소자의 제조방법.
  6. 제 3 항에 있어서,
    상기 건식에칭을 통해 형성된 요철부의 요부와 철부 사이의 경사각이 60 ~ 90°인 것을 특징으로 하는 발광소자의 제조방법.
  7. 제 1 항에 있어서,
    상기 요철부가 형성된 기판상에 제1 반도체층, 활성층 및 제2 반도체층을 순차적으로 에피성장시키는 것을 특징으로 하는 발광소자의 제조방법.
  8. 제 2 항에 있어서,
    상기 요철부가 형성된 제1 반도체층 상에 활성층 및 제2 반도체층을 순차적으로 에피성장시키는 것을 특징으로 하는 발광소자의 제조방법.
  9. 제 1 항 또는 제 2 항에 있어서,
    상기 형광체를 도포하기 전에 발광다이오드의 표면을 UVO 또는 플라즈마로 표면처리하는 단계를 포함하는 것을 특징으로 하는 발광소자의 제조방법.
  10. 발광다이오드와 상기 발광다이오드상에 도포된 형광체를 포함하는 발광소자로서, 상기 형광체가 도포되는 발광다이오드의 면에 요철부가 형성되어 있고, 상기 요철부에 형광체가 삽입되는 형태로 도포되어 있는 것을 특징으로 하는 발광소자.
  11. 제 10 항에 있어서,
    상기 발광다이오드는, 상면에 요철부가 형성된 기판과, 상기 기판상에 상기 요철부의 형상이 유지되도록 순차적으로 형성된 제1 반도체층, 활성층, 제2 반도체층 및 투명전극층을 포함하는 것을 특징으로 하는 발광소자.
  12. 제 10 항에 있어서,
    상기 발광다이오드는, 기판과 상기 기판상에 형성되며 상면에 요철부가 형성된 제1 반도체층과, 상기 제1 반도체층에 형성된 요철부의 형상이 유지되도록 순차적으로 형성된 활성층, 제2 반도체층 및 투명전극층을 포함하는 것을 특징으로 하는 발광소자.
  13. 제 10 항 내지 제 12 항 중 어느 한 항에 있어서,
    상기 요철부의 요부와 철부 사이의 각도는 60 ~ 90°인 것을 특징으로 하는 발광소자.
  14. 제 10 항 내지 제 12 항 중 어느 한 항에 있어서,
    상기 발광다이오드는 수평형 구조를 갖는 것을 특징으로 하는 발광소자.
PCT/KR2011/009647 2010-12-30 2011-12-15 발광소자의 제조방법과 이 방법에 의해 제조된 발광소자 WO2012091329A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0139640 2010-12-30
KR1020100139640A KR20120077612A (ko) 2010-12-30 2010-12-30 발광소자의 제조방법과 이 방법에 의해 제조된 발광소자

Publications (2)

Publication Number Publication Date
WO2012091329A2 true WO2012091329A2 (ko) 2012-07-05
WO2012091329A3 WO2012091329A3 (ko) 2012-08-23

Family

ID=46383629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009647 WO2012091329A2 (ko) 2010-12-30 2011-12-15 발광소자의 제조방법과 이 방법에 의해 제조된 발광소자

Country Status (2)

Country Link
KR (1) KR20120077612A (ko)
WO (1) WO2012091329A2 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101600196B1 (ko) * 2014-07-14 2016-03-07 한양대학교 산학협력단 하부 폭에 비해 상부 폭이 좁은 다면체를 포함하는 발광다이오드 및 이의 제조방법
US10763111B2 (en) 2014-07-14 2020-09-01 Industry-University Cooperation Foundation Hanyang University Polyhedron of which upper width is narrower than lower width, manufacturing method therefor, and photoelectric conversion device comprising same
WO2016010339A1 (ko) * 2014-07-14 2016-01-21 한양대학교 산학협력단 하부 폭에 비해 상부 폭이 좁은 다면체, 이의 제조방법, 및 이를 포함하는 광전변환소자
KR102252994B1 (ko) 2014-12-18 2021-05-20 삼성전자주식회사 발광소자 패키지 및 발광소자 패키지용 파장 변환 필름
CN108598236A (zh) * 2018-04-28 2018-09-28 华灿光电(苏州)有限公司 一种发光二极管外延片及其制作方法
CN108899399B (zh) * 2018-05-29 2019-11-29 华灿光电(浙江)有限公司 一种发光二极管外延片及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243726A (ja) * 2001-12-14 2003-08-29 Nichia Chem Ind Ltd 発光装置およびその製造方法
KR20040005612A (ko) * 2002-07-08 2004-01-16 니치아 카가쿠 고교 가부시키가이샤 질화물 반도체 소자의 제조방법 및 질화물 반도체 소자
KR20070008026A (ko) * 2005-07-12 2007-01-17 삼성전기주식회사 발광다이오드 및 그 제조방법
KR20090026688A (ko) * 2007-09-10 2009-03-13 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
US20100259184A1 (en) * 2006-02-24 2010-10-14 Ryou Kato Light-emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243726A (ja) * 2001-12-14 2003-08-29 Nichia Chem Ind Ltd 発光装置およびその製造方法
KR20040005612A (ko) * 2002-07-08 2004-01-16 니치아 카가쿠 고교 가부시키가이샤 질화물 반도체 소자의 제조방법 및 질화물 반도체 소자
KR20070008026A (ko) * 2005-07-12 2007-01-17 삼성전기주식회사 발광다이오드 및 그 제조방법
US20100259184A1 (en) * 2006-02-24 2010-10-14 Ryou Kato Light-emitting device
KR20090026688A (ko) * 2007-09-10 2009-03-13 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법

Also Published As

Publication number Publication date
WO2012091329A3 (ko) 2012-08-23
KR20120077612A (ko) 2012-07-10

Similar Documents

Publication Publication Date Title
WO2012091329A2 (ko) 발광소자의 제조방법과 이 방법에 의해 제조된 발광소자
US20090315013A1 (en) Efficient light extraction method and device
WO2016200882A1 (en) Microled display without transfer
KR20120083084A (ko) 나노 로드 발광 소자 및 그 제조 방법
TW201411877A (zh) 光學裝置以及發光裝置及其製造方法
KR20120083829A (ko) 식각형 공명에너지전달 발광다이오드
TWI425665B (zh) Led基板之製造方法、led基板及白光led構造
KR101215299B1 (ko) 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드
KR101291153B1 (ko) 발광다이오드 및 그 제조방법
WO2010074373A1 (ko) 발광소자 및 그 제조방법
CN106784218A (zh) 一种led芯片及其制作方法
CN102194936A (zh) 发光器件、发光器件封装、以及照明系统
KR102471271B1 (ko) 광학 소자 및 이를 포함하는 광원 모듈
JP2013012709A (ja) 窒化物系発光ダイオード素子および発光方法
CN101752485A (zh) 半导体发光二极管
CN114005911B (zh) 一种显示器件及其制备方法
CN111048496B (zh) 倒装led红光器件结构及其制备方法
Wang Electrically injected hybrid III-nitride/organic white LEDs with non-radiative energy
WO2013122328A1 (ko) 발광 소자 제조 방법 및 이를 이용하여 제조된 발광 소자
KR101221075B1 (ko) 나노 임프린트를 이용한 질화갈륨계 발광 다이오드 제조방법과 이를 통해 제조된 발광 다이오드 소자
KR101166132B1 (ko) 희생층을 구비한 발광다이오드 및 그 제조방법
KR100683446B1 (ko) 요철 버퍼층을 갖는 발광소자 및 그 제조방법
KR100654079B1 (ko) 전기적 특성 및 접착력이 개선된 p형 전극패드를 구비한발광 다이오드
KR102348533B1 (ko) 발광소자 및 그 제조방법
KR102378757B1 (ko) 마이크로-나노핀 led 소자를 포함하는 광원 및 이를 포함하는 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852393

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11852393

Country of ref document: EP

Kind code of ref document: A2