KR100669142B1 - 발광 소자와 이의 제조 방법 - Google Patents
발광 소자와 이의 제조 방법 Download PDFInfo
- Publication number
- KR100669142B1 KR100669142B1 KR1020050032834A KR20050032834A KR100669142B1 KR 100669142 B1 KR100669142 B1 KR 100669142B1 KR 1020050032834 A KR1020050032834 A KR 1020050032834A KR 20050032834 A KR20050032834 A KR 20050032834A KR 100669142 B1 KR100669142 B1 KR 100669142B1
- Authority
- KR
- South Korea
- Prior art keywords
- gallium nitride
- thin film
- dielectric thin
- nitride layer
- substrate
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title claims description 29
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims abstract description 118
- 229910002601 GaN Inorganic materials 0.000 claims abstract description 111
- 239000010409 thin film Substances 0.000 claims abstract description 105
- 239000000758 substrate Substances 0.000 claims abstract description 96
- 229910020286 SiOxNy Inorganic materials 0.000 claims abstract description 26
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 15
- 239000010703 silicon Substances 0.000 claims abstract description 15
- 229910052594 sapphire Inorganic materials 0.000 claims description 29
- 239000010980 sapphire Substances 0.000 claims description 29
- 229920002120 photoresistant polymer Polymers 0.000 claims description 23
- 238000005530 etching Methods 0.000 claims description 13
- 238000003892 spreading Methods 0.000 claims description 8
- 230000007480 spreading Effects 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 6
- 239000010408 film Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000000059 patterning Methods 0.000 claims 1
- 238000000605 extraction Methods 0.000 abstract description 18
- 239000007789 gas Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 102100032912 CD44 antigen Human genes 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- -1 epi Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 108010069264 keratinocyte CD44 Proteins 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D17/00—Excavations; Bordering of excavations; Making embankments
- E02D17/20—Securing of slopes or inclines
- E02D17/205—Securing of slopes or inclines with modular blocks, e.g. pre-fabricated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01B—PERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
- E01B1/00—Ballastway; Other means for supporting the sleepers or the track; Drainage of the ballastway
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D2600/00—Miscellaneous
- E02D2600/20—Miscellaneous comprising details of connection between elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0083—Periodic patterns for optical field-shaping in or on the semiconductor body or semiconductor body package, e.g. photonic bandgap structures
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Led Devices (AREA)
Abstract
광의 적출 효율을 높이기 위한 전극 구조를 갖는 발광 소자와 이의 제조 방법이 개시된다. 유전체 박막은 기판의 굴절률과 실질적으로 동일한 굴절율을 갖고서, 기판의 일부 영역에 요철 형태로 형성된다. 완충층은 유전체 박막에 의해 노출된 기판 및 유전체 박막을 커버한다. 제1 질화 갈륨층은 완충층의 제1 영역에 제1 높이로 형성되고, 제2 영역에 제1 높이보다는 작은 제2 높이로 형성된다. 제1 전극은 제2 높이로 형성된 제1 질화 갈륨층 위에 형성된다. 활성층은 제1 높이로 형성된 제1 질화 갈륨층 위에 형성된다. 제2 질화 갈륨층은 활성층 위에 형성된다. 제2 전극은 제2 질화 갈륨층 위에 형성된다. 기판과 질화 갈륨층 사이에 실리콘 옥시나이트라이드(SiOxNy)의 요철 구조를 삽입하므로써, 광의 적출 효율을 높일 수 있다.
발광 소자, 질화 갈륨, 광의 적출, 유전체 박막 패턴 기판
Description
도 1은 스넬의 법칙을 설명하는 개략도이다.
도 2는 일반적인 질화 갈륨계 발광 다이오드의 구조를 개략적으로 나타내는 사시도이다.
도 3은 본 발명의 비교예에 따른 발광 다이오드의 단면도이다.
도 4는 본 발명에 따른 질화 갈륨계 발광 다이오드를 개략적으로 설명하는 단면도이다.
도 5a 및 도 5b는 본 발명의 제1 실시예에 따른 질화 갈륨계 발광 다이오드 구조를 각각 설명하는 평면도 및 단면도이다.
도 6은 SiOxNy 유전체 박막의 굴절율과 산소 함유량(oxygen content)간의 관계를 나타낸 그래프이다.
도 7a 및 도 7b는 본 발명의 제2 실시예에 따른 질화 갈륨계 발광 다이오드 구조를 각각 설명하는 평면도 및 단면도이다.
도 8a 및 도 8b는 본 발명의 제3 실시예에 따른 질화 갈륨계 발광 다이오드 구조를 각각 설명하는 평면도 및 단면도이다.
도 9a 내지 도 9c는 본 발명의 제4 실시예에 따른 질화 갈륨계 발광 다이오 드 구조를 각각 설명하는 평면도 및 단면도이다.
도 10a 내지 도 10e는 도 4에 도시된 발광 다이오드의 제조 방법을 설명하는 단면도들이다.
<도면의 주요부분에 대한 부호의 설명>
10, 100 : 질화 갈륨계 발광 다이오드 11, 110: 기판
120 : 유전체막 12, 130 : 질화 갈륨 완충층
13, 140 : n형 질화 갈륨층 14, 160 : 활성층
15, 170 : p형 질화 갈륨층 16, 180 : 전류확산층
17, 180 : p-전극 18, 150 : n-전극
본 발명은 발광 소자와 이의 제조 방법에 관한 것으로, 보다 상세히는 광의 적출 효율(Extraction efficiency)을 높이기 위한 전극 구조를 갖는 발광 소자와 이의 제조 방법에 관한 것이다.
일반적으로 발광 소자인 발광 다이오드는 백열 전구나 형광등을 대체하는 차세대 조명으로 각광받고 있다. 특히, 긴 수명을 가진 대면적 LCD의 조명에 활용되면서 수요가 더욱 크게 증가할 것으로 예상된다.
하지만, LED를 구성하는 물질(사파이어 기판, 에피, 에폭시 등) 간의 굴절률 차이에 기인하는 전반사(total reflection)로 인해 발생한 광의 대부분이 밖으로 빠져 나오지 못하고 갇히게 된다. 상기 전반사는 굴절률이 다른 계면에서, 상대적으로 높은 굴절률을 가지는 물질에서 낮은 굴절률을 가지는 물질로 광이 진행할 때 발생된다. 상기 전반사는 스넬의 법칙(Snell'law)에 의해 결정된다.
도 1은 스넬의 법칙을 설명하는 개략도이다. 여기서, n1 및 n2는 각각 제1 및 제2 매질의 굴절률이며, θ1 및 θ2는 각각 입사각 및 출사각이다. 여기서 제2 매질의 굴절률이 제1 매질의 굴절률보다 크다.
도 1을 참조하면, 굴절률이 상대적으로 큰 제2 매질에서 굴절률이 상대적으로 작은 제1 매질로 광이 투과될 때, 투과되는 광의 출사각(θ2)은 입사각(θ1)보다 큰 각도를 갖는다.
특히, 블루 광원으로 널리 사용되는 질화 갈륨계 LED에 채용되는 사파이어 기판 및 질화 갈륨(GaN)층은 굴절률이 각각 1.8 및 2.5이므로 굴절률이 1인 공기층과 심한 차이를 존재한다. 이처럼 큰 굴절률 차이는 발광 다이오드에서 발생된 광의 상당 부분이 내부에 갇히는 원인이 된다.
예를들면, 질화 갈륨(GaN)층과 사파이어 기판간의 계면의 임계각은 46도 정도가 된다. 따라서 46도 보다 큰 입사각을 갖는 광은 질화 갈륨(GaN)층 내부에 갇힌다.
같은 방법으로 계산하면, 사파이어 기판과 공기 계면의 임계각은 33.5도, 질화 갈륨(GaN)층과 공기층간의 계면의 임계각은 23.6도 정도이다. 따라서, 33.5도 보다 큰 입사각을 갖는 광은 사파이어 기판 내부에 갇히고, 23.6도보다 큰 입사각을 갖는 광은 갈륨(GaN)층 내부에 갇힌다.
이처럼, 발광 다이오드에서 발생된 많은 양의 광들이 계면의 전반사때문에 적출되지 못함에 따라, 전체 LED의 외부 양자 효율을 줄이는 원인이 되어 LED의 광출력을 감소시키는 문제점이 있다.
이에 본 발명의 기술적 과제는 이러한 종래의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 고휘도의 LED를 구현하기 위해 광의 적출 효율을 높일 수 있는 질화 갈륨계 발광 소자를 제공하는 것이다.
본 발명의 다른 목적은 상기한 발광 소자의 제조 방법을 제공하는 것이다.
상기한 본 발명의 목적을 실현하기 위하여 일실시예에 따른 발광 소자는 기판, 유전체 박막, 완충층, 제1 질화 갈륨층, 제1 전극, 활성층, 제2 질화 갈륨층, 및 제2 전극을 포함한다. 상기 유전체 박막은 상기 기판의 굴절률과 실질적으로 동일한 굴절율을 갖고서, 상기 기판의 일부 영역에 요철 형태로 형성된다. 상기 완충층은 상기 유전체 박막에 의해 노출된 기판 및 상기 유전체 박막을 커버한다. 상기 제1 질화 갈륨층은 상기 완충층의 제1 영역에 제1 높이로 형성되고, 제2 영역에 상기 제1 높이보다는 작은 제2 높이로 형성된다. 상기 제1 전극은 상기 제2 높이로 형성된 제1 질화 갈륨층 위에 형성된다. 상기 활성층은 상기 제1 높이로 형성된 제1 질화 갈륨층 위에 형성된다. 상기 제2 질화 갈륨층은 상기 활성층 위에 형성된다. 상기 제2 전극은 상기 제2 질화 갈륨층 위에 형성된다.
상기한 본 발명의 다른 목적을 실현하기 위하여 일실시예에 따른 발광 소자 의 제조 방법은, (a) 기판 위에 상기 기판의 굴절률과 실질적으로 동일한 굴절율을 갖는 유전체 박막을 일정 패턴으로 형성하는 단계; (b) 단계(a)에 의한 결과물 위에 완충층, 제1 질화 갈륨층, 활성층 및 제2 질화 갈륨층을 순차적으로 성장시키는 단계; (c) 상기 제2 질화 갈륨층 위에 전류확산층을 증착하고, 열처리를 통해 오믹 콘택을 형성하는 단계; (d) n-콘택에 대응하도록 상기 제2 질화 갈륨층, 활성층을 제거하고, 상기 제1 질화 갈륨층의 표면 일부를 제거하는 단계; 및 (e) 표면이 제거되어 상대적으로 낮은 질화 갈륨층 위에 제1 전극을 증착하고, 상대적으로 높은 상기 전류확산층 위에 제2 전극을 증착하는 단계를 포함한다.
이러한 발광 소자와 이의 제조 방법에 의하면, 기판과 질화 갈륨층 사이에 실리콘 옥시나이트라이드(silicon oxynitride, SiOxNy)의 요철 구조를 삽입하므로써, 광의 적출 효율을 높일 수 있다.
이하, 첨부한 도면들을 참조하여, 본 발명을 보다 상세하게 설명하고자 한다.
도 2는 일반적인 질화 갈륨계 발광 다이오드의 구조를 개략적으로 나타내는 사시도이다.
도 2를 참조하면, 일반적인 질화 갈륨계 발광 다이오드는 기판(11), n형 질화 갈륨층(13), 활성층(active layer)(14), p형 질화 갈륨층(15), p형 투명 전극(16), p-전극(17) 및 n-전극(18)으로 이루어진다. 동작시, 상기p-전극(21)과 n-전극(20)을 통해 전류를 흘리면 상기 활성층(12)에서 전자-홀 재결합이 일어나면서 광이 방출된다.
상기 기판(10) 위에 상기 질화 갈륨층(11)을 성장시키기 위해 보통 MOCVD(Metal Organic Chemical Vapor Deposition) 장치를 이용한다. 상기 기판(10)은 사파이어 기판 또는 실리콘 카바이드 기판이다.
먼저 상기 기판(11) 위에 질화 갈륨층(13)의 성장을 돕기 위한 완충층(buffer layer)(미도시)을 형성하고, 상기 n형 질화 갈륨층(13), 활성층(active layer)(14) 및 p형 질화 갈륨층(15)을 차례대로 성장시킨다.
일반적으로 다이오드는 p-n 접합으로 전류를 흘리기 위해 p형 질화 갈륨층 상부와 n형 질화 갈륨층과 연결된 기판 하부에 전극을 형성한다. 하지만, 질화 갈륨계 다이오드의 기판으로 사용되는 사파이어는 절연체이므로 사파이어 기판(11)에 전극을 형성할 수 없다. 따라서, 상기 n형 질화 갈륨층(13)에 직접 전극을 형성해야 한다.
이를 위해 전극이 형성될 부분의 p형 질화 갈륨층(15) 및 활성층(14), n형 질화 갈륨층(13)의 일부 영역을 제거하고, 노출된 n형 질화 갈륨층(13) 위에 상기 n-전극(18)을 형성한다. p-n 접합면에서 광이 나오기 때문에 전극에 의해 광이 가려지지 않도록 상기 p-전극(17)은 상기 p형 투명 전극(16)의 모서리에 형성한다.
또한, 일반적으로 상기 p형 질화 갈륨층(15)은 상기 n형 질화 갈륨층(13)에 비해 저항이 커서 상기 p형 질화 갈륨층(15) 전체로 전류가 균일하게 흐르기가 더욱 어렵다. 이를 막기 위해 상기 p형 질화 갈륨층(15) 상부 전면에 얇은 투명 전극을 형성하여 상기 p형 질화 갈륨층(15) 전면으로 전류가 전달될 수 있도록 한다.
한편, 질화 갈륨계 발광 다이오드에서 발생되는 광의 전반사에 의한 광손실 을 줄이기 위해 표면에 텍스쳐링(texturing)하는 방법이 사용된다. 이는 발광 다이오드에서 발생된 광을 산란시키므로써, 광진행 경로를 여러 방향으로 바꾸어 내부에서 광이 탈출할 확률을 높이는 방법이다.
상기 텍스쳐링 방법은 질화 갈륨(GaN)층의 표면을 텍스쳐링하는 방법 및 사파이어 기판의 표면을 텍스쳐링하는 방법으로 구분된다.
상기 질화 갈륨(GaN)층의 표면을 텍스쳐링하는 방법은 질화 갈륨(GaN)층의 표면이 거칠게 되어 P-전극 형성 공정에 나쁜 영향을 미치게 되어 전체적으로 LED의 전기적 특성이 나빠질 수 있다.
상기 사파이어 기판의 표면을 텍스쳐링하는 방법은 하기하는 도 2와 같이 일종의 거칠기를 주는 공정이 존재한다.
<비교예>
도 3은 본 발명의 비교예에 따른 발광 다이오드의 단면도이다. 설명의 편의를 위해 도 2에 도시된 질화 갈륨계 발광 다이오드의 단면을 도시하고, 동일한 구성 요소에 대해서는 동일한 도면 번호를 부여한다.
도 3을 참조하면, 비교예에 따른 질화 갈륨계 발광 다이오드(10)는 사파이어 기판(11), 질화 갈륨 완충층(buffer layer)(12), n형 질화 갈륨층(13), 활성층(active layer)(14), p형 질화 갈륨층(15), 전류확산층(16), p-전극(17), n-전극(18)을 포함한다. 동작시, 상기 p-전극(17)과 n-전극(18)을 통해 전류를 흘리면 상기 활성층(14)에서 전자-홀 재결합이 일어나면서 광이 방출된다.
하지만, 상기한 방법은 사파이어 기판(11) 자체가 쉽게 식각되지 않는 물질 이어서 제작 공정이 용이하지 않다. 뿐만 아니라, 에칭된 사파이어의 표면이 거칠기 때문에 에피텍셜(epitaxial) 성장시에 문제의 소지가 크다. n형 질화 갈륨층(13)의 에피텍셜(epitaxial) 성장에서는 질화 갈륨 완충층(12)이 중요하다.
보통 섭씨 500 내지 600도의 낮은 온도에서 성장된 완충층(12)은 소자를 위한 두꺼운 층을 성장하기 전에 대략 섭씨 1050도와 같은 높은 온도에서 열처리를 통하여 바꾸게 된다. 그리고 나서 소자를 위한 나머지 두꺼운 층을 성장하게 된다. 양질의 에피텍셜(epitaxial) 박막을 얻기 위해서는 상기 완충층(12)의 열처리 후의 상변환에 의한 아일랜드(island)의 크기 조절이 중요하다. 상기 아일랜드의 크기 조절을 위해서는 완충층(12)의 표면 균일도가 중요하다.
도 3에 도시된 사파이어 기판은 에칭 공정 후에, 거친 표면 자체가 무질서하게 분포되어 완충층(12)의 표면 및 두께가 거칠고 불균일하게 되어, 고온에서의 완충층(12)의 열처리 후, 완충층(12)의 아일랜드(island)의 크기를 조절하기가 불리해진다.
이 현상은 사파이어의 엠보싱(embossing) 패턴 위에서 더욱 악화된다. 이에 패턴된 사파이어 기판 위의 에피텍셜(epitaxial) 성장시 낮은 결함 밀도를 얻기 어렵고, 거친 표면의 거칠기의 높은 불균일도로 한 웨이퍼상의 소자 특성의 균일성을 저하하여 소자 제작시 수율(yield)을 낮게 하여, 양산성이 낮다.
도 4는 본 발명에 따른 질화 갈륨계 발광 다이오드를 개략적으로 설명하는 단면도이다.
도 4를 참조하면, 본 발명의 제1 실시예에 따른 질화 갈륨계 발광 다이오드 (100)는 기판(110), 유전체 박막(120), 완충층(buffer layer)(130), n형 질화 갈륨층(140), n-전극(150), 활성층(active layer)(160), p형 질화 갈륨층(170), 전류확산층(current spreading layer)(180), p-전극(190)을 포함한다. 동작시, 상기 p-전극(180)과 n-전극(190)을 통해 전류를 흘리면 상기 활성층(150)에서 전자-홀 재결합이 일어나면서 광이 방출된다.
상기 기판(110) 위에 질화 갈륨층을 성장시키기 위해 보통 MOCVD(Metal Organic Chemical Vapor Deposition) 장치를 이용한다. 상기 기판(110)은 사파이어 기판 또는 실리콘 카바이드 기판이다.
상기 기판(110) 위에는 일정 패턴의 유전체 박막(120)이 형성된다. 상기 유전체 박막(120)은 기판(110)의 일부 영역을 커버하고, 나머지 영역은 노출시키는 요철 구조를 갖는다. 상기 유전체 박막(120)은 기판(110)의 굴절률과 실질적으로 동일한 굴절율을 갖는 것이 바람직하다. 상기 유전체 박막(120)은 실리콘 옥시나이트라이드(silicon oxynitride) 박막으로 이루어진다. 통상적으로 실리콘 옥시나이트라이드 박막은 SiO2 박막과 Si3N4 박막의 장점을 절충하여 공유할 수 있으며 유전율, 굴절율, 열팽창 계수 등의 파라미터를 가스 유량비로써 제어할 수 이는 이점들이 있다. 상기 SiON에 대해서는 후술하기로 한다.
상기 기판(110) 위에는 질화 갈륨층의 성장을 돕기 위한 완충층(buffer layer)(130)이 형성된다. 상기 완충층(130)은 상기 유전체 박막(120)에 의해 노출된 기판(110) 및 상기 유전체 박막(120)을 커버한다.
상기 완충층(130) 위에는 상기 n형 질화 갈륨층(1401), 활성층(active layer)(150) 및 p형 질화 갈륨층(160)이 차례대로 성장된다. 일반적으로 다이오드는 p-n 접합으로 전류를 흘리기 위해 p형 질화 갈륨층 상부와 n형 질화 갈륨층과 연결된 기판 하부에 전극을 형성한다. 하지만, 질화 갈륨계 다이오드의 기판으로 사용되는 사파이어는 절연체이므로 기판(110)에 전극을 형성할 수 없다. 따라서, 상기 n형 질화 갈륨층(140) 위에 전극을 형성해야 한다.
이를 위해 전극이 형성될 부분의 p형 질화 갈륨층(160), 활성층(150) 및 n형 질화 갈륨층(140)의 일부 영역은 제거되고, 노출된 n형 질화 갈륨층(140) 위에 상기 n-전극(190)이 형성된다. 이에 따라, 상기 제1 질화 갈륨층(140)은 상기 완충층(130)의 제1 영역에 제1 높이로 형성되고, 제2 영역에 상기 제1 높이보다는 작은 제2 높이로 형성된다.
p-n 접합면에서 광이 나오기 때문에 전극에 의해 광이 가려지지 않도록 상기 p-전극(190)은 상기 전류확산층(180)의 모서리에 형성된다.
상기 p-전극(180)과 n-전극(150)이 모두 상부에 위치한 경우, 상기 p-전극(190)과 n-전극(150)은 서로 다른 면에 평행하게 위치한 일반적인 다이오드 구조에 비해 전류 분포가 균일하지 못하다.
또한, 일반적으로 상기 p형 질화 갈륨층(170)은 상기 n형 질화 갈륨층(140)에 비해 저항이 커서 상기 p형 질화 갈륨층(170) 전체로 전류가 균일하게 흐르기가 더욱 어렵다.
이를 막기 위해 상기 p형 질화 갈륨층(170) 상부 전면에 얇은 투명 전극인 전류확산층(180)이 형성되어 상기 p형 질화 갈륨층(170) 전면으로 전류가 전달될 수 있도록 한다.
<실시예 1>
도 5a 및 도 5b는 본 발명의 제1 실시예에 따른 질화 갈륨계 발광 다이오드 구조를 각각 설명하는 평면도 및 단면도이다. 특히, 반구 형상의 SiON 유전체 박막을 도시한다. 설명의 편의를 위해 기판 위에 형성된 유전체 박막만을 도시한다.
도 5a 및 도 5b를 참조하면, 본 발명의 제1 실시예에 따른 발광 다이오드(200)는 기판(210)과, 상기 기판(210) 위에 반구 형상으로 형성된 유전체 박막(220)을 포함한다. 상기 유전체 박막(220)은 실질적인 높이는 1 내지 5㎛이고, 실질적인 직경은 1 내지 10㎛이며, 실질적인 간격은 1 내지 10㎛이다. 상기 유전체 박막은 굴절률이 대략 1.78인 SiOxNy으로 이루어진다.
도 5a에서는 반구 형상으로 형성된 유전체 박막(220)의 직경이 동일한 것을 도시하였으나, 다양한 사이즈의 직경을 갖도록 형성할 수 있다. 도 5b에서는 유전체 박막(220)의 높이가 균일한 것을 도시하였으나, 다양한 높이를 갖도록 형성할 수도 있고, 유전체 박막들간의 간격이 균일한 것을 도시하였으나, 다양한 간격을 갖도록 형성할 수도 있다. 또한 유전체 박막(220)의 곡률 반경이 균일한 것을 도시하였으나, 다양한 곡률 반경을 갖도록 형성할 수도 있다. 또한, 유전체 박막의 형성 빈도가 어느 영역에서는 균일한 것을 도시하였으나, 임의의 영역에서는 밀하게 형성되고, 다른 영역에서는 소하게 형성될 수도 있다.
상술한 본 발명에 따른 질화 갈륨계 발광 다이오드는 굴절률이 대략 1.78인 SiOxNy을 유전체 박막으로 사용하여 기판에 용이하게 요철 구조를 형성한다. 상기 유전 물질은 SiOxNy으로서 SiO2와 SiN가 합성된 물질이다. SiOxNy은 SiO2의 굴절률 1.5에서 SiN의 굴절률인 2.0 사이의 값을 갖는 물질이고, 두 물질의 구성 성분의 양에 따라 굴절률은 1.5 내지 2.0의 범위에서 변화된다.
도 6은 SiOxNy 유전체 박막의 굴절율과 산소 함유량(oxygen content)간의 관계를 나타낸 그래프이다. 특히, 460㎚ 파장의 광이 진행할 때, 산소의 함유량(x)에 따른 SiOxNy의 굴절률 변화를 보여준다.
도 6을 참조하면, 산소의 함유량(x)과 굴절율은 반비례한다. 즉, 산소가 0, 0.2, 0.4, 0.6, 0.8 및 1.0일 때 유전체 박막의 굴절률은 대략 2.05, 1.9, 1.75, 1.65, 1.6 및 1.5임을 확인할 수 있다.
따라서, 유전체율의 굴절률은 기판의 굴절률과 동일한 것이 바람직하므로 기판의 굴절률, 특히 사파이어의 굴절률이 1.78이므로 상기 유전체 박막은 상기 1.78과 동일한 값의 굴절률을 갖는 SiOxNy를 사용한다. 그래프상에 나타낸 바와 같이, x의 값은 약 0.35이며, y는 0.65이다.
<실시예 2>
도 7a 및 도 7b는 본 발명의 제2 실시예에 따른 질화 갈륨계 발광 다이오드 구조를 각각 설명하는 평면도 및 단면도이다. 특히, 오각 형상의 SiON 유전체 박막을 도시한다. 설명의 편의를 위해 기판 위에 형성된 유전체 박막만을 도시한다.
도 7a 및 도 7b를 참조하면, 본 발명의 제2 실시예에 따른 발광 다이오드(300)는 기판(310)과, 상기 기판(310) 위에 반구 형상으로 형성된 유전체 박막(320)을 포함한다. 상기 유전체 박막(320)은 높이는 1 내지 5㎛이고, 평균 대각선 의 길이는 1 내지 10㎛이며, 실질적인 간격은 1 내지 10㎛이다. 상기 평균 대각선의 길이는 임의의 꼭지점과 이에 대향하는 변간의 길이이다. 상기 유전체 박막은 굴절률이 대략 1.78인 SiOxNy으로 이루어진다.
도 7a에서는 유전체 박막(320)의 평균 대각선 길이는 동일한 것을 도시하였으나, 다양한 평균 대각선 길이를 갖도록 형성할 수 있다. 도 7b에서는 유전체 박막(320)의 높이가 균일한 것을 도시하였으나, 다양한 높이를 갖도록 형성할 수도 있고, 유전체 박막들간의 간격이 균일한 것을 도시하였으나, 다양한 간격을 갖도록 형성할 수도 있다. 또한, 유전체 박막의 형성 빈도가 어느 영역에서는 균일한 것을 도시하였으나, 임의의 영역에서는 밀하게 형성되고, 다른 영역에서는 소하게 형성될 수도 있다.
<실시예 3>
도 8a 및 도 8b는 본 발명의 제3 실시예에 따른 질화 갈륨계 발광 다이오드 구조를 각각 설명하는 평면도 및 단면도이다. 특히, 육각 형상의 SiON 유전체 박막을 도시한다. 설명의 편의를 위해 기판 위에 형성된 유전체 박막만을 도시한다.
도 8a 및 도 8b를 참조하면, 본 발명의 제3 실시예에 따른 발광 다이오드(400)는 기판(410)과, 상기 기판(410) 위에 반구 형상으로 형성된 유전체 박막(420)을 포함한다. 상기 유전체 박막(420)은 높이는 1 내지 5㎛이고, 평균 대각선 길이는 1 내지 10㎛이며, 실질적인 간격은 1 내지 10㎛이다. 상기 평균 대각선 길이는 임의의 꼭지점과 이에 대향하는 꼭지점간의 길이이다. 상기 유전체 박막(420)은 굴절률이 대략 1.78인 SiOxNy으로 이루어진다.
도 8a에서는 유전체 박막(420)의 평균 대각선 길이는 동일한 것을 도시하였으나, 다양한 평균 대각선 길이를 갖도록 형성할 수 있다. 도 8b에서는 유전체 박막(420)의 높이가 균일한 것을 도시하였으나, 다양한 높이를 갖도록 형성할 수도 있고, 유전체 박막(420)들간의 간격이 균일한 것을 도시하였으나, 다양한 간격을 갖도록 형성할 수도 있다. 또한, 유전체 박막(420)의 형성 빈도가 어느 영역에서는 균일한 것을 도시하였으나, 임의의 영역에서는 밀하게 형성되고, 다른 영역에서는 소하게 형성될 수도 있다.
<실시예 4>
도 9a 내지 도 9c는 본 발명의 제4 실시예에 따른 질화 갈륨계 발광 다이오드 구조를 각각 설명하는 평면도 및 단면도이다. 특히, 반구 형상과 스트라이프 형상이 혼재된 SiON 유전체 박막을 도시한다. 설명의 편의를 위해 기판 위에 형성된 유전체 박막만을 도시한다.
도 9a 및 도 9b를 참조하면, 본 발명의 제4 실시예에 따른 발광 다이오드(500)는 기판(510)과, 상기 기판(510) 위에 형성된 유전체 박막(520)을 포함한다.
상기 유전체 박막(520)은 서로 다른 방향으로 스트라이프 형상으로 신장되어 삼각 형상을 정의하는 제1, 제2 및 제3 서브 유전체 박막(522, 524, 526)들과, 상기 제1, 제2 및 제3 서브 유전체 박막(522, 524, 526)들이 서로 교차하는 영역에 형성된 원형 형상의 제4 유전체 박막(528)을 포함한다. 상기 제1, 제2 및 제3 서브 유전체 박막(522, 524, 526)은 일정 폭을 갖고서 기판(510) 위에 형성되고, 그 표면은 라운드진 형상을 갖는다. 상기 제4 유전체 박막(528)은 상기 제1, 제2 및 제3 서브 유전체 박막(522, 524, 526)의 폭보다는 큰 직경을 갖고서 제1, 제2 및 제3 서브 유전체 박막(522, 524, 526)들이 교차하는 영역에 형성된다.
상기 제1, 제2 및 제3 서브 유전체 박막(522, 524, 526)의 높이는 1 내지 5㎛이고, 상기 제4 유전체 박막(528)의 높이는 상기 제1, 제2 및 제3 서브 유전체 박막(522, 524, 526)의 높이보다 크다. 상기 제4 유전체 박막(528)의 평균 직경은 1 내지 10㎛이며, 실질적인 간격은 1 내지 10㎛이다. 상기 제1 내지 제4 서브 유전체 박막(522, 524, 526, 528)은 굴절률이 대략 1.78인 SiOxNy으로 이루어진다.
상술한 SiOxNy의 굴절률은 사파이어 기판과 동일하므로, 두 물질 계면 사이에서의 광손실은 무시할 수 있다. 따라서, 사파이어 기판 위의 SiOxNy을 텍스쳐링한 본 발명의 실시예와 사파이어 기판의 표면에 직접 텍스쳐링 처리한 비교예는 광학적으로 동일한 성질을 갖는다.
하지만, 제조 방법 측면에서 본 발명은 사파이어 기판을 직접 식각하는 것에 비해서 보다 쉽게 제작할 수 있고, 향후 에피텍셜(epitaxial) 성장시 고품질의 에피텍셜(epitaxial) 박막을 제작할 수 있다.
기판 위에 SiOxNy이라는 유전 물질이 일정 패턴으로 존재하기 때문에 에피텍셜(epitaxial) 박막을 선택적 성장(selective growth)할 수 있다. 이는 기판 위에만 질화 갈륨 에피가 성장되고, 유전 물질 위에는 성장되지 않는 원리를 이용한 것으로 고품질의 에피를 성장할 수 있다.
일반적으로 레이저 다이오드 에피를 성장할 때 많이 쓰는 방법이며, ELOG (Epitaxially Laterally Over Grown) 방법과 유사하다. 또한 유전체 박막 영역 이 외의 기판의 표면도 손상되지 않은 균일한 표면을 유지할 수 있다. 균일한 소자들의 특성이 LED의 광의 적출 효율을 알아보기 위해 레이 트레이싱(ray tracing) 시뮬레이터를 이용하였고, 기판의 최적의 텍스쳐링 패턴을 알아보기 위해, 몇 가지 경우(무패턴, 스트라이프 패턴, 반구 패턴, 스트라이프와 반구의 혼합 패턴)에 대한 광의 적출 효율을 계산하였다. 계산 결과는 하기하는 표 1에 나타내었다.
유전체 박막의 형상 | 적출 효율(%) | 비고 |
No pattern | 33.5 | |
Strip | 47.6 | 경사각도 : 45도 높이 : 1.5㎛ |
Hemisphere | 58.5 | 높이 : 1.5㎛ 반경 : 4㎛ 간격 : 10㎛ |
Strip + Hemisphere | 64.9 |
표 1에 나타낸 바와 같이, 텍스쳐링 패턴이 없는 발광 다이오드의 경우, 광의 적출 효율이 33.5%로 계측되었다.
하지만, 스트라이프(strip) 패턴이 기판에 형성된 발광 다이오드의 경우, 광의 적출 효율이 47.6%이고, 반구(hemisphere) 패턴이 기판에 형성된 발광 다이오드의 경우, 광의 적출 효율이 58.5%이며, 스트라이프와 반구의 패턴을 조합된 패턴이 기판에 형성된 발광 다이오드의 경우, 광의 적출 효율이 64.9%로 계측되었다.
위의 결과에서 알 수 있듯이 텍스쳐링된 면적이 상대적으로 넓을수록 보다 많은 광을 적출할 수 있다. 따라서, 에피 성장시 문제가 없는 범위 내에서, 기판 위에 텍스쳐링 패턴이 많을수록 고휘도 LED 제작에 유리하다.
표 1의 스트라이프 패턴과 반구 패턴이 조합된 텍스쳐링 패턴의 구조를 갖는 LED는 최소 64.9% 이상의 광의 적출 효율을 보인다. 이는 텍스쳐링이 없는 일반적인 LED 구조에 비해 2배 정도의 높은 광의 적출 효과를 나타낸다.
도 10a 내지 도 10e는 도 4에 도시된 발광 다이오드의 제조 방법을 설명하는 단면도들이다.
도 10a를 참조하면, 기판(110) 위에 실리콘 옥시나이트라이드(SiOxNy, 굴절률 1.78) 박막(192)을 1-3㎛ 정도 증착한다. 증착 방법으로는 PECVD(plasma enhanced chemical vapor deposition) 방법, LPCVD(low pressure CVD), 스퍼터링 방법 등이 가능하다. 하지만, 공정상의 편의를 위하여 PECVD 방법이 바람직하다.
상기 PECVD 방법으로 원하는 SiOxNy을 만들기 위해서 SiH4 가스에 N2O 가스와 NH3 가스를 첨가하여 제조한다. N2O는 oxygen 소스이며, NH3 가스는 nitrogen 소스이다. 따라서, N2O/NH3의 비를 조절하면 원하는 SiOxNy을 만들 수 있다.
도 10b를 참조하면, 도 10a에 의한 결과물 위에 포토레지스트(PR)(194)를 코팅한 후, 포토리소그라피 방법으로 패턴을 한다. 패턴의 모양은 다양한 모양이 될 수 있다. 본 실시예에서는 편의를 위하여 원형 마스크 패턴으로 기준으로 설명한다. 상기 마스크를 이용하여 일정한 간격을 갖고서 배열되는 원기둥 모양의 포토레지스트(PR) 패턴을 만든다. 여기서 원의 반경은 1-10㎛, 간격은 1-10㎛, 그리고 높이는 1-5㎛ 정도가 적당하다.
도 10c를 참조하면, 포토레지스트(PR) 패턴을 리플로우(reflow)시켜 반구 형상의 포토레지스터 패턴(195)을 형성한다. 구체적으로, 핫 플레이트(Hot plate) 또는 오븐(oven)에서 섭씨 140 내지 160도의 온도에서 3 내지 10분 정도 베이킹한다. 상기한 베이킹 시간을 적절히 조정하여 반구 모양의 포토레지스트 패턴(195)을 완성한다.
도 10d를 참조하면, 상기 포토레지스트(PR) 패턴(195)을 SiOxNy에 전사시켜 전사된 실리콘 옥시나이트라이드 박막(196)을 형성한다. 상기 포토레지스트(PR) 패턴(195)을 SiOxNy에 그대로 전사하기 위하여 RIE (reactive ion etching) 방법 혹은ICP-RIE (inductive coupled plasma RIE)방법을 이용하며, SiOxNy를 에칭하여 전사된 실리콘 옥시나이트라이드 박막(196)을 형성한다. 상기 전사된 실리콘 옥시나이트라이드 박막(196)은 잔류막(197)이 포함된다.
이때, 에칭 조건은 PR과 SiON이 같은 식각비를 가지고 에칭되는 것이 가장 바람직하지만, PR/SiON 식각비가 1 내지 2 사이의 값이면 적당하다. 에칭 가스는 CF4와 O2를 사용하며, 안정된 플라즈마를 위하여 미량의 아르곤(Ar) 가스를 첨가해도 된다. CF4 대신에 CHF3, SF6 등의 불소(fluorine) 계열의 가스도 사용될 수 있다. CF4와 O2의 비를 조절하여 적절한 포토레지스트(PR)와 SiOxNy 식각 선택비를 선택한다. 에칭 시간은 상부의 PR이 완전히 없어질 때까지이다. 하지만 포토레지스트(PR) 패턴된 영역 밖의 플래너(planar) 영역에서의 SiOxNy는 완전히 제거되지 않고, 10㎚ 내지 50㎚로 잔류막을 남긴다.
도 10e를 참조하면, SiOxNy 잔류막(197)은 버퍼드 옥사이드 에쳔트(buffered oxide etchant)로 습식 화학 백에칭(wet chemical back etching)하여 제거하면, 기판(110)위에 상기 기판(110)과 실질적으로 동일한 굴절율을 갖고서 요철 형태의 유전체 박막(120) 패턴이 형성된다. 이에 따라, 본 발명에 의하면 균일하면서도 플라즈마 손상에 저항력을 갖는 표면을 갖는 기판이 얻게된다.
이상에서는 기판(110) 위에 SiOxNy 요철 패턴을 형성하는 방법을 설명하였다. 상기 SiOxNy 요철 패턴이 형성된 후에는 통상적인 제조 방법에 의해 발광 다이오드가 제조된다.
즉, 실리콘 옥시나이트라이드(SiOxNy) 박막이 패터닝된 기판(110) 위에 순차적으로 질화 갈륨 완충층(130), n형 질화 갈륨(140), MQW (multi quantum well, 활성층(160)), 그리고 p형 질화 갈륨층 층(170)을 MOCVD (Metal organic CVD) 방법으로 성장시킨다. 본 실시예에서는 도 3에 도시된 발광 다이오드의 제조 방법을 설명한다.
그 위에 전류확산층(current spreading layer)(180)을 증착한다. 상기 전류확산층(180)은 p형 질화 갈륨층(170)과 오믹(Ohmic) 접촉을 이루는 물질이며, 주로 Ni/Au, Pd/Au, Pt/Au 등이 사용될 수 있다. 상기 전류확산층(180)은 건조(Evaporation) 방법으로 10㎚ 이내로 증착된다.
이어, 열처리를 통해 오믹 접촉을 형성한다. 다음으로 n-콘택이 될 부분을 메사(mesa) 에칭한 후, Ti/Al/Ti/Au, 또는 Cr/Ni/Au을 순차적으로 증착하여 n-전극(150)을 형성하고, 마지막으로 Cr/Ni/Au를 증착하여 p-전극(190)을 형성하여 질화 갈륨계 발광 다이오드를 제조한다.
이상에서 설명한 바와 같이, 기판 위에 상기 기판, 특히 사파이어 기판의 굴절률이 실질적으로 유사한 실리콘 옥시나이트라이드(SiOxNy) 박막을 증착하고 포토리소그라피 방법으로 패터닝한 후, 그 위에 에피텍셜 성장하는 방법을 사용하여 높 은 광의 적출 효율을 갖는 질화 갈륨계 LED를 제조한다.
상기 사파이어 기판과 에피텍셜 박막 사이에 부분적으로 유전체 박막을 형성하므로써, 상기 유전체 박막 위에서의 에피 성장을 금하고, 표면에 플라즈마 손상에서 자유로우면서 표면이 사파이어 기판에만 에피텍셜 박막을 성장시켜 고 품질의 에피를 얻고, 표면 요철 구조를 제조하므로써, 발생되는 광의 산란을 극대화시켜 LED의 광의 적출 효율이 높일 수 있다. 특히, 기존의 패턴된 사파이어 기판 위에 에피텍셜 성장시, 야기되었던 에칭된 사파이어 표면의 거침(특히 표면요철 위)으로 인한 성장된 에피의 높은 결함 유도의 단점을 피할 수 있다.
또한, 발광 소자의 활성층에서 발생되는 광의 전반사를 줄일 수 있어 광의 적출 효율이 높은 발광 소자를 제조할 수 있다.
또한, 요철 구조의 제작공정이 일반적인 실리콘 프로세스와 유사하므로 제작이 용이하여 공정의 신뢰도와 양산성을 높일 수 있다.
이상에서는 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
Claims (14)
- 기판;상기 기판의 굴절률에 근접한 굴절율을 가지며, 상기 기판의 일부 영역에 요철 형태로 형성된 유전체 박막;상기 유전체 박막에 의해 노출된 기판 및 상기 유전체 박막을 커버하는 완충층;상기 완충층의 제1 영역에 제1 높이로 형성되고, 제2 영역에 상기 제1 높이보다는 작은 제2 높이로 형성된 제1 질화 갈륨층;상기 제2 높이로 형성된 제1 질화 갈륨층 위에 형성된 제1 전극;상기 제1 높이로 형성된 제1 질화 갈륨층 위에 형성된 활성층;상기 활성층 위에 형성된 제2 질화 갈륨층; 및상기 제2 질화 갈륨층 위에 형성된 제2 전극을 포함하는 것을 특징으로 하는 발광 소자.
- 제1항에 있어서, 상기 제1 질화 갈륨층은 n형 또는 p형으로 도핑되고, 상기 제2 질화 갈륨층은 상기 제1 질화 갈륨층과 반대 극성으로 도핑되어 p-n 접합면을 형성하는 것을 특징으로 하는 발광 소자.
- 제1항에 있어서, 상기 유전체 박막은 실리콘 옥시나이트라이드(SiOxNy)로 이 루어지는 것을 특징으로 하는 발광 소자.
- 제3항에 있어서, 상기 SiOxNy의 굴절률은 1.4 내지 2인 것을 특징으로 발광 소자.
- 제3항에 있어서, 상기 SiOxNy의 굴절률은 1.6 내지 1.9인 것을 특징으로 하는 발광 소자.
- 제1항에 있어서, 상기 기판은 표면이 평탄한 것을 특징으로 하는 발광 소자.
- 제1항에 있어서, 상기 유전체 박막은 격자 형상으로 형성된 것을 특징으로 하는 발광 소자.
- 제1항에 있어서, 상기 유전체 박막은 평면상의 형상이 원형상, 오각형 형상, 육각형 형상중 어느 하나인 것을 특징으로 하는 발광 소자.
- 제1항에 있어서, 상기 유전체 박막은 평면상의 형상이 격자 형상과 상기 격자 형상의 교점에 대응하여 형성된 원형상의 조합인 것을 특징으로 하는 발광 소자.
- (a) 기판 위에 상기 기판의 굴절률과 실질적으로 동일한 굴절율을 갖는 유전체 박막을 일정 패턴으로 형성하는 단계;(b) 단계(a)에 의한 결과물 위에 완충층, 제1 질화 갈륨층, 활성층 및 제2 질화 갈륨층을 순차적으로 성장시키는 단계;(c) 상기 제2 질화 갈륨층 위에 전류확산층을 증착하고, 열처리를 통해 오믹 콘택을 형성하는 단계;(d) n-콘택에 대응하도록 상기 제2 질화 갈륨층, 활성층을 제거하고, 상기 제1 질화 갈륨층의 표면 일부를 제거하는 단계; 및(e) 표면이 제거되어 상대적으로 낮은 질화 갈륨층 위에 제1 전극을 증착하고, 상대적으로 높은 상기 전류확산층 위에 제2 전극을 증착하는 단계를 포함하는 발광 소자의 제조 방법.
- 제10항에 있어서, 상기 단계(a)는,(a-1) 상기 기판 위에 유전체 박막을 증착하는 단계;(a-2) 포토레지스트를 코팅하고, 상기 포토레지스트를 패터닝하는 단계;(a-3) 패터닝된 포토레지스트 패턴을 리플로우시키는 단계;(a-4) 리플로우된 포토레지스트 패턴을 상기 유전체 박막에 전사하고, 상기 유전체 박막을 에칭하는 단계; 및(a-5) 버퍼드 옥사이드 에쳔트(buffered oxide etchant)로 습식 화학 백에칭(wet chemical back etching)하여 유전체 박막 잔류막을 제거하는 단계를 포함하는 것을 특징으로 하는 발광 소자의 제조 방법.
- 제10항에 있어서, 상기 유전체 박막은 실리콘 옥시나이트라이드(SiOxNy) 박막인 것을 특징으로 하는 발광 소자의 제조 방법.
- 제10항에 있어서, 상기 기판은 사파이어 기판이고, 상기 유전체 박막은 굴절률이 1.78에 근접한 실리콘 옥시나이트라이드(SiOxNy) 박막인 것을 특징으로 하는 발광 소자의 제조 방법.
- 제13항에 있어서, 상기 실리콘 옥시나이트라이드(SiOxNy) 박막은 SiH4 가스에 첨가되는 N2O 가스와 NH3 가스의 비에 의해 형성되는 것을 특징으로 하는 발광 소자의 제조 방법.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050032834A KR100669142B1 (ko) | 2005-04-20 | 2005-04-20 | 발광 소자와 이의 제조 방법 |
PCT/KR2006/001493 WO2006112680A1 (en) | 2005-04-20 | 2006-04-20 | Light emitting element and a manufacturing method thereof |
US11/918,882 US20090057700A1 (en) | 2005-04-20 | 2006-04-20 | Light emitting element and a manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050032834A KR100669142B1 (ko) | 2005-04-20 | 2005-04-20 | 발광 소자와 이의 제조 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060110521A KR20060110521A (ko) | 2006-10-25 |
KR100669142B1 true KR100669142B1 (ko) | 2007-01-15 |
Family
ID=37115364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050032834A KR100669142B1 (ko) | 2005-04-20 | 2005-04-20 | 발광 소자와 이의 제조 방법 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20090057700A1 (ko) |
KR (1) | KR100669142B1 (ko) |
WO (1) | WO2006112680A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101199129B1 (ko) * | 2009-12-21 | 2012-11-09 | 엘지이노텍 주식회사 | 반도체 발광소자 및 그 제조방법 |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7663148B2 (en) * | 2006-12-22 | 2010-02-16 | Philips Lumileds Lighting Company, Llc | III-nitride light emitting device with reduced strain light emitting layer |
KR20080114049A (ko) * | 2007-06-26 | 2008-12-31 | 우리엘에스티 주식회사 | 반도체 소자의 제조 방법 |
TWI385820B (zh) * | 2007-08-24 | 2013-02-11 | Sino American Silicon Prod Inc | 半導體發光元件及其製造方法 |
KR101449000B1 (ko) * | 2007-09-06 | 2014-10-13 | 엘지이노텍 주식회사 | 반도체 발광소자 및 그 제조방법 |
TW201003980A (en) * | 2008-07-14 | 2010-01-16 | Huga Optotech Inc | Substrate for making light emitting element and light emitting element using the same |
US8633501B2 (en) | 2008-08-12 | 2014-01-21 | Epistar Corporation | Light-emitting device having a patterned surface |
KR20100030472A (ko) | 2008-09-10 | 2010-03-18 | 삼성전자주식회사 | 발광 소자 및 발광 장치의 제조 방법, 상기 방법을 이용하여 제조한 발광 소자 및 발광 장치 |
JP5530087B2 (ja) * | 2008-10-17 | 2014-06-25 | ユー・ディー・シー アイルランド リミテッド | 発光素子 |
TWI470823B (zh) | 2009-02-11 | 2015-01-21 | Epistar Corp | 發光元件及其製造方法 |
KR101064053B1 (ko) | 2009-02-25 | 2011-09-08 | 엘지이노텍 주식회사 | 발광소자 및 그 제조방법 |
KR101661621B1 (ko) * | 2010-01-29 | 2016-09-30 | 주식회사 엘지에스 | 패턴이 형성되어 있는 기판 및 이를 이용한 발광소자 |
KR101034053B1 (ko) | 2010-05-25 | 2011-05-12 | 엘지이노텍 주식회사 | 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지 |
CN102130256A (zh) * | 2010-10-15 | 2011-07-20 | 映瑞光电科技(上海)有限公司 | 发光二极管及其制造方法 |
US9058982B2 (en) * | 2010-12-08 | 2015-06-16 | Nissin Electric Co., Ltd. | Silicon oxynitride film and method for forming same, and semiconductor device |
KR101215299B1 (ko) * | 2010-12-30 | 2012-12-26 | 포항공과대학교 산학협력단 | 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드 |
CN102201512B (zh) * | 2011-04-22 | 2013-04-10 | 东莞市中镓半导体科技有限公司 | 一种图形化衬底 |
CN102184846A (zh) * | 2011-04-22 | 2011-09-14 | 东莞市中镓半导体科技有限公司 | 一种图形化衬底的制备方法 |
KR101860493B1 (ko) * | 2011-10-20 | 2018-05-24 | 삼성디스플레이 주식회사 | 미세 패턴 마스크의 형성 방법 및 이를 이용한 미세 패턴의 형성 방법 |
KR101298927B1 (ko) * | 2011-12-26 | 2013-08-22 | 전자부품연구원 | 질화물계 발광 다이오드 및 그의 제조 방법 |
JP6042103B2 (ja) | 2012-05-30 | 2016-12-14 | ユー・ディー・シー アイルランド リミテッド | 有機電界発光素子 |
CN102709436B (zh) * | 2012-05-31 | 2015-10-28 | 东莞洲磊电子有限公司 | 通过图形遮光的四元系芯片及其制造方法 |
US9917004B2 (en) * | 2012-10-12 | 2018-03-13 | Sumitomo Electric Industries, Ltd. | Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device |
TWI504019B (zh) * | 2013-06-11 | 2015-10-11 | Easy Epi Photoelectronics Inc | 發光二極體晶片的製造方法 |
KR20150039926A (ko) * | 2013-10-04 | 2015-04-14 | 엘지이노텍 주식회사 | 발광소자 |
KR102382440B1 (ko) | 2015-06-22 | 2022-04-05 | 삼성전자주식회사 | 반도체 발광소자 |
US9726824B1 (en) * | 2016-09-15 | 2017-08-08 | Google Inc. | Optical circuit switch collimator |
US10656362B2 (en) * | 2018-01-04 | 2020-05-19 | Globalfoundries Singapore Pte. Ltd. | Gamma groove arrays for interconnecting and mounting devices |
CN109411582B (zh) * | 2018-10-31 | 2021-01-22 | 扬州乾照光电有限公司 | 一种表面粗化的led芯片及其制作方法 |
CN109786524A (zh) * | 2019-02-22 | 2019-05-21 | 湘能华磊光电股份有限公司 | 一种具有新型pss结构的led外延层及其制备方法 |
CN111302297A (zh) * | 2020-02-17 | 2020-06-19 | 福建晶安光电有限公司 | 图形化镥铝石榴石晶片结构及其制备方法、包括该结构的发光装置封装件和投影仪 |
CN113140618B (zh) * | 2021-03-31 | 2023-02-10 | 福建中晶科技有限公司 | 一种蓝宝石复合衬底及其制备方法 |
CN113809140A (zh) * | 2021-10-19 | 2021-12-17 | 合肥维信诺科技有限公司 | 阵列基板、显示装置及阵列基板的制作方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05198896A (ja) * | 1991-06-24 | 1993-08-06 | Sharp Corp | 半導体素子 |
KR20030093265A (ko) * | 2001-03-21 | 2003-12-06 | 미츠비시 덴센 고교 가부시키가이샤 | 반도체 발광 소자 |
KR20040019352A (ko) * | 2001-07-24 | 2004-03-05 | 니치아 카가쿠 고교 가부시키가이샤 | 요철형성 기판을 갖춘 반도체발광소자 |
KR20040073117A (ko) * | 2003-02-13 | 2004-08-19 | 삼성에스디아이 주식회사 | 전계 발광 표시 장치 및 이의 제조방법 |
US6781160B1 (en) | 2003-06-24 | 2004-08-24 | United Epitaxy Company, Ltd. | Semiconductor light emitting device and method for manufacturing the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6693935B2 (en) * | 2000-06-20 | 2004-02-17 | Sony Corporation | Semiconductor laser |
US7119372B2 (en) * | 2003-10-24 | 2006-10-10 | Gelcore, Llc | Flip-chip light emitting diode |
KR100568300B1 (ko) * | 2004-03-31 | 2006-04-05 | 삼성전기주식회사 | 질화물 반도체 발광소자 및 그 제조방법 |
US8003428B2 (en) * | 2008-03-27 | 2011-08-23 | International Business Machines Corporation | Method of forming an inverted lens in a semiconductor structure |
-
2005
- 2005-04-20 KR KR1020050032834A patent/KR100669142B1/ko not_active IP Right Cessation
-
2006
- 2006-04-20 US US11/918,882 patent/US20090057700A1/en not_active Abandoned
- 2006-04-20 WO PCT/KR2006/001493 patent/WO2006112680A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05198896A (ja) * | 1991-06-24 | 1993-08-06 | Sharp Corp | 半導体素子 |
KR20030093265A (ko) * | 2001-03-21 | 2003-12-06 | 미츠비시 덴센 고교 가부시키가이샤 | 반도체 발광 소자 |
KR20040019352A (ko) * | 2001-07-24 | 2004-03-05 | 니치아 카가쿠 고교 가부시키가이샤 | 요철형성 기판을 갖춘 반도체발광소자 |
KR20040073117A (ko) * | 2003-02-13 | 2004-08-19 | 삼성에스디아이 주식회사 | 전계 발광 표시 장치 및 이의 제조방법 |
US6781160B1 (en) | 2003-06-24 | 2004-08-24 | United Epitaxy Company, Ltd. | Semiconductor light emitting device and method for manufacturing the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101199129B1 (ko) * | 2009-12-21 | 2012-11-09 | 엘지이노텍 주식회사 | 반도체 발광소자 및 그 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
US20090057700A1 (en) | 2009-03-05 |
WO2006112680A1 (en) | 2006-10-26 |
KR20060110521A (ko) | 2006-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100669142B1 (ko) | 발광 소자와 이의 제조 방법 | |
KR100568297B1 (ko) | 질화물 반도체 발광 소자 및 그 제조 방법 | |
US8384111B2 (en) | Method for forming sapphire substrate and semiconductor device | |
CN104465917B (zh) | 图案化光电基板及其制作方法 | |
US20070246700A1 (en) | Light Emitting Device and Method of Manufacturing the Same | |
US7521329B2 (en) | Semiconductor light emitting diode having textured structure and method of manufacturing the same | |
US8704227B2 (en) | Light emitting diode and fabrication method thereof | |
JP2007019318A (ja) | 半導体発光素子、半導体発光素子用基板の製造方法及び半導体発光素子の製造方法 | |
CN102034907A (zh) | 一种提高GaN基LED发光效率的图形掩埋方法 | |
CN102064245A (zh) | 发光二极管制造方法 | |
EP2495773A1 (en) | Light-emitting diode and method for manufacturing same | |
CN115699324A (zh) | 单片led阵列及其前体 | |
CN102130245A (zh) | 发光二极管及其制造方法 | |
KR100716752B1 (ko) | 발광 소자와 이의 제조 방법 | |
US8536026B2 (en) | Selective growth method, nitride semiconductor light emitting device and manufacturing method of the same | |
WO2012116607A1 (en) | Substrate structure, method of forming the substrate structure and chip comprising the substrate structure | |
KR101321994B1 (ko) | 광추출 효율이 향상된 발광 다이오드 및 이의 제조방법 | |
CN115020565B (zh) | 复合图形化衬底的制备方法及具有空气隙的外延结构 | |
KR100809508B1 (ko) | 평면 프레즈넬 렌즈를 구비한 발광 소자 및 그 제조방법 | |
CN115132893A (zh) | 一种图形衬底及其制作方法 | |
KR102244218B1 (ko) | 나노구조 반도체 발광소자 제조방법 | |
KR20100008513A (ko) | 화합물 반도체 기판, 그 제조 방법 및 이를 이용한 화합물반도체 소자 | |
KR101581438B1 (ko) | 나노막대를 이용한 백색 발광소자의 제조방법 및 그에 의해 제조된 나노막대를 이용한 백색 발광소자 | |
CN218215342U (zh) | 发光器件的结构 | |
KR101365229B1 (ko) | 백색 led와 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20111216 Year of fee payment: 6 |
|
LAPS | Lapse due to unpaid annual fee |