KR20120077209A - 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드 - Google Patents

나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드 Download PDF

Info

Publication number
KR20120077209A
KR20120077209A KR1020100139089A KR20100139089A KR20120077209A KR 20120077209 A KR20120077209 A KR 20120077209A KR 1020100139089 A KR1020100139089 A KR 1020100139089A KR 20100139089 A KR20100139089 A KR 20100139089A KR 20120077209 A KR20120077209 A KR 20120077209A
Authority
KR
South Korea
Prior art keywords
light emitting
layer
refractive index
emitting diode
nitride semiconductor
Prior art date
Application number
KR1020100139089A
Other languages
English (en)
Other versions
KR101215299B1 (ko
Inventor
이종람
손준호
송양희
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020100139089A priority Critical patent/KR101215299B1/ko
Priority to EP11854018.6A priority patent/EP2660036A4/en
Priority to CN201180037337.4A priority patent/CN103097113B/zh
Priority to PCT/KR2011/008157 priority patent/WO2012091270A1/ko
Priority to US13/812,517 priority patent/US8957449B2/en
Priority to JP2013521726A priority patent/JP5632081B2/ja
Publication of KR20120077209A publication Critical patent/KR20120077209A/ko
Application granted granted Critical
Publication of KR101215299B1 publication Critical patent/KR101215299B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Abstract

본 발명은 나노 임프린트 몰드 제조방법, 이를 이용한 발광다이오드 및 그 제조방법에 관한 것이다.
본 발명에 따른 발광다이오드 제조방법은 임시기판 상에 n형 질화물 반도체층, 발광층 및 p형 질화물 반도체층을 형성하는 단계, p형 질화물 반도체층 상에 p형 전극을 형성하는 단계, p형 전극 상에 도전성 기판을 형성하는 단계, 임시기판을 제거하여 n형 질화물 반도체층을 노출시키는 단계, n형 질화물 반도체층 상에 나노 임프린트 레지스트층을 형성하는 단계, 나노 임프린트 몰드를 나노 임프린트 레지스트층에 가압하여 나노 패턴을 나노 임프린트 레지스트층에 전사하는 단계, 나노 패턴이 형성된 나노 임프린트 레지스트층으로부터 나노 임프린트 몰드를 분리하는 단계 및 나노 패턴이 형성된 나노 임프린트 레지스트층의 일부를 식각하여 n형 전극을 형성하는 단계를 포함하여 구성된다.
본 발명에 따르면, 발광다이오드의 광추출 효율을 향상시키기 위한 나노 패턴을 효율적이고 경제적으로 형성할 수 있는 나노 임프린트 몰드 제조방법, 이 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 발광다이오드가 제공되는 효과가 있다.

Description

나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드{NANO IMPRINT MOLD MANUFACTURING METHOD, LIGHT EMITTING DIODE MANUFACTURING METHOD AND LIGHT EMITTING DIODE USING THE NANO IMPRINT MOLD MANUFACTURED BY THE METHOD}
본 발명은 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드에 관한 것이다.
백색광원 질화갈륨계 발광다이오드는 에너지 변환 효율이 높고, 수명이 길며, 빛의 지향성이 높고, 저전압 구동이 가능하며, 예열 시간과 복잡한 구동회로가 필요하지 않고, 충격 및 진동에 강하기 때문에 다양한 형태의 고품격 조명 시스템의 구현이 가능해, 가까운 미래에 백열등, 형광등, 수은등과 같은 기존의 광원을 대체할 고체 조명(solid-state lighting) 광원으로 기대되고 있다. 질화갈륨계 발광다이오드가 기존의 수은등이나 형광등을 대체하여 백색광원으로서 쓰이기 위해서는 열적 안정성이 뛰어나야 할 뿐만 아니라 낮은 소비 전력에서도 고출력 빛을 발할 수 있어야 한다. 현재 백색광원으로 널리 이용되고 있는 수평구조의 질화갈륨계 발광다이오드는 상대적으로 제조단가가 작고 제작 공정이 간단하다는 장점이 있으나, 인가전류가 높고 면적이 큰 고출력의 광원으로 쓰이기에는 부적절하다는 단점이 있다. 이러한 수평구조 발광다이오드의 단점을 극복하고 대면적의 고출력 발광다이오드 적용이 용이한 소자가 수직구조 발광다이오드이다. 이러한 수직구조 발광다이오드는 기존의 수평구조 소자와 비교하여 여러 가지 장점을 가지고 있다. 수직구조 발광다이오드에서는 전류 확산 저항이 작아 매우 균일한 전류 확산을 얻을 수 있어 보다 낮은 작동 전압과 큰 광출력을 얻을 수 있으며, 열전도성이 좋은 금속 또는 반도체 기판을 통해 원활한 열방출이 가능하기 때문에 보다 긴 소자 수명과 월등히 향상된 고출력 작동이 가능하다. 이러한 수직구조 발광다이오드에서는 최대 인가전류가 수평구조 발광다이오드에 비해 3 내지 4배 이상 증가되므로 조명용 백색광원으로 널리 이용될 것이 확실시 되어, 현재 일본의 Nichia chemical사, 미국의 Philips Lumileds사, 독일의 Osram사와 같은 국외 발광다이오드 선두 기업들과 서울반도체, 삼성전기, LG 이노텍과 같은 국내 기업들이 질화갈륨계 수직 발광다이오드의 상용화 및 성능향상을 위해 활발한 연구 개발을 진행하고 있고, Osram과 같은 일부 기업에서는 이미 관련 제품을 판매하고 있는 실정이다.
질화갈륨계 수직 발광다이오드의 제조에 있어 소자의 광출력을 크게 향상시킬 수 있는 부분이 소자 상부의 n형 반도체층이다. n형 반도체층이 매끄러운 평면인 경우, n형 반도체층과 대기의 큰 굴절률 차이로 인해 (n형 반도체층의 굴절률은 2.4 이하이고, 대기의 굴절률은 1임.), 대기와 n형 반도체층의 계면에서 전반사가 발생하여 활성층 즉, 발광층에서 발생된 빛의 상당 부분이 외부로 빠져나올 수 없기 때문에 높은 광출력을 기대할 수 없다. 따라서 n형 반도체층 표면을 인위적으로 변형하여 전반사가 일어나는 것을 방지하여 최소한의 손실로 빛을 외부로 빠져 나오게 하는 것이 필요하다.
이를 위하여 종래에는 반도체층 표면에 반구 모양의 나노 구조물을 형성하고자, Silica(SiO2) nanosphere 또는 polystyrene nanosphere 등의 나노 구조체를 반도체층에 직접 코팅한 후, 건식 에칭을 이용해 반구 형태의 구조물을 반도체층에 형성시켜 발광다이오드의 광추출 효율을 향상시키고자 하였다. 그러나 종래의 이러한 방법은 나노 구조체를 코팅 및 에칭 시, 재현성이 부족하며 또한 나노구조체의 가격이 비싸 대면적 적용에 어려운 단점이 있다.
본 발명은 발광다이오드의 광추출 효율을 향상시키기 위한 나노 패턴을 효율적이고 경제적으로 형성할 수 있는 나노 임프린트 몰드 제조방법, 이 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 발광다이오드를 제공하는 것을 기술적 과제로 한다.
또한, 본 발명은 별도의 습식 에칭, 건식 에칭을 사용하지 않고도 광추출 효율 향상을 위한 나노 패턴을 효율적이고 정교하게 형성할 수 있는 발광다이오드 제조방법 및 그 방법에 의해 제조된 발광다이오드를 제공하는 것을 기술적 과제로 한다.
또한, 본 발명은 단순화된 공정을 통하여 적은 비용으로 대면적에 나노 패턴을 형성하여 높은 광추출 효율을 갖는 발광다이오드 및 그 제조방법을 제공하는 것을 기술적 과제로 한다.
이러한 과제를 해결하기 위한 본 발명에 따른 나노 임프린트 몰드 제조방법은 반도체 기판 상에 나노 구조체들을 코팅하는 단계, 상기 나노 구조체들을 마스크로 이용한 건식 에칭을 통하여 상기 반도체 기판에 반구 형태의 나노 패턴을 형성하는 단계, 상기 반도체 기판에 형성되어 있는 반구 형태의 나노 패턴을 나노 임프린팅 방식으로 나노 임프린트 몰드에 전사하는 단계 및 상기 반구 형태의 나노 패턴이 전사되어 있는 나노 임프린트 몰드를 상기 반도체 기판으로부터 분리하는 단계를 포함하여 구성된다.
본 발명에 따른 나노 임프린트 몰드 제조방법에 있어서, 상기 반도체 기판 상에 코팅되는 나노 구조체들의 크기와 상기 건식 에칭 시간 중 적어도 하나를 조절하여 상기 반구 형태의 나노 패턴의 크기를 조절하는 것을 특징으로 한다.
본 발명에 따른 나노 임프린트 몰드 제조방법에 있어서, 상기 반도체 기판 상에 코팅되는 나노 구조체들의 크기는 100nm 이상 2000nm 이하인 것을 특징으로 한다.
본 발명에 따른 나노 임프린트 몰드 제조방법에 있어서, 상기 반도체 기판 상에 코팅되는 나노 구조체들의 크기는 서로 다른 것을 특징으로 한다.
본 발명의 일 측면에 따른 발광다이오드 제조방법은 임시기판 상에 n형 질화물 반도체층, 발광층 및 p형 질화물 반도체층을 형성하는 단계, 상기 p형 질화물 반도체층 상에 p형 전극을 형성하는 단계, 상기 p형 전극 상에 도전성 기판을 형성하는 단계, 상기 임시기판을 제거하여 상기 n형 질화물 반도체층을 노출시키는 단계, 상기 n형 질화물 반도체층 상에 나노 임프린트 레지스트층을 형성하는 단계, 본 발명에 따른 나노 임프린트 몰드 제조방법에 의해 제조된 나노 임프린트 몰드를 상기 나노 임프린트 레지스트층에 가압하여 상기 반구 형태의 나노 패턴을 상기 나노 임프린트 레지스트층에 전사하는 단계, 상기 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층으로부터 상기 나노 임프린트 몰드를 분리하는 단계 및 상기 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층의 일부를 식각하여 n형 전극을 형성하는 단계를 포함하여 구성된다.
본 발명의 일 측면에 따른 발광다이오드 제조방법에 있어서, 상기 n형 질화물 반도체층과 상기 나노 임프린트 레지스트층 사이에 상기 n형 질화물 반도체층의 굴절률보다 작고 상기 나노 임프린트 레지스트층의 굴절률보다 큰 굴절률을 갖는 굴절률 조절층을 형성하는 단계를 더 포함하는 것을 특징으로 한다.
본 발명의 일 측면에 따른 발광다이오드 제조방법에 있어서, 상기 굴절률 조절층은 상기 발광층으로부터의 광을 서로 다른 굴절률로 굴절시키는 제1 굴절률 조절층과 제2 굴절률 조절층을 순차적으로 적층하여 형성하는 것을 특징으로 한다.
본 발명의 일 측면에 따른 발광다이오드 제조방법에 있어서, 상기 제1 굴절률 조절층은 상기 n형 질화물 반도체층 상에 형성되고 상기 제1 굴절률 조절층의 굴절률은 상기 n형 질화물 반도체층의 굴절률보다 작고, 상기 제2 굴절률 조절층은 상기 제1 굴절률 조절층 상에 형성되고 상기 제2 굴절률 조절층의 굴절률은 상기 제1 굴절률 조절층의 굴절률보다 작고 상기 나노 임프린트 레지스트층의 굴절률보다 큰 것을 특징으로 한다.
본 발명의 일 측면에 따른 발광다이오드 제조방법에 있어서, 상기 제1 굴절률 조절층은 ZnO, Al-doped ZnO, In-doped ZnO, Ga-doped ZnO, ZrO2, TiO2, SiO2, SiO, Al2O3, CuOX 및 ITO로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 한다.
본 발명의 일 측면에 따른 발광다이오드 제조방법에 있어서, 상기 제2 굴절률 조절층은 MgO계 산화물인 것을 특징으로 한다.
본 발명의 일 측면에 따른 발광다이오드 제조방법에 있어서, 상기 제2 굴절률 조절층을 구성하는 MgO계 산화물은 MgO에 다른 원소를 첨가하여 형성된 다원화합물인 것을 특징으로 한다.
본 발명의 일 측면에 따른 발광다이오드 제조방법에 있어서, 상기 n형 전극은 상기 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층의 일부를 상기 n형 질화물 반도체층이 노출되도록 식각한 후 상기 식각된 영역에 도전성 물질을 증착하여 형성되는 것을 특징으로 한다.
본 발명의 일 측면에 따른 발광다이오드는 본 발명의 일 측면에 따른 발광다이오드 제조방법에 의해 제조된 것을 특징으로 한다.
본 발명의 다른 측면에 따른 발광다이오드 제조방법은 입사되는 광을 산란시켜 반사시키기 위한 패턴이 형성되어 있는 기판 상에 n형 질화물 반도체층, 발광층 및 p형 질화물 반도체층을 형성하는 단계, 상기 p형 질화물 반도체층, 상기 발광층 및 상기 n형 질화물 반도체층의 일부를 메사 식각하여 상기 n형 질화물 반도체층의 일부를 노출시키는 단계, 상기 p형 질화물 반도체층 상에 투명전극을 형성하는 단계, 상기 투명전극 상에 나노 임프린트 레지스트층을 형성하는 단계, 본 발명에 따른 나노 임프린트 몰드 제조방법에 의해 제조된 나노 임프린트 몰드를 상기 나노 임프린트 레지스트층에 가압하여 상기 반구 형태의 나노 패턴을 상기 나노 임프린트 레지스트층에 전사하는 단계, 상기 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층으로부터 상기 나노 임프린트 몰드를 분리하는 단계 및 상기 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층의 일부를 식각하여 p형 전극을 형성하고 상기 n형 질화물 반도체층 상에 n형 전극을 형성하는 단계를 포함하여 구성된다.
본 발명의 다른 측면에 따른 발광다이오드 제조방법에 있어서, 상기 투명전극인 ITO인 것을 특징으로 한다.
본 발명의 다른 측면에 따른 발광다이오드 제조방법에 있어서, 상기 p형 전극은 상기 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층의 일부를 상기 투명전극이 노출되도록 식각한 후 상기 식각된 영역에 도전성 물질을 증착하여 형성되는 것을 특징으로 한다.
본 발명의 다른 측면에 따른 발광다이오드는 본 발명의 다른 측면에 따른 발광다이오드 제조방법에 의해 제조된 것을 특징으로 한다.
본 발명에 따르면, 발광다이오드의 광추출 효율을 향상시키기 위한 나노 패턴을 효율적이고 경제적으로 형성할 수 있는 나노 임프린트 몰드 제조방법, 이 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 발광다이오드가 제공되는 효과가 있다.
또한, 별도의 습식 에칭, 건식 에칭을 사용하지 않고도 광추출 효율 향상을 위한 나노 패턴을 효율적이고 정교하게 형성할 수 있는 발광다이오드 제조방법 및 그 방법에 의해 제조된 발광다이오드가 제공되는 효과가 있다.
또한, 단순화된 공정을 통하여 적은 비용으로 대면적에 나노 패턴을 형성하여 높은 광추출 효율을 갖는 발광다이오드 및 그 제조방법이 제공되는 효과가 있다.
도 1은 종래의 발광다이오드에 있어서, 질화물 반도체층과 대기와의 굴절률 차이 때문에 계면에서 발생하는 내부 전반사로 인하여 광추출 효율이 저하되는 현상을 설명하기 위한 도면이다.
도 2는 본 발명에 있어서, 광진행 경로 상에 반구 형태의 나노 패턴을 형성함으로써 발광다이오드의 광추출 효율을 향상시키는 원리를 설명하기 위한 도면이다.
도 3 내지 도 8은 본 발명의 일 실시 예에 따른 나노 임프린트 몰드 제조방법을 나타낸 도면이다.
도 9는 본 발명의 일 실시 예에 따른 나노 임프린트 몰드 제조방법에 있어서, 반도체 기판 상에 코팅되어 있는 나노 구조체들을 전자현미경으로 촬영한 사진이다.
도 10 내지 도 18은 본 발명의 제1 실시 예에 따른 발광다이오드 제조방법을 나타낸 도면이다.
도 19 내지 도 25는 본 발명의 제2 실시 예에 따른 발광다이오드 제조방법을 나타낸 도면이다.
먼저 도 1 과 도 2를 참조하여 본 발명에 따른 광추출 효율의 향상 효과를 종래의 경우와 대비하여 설명한다.
도 1은 종래의 발광다이오드에 있어서, 질화물 반도체층과 대기와의 굴절률 차이 때문에 계면에서 발생하는 내부 전반사로 인하여 광추출 효율이 저하되는 현상을 설명하기 위한 도면이다.
도 1을 참조하면, 종래의 경우와 같이 매끈한 표면의 반도체 기판의 경우, 질화갈륨 반도체 기판의 굴절률이 약 2.5이고 대기의 굴절률이 1이기 때문에, 두 층간의 굴절률 차이가 커서 경계면에서의 전반사에 대한 임계각이 23.5도에 불과하다. 따라서 반도체 내부에서 발생한 빛이 외부로 빠져나오지 못하고, 내부에서 소멸되어 광추출 효율이 낮아지는 문제점이 있다.
도 2는 본 발명에 있어서, 광진행 경로 상에 반구 형태의 나노 패턴을 형성함으로써 발광다이오드의 광추출 효율을 향상시키는 원리를 설명하기 위한 도면이다.
도 2를 참조하면, 반도체층 표면에 반구 형태의 나노구조물을 형성할 경우, 광의 모든 방출 방향에 대하여 임계각이 존재하지 않기 때문에 내부에서 발생한 광이 대기 중으로 방출될 확률이 급격하게 증가하여 발광다이오드의 광추출 효율을 획기적으로 향상시킬 수 있다.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명한다.
도 3 내지 도 8은 본 발명의 일 실시 예에 따른 나노 임프린트 몰드 제조방법을 나타낸 도면이다.
도 3 내지 도 8을 참조하면, 본 발명의 일 실시 예에 따른 나노 임프린트 몰드 제조방법은 반도체 기판(40) 상에 나노 구조체들(50)을 코팅하는 단계, 이 나노 구조체들(50)을 마스크로 이용한 건식 에칭을 통하여 반도체 기판(40)에 반구 형태의 나노 패턴을 형성하는 단계, 반도체 기판(40)에 형성되어 있는 반구 형태의 나노 패턴을 나노 임프린팅 방식으로 나노 임프린트 몰드(60)에 전사하는 단계 및 반구 형태의 나노 패턴이 전사되어 있는 나노 임프린트 몰드(60)를 반도체 기판(40)으로부터 분리하는 단계를 포함하여 구성된다.
먼저 도 3을 참조하면, 반도체 기판(40) 상에 나노 구조체들(50)을 코팅한다. 반도체 기판(40)은 Si, Ge, SiC, SiXGe1 -X, 질화갈륨계 반도체로 이루어진 군에서 선택된 1종 이상을 포함할 수 있으며, 나노 구조체(50)는 SiO2 또는 폴리스티렌(polystyrene) 분말일 수 있다.
다음으로 도 4 내지 도 6을 참조하면, 반도체 기판(40) 상에 코팅되어 있는 나노 구조체들(50)을 마스크로 이용한 건식 에칭을 통하여 반도체 기판(40)에 반구 형태의 나노 패턴을 형성한다. 도 6은 노광 및 현상 공정을 거친 후에 반도체 기판(40)에 반구 형태의 나노 패턴이 형성된 상태를 나타낸다. 후술하겠지만, 이렇게 반구 형태의 나노 패턴이 형성된 반도체 기판(40)을 마스터 템플릿으로 사용하여, 나노 임프린팅을 위한 고분자 몰드 즉, 나노 임프린트 몰드(60)를 제작한다.
다음으로 도 7을 참조하면, 반도체 기판(40)에 형성되어 있는 반구 형태의 나노 패턴을 나노 임프린팅 방식으로 나노 임프린트 몰드(60)에 전사한다.
다음으로 도 8을 참조하면, 반구 형태의 나노 패턴이 전사되어 있는 나노 임프린트 몰드(60)를 반도체 기판(40)으로부터 분리한다.
이와 같은 과정을 통하여 최종적으로 반구 형태의 나노 패턴이 형성된 나노 임프린트 몰드(60)가 제조되며, 이 나노 임프린트 몰드(60)는 후술하는 발광다이오드 제조과정에서 나노 패턴을 형성하기 위한 마스터 템플릿으로 이용된다.
한편, 반도체 기판(40) 상에 코팅되는 나노 구조체들(50)의 크기와 건식 에칭 시간 중 적어도 하나를 조절함으로써, 반구 형태의 나노 패턴의 크기를 조절할 수 있다.
도 9에 반도체 기판(40) 상에 코팅되어 있는 나노 구조체들(50)을 전자현미경으로 촬영한 사진이다. 도 9의 (a)는 나노 구조체의 크기가 250nm인 경우이고, (b)는 나노 구조체의 크기가 500nm인 경우이고, (c)는 나노 구조체의 크기가 1000nm인 경우이다. 이와 같이, 반도체 기판에 코팅되는 나노 구조체의 크기를 조절함으로써, 나노 임프린트 몰드에 전사되는 반구 형태의 나노 패턴의 크기를 용이하고 효율적으로 조절할 수 있다.
또한, 나노 구조체들(50)이 건식 에칭 과정에서의 마스크로 이용되기 때문에, 나노 구조체들(50)의 크기가 반구 형태의 나노 패턴의 크기에 영향을 미치는 점을 고려하여, 반도체 기판(40) 상에 코팅되는 나노 구조체들(50)의 크기는 100nm 이상 2000nm 이하인 것이 바람직하다.
또한, 반도체 기판(40) 상에 코팅되는 나노 구조체들(50)의 크기를 서로 다르게 함으로써, 반구 형태의 나노 패턴의 크기를 불규칙하게 할 수 있다.
도 10 내지 도 18은 본 발명의 제1 실시 예에 따른 발광다이오드 제조방법을 나타낸 도면이다.
도 10 내지 도 18을 참조하면, 본 발명의 제1 실시 예에 따른 발광다이오드 제조방법은 임시기판(100) 상에 n형 질화물 반도체층(110), 발광층(120) 및 p형 질화물 반도체층(130)을 형성하는 단계, p형 질화물 반도체층(130) 상에 p형 전극(140)을 형성하는 단계, p형 전극(140) 상에 도전성 기판(150)을 형성하는 단계, 임시기판(100)을 제거하여 n형 질화물 반도체층(110)을 노출시키는 단계, n형 질화물 반도체층(110) 상에 나노 임프린트 레지스트층(160)을 형성하는 단계, 본 발명에 따른 나노 임프린트 몰드 제조방법에 의해 제조된 나노 임프린트 몰드(60)를 나노 임프린트 레지스트층(160)에 가압하여 반구 형태의 나노 패턴을 나노 임프린트 레지스트층(160)에 전사하는 단계, 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층(160)으로부터 나노 임프린트 몰드(60)를 분리하는 단계 및 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층(160)의 일부를 식각하여 n형 전극(170)을 형성하는 단계를 포함하여 구성된다.
먼저 도 10을 참조하면, 임시기판(100) 상에 n형 질화물 반도체층(110), 발광층(120) 및 p형 질화물 반도체층(130)을 순차적으로 형성한다.
다음으로 도 11을 참조하면, p형 질화물 반도체층(130) 상에 p형 전극(140)을 형성하고, 이 p형 전극(140) 상에 도전성 기판(150)을 형성한다. p형 전극(140)은 발광층(120)으로부터의 광을 반사시키는 기능을 이울러 수행한다.
다음으로 도 12를 참조하면, 임시기판(100)을 제거하여 n형 질화물 반도체층(110)을 외부로 노출시킨다.
다음으로 도 13을 참조하면, n형 질화물 반도체층(110) 상에 나노 임프린트 레지스트층(160)을 예를 들어, 스핀 코팅(spin coating) 방식으로 형성한다.
다음으로 도 14 및 도 15를 참조하면, 앞서 상세히 설명한 본 발명의 일 실시 예에 따른 나노 임프린트 몰드 제조방법에 의해 제조된 나노 임프린트 몰드(60)를 나노 임프린트 레지스트층(160)에 가압하여 나노 패턴을 나노 임프린트 레지스트층(160)에 전사하고, UV 및 열을 가하여 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층(160)을 경화시킨다.
다음으로 도 16을 참조하면, 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층(160)으로부터 나노 임프린트 몰드(60)를 분리한다.
다음으로 도 17을 참조하면, 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층(160)의 일부를 n형 질화물 반도체층(110)이 드러나도록 식각한 후, n형 전극(170)을 형성한다. 예를 들어, 이 n형 전극(170)은 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층(160)의 일부를 n형 질화물 반도체층(110)이 노출되도록 식각한 후, 식각된 영역에 도전성 물질을 증착하여 형성될 수 있다.
한편, 본 발명의 제1 실시 예는 광추출 효율을 더욱 높이기 위하여 추가적으로 굴절률 조절층(180)을 형상하는 단계를 포함할 수 있다.
즉 도 18을 참조하면, 나노 임프린트 레지스트층(160)을 형성하기 이전에 n형 질화물 반도체층(110)과 나노 임프린트 레지스트층(160) 사이에 n형 질화물 반도체층(110)의 굴절률보다 작고 나노 임프린트 레지스트층(160)의 굴절률보다 큰 굴절률을 갖는 굴절률 조절층(180)을 형성한다.
이 굴절률 조절층(180)은 발광층(120)으로부터의 광을 서로 다른 굴절률로 굴절시키는 제1 굴절률 조절층(181)과 제2 굴절률 조절층(182)을 순차적으로 적층하여 형성될 수 있다.
제1 굴절률 조절층(181)은 n형 질화물 반도체층(110) 상에 형성되고 제1 굴절률 조절층(181)의 굴절률은 n형 질화물 반도체층(110)의 굴절률보다 작고, 제2 굴절률 조절층(182)은 제1 굴절률 조절층(181) 상에 형성되고 제2 굴절률 조절층(182)의 굴절률은 제1 굴절률 조절층(181)의 굴절률보다 작고 나노 임프린트 레지스트층(160)의 굴절률보다 크다. 이와 같이, n형 질화물 반도체층(110)과 나노 임프린트 레지스트층(160) 사이에 이들 층의 굴절률들의 중간값에 해당하는 굴절률을 갖는 제1 굴절률 조절층(181)과 제2 굴절률 조절층(182)을 개재시켜 버퍼층의 기능을 수행하도록 함으로써, 광추출 효율을 더욱 높일 수 있다.
예를 들어, 제1 굴절률 조절층(181)은 ZnO, Al-doped ZnO, In-doped ZnO, Ga-doped ZnO, ZrO2, TiO2, SiO2, SiO, Al2O3, CuOX 및 ITO로 이루어진 군에서 선택된 1종 이상을 포함할 수 있으며, 제2 굴절률 조절층(182)은 MgO계 산화물일 수 있다. 제2 굴절률 조절층(182)을 구성하는 MgO계 산화물은 MgO에 다른 원소를 첨가하여 형성된 다원화합물일 수 있다. 제1 굴절률 조절층(181)과 제2 굴절률 조절층(182)으로 선택되는 이들 물질들의 굴절률은 공통적으로 n형 질화물 반도체층(110)의 굴절률과 나노 임프린트 레지스트층(160)의 굴절률의 중간값을 갖는다.
도 19 내지 도 25는 본 발명의 제2 실시 예에 따른 발광다이오드 제조방법을 나타낸 도면이다.
도 19 내지 도 25를 참조하면, 본 발명의 제2 실시 예에 따른 발광다이오드 제조방법은 입사되는 광을 산란시켜 반사시키기 위한 패턴이 형성되어 있는 기판(200) 상에 n형 질화물 반도체층(210), 발광층(220) 및 p형 질화물 반도체층(230)을 형성하는 단계, p형 질화물 반도체층(230), 발광층(220) 및 n형 질화물 반도체층(210)의 일부를 메사 식각하여 n형 질화물 반도체층(210)의 일부를 노출시키는 단계, p형 질화물 반도체층(230) 상에 투명전극(240)을 형성하는 단계, 투명전극(240) 상에 나노 임프린트 레지스트층(250)을 형성하는 단계, 본 발명에 따른 나노 임프린트 몰드 제조방법에 의해 제조된 나노 임프린트 몰드(60)를 나노 임프린트 레지스트층(250)에 가압하여 반구 형태의 나노 패턴을 나노 임프린트 레지스트층(250)에 전사하는 단계, 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층(250)으로부터 나노 임프린트 몰드(60)를 분리하는 단계 및 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층(250)의 일부를 식각하여 p형 전극(260)을 형성하고 n형 질화물 반도체층(210) 상에 n형 전극(270)을 형성하는 단계를 포함하여 구성된다.
먼저 도 19를 참조하면, 입사되는 광을 산란시켜 반사시키기 위한 패턴이 형성되어 있는 기판(200) 상에 n형 질화물 반도체층(210), 발광층(220) 및 p형 질화물 반도체층(230)을 순차적으로 형성한다. 기판(200)은 사파이어(Al2O3) 기판일 수 있으며, 이 기판(200)에 형성된 패턴은 발광층(220)으로부터의 광을 산란시켜 반사시키기 위한 기능을 수행한다.
다음으로 도 20을 참조하면, p형 질화물 반도체층(230), 발광층(220) 및 n형 질화물 반도체층(210)의 일부를 메사 식각하여 n형 질화물 반도체층(210)의 일부를 외부로 노출시킨다.
다음으로 도 21을 참조하면, 메사 식각된 p형 질화물 반도체층(230) 상에 투명전극(240)을 형성하고, 이 투명전극(240) 상에 나노 임프린트 레지스트층(250)을 예를 들어 스핀 코팅 방식으로 형성한다. 투명전극(240)은 ITO(Indium Tin Oxide)일 수 있다.
다음으로 도 22 및 도 23을 참조하면, 앞서 상세히 설명한 본 발명의 일 실시 예에 따른 나노 임프린트 몰드 제조방법에 의해 제조된 나노 임프린트 몰드(60)를 나노 임프린트 레지스트층(250)에 가압하여 나노 패턴을 나노 임프린트 레지스트층(250)에 전사하고, UV 및 열을 가하여 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층(250)을 경화시킨다.
다음으로 도 24를 참조하면, 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층(250)으로부터 나노 임프린트 몰드(60)를 분리한다.
다음으로 도 25를 참조하면, 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층(250)의 일부를 투명전극(240)이 드러나도록 식각한 후 p형 전극(260)을 형성하고, n형 질화물 반도체층(210) 상에 n형 전극(270)을 형성한다. 예를 들어, 이 p형 전극(260)은 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층(250)의 일부를 투명전극(240)이 노출되도록 식각한 후, 식각된 영역에 도전성 물질을 증착하여 형성될 수 있으며, n형 전극(270)은 메사 식각 후에 남아있는 n형 질화물 반도체층(210) 상에 형성될 수 있다.
이상에서 상세히 설명한 바와 같이 본 발명에 따르면, 발광다이오드의 광추출 효율을 향상시키기 위한 나노 패턴을 효율적이고 경제적으로 형성할 수 있는 나노 임프린트 몰드 제조방법, 이 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 발광다이오드가 제공되는 효과가 있다.
또한, 별도의 습식 에칭, 건식 에칭을 사용하지 않고도 광추출 효율 향상을 위한 나노 패턴을 효율적이고 정교하게 형성할 수 있는 발광다이오드 제조방법 및 그 방법에 의해 제조된 발광다이오드가 제공되는 효과가 있다.
또한, 단순화된 공정을 통하여 적은 비용으로 대면적에 나노 패턴을 형성하여 높은 광추출 효율을 갖는 발광다이오드 및 그 제조방법이 제공되는 효과가 있다.
보다 구체적으로, 본 발명 기술은 대면적 공정이 가능한 나노 임프린트 방법을 이용하여 반구 나노구조물을 형성하는 기술로서 발광다이오드의 제조 공정에 즉시 적용 가능하다. 또한 수직 구조뿐만 아니라 수평 구조 발광다이오드에도 적용이 가능하며, 제조 공정이 간단하며, 발광다이오드의 광출력을 획기적으로 향상시켜, 백색광원 질화갈륨계 발광다이오드를 이용한 고체 조명 시대의 도래를 보다 앞당길 수 있는 에너지 절약 친환경 기술이다.
이상에서 본 발명에 대한 기술 사상을 첨부 도면과 함께 서술하였지만, 이는 본 발명의 바람직한 실시예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다. 또한, 이 기술 분야의 통상의 지식을 가진 자라면 누구나 본 발명의 기술 사상의 범주를 이탈하지 않는 범위 내에서 다양한 변형 및 모방이 가능함은 명백한 사실이다.
40: 반도체 기판
50: 나노 구조체
60: 나노 임프린트 몰드
100: 임시기판
110, 210: n형 질화물 반도체층
120, 220: 발광층
130, 230: p형 질화물 반도체층
140, 260: p형 전극
150: 도전성 기판
160, 250: 나노 임프린트 레지스트층
170, 270: n형 전극
180: 굴절률 조절층
181: 제1 굴절률 조절층
182: 제2 굴절률 조절층
240: 투명전극

Claims (17)

  1. 나노 임프린트 몰드 제조방법에 있어서,
    반도체 기판 상에 나노 구조체들을 코팅하는 단계;
    상기 나노 구조체들을 마스크로 이용한 건식 에칭을 통하여 상기 반도체 기판에 반구 형태의 나노 패턴을 형성하는 단계;
    상기 반도체 기판에 형성되어 있는 반구 형태의 나노 패턴을 나노 임프린팅 방식으로 나노 임프린트 몰드에 전사하는 단계; 및
    상기 반구 형태의 나노 패턴이 전사되어 있는 나노 임프린트 몰드를 상기 반도체 기판으로부터 분리하는 단계를 포함하는, 나노 임프린트 몰드 제조방법.
  2. 제1 항에 있어서,
    상기 반도체 기판 상에 코팅되는 나노 구조체들의 크기와 상기 건식 에칭 시간 중 적어도 하나를 조절하여 상기 반구 형태의 나노 패턴의 크기를 조절하는 것을 특징으로 하는, 나노 임프린트 몰드 제조방법.
  3. 제2 항에 있어서,
    상기 반도체 기판 상에 코팅되는 나노 구조체들의 크기는 100nm 이상 2000nm 이하인 것을 특징으로 하는, 나노 임프린트 몰드 제조방법.
  4. 제2 항에 있어서,
    상기 반도체 기판 상에 코팅되는 나노 구조체들의 크기는 서로 다른 것을 특징으로 하는, 나노 임프린트 몰드 제조방법.
  5. 발광다이오드 제조방법에 있어서,
    임시기판 상에 n형 질화물 반도체층, 발광층 및 p형 질화물 반도체층을 형성하는 단계;
    상기 p형 질화물 반도체층 상에 p형 전극을 형성하는 단계;
    상기 p형 전극 상에 도전성 기판을 형성하는 단계;
    상기 임시기판을 제거하여 상기 n형 질화물 반도체층을 노출시키는 단계;
    상기 n형 질화물 반도체층 상에 나노 임프린트 레지스트층을 형성하는 단계;
    제1 항의 방법에 의해 제조된 나노 임프린트 몰드를 상기 나노 임프린트 레지스트층에 가압하여 상기 반구 형태의 나노 패턴을 상기 나노 임프린트 레지스트층에 전사하는 단계;
    상기 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층으로부터 상기 나노 임프린트 몰드를 분리하는 단계; 및
    상기 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층의 일부를 식각하여 n형 전극을 형성하는 단계를 포함하는, 발광다이오드 제조방법.
  6. 제5 항에 있어서,
    상기 n형 질화물 반도체층과 상기 나노 임프린트 레지스트층 사이에 상기 n형 질화물 반도체층의 굴절률보다 작고 상기 나노 임프린트 레지스트층의 굴절률보다 큰 굴절률을 갖는 굴절률 조절층을 형성하는 단계를 더 포함하는 것을 특징으로 하는, 발광다이오드 제조방법.
  7. 제6 항에 있어서,
    상기 굴절률 조절층은 상기 발광층으로부터의 광을 서로 다른 굴절률로 굴절시키는 제1 굴절률 조절층과 제2 굴절률 조절층을 순차적으로 적층하여 형성하는 것을 특징으로 하는, 발광다이오드 제조방법.
  8. 제7 항에 있어서,
    상기 제1 굴절률 조절층은 상기 n형 질화물 반도체층 상에 형성되고 상기 제1 굴절률 조절층의 굴절률은 상기 n형 질화물 반도체층의 굴절률보다 작고,
    상기 제2 굴절률 조절층은 상기 제1 굴절률 조절층 상에 형성되고 상기 제2 굴절률 조절층의 굴절률은 상기 제1 굴절률 조절층의 굴절률보다 작고 상기 나노 임프린트 레지스트층의 굴절률보다 큰 것을 특징으로 하는, 발광다이오드 제조방법.
  9. 제7 항에 있어서,
    상기 제1 굴절률 조절층은 ZnO, Al-doped ZnO, In-doped ZnO, Ga-doped ZnO, ZrO2, TiO2, SiO2, SiO, Al2O3, CuOX 및 ITO로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는, 발광다이오드 제조방법.
  10. 제7 항에 있어서,
    상기 제2 굴절률 조절층은 MgO계 산화물인 것을 특징으로 하는, 발광다이오드 제조방법.
  11. 제10 항에 있어서,
    상기 제2 굴절률 조절층을 구성하는 MgO계 산화물은 MgO에 다른 원소를 첨가하여 형성된 다원화합물인 것을 특징으로 하는, 발광다이오드 제조방법.
  12. 제5 항에 있어서,
    상기 n형 전극은 상기 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층의 일부를 상기 n형 질화물 반도체층이 노출되도록 식각한 후 상기 식각된 영역에 도전성 물질을 증착하여 형성되는 것을 특징으로 하는, 발광다이오드 제조방법.
  13. 제5 항 내지 제12 항 중 어느 한 항에 기재된 발광다이오드 제조방법에 의해 제조된 것을 특징으로 하는, 발광다이오드.
  14. 발광다이오드 제조방법에 있어서,
    입사되는 광을 산란시켜 반사시키기 위한 패턴이 형성되어 있는 기판 상에 n형 질화물 반도체층, 발광층 및 p형 질화물 반도체층을 형성하는 단계;
    상기 p형 질화물 반도체층, 상기 발광층 및 상기 n형 질화물 반도체층의 일부를 메사 식각하여 상기 n형 질화물 반도체층의 일부를 노출시키는 단계;
    상기 p형 질화물 반도체층 상에 투명전극을 형성하는 단계;
    상기 투명전극 상에 나노 임프린트 레지스트층을 형성하는 단계;
    제1 항의 방법에 의해 제조된 나노 임프린트 몰드를 상기 나노 임프린트 레지스트층에 가압하여 상기 반구 형태의 나노 패턴을 상기 나노 임프린트 레지스트층에 전사하는 단계;
    상기 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층으로부터 상기 나노 임프린트 몰드를 분리하는 단계; 및
    상기 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층의 일부를 식각하여 p형 전극을 형성하고 상기 n형 질화물 반도체층 상에 n형 전극을 형성하는 단계를 포함하는, 발광다이오드 제조방법.
  15. 제14 항에 있어서,
    상기 투명전극인 ITO인 것을 특징으로 하는, 발광다이오드 제조방법.
  16. 제14 항에 있어서,
    상기 p형 전극은 상기 반구 형태의 나노 패턴이 형성된 나노 임프린트 레지스트층의 일부를 상기 투명전극이 노출되도록 식각한 후 상기 식각된 영역에 도전성 물질을 증착하여 형성되는 것을 특징으로 하는, 발광다이오드 제조방법.
  17. 제14 항 내지 제16 항 중 어느 한 항의 발광다이오드 제조방법에 의해 제조된 것을 특징으로 하는, 발광다이오드.
KR1020100139089A 2010-12-30 2010-12-30 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드 KR101215299B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020100139089A KR101215299B1 (ko) 2010-12-30 2010-12-30 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드
EP11854018.6A EP2660036A4 (en) 2010-12-30 2011-10-28 METHOD FOR MANUFACTURING NANOIMPRESSION MOLD, METHOD FOR MANUFACTURING LIGHT EMITTING DIODE USING THE NANOIMPRESSION MOLD MADE THEREBY AND LIGHT-EMITTING DIODE MANUFACTURED THEREBY
CN201180037337.4A CN103097113B (zh) 2010-12-30 2011-10-28 制造纳米压印模具的方法、利用由此制造的纳米压印模具制造发光二极管的方法以及由此制造的发光二极管
PCT/KR2011/008157 WO2012091270A1 (ko) 2010-12-30 2011-10-28 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오
US13/812,517 US8957449B2 (en) 2010-12-30 2011-10-28 Method for manufacturing nano-imprint mould, method for manufacturing light-emitting diode using the nano imprint mould manufactured thereby, and light-emitting diode manufactured thereby
JP2013521726A JP5632081B2 (ja) 2010-12-30 2011-10-28 ナノインプリントモールドを用いた発光ダイオードの製造方法、及びこの方法により製造された発光ダイオード

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100139089A KR101215299B1 (ko) 2010-12-30 2010-12-30 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드

Publications (2)

Publication Number Publication Date
KR20120077209A true KR20120077209A (ko) 2012-07-10
KR101215299B1 KR101215299B1 (ko) 2012-12-26

Family

ID=46383315

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100139089A KR101215299B1 (ko) 2010-12-30 2010-12-30 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드

Country Status (6)

Country Link
US (1) US8957449B2 (ko)
EP (1) EP2660036A4 (ko)
JP (1) JP5632081B2 (ko)
KR (1) KR101215299B1 (ko)
CN (1) CN103097113B (ko)
WO (1) WO2012091270A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160092635A (ko) 2015-01-28 2016-08-05 포항공과대학교 산학협력단 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140100115A (ko) * 2013-02-05 2014-08-14 삼성전자주식회사 반도체 발광 소자
CN104241455A (zh) * 2013-06-11 2014-12-24 展晶科技(深圳)有限公司 Led芯片及其制造方法
KR101535852B1 (ko) * 2014-02-11 2015-07-13 포항공과대학교 산학협력단 나노구조체 전사를 이용한 발광다이오드 제조방법과 그 발광다이오드
KR101606338B1 (ko) * 2014-04-22 2016-03-24 인트리 주식회사 나노구조의 패턴을 구비한 광투과성 도전체를 제조하기 위한 포토마스크 및 그 제조방법
CN111933769B (zh) * 2020-08-19 2023-04-07 广东技术师范大学 一种周期性的折射率分层渐变的纳米结构led的制备方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1510765A (zh) * 2002-12-26 2004-07-07 炬鑫科技股份有限公司 氮化镓基ⅲ-ⅴ族化合物半导体led的发光装置及其制造方法
JP2005268601A (ja) * 2004-03-19 2005-09-29 Sumitomo Chemical Co Ltd 化合物半導体発光素子
TWM277111U (en) * 2004-06-18 2005-10-01 Super Nova Optoelectronics Cor Vertical electrode structure for white-light LED
KR100669142B1 (ko) * 2005-04-20 2007-01-15 (주)더리즈 발광 소자와 이의 제조 방법
JP2007019318A (ja) * 2005-07-08 2007-01-25 Sumitomo Chemical Co Ltd 半導体発光素子、半導体発光素子用基板の製造方法及び半導体発光素子の製造方法
KR20070063731A (ko) * 2005-12-15 2007-06-20 엘지전자 주식회사 나노 패턴이 형성된 기판의 제조방법 및 그 기판을 이용한발광소자
JP2007193249A (ja) * 2006-01-23 2007-08-02 Matsushita Electric Ind Co Ltd 成形部品の製造方法
KR100736623B1 (ko) * 2006-05-08 2007-07-09 엘지전자 주식회사 수직형 발광 소자 및 그 제조방법
KR100798863B1 (ko) * 2006-06-28 2008-01-29 삼성전기주식회사 질화갈륨계 발광 다이오드 소자 및 그 제조방법
JP5359270B2 (ja) * 2006-06-30 2013-12-04 王子ホールディングス株式会社 単粒子膜エッチングマスクを用いた微細構造体の製造方法およびナノインプリント用または射出成型用モールドの製造方法
KR100762004B1 (ko) 2006-08-07 2007-09-28 삼성전기주식회사 질화물계 발광 다이오드 소자의 제조방법
US7745843B2 (en) * 2006-09-26 2010-06-29 Stanley Electric Co., Ltd. Semiconductor light emitting device
US8128393B2 (en) * 2006-12-04 2012-03-06 Liquidia Technologies, Inc. Methods and materials for fabricating laminate nanomolds and nanoparticles therefrom
JP4986137B2 (ja) * 2006-12-13 2012-07-25 独立行政法人産業技術総合研究所 ナノ構造体を有する光学素子用又はナノ構造体用成形型の製造方法
KR100843342B1 (ko) * 2007-02-12 2008-07-03 삼성전자주식회사 Uv 나노 임프린트 리소그래피 수행 공정 및 장치
TWI462324B (zh) * 2007-05-18 2014-11-21 Delta Electronics Inc 發光二極體裝置及其製造方法
JP5048392B2 (ja) * 2007-05-25 2012-10-17 豊田合成株式会社 Iii族窒化物系化合物半導体発光素子
TWI363435B (en) * 2007-09-13 2012-05-01 Delta Electronics Inc Light-emitting diode apparatus and its manufacturing method
CN101442090B (zh) * 2007-11-21 2010-09-15 财团法人工业技术研究院 发光二极管及其制造方法
TW200929601A (en) * 2007-12-26 2009-07-01 Epistar Corp Semiconductor device
KR20090076327A (ko) * 2008-01-08 2009-07-13 엘지전자 주식회사 나노 임프린트 공정을 위한 스탬프 및 이를 이용한 발광소자 제조방법
US20090316417A1 (en) * 2008-06-20 2009-12-24 Rohm And Haas Denmark Finance A/S Light-redirecting article
KR101481665B1 (ko) * 2008-06-24 2015-01-13 엘지디스플레이 주식회사 발광 표시 패널 및 그의 제조 방법
KR100957570B1 (ko) * 2008-07-25 2010-05-11 이헌 고효율 발광 다이오드용 기판의 제조방법
KR20100043541A (ko) * 2008-10-20 2010-04-29 삼성전자주식회사 나노 임프린트용 몰드 제조방법 및 이를 이용한 광결정 제조방법
CN101900936A (zh) * 2009-05-26 2010-12-01 鸿富锦精密工业(深圳)有限公司 压印模具及其制作方法
WO2010144591A2 (en) * 2009-06-09 2010-12-16 Sinmat, Inc. High light extraction efficiency solid state light sources
CN101740702A (zh) * 2009-12-02 2010-06-16 武汉华灿光电有限公司 基于ZnO纳米球的GaN基发光二极管表面粗化方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160092635A (ko) 2015-01-28 2016-08-05 포항공과대학교 산학협력단 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드

Also Published As

Publication number Publication date
EP2660036A1 (en) 2013-11-06
JP5632081B2 (ja) 2014-11-26
JP2013539419A (ja) 2013-10-24
US20130126929A1 (en) 2013-05-23
CN103097113A (zh) 2013-05-08
US8957449B2 (en) 2015-02-17
KR101215299B1 (ko) 2012-12-26
CN103097113B (zh) 2016-04-20
WO2012091270A1 (ko) 2012-07-05
EP2660036A4 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
KR101215299B1 (ko) 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드
JP2007168066A (ja) ナノ構造物が形成された基板の製造方法及び発光素子並びにその製造方法
KR20080110340A (ko) 반도체 발광소자 및 그의 제조방법
KR101233062B1 (ko) 나노 급 패턴이 형성된 고효율 질화물계 발광다이오드용 기판의 제조방법
KR101233768B1 (ko) 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드
JP2012169615A (ja) ナノ構造を有する発光ダイオードおよびその製造方法
WO2012091325A2 (ko) 나노 구조체를 이용한 발광다이오드 제조 방법과 이에 의해 제조된 발광다이오드
KR20160092635A (ko) 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드
Zhang et al. Highly efficient chip-scale package LED based on surface patterning
KR101535852B1 (ko) 나노구조체 전사를 이용한 발광다이오드 제조방법과 그 발광다이오드
WO2012062016A1 (zh) 发光二极管及其制造方法、发光装置
TW201340388A (zh) 發光二極體晶粒及其製造方法
WO2012045222A1 (zh) 发光装置及其制造方法
Byeon et al. High-brightness vertical GaN-based light-emitting diodes with hexagonally close-packed micrometer array structures
WO2012040978A1 (zh) 发光装置及其制造方法
KR101325641B1 (ko) 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드
KR101221075B1 (ko) 나노 임프린트를 이용한 질화갈륨계 발광 다이오드 제조방법과 이를 통해 제조된 발광 다이오드 소자
KR101383097B1 (ko) 광추출 효율을 높인 질화갈륨계 발광다이오드 소자, 광추출 효율을 높인 유기 발광다이오드 소자의 제조방법
KR20140036403A (ko) 발광 다이오드의 패턴 형성 방법
KR101062282B1 (ko) 질화물계 발광소자 및 그 제조방법
KR20190099620A (ko) 나노 입자를 이용한 고효율 led
Byeon et al. Two inch large area patterning on a vertical light-emitting diode by nano-imprinting technology
CN109920887B (zh) 一种发光二极管芯片及其制造方法
KR20140039414A (ko) 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드
KR101464282B1 (ko) 반도체 소자

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151012

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161004

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171106

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181004

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191105

Year of fee payment: 8