WO2012040978A1 - 发光装置及其制造方法 - Google Patents

发光装置及其制造方法 Download PDF

Info

Publication number
WO2012040978A1
WO2012040978A1 PCT/CN2010/079603 CN2010079603W WO2012040978A1 WO 2012040978 A1 WO2012040978 A1 WO 2012040978A1 CN 2010079603 W CN2010079603 W CN 2010079603W WO 2012040978 A1 WO2012040978 A1 WO 2012040978A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
layer
emitting device
emitting diode
Prior art date
Application number
PCT/CN2010/079603
Other languages
English (en)
French (fr)
Inventor
张汝京
肖德元
Original Assignee
映瑞光电科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 映瑞光电科技(上海)有限公司 filed Critical 映瑞光电科技(上海)有限公司
Priority to US13/128,366 priority Critical patent/US20120261691A1/en
Priority to EP10829322A priority patent/EP2466652A4/en
Publication of WO2012040978A1 publication Critical patent/WO2012040978A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present invention relates to the field of semiconductor technology, and more particularly, to a light emitting device and a method of fabricating the same.
  • a light emitting diode is a semiconductor device that is excited in response to a current to generate light of various colors.
  • the III-V compound semiconductor represented by gallium nitride has characteristics such as wide band gap, high luminous efficiency, high electron saturation drift speed, and stable chemical properties, and high-intensity blue light-emitting diodes, blue lasers, and the like.
  • the field of optoelectronic devices has great potential for application and has attracted widespread attention.
  • semiconductor light emitting diodes currently have a problem of low luminous efficiency.
  • the light extraction efficiency is generally only a few percent.
  • a large amount of energy is collected inside the device and cannot be emitted, which causes energy waste and affects the service life of the device. Therefore, it is important to improve the light-emitting efficiency of the semiconductor light-emitting diode.
  • the present invention provides a light emitting device including a susceptor and a light emitting diode flipped on the susceptor, the light emitting diode including a buffer layer, a light emitting diode die on the buffer layer, and the buffer
  • the layer is provided with a plurality of protrusions having a pyramid complementary structure on the light-emitting surface of the light-emitting diode.
  • the present invention further provides a method of fabricating a light emitting device, comprising: providing a substrate, forming a plurality of pyramid structures on the substrate; sequentially forming a buffer layer, an N-type semiconductor layer, and having a substrate having a pyramid structure a source layer, a P-type semiconductor layer, a contact layer; forming an opening having a depth at least from the contact layer to the top of the N-type semiconductor layer, forming a first electrode on the contact layer, and a second electrode on the bottom of the opening; removing the substrate .
  • the present invention has the following advantages:
  • the buffer layer is provided with a plurality of protrusions having a pyramid complementary structure on the light-emitting surface of the light-emitting diode, the protrusions increase the area of the light-emitting surface, thereby increasing the light generated by the LED die to the light-emitting surface The probability of the light-emitting surface, thereby improving the light-emitting efficiency of the light-emitting device;
  • the light-emitting device further comprises a contact layer and a reflective film which can be used for reflecting light to the light-emitting direction of the light-emitting device, which can further improve the light-emitting efficiency of the light-emitting device;
  • the illuminating device further comprises a cap layer for concentrating light, which can improve the brightness of the illuminating device; 4.
  • a pyramid structure is formed on the substrate, and the pyramid structure is filled The pores are formed to form a complementary structure of the pyramid, and then the LEDs are assembled in a flip-chip manner, and the manufacturing method is relatively simple.
  • Figure la is a schematic cross-sectional view of an embodiment of a light-emitting device of the present invention.
  • Figure lb is a plan view of the complementary structure of the pyramid shown in Figure la;
  • Figure 2 is a schematic flow chart of an embodiment of the manufacturing method of the light-emitting device of the present invention;
  • Figure 3 is a schematic flow chart of the step si-embodiment shown in Figure 2;
  • Figure 4 to Figure 10b It is a schematic side view of a light-emitting device formed by an embodiment of a method for fabricating a light-emitting device of the present invention.
  • the prior art light emitting diode needs to form a plurality of thin film structures formed by stacking a high refractive index layer and a low refractive index layer on the substrate, but the thin film structure The production process is complicated.
  • the inventors of the present invention provide a light-emitting device including a light-emitting diode flip-chip mounted on a susceptor, the light-emitting diode having a plurality of pyramid junctions on a light-emitting surface
  • the pyramid structure increases the area of the light emitting surface of the light emitting diode, increases the probability that the light generated by the active layer of the light emitting diode is emitted to the light emitting surface, thereby increasing the external quantum efficiency of the light emitting diode, that is, improving the light emitting.
  • the light extraction efficiency of the diode is provided.
  • the illuminating device includes: a pedestal 101 , and a reflective film 102 on the pedestal 101 , a first pin 112 and a second pin 103 on the reflective film 102 , and is flipped on the first a light emitting diode on the pin 112 and the second pin 103, a cap layer 111 covering the light emitting diode and the reflective film 102, wherein the susceptor 101 is configured to carry the light emitting diode.
  • the pedestal 105 is made of materials such as copper, aluminum, silicon, and aluminum nitride.
  • the reflective film 102 is configured to reflect the light emitted by the light emitting diode to the light emitting direction of the light emitting device to improve the light emitting efficiency of the light emitting device and increase the brightness of the light emitting device.
  • the material of the reflective film is yttrium oxide.
  • the light emitting diode includes a buffer layer 110, an N-type semiconductor layer 109, an active layer 108, a P-type semiconductor layer 107, and a contact layer 106 in this order from top to bottom; wherein the bottom of the buffer layer 110 includes a plurality of protrusions, the protrusions Having a pyramid complementary structure (a top view of the pyramid complementary structure as shown in FIG.
  • the pyramid complementary structure is obtained by filling a gap enclosed between the pyramid structures, the protrusion of the pyramid complementary structure Can increase
  • the area of the light-emitting surface of the large light-emitting diode increases the probability that the light emitted by the light-emitting diode die emits light from the light-emitting surface, thereby improving the light-emitting efficiency of the light-emitting diode.
  • the material of the buffer layer 110 is gallium nitride or aluminum nitride.
  • the N-type semiconductor layer 109, the active layer 108, and the P-type semiconductor layer 107, the N-type semiconductor layer 109, the active layer 108, and the P-type semiconductor layer 107 constitute a light-emitting diode die; in a specific embodiment,
  • the N-type semiconductor layer 109 is an N-type doped gallium nitride material
  • the active layer 108 is a multiple quantum well active layer structure, specifically, an indium gallium nitride material is used to generate blue light having a wavelength of 470 nm.
  • the P-type semiconductor layer 107 is a P-type doped gallium nitride material; the contact layer 106 is configured to realize electrical connection between the P-type semiconductor layer 107 and the power source positive electrode, and the contact layer 106 has a large area.
  • the contact resistance can be reduced.
  • the lower surface of the contact layer 106 is a reflective surface, and the reflective surface can reflect the light emitted by the LED die to the light exit surface.
  • the contact layer 106 has a thickness of 50 to 100 nm, such as gold or nickel.
  • the light emitting diode further includes a first electrode 105 disposed between the contact layer 106 and the first pin 112 for implementing electricity between the P-type semiconductor layer 107 and the first pin 112. connection.
  • the light emitting diode further includes an opening having a depth from at least the contact layer 106 to the N-type semiconductor layer 109.
  • the light emitting diode further includes a second electrode 104 disposed at one end of the opening, and the other end of the second electrode 104 is disposed at the second On the pin 103, an electrical connection between the N-type semiconductor layer 109 and the second pin 103 is implemented.
  • the cap layer 111 is disposed on the light emitting diode and the reflective film 102.
  • the cap layer 111 has a lens structure in a light emitting direction of the light emitting diode, and the lens structure can condense light emitted by the light emitting diode.
  • the cap layer 111 is made of a resin material, and the cap layer 111 can also function to protect the light-emitting diode.
  • the present invention also provides a method of fabricating a light-emitting device.
  • a flow chart of an embodiment of a method of fabricating the light-emitting device is shown.
  • the manufacturing method of the light emitting device includes: Step si, providing a substrate, forming a plurality of pyramid structures on the substrate;
  • Step s2 sequentially forming a buffer layer, an N-type semiconductor layer, an active layer, a P-type semiconductor layer, and a contact layer on a substrate having a pyramid structure;
  • Step s3 forming an opening having a depth at least from the contact layer to the top of the N-type semiconductor layer, forming a first electrode on the contact layer, and a second electrode on the bottom of the opening;
  • Step s4 removing the substrate.
  • FIG. 3 a flow chart of the step si shown in FIG. 2 is shown, which includes:
  • Step sl l providing a substrate
  • Step s12 depositing a dielectric layer on the substrate, and patterning the dielectric layer to form a hard mask; step s13, etching the substrate with the hard mask as a mask to form a pyramid structure; step s14 Removing the hard mask.
  • the substrate 201 is a (100) crystal plane P-type doped silicon substrate, and the silicon substrate has a resistivity of 1 to 20 ohm cm.
  • step sl2 is performed, the material of the dielectric layer is silicon dioxide, and a hard mask 202 on the substrate 201 is formed by dry etching the silicon dioxide dielectric layer.
  • step s13 and step s14 are performed, and the substrate 201 is wet etched by a tetradecyl ammonium hydroxide (TMAH) solution. Specifically, the etching time is 20 minutes, and the temperature is 60-80 ° C.
  • the silicon substrate is etched to form a plurality of pyramid structures having a (111) crystal plane as a side surface and a (100) plane as a bottom surface.
  • the pyramid structure is arranged in a matrix, and the bottom surface is square, and the side surface is The angle of the bottom surface is 54.74°; if the density of the pyramid structure is large, the pyramid formed by corrosion is not high enough. If the density of the pyramid structure is small, the number of pyramids is not enough, which is not conducive to increasing the light-emitting surface of the LED.
  • the density of the pyramid structures on a silicon substrate is generally 4 ⁇ 10 4 ⁇ 1 ⁇ 10 8 cells / mm, in the production process can be controlled by the density of the density of the pyramid structure hard mask, to form a large number of appropriate size
  • the pyramid structure has a square side length of 5 ⁇ m, and a pyramid tip to bottom surface height of 3.53 ⁇ ;
  • a hard mask 202 of a silicon dioxide material is formed, thereby forming a substrate 201 having a pyramid structure.
  • step s2 is performed to sequentially form the buffer layer 203, the N-type semiconductor layer 204, the active layer 205, and the P-type semiconductor by a metal-organic chemical vapor deposition (MOCVD) method.
  • the pores between the pyramid structures on the substrate 201 are filled until the pyramid structure is covered, thereby forming a protrusion having a pyramid complementary structure at the bottom of the buffer layer 203; Formed in the pores between the pyramid structures.
  • the side of the pyramid structure is silicon of (111) crystal plane
  • the material of the buffer layer 203 is aluminum nitride or gallium nitride, aluminum nitride or gallium nitride and (111) crystal plane silicon.
  • the buffer layer 203 needs to completely cover the pyramid structure.
  • the buffer layer 203 has a thickness of 10 ⁇ .
  • the germanium-type semiconductor layer 204 is a germanium-doped gallium nitride material
  • the active layer 205 is a multi-quantum well active layer structure, specifically, an indium gallium nitride material is used for generating a wavelength of 470 nm.
  • the blue light, the P-type semiconductor layer 206 is a P-type doped gallium nitride material.
  • a contact layer 207 is formed on the P-type semiconductor layer 206.
  • the contact layer 207 is a metal material such as gold or nickel, and is formed by a physical vapor deposition (PVD) method or an electron beam evaporation method.
  • the thickness of the contact layer 207 is 50 ⁇ , referring to FIG. 8, performing step s3, forming an opening having a depth at least from the contact layer 207 to the top of the N-type semiconductor layer 204 by dry etching, in the contact layer a first electrode 209 is formed on the 207, and a second electrode 208 is formed at the bottom of the opening.
  • the upper surfaces of the first electrode 209 and the second electrode 208 are located at the same horizontal plane, specifically, the first electrode 209 and the second electrode 208.
  • the material is gold, aluminum or nickel.
  • step s4 is performed to remove the silicon substrate 201 by using a potassium hydroxide solution.
  • the silicon substrate 201 may be removed by using other solutions, and the solution needs to have a higher selectivity to silicon to avoid solution removal.
  • Other materials the completion of the manufacture of light-emitting diodes.
  • the manufacturing method of the light emitting device further includes a step of encapsulating, as shown in FIGS. 10a and 10b (FIG. 10b is a top view of the pyramid complementary structure shown in FIG. 10a), a susceptor 211 is provided, and a reflective film is formed on the pedestal 211.
  • the manufacturing method of the light emitting device further includes forming a cap layer (not shown) covering the light emitting diode and the reflective film 210.
  • the cap layer has a lens structure in a light emitting direction of the light emitting diode, and the lens The structure may condense light emitted by the light emitting diode, and the material of the cap layer is a resin.
  • the present invention provides a light-emitting device including a light-emitting diode having a convex surface with a convex complementary structure, and the protrusion of the complementary structure of the pyramid increases the area of the exit surface, thereby improving the light-emitting efficiency of the light-emitting device;
  • the light-emitting device further includes a contact layer and a reflective film that can be used to reflect light to the light-emitting direction, thereby further improving the light-emitting efficiency of the light-emitting device; and the light-emitting device further includes a cap layer for collecting light, which can improve light emission.
  • a pyramid structure is formed on a substrate, and pores between the pyramid structures are filled to form a pyramid complementary structure, and then the light-emitting diodes are assembled in a flip-chip manner, and the manufacturing method is relatively Single.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

本发明提供一种发光装置,包括基座、倒装于所述基座上的发光二极管,其特征在于,所述发光二极管包括缓冲层、位于缓冲层上的发光二极管管芯,所述缓冲层在发光二极管的出光面上设置有多个具有金字塔互补结构的凸起。相应地,本发明还提供一种发光装置的制造方法,包括:提供衬底,在衬底上形成多个金字塔结构;在具有金字塔结构的衬底上依次形成缓冲层、N型半导体层、有源层、P型半导体层、接触层;形成深度至少从接触层到N型半导体层顶部的开口,形成位于接触层上的第一电极、以及位于所述开口底部的第二电极;去除衬底。本发明发光装置的出光效率较高,本发明提供的发光装置制造方法较为简单。

Description

发光装置及其制造方法
本申请要求于 2010 年 9 月 29 日提交中国专利局、 申请号为 201010503677.9、 发明名称为 "发光装置及其制造方法"的中国专利申请的优 先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及半导体技术领域, 更具体地, 本发明涉及发光装置及其制造方 法。
背景技术
发光二极管( LED )是响应电流而被激发从而产生各种颜色的光的半导体 器件。其中, 以氮化镓( GaN )为代表的 III- V族化合物半导体由于具有带隙宽、 发光效率高、 电子饱和漂移速度高、 化学性质稳定等特点, 在高亮度蓝光发光 二极管、蓝光激光器等光电子器件领域有着巨大的应用潜力, 引起了人们的广 泛关注。
然而, 目前半导体发光二极管存在着发光效率低的问题。对于未经封装的 发光二极管, 其出光效率一般只有百分之几。 大量的能量聚集在器件内部不能 出射, 既造成能量浪费, 又影响器件的使用寿命。 因此, 提高半导体发光二极 管的出光效率至关重要。
基于上述的应用需求,许多种提高发光二极管出光效率的方法被应用到器 件结构中, 例如表面粗糙化法, 金属反射镜结构等。 公开号为 CN1858918A的 中国专利申请公开了一种发光二极管,所述的发光二极管下表面形成全角度反 射镜结构, 可以提高发光二极管出光效率。 然而, 该方法需要在衬底上形成多 层由高折射率层与低折射率层堆叠而成的薄膜结构, 制作工艺复杂。 发明内容
本发明解决的问题是提供一种发光装置, 以提高发光效率。 为解决上述问题, 本发明提供一种发光装置, 包括基座、 倒装于所述基座 上的发光二极管,所述发光二极管包括緩沖层、位于緩沖层上的发光二极管管 芯,所述緩沖层在发光二极管的出光面上设置有多个具有金字塔互补结构的凸 起。 相应地, 本发明还提供一种发光装置的制造方法, 包括: 提供衬底, 在衬 底上形成多个金字塔结构; 在具有金字塔结构的衬底上依次形成緩沖层、 N型 半导体层、 有源层、 P型半导体层、 接触层; 形成深度至少从接触层到 N型半 导体层顶部的开口, 形成位于接触层上的第一电极、 以及位于所述开口底部的 第二电极; 去除衬底。 与现有技术相比, 本发明具有以下优点:
1. 所述緩沖层在发光二极管的出光面上设置有多个具有金字塔互补结构 的凸起, 所述凸起增大了出光面的面积, 从而增大了发光二极管管芯 产生的光出射到发光面的几率, 从而提高了发光装置的出光效率;
2. 发光装置还包括可用于将光反射到发光装置出光方向的接触层、 反射 膜, 可进一步提高发光装置的出光效率;
3. 发光装置还包括用于会聚光线的帽层, 可提高发光装置的亮度; 4. 发光装置的制造方法中, 在衬底上形成金字塔结构, 填充金字塔结构 之间的孔隙以形成金字塔互补结构, 之后按照倒装方式装配发光二极 管即可, 制造方法较为筒单。
附图说明 图 la是本发明发光装置一实施例的剖面结构示意图;
图 lb是图 la所示金字塔互补结构的俯视图; 图 2是本发明发光装置制造方法一实施方式的流程示意图; 图 3是图 2所示步骤 si—实施例的流程示意图; 图 4至图 10b是本发明发光装置制造方法一实施例形成的发光装置的侧面 示意图。
具体实施方式 为使本发明的上述目的、特征和优点能够更加明显易懂, 下面结合附图对 本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明 还可以采用其他不同于在此描述的其它方式来实施,因此本发明不受下面公开 的具体实施例的限制。 正如背景技术所述, 为提高发光二极管的出光效率,现有技术的发光二极 管需要在衬底上形成多层由高折射率层与低折射率层堆叠而成的薄膜结构,但 所述薄膜结构的制作工艺复杂。
针对上述问题, 本发明的发明人提供了一种发光装置, 所述发光装置包括 倒装于基座上的发光二极管, 所述发光二极管在出光面上具有多个金字塔结 构, 所述金字塔结构增大了发光二极管出光面的面积,增大了发光二极管的有 源层产生的光出射到发光面的几率,从而增大了发光二极管的外量子效率, 即 提高了发光二极管的出光效率。
参考图 1 , 示出了本发明发光装置一实施例的剖面结构示意图。 如图 1所 示, 所述发光装置包括: 基座 101 , 以及位于基座 101上的反射膜 102、 位于 反射膜 102上的第一引脚 112和第二引脚 103、 倒装于第一引脚 112和第二引 脚 103上的发光二极管、覆盖于发光二极管和反射膜 102上的帽层 111 ,其中, 基座 101 ,用于承载发光二极管,在具体实施例中,所述基座 105采用铜、 铝、 硅、 氮化铝等材料构成。 反射膜 102 , 用于将发光二极管发出的光反射至发光装置的出光方向上, 以提高发光装置的出光效率, 增大发光装置的亮度, 具体地, 所述反射膜的材 料为氧化钡。 第一引脚 112,用于连接发光二极管和电源(图未示)正极;第二引脚 103 , 用于连接发光二极管和电源(图未示) 负极; 具体地, 所述第一引脚 112和第 二引脚 103均采用铜或铝等导电材料制成。 发光二极管由上之下依次包括緩沖层 110、N型半导体层 109、有源层 108、 P型半导体层 107、 接触层 106; 其中, 緩沖层 110 的底部包括多个凸起, 所述凸起具有金字塔互补结构 (如图 lb中示出的金字塔互补结构的俯视图), 具体地, 所述金字塔互补结构通过对 金字塔结构间所围成的空隙进行填充而获得,所述金字塔互补结构的凸起可增 大发光二极管出光面的面积,进而增大了发光二极管管芯发出的光从出光面出 光的几率, 从而提高了发光二极管的出光效率。 具体地, 所述緩沖层 110的材 料为氮化镓或氮化铝。
N型半导体层 109、 有源层 108、 P型半导体层 107, 所述 N型半导体层 109、有源层 108、 P型半导体层 107构成了发光二极管管芯;在具体实施例中, 所述 N型半导体层 109为 N型掺杂的氮化镓材料, 所述有源层 108为多量子 阱有源层结构, 具体地, 采用氮化铟镓材料构成, 用于产生波长为 470nm的 蓝光, 所述 P型半导体层 107为 P型掺杂的氮化镓材料; 接触层 106, 用于实现 P型半导体层 107与电源正极之间的电连接, 所述 接触层 106的面积较大, 可以减小接触电阻, 较佳地, 所述接触层 106的下表 面为反光面,所述反光面可将发光二极管管芯发出的光反射至出光面,具体地, 所述接触层 106的材料为金或镍等,所述接触层 106的厚度为 50至 100纳米。 所述发光二极管还包括第一电极 105 , 所述第一电极 105设置于所述接触 层 106与第一引脚 112之间,用于实现 P型半导体层 107和第一引脚 112间的 电连接。 所述发光二极管还包括深度至少自接触层 106至 N型半导体层 109的开 口, 所述发光二极管还包括一端设置于开口底部的第二电极 104, 所述第二电 极 104另一端设置于第二引脚 103上, 用于实现 N型半导体层 109和第二引 脚 103之间的电连接。 帽层 111 , 覆盖于发光二极管、 反射膜 102上, 所述帽层 111在发光二极 管的出光方向上具有透镜结构, 所述透镜结构可以会聚发光二极管发出的光, 以提高发光装置的亮度, 在具体实施例中, 所述帽层 111采用树脂材料构成, 所述帽层 111还可以起到保护发光二极管的作用。
相应地, 本发明还提供一种发光装置的制造方法, 参考图 2, 示出了本发 光装置制造方法一实施方式的流程图。 所述发光装置的制造方法包括: 步骤 si , 提供衬底, 在衬底上形成多个金字塔结构;
步骤 s2 , 在具有金字塔结构的衬底上依次形成緩沖层、 N型半导体层、有 源层、 P型半导体层、 接触层;
步骤 s3 , 形成深度至少从接触层到 N型半导体层顶部的开口, 形成位于 接触层上的第一电极、 以及位于所述开口底部的第二电极;
步骤 s4, 去除衬底。 参考图 3 , 示出了图 2所示步骤 si—实施例的流程图, 包括:
步骤 sl l , 提供衬底;
步骤 sl2, 在所述衬底上沉积介质层, 并图形化所述介质层, 形成硬掩模; 步骤 sl3 , 以所述硬掩模为掩模蚀刻所述衬底, 形成金字塔结构; 步骤 sl4, 去除所述硬掩模。 对于步骤 sl l , 所述衬底 201为 (100 ) 晶面的 P型掺杂的硅衬底, 所述 硅衬底的电阻率为 1~20欧姆厘米。
参考图 4, 执行步骤 sl2, 所述介质层的材料为二氧化硅, 通过干法蚀刻 所述二氧化硅介质层的方法, 形成位于衬底 201上的硬掩模 202。 参考图 5, 执行步骤 sl3 以及步骤 sl4, 通过四曱基氢氧化氨(TMAH ) 溶液对所述衬底 201进行湿法腐蚀, 具体地, 腐蚀的时间为 20分钟, 温度为 60-80 °C , 所述硅^ "底经过腐蚀后形成多个由(111 )晶面作为侧面、 (100 )面 为底面的金字塔结构, 具体地, 所述金字塔结构按照矩阵式排列, 底面为正方 形, 侧面与底面的夹角为 54.74°; 如果所述金字塔结构的密度较大, 则腐蚀所形成金字塔不够高,如果金字 塔结构的密度较小, 那么金字塔的数量不够多, 不利于增大发光二极管出光面 的面积,通常硅衬底上金字塔结构的密度为 4χ 104~1 χ 108个 /平方毫米,在制作 方法中可以通过硬掩模的密度控制金字塔结构的密度,从而形成数量较多、尺 寸合适的金字塔结构较佳地,所述金字塔结构中正方形的边长为 5μηι,金字塔 的塔尖到底面的高度为 3.53μηι; 通过氢氟酸溶液去除二氧化硅材质的硬掩模 202。 从而形成具有金字塔结 构的衬底 201。
参考图 6, 执行步骤 s2, 通过金属有机化合物化学气相淀积 (Metal-organic Chemical Vapor Deposition, MOCVD)的方法依次形成所述緩沖层 203、 N型半 导体层 204、 有源层 205、 P型半导体层 206;
在具体实施例中,在沉积緩沖层 203时, 先填充衬底 201上金字塔结构之 间的孔隙直至覆盖所述金字塔结构,从而在緩沖层 203底部形成具有金字塔互 补结构的凸起; 所述凸起形成于金字塔结构之间的孔隙中。 本实施例中所述金字塔结构的侧面为 (111 ) 晶面的硅, 所述緩沖层 203 的材料为氮化铝或氮化镓, 氮化铝或氮化镓与 (111 ) 晶面的硅的晶格常数较 为匹配; 所述緩沖层 203需完全覆盖金字塔结构, 较佳地, 緩沖层 203 的厚度为 10〜誦 μηι。 所述 Ν型半导体层 204为 Ν型掺杂的氮化镓材料, 所述有源层 205为多 量子阱有源层结构, 具体地, 采用氮化铟镓材料构成, 用于产生波长为 470nm 的蓝光, 所述 P型半导体层 206为 P型掺杂的氮化镓材料。
参考图 7, 在 P型半导体层 206上形成接触层 207, 具体地, 接触层 207 为金或镍等金属材料, 通过物理气相沉积(Physical Vapor Deposition, PVD ) 方法或电子束蒸镀方法形成所述接触层 207 , 所述接触层 207 的厚度为 50〜誦亂 参考图 8, 执行步骤 s3 , 通过干法蚀刻法形成深度至少自接触层 207至 N 型半导体层 204顶部的开口, 在接触层 207上形成第一电极 209, 在所述开口 底部形成第二电极 208, 所述第一电极 209和第二电极 208的上表面位于同一 水平面, 具体地, 第一电极 209和第二电极 208的材料为金、 铝或镍。
参考图 9, 执行步骤 s4, 通过氢氧化钾溶液去除硅衬底 201 , 需要说明的 是还可以采用其他溶液去除硅衬底 201 , 所述溶液需对硅具有较高的选择比, 避免溶液去除其他材料, 至此完成了发光二极管的制造。 所述发光装置的制造方法还包括封装的步骤, 如图 10a和图 10b (图 10b 为图 10a所示的金字塔互补结构的俯视图)所示, 提供基座 211 , 在基座 211 上形成反射膜 210, 在反射膜 210上形成连接于电源正极的第一引脚、 连接于 电源负极的第二引脚。按照倒装方式将发光二极管转配与反射膜 210上, 具体 地,将所述发光二极管按照緩沖层 203朝向出光方向、第一电极 209固定于第 一引脚且第二电极 208固定于第二引脚的方式装配于反射膜 210上。 所述发光装置的制造方法还包括形成覆盖于发光二极管和反射膜 210 上 的帽层(图未示), 较佳地, 所述帽层在发光二极管的出光方向上具有透镜结 构, 所述透镜结构可以会聚发光二极管发出的光, 所述帽层的材料为树脂。
至此完成了发光装置的制造过程。 综上, 本发明提供了一种发光装置, 包括出射面为金字塔互补结构凸起的 发光二极管, 所述金字塔互补结构的凸起增大了出射面面积,从而提高了发光 装置的出光效率; 所述发光装置中, 还包括可用于将光反射到出光方向的接触层、 反射膜, 可进一步提高发光装置的出光效率; 所述发光装置中, 还包括用于会聚光线的帽层, 可提高发光装置的亮度; 本发明提供的发光装置的制造方法中,在衬底上形成金字塔结构, 填充金 字塔结构之间的孔隙以形成金字塔互补结构,之后按照倒装方式装配发光二极 管即可, 制造方法较为筒单。
虽然本发明己以较佳实施例披露如上,但本发明并非限定于此。任何本领 域技术人员, 在不脱离本发明的精神和范围内, 均可作各种更动与修改, 因此 本发明的保护范围应当以权利要求所限定的范围为准。

Claims

权 利 要 求
1. 一种发光装置, 其特征在于, 包括:
基座;
倒装于所述基座上的发光二极管, 所述发光二极管包括緩沖层、 位于緩沖 层上的发光二极管管芯,所述緩沖层在发光二极管的出光面上设置有多个具有 金字塔互补结构的凸起。
2. 如权利要求 1 所述的发光装置, 其特征在于, 所述发光二极管管芯包括依 次位于緩沖层上的 N型半导体层、 有源层、 P型半导体层。
3. 如权利要求 2所述的发光装置, 其特征在于, 所述发光二极管还包括位于 发光二极管管芯上的接触层。
4. 如权利要求 3所述的发光装置, 其特征在于, 所述接触层与发光二极管管 芯相连的表面为将发光二极管管芯发出的光反射至发光二极管出光面的反 光面。
5. 如权利要求 1 所述的发光装置, 其特征在于, 所述发光装置还包括位于基 座上的反射膜, 所述反射膜用于将发光二极管管芯发出的光反射至发光二 极管的出光面。
6. 如权利要求 5所述的发光装置, 其特征在于, 所述发光装置还包括位于反 射膜上的第一引脚和第二引脚, 所述第一引脚用于连接发光二极管和电源 正极, 所述第二引脚用于连接发光二极管和电源负极。
7. 如权利要求 6所述的发光装置, 其特征在于, 所述发光二极管还包括位于 发光二极管管芯上的接触层、 连接于所述接触层与第一引脚的第一电极; 所述发光二极管还包括第二电极、 深度至少自接触层至 N型半导体层顶部 的开口, 所述第二电极连接于开口底部和第二引脚。
8. 如权利要求 6所述的发光装置, 其特征在于, 还包括覆盖于反射膜、 发光 二极管上的帽层。
9. 如权利要求 8所述的发光装置, 其特征在于, 所述帽层在发光二极管的出 光方向上设置有透镜结构。
10.—种发光装置的制造方法, 其特征在于, 包括: 提供衬底, 在衬底上形成 多个金字塔结构; 在具有金字塔结构的衬底上依次形成緩沖层、 N型半导 体层、 有源层、 P型半导体层、 接触层; 形成深度至少从接触层到 N型半 导体层顶部的开口, 形成位于接触层上的第一电极、 以及位于所述开口底 部的第二电极; 去除衬底。
11.如权利要求 10所述的发光装置的制造方法, 其特征在于, 所述提供衬底, 在衬底上形成多个金字塔结构的步骤包括: 提供衬底; 在所述衬底上沉积 介质层, 并图形化所述介质层, 形成硬掩模; 以所述硬掩模为掩模蚀刻所 述衬底, 形成金字塔结构; 去除所述硬掩模。
12.如权利要求 11所述的发光装置的制造方法,其特征在于,所述衬底为( 100 ) 晶面的 P型掺杂的硅衬底, 所述以所述硬掩模为掩模蚀刻所述衬底, 形成 金字塔结构的步骤包括采用四曱基氢氧化氨溶液对所述衬底进行湿法腐 蚀, 形成以硅^ "底的( 111 )晶面为侧面、( 100 )晶面为底面的金字塔结构; 所述緩沖层形成于所述( 111 ) 晶面上。
13.如权利要求 12所述的发光装置的制造方法, 其特征在于, 采用四曱基氢氧 化氨溶液对所述衬底进行湿法腐蚀的步骤中, 腐蚀的时间为 20分钟, 腐蚀 的温度为 60~80°C。 如权利要求 12所述的发光装置的制造方法, 其特征在于, 所述以 (111 ) 晶面为侧面、( 100 )晶面为底面的金字塔结构中侧面与底面的夹角为 54.74°。 如权利要求 12所述的发光装置的制造方法, 其特征在于, 所述硅衬底上金 字塔结构的密度为 4χ 104~1 χ108个 /平方毫米。
如权利要求 12所述的发光装置的制造方法, 其特征在于, 通过氢氧化钾溶 液去除硅衬底。
如权利要求 10所述的发光装置的制造方法, 其特征在于, 所述位于接触层 上的第一电极与位于所述开口底部的第二电极的上表面处于同一水平面。 如权利要求 10所述的发光装置的制造方法, 其特征在于, 还包括: 提供基 座, 在所述基座上形成反射膜, 在反射膜上形成连接于电源正极的第一引 脚、 连接于电源负极的第二引脚; 将所述发光二极管按照緩沖层朝向出光 方向、 第一电极固定于第一引脚且第二电极固定于第二引脚的方式装配于 所述反射膜上。
PCT/CN2010/079603 2010-09-29 2010-12-09 发光装置及其制造方法 WO2012040978A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/128,366 US20120261691A1 (en) 2010-09-29 2010-12-09 Light emitting device and manufacturing method thereof
EP10829322A EP2466652A4 (en) 2010-09-29 2010-12-09 LIGHT-EMITTING DEVICE AND METHOD OF MANUFACTURING THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010503677.9 2010-09-29
CN201010503677.9A CN102130254B (zh) 2010-09-29 2010-09-29 发光装置及其制造方法

Publications (1)

Publication Number Publication Date
WO2012040978A1 true WO2012040978A1 (zh) 2012-04-05

Family

ID=44268227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079603 WO2012040978A1 (zh) 2010-09-29 2010-12-09 发光装置及其制造方法

Country Status (4)

Country Link
US (1) US20120261691A1 (zh)
EP (1) EP2466652A4 (zh)
CN (1) CN102130254B (zh)
WO (1) WO2012040978A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367560B (zh) * 2012-03-30 2016-08-10 清华大学 发光二极管的制备方法
CN108550666A (zh) * 2018-05-02 2018-09-18 天津三安光电有限公司 倒装四元系发光二极管外延结构、倒装四元系发光二极管及其生长方法
CN109599468B (zh) * 2018-11-20 2020-09-11 华中科技大学鄂州工业技术研究院 超宽禁带氮化铝材料外延片及其制备方法
FR3104809B1 (fr) * 2019-12-11 2021-12-17 Commissariat Energie Atomique Procede de realisation d’une couche de materiau structuree

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1700484A (zh) * 2004-05-17 2005-11-23 深圳大学 一种新型的白光led结构
CN1858918A (zh) 2005-04-30 2006-11-08 中国科学院半导体研究所 全角度反射镜结构GaN基发光二极管及制作方法
US20070018182A1 (en) * 2005-07-20 2007-01-25 Goldeneye, Inc. Light emitting diodes with improved light extraction and reflectivity
CN101009344A (zh) * 2006-01-27 2007-08-01 杭州士兰明芯科技有限公司 蓝宝石衬底粗糙化的发光二极管及其制造方法
CN101075653A (zh) * 2006-09-05 2007-11-21 武汉迪源光电科技有限公司 准垂直混合式N型高掺杂GaN LED倒装芯片制备工艺
US20080099780A1 (en) * 2006-10-26 2008-05-01 Anh Chuong Tran Method for producing group iii - group v vertical light-emitting diodes

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784463B2 (en) * 1997-06-03 2004-08-31 Lumileds Lighting U.S., Llc III-Phospide and III-Arsenide flip chip light-emitting devices
US6903376B2 (en) * 1999-12-22 2005-06-07 Lumileds Lighting U.S., Llc Selective placement of quantum wells in flipchip light emitting diodes for improved light extraction
AT410266B (de) * 2000-12-28 2003-03-25 Tridonic Optoelectronics Gmbh Lichtquelle mit einem lichtemittierenden element
JP4055503B2 (ja) * 2001-07-24 2008-03-05 日亜化学工業株式会社 半導体発光素子
WO2005018008A1 (ja) * 2003-08-19 2005-02-24 Nichia Corporation 半導体素子
JP5719493B2 (ja) * 2003-12-09 2015-05-20 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 表面粗化による高効率の(B,Al,Ga,In)Nベースの発光ダイオード
JP2006086469A (ja) * 2004-09-17 2006-03-30 Matsushita Electric Ind Co Ltd 半導体発光装置、照明モジュール、照明装置及び半導体発光装置の製造方法
US8242690B2 (en) * 2005-04-29 2012-08-14 Evergrand Holdings Limited Light-emitting diode die packages and illumination apparatuses using same
JP5082278B2 (ja) * 2005-05-16 2012-11-28 ソニー株式会社 発光ダイオードの製造方法、集積型発光ダイオードの製造方法および窒化物系iii−v族化合物半導体の成長方法
JP4670489B2 (ja) * 2005-06-06 2011-04-13 日立電線株式会社 発光ダイオード及びその製造方法
CN1960015A (zh) * 2005-11-02 2007-05-09 夏普株式会社 氮化物半导体发光元件及其制造方法
JP2007300069A (ja) * 2006-04-04 2007-11-15 Toyoda Gosei Co Ltd 発光素子、この発光素子を用いた発光装置及びこの発光素子の製造方法
JP2007305909A (ja) * 2006-05-15 2007-11-22 Kyocera Corp 窒化ガリウム系化合物半導体の製造方法及び発光素子の製造方法
US7977695B2 (en) * 2007-09-21 2011-07-12 Lg Innotek Co., Ltd. Semiconductor light emitting device and method for manufacturing the same
CN101207173B (zh) * 2007-11-30 2012-10-03 中国计量学院 一种具有一维光子晶体的发光二极管
US8134169B2 (en) * 2008-07-01 2012-03-13 Taiwan Semiconductor Manufacturing Co., Ltd. Patterned substrate for hetero-epitaxial growth of group-III nitride film
CN101771115B (zh) * 2009-01-06 2011-11-09 北京大学 氮化镓基材料激光剥离后氮面的处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1700484A (zh) * 2004-05-17 2005-11-23 深圳大学 一种新型的白光led结构
CN1858918A (zh) 2005-04-30 2006-11-08 中国科学院半导体研究所 全角度反射镜结构GaN基发光二极管及制作方法
US20070018182A1 (en) * 2005-07-20 2007-01-25 Goldeneye, Inc. Light emitting diodes with improved light extraction and reflectivity
CN101009344A (zh) * 2006-01-27 2007-08-01 杭州士兰明芯科技有限公司 蓝宝石衬底粗糙化的发光二极管及其制造方法
CN101075653A (zh) * 2006-09-05 2007-11-21 武汉迪源光电科技有限公司 准垂直混合式N型高掺杂GaN LED倒装芯片制备工艺
US20080099780A1 (en) * 2006-10-26 2008-05-01 Anh Chuong Tran Method for producing group iii - group v vertical light-emitting diodes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2466652A4 *

Also Published As

Publication number Publication date
CN102130254B (zh) 2015-03-11
CN102130254A (zh) 2011-07-20
US20120261691A1 (en) 2012-10-18
EP2466652A4 (en) 2012-11-28
EP2466652A1 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
KR102323686B1 (ko) 발광 소자 및 그 제조 방법
CN102130260B (zh) 发光装置及其制造方法
JP2012044132A (ja) 光学密度の高い材料によるコーティング基板を有する発光器具
KR20140000818A (ko) 유전체 리플렉터를 구비한 발광소자 및 그 제조방법
KR20080110340A (ko) 반도체 발광소자 및 그의 제조방법
WO2015101068A1 (zh) 发光二极管芯片及其制作方法
JP2009152474A (ja) 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体発光素子の製造方法
WO2011143918A1 (zh) 发光二极管及其制造方法
KR101228130B1 (ko) 반도체 발광 소자 및 그 제조 방법, 발광장치
WO2011030789A1 (ja) 発光装置
WO2021115473A1 (zh) 衬底及其制造方法、led及其制造方法
WO2012058961A1 (zh) 发光二极管及其制造方法
US8937322B2 (en) Light emitting diode and a manufacturing method thereof, a light emitting device
US8580587B2 (en) Light emitting device and manufacturing method thereof
WO2012040978A1 (zh) 发光装置及其制造方法
JP5989318B2 (ja) 半導体発光素子及びその製造方法
US8945958B2 (en) Methods for manufacturing light emitting diode and light emitting device
WO2011143919A1 (zh) 发光二极管及其制造方法
CN101980391A (zh) 发光二极管及其制造方法
JP5165668B2 (ja) 半導体発光素子及びその製造方法
KR101171328B1 (ko) 고효율 발광 다이오드
TW201517303A (zh) 垂直導通式發光二極體之製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13128366

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010829322

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE