WO2021115473A1 - 衬底及其制造方法、led及其制造方法 - Google Patents

衬底及其制造方法、led及其制造方法 Download PDF

Info

Publication number
WO2021115473A1
WO2021115473A1 PCT/CN2020/136043 CN2020136043W WO2021115473A1 WO 2021115473 A1 WO2021115473 A1 WO 2021115473A1 CN 2020136043 W CN2020136043 W CN 2020136043W WO 2021115473 A1 WO2021115473 A1 WO 2021115473A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
substrate body
main surface
support
layer
Prior art date
Application number
PCT/CN2020/136043
Other languages
English (en)
French (fr)
Inventor
蒋振宇
闫春辉
Original Assignee
深圳第三代半导体研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳第三代半导体研究院 filed Critical 深圳第三代半导体研究院
Publication of WO2021115473A1 publication Critical patent/WO2021115473A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers

Definitions

  • This application relates to the field of light-emitting diodes, in particular to a substrate and its manufacturing method, and an LED and its manufacturing method.
  • LEDs Light emitting diodes
  • LEDs are solid-state components that convert electrical energy into light. LEDs have the advantages of small size, high efficiency, and long life span, and are widely used in fields such as traffic indications and outdoor full-color displays. In particular, the use of high-power LEDs can realize semiconductor solid-state lighting, which has caused a revolution in the history of human lighting, and has gradually become a research hotspot in the current electronics field.
  • LEDs are generally formed on the substrate by epitaxial growth, and the chip needs to be separated and transferred from the substrate in certain specific applications, such as Micro LEDs used in the display field, and used in flashlights, flashlights and car lights Vertical structure LED chips in other fields. How to effectively realize the separation between the LED and the substrate is a problem to be solved in the industry.
  • the present application provides a substrate, an LED, and a manufacturing method thereof, which can effectively reduce the adhesion between the subsequently generated LED unit and the substrate, and reduce the difficulty of separation and transfer.
  • a technical solution adopted in this application is to provide a method for manufacturing a substrate.
  • the method includes: providing a substrate body, wherein one side of the main surface of the substrate body is provided with mutually spaced rows A plurality of openings of the cloth; forming a transfer support layer on the main surface of the substrate body, the material of the transfer support layer includes at least one of SiO 2 , SiN or Al 2 O 3 ; patterning the transfer support layer, To form a plurality of transfer support structures arranged at intervals, wherein the transfer support structure includes a support column formed by a portion of the transfer support layer filled in the opening and a support head formed by a patterned portion of the transfer support layer, supporting The head is connected with the supporting column and protrudes from the main surface of the substrate body.
  • a substrate which includes: a substrate main body, and a plurality of spaced-apart substrates are arranged on one main surface of the substrate main body. Openings; multiple transfer support structures, multiple transfer support structures are correspondingly arranged in the openings, and are arranged at intervals, wherein each transfer support structure includes a support column filled inside the opening and connected to the support column And the support head protruding from the main surface of the substrate body, wherein the transfer support structure is more resistant to a specific etchant than the substrate body.
  • the method includes: providing a substrate.
  • the substrate includes a substrate body and a plurality of transfer support structures.
  • One side of the main surface is provided with a plurality of openings spaced apart from each other, and a plurality of transfer support structures are respectively arranged in the openings and spaced apart from each other, wherein each transfer support structure includes filling inside the openings.
  • the support column and the support head connected to the support column and protruding from the main surface of the substrate body, wherein the transfer support structure has greater resistance to a specific etchant than the substrate body; a light-emitting epitaxial layer is formed on the main surface of the substrate body Patterning the light-emitting epitaxial layer to form a plurality of LED units; etching the main body of the substrate so that the plurality of LED units are separated from the main body of the substrate and are respectively supported by different support transfer patterns.
  • the LED includes a substrate body and a plurality of transfer support structures.
  • a plurality of openings, a plurality of transfer support structures are correspondingly arranged in the openings, and are arranged at intervals; a plurality of LED units, and the plurality of LED units are supported by different supporting transfer patterns, and are kept constant with the substrate body interval.
  • the beneficial effect of the present application is that, different from the prior art, the present application provides multiple transfer support structures on one main surface of the substrate body, and the transfer support structure has a greater resistance to a specific etchant than the substrate. main body.
  • the transfer support structure is used as a weakening structure in the subsequent process. After the LED unit is subsequently generated, the substrate body is etched with a specific etchant, so that the transfer support structure is used to support the LED unit in the air relative to the substrate body, thereby facilitating the LED unit in the opposite direction. Separated from the weakened structure by a small external force.
  • the transfer support structure since the transfer support structure is directly supported between the LED unit and the substrate, the arrangement density of the LED unit on the substrate can be increased, the loss of the LED chip area can be reduced, and the manufacturing cost of the LED can be reduced.
  • Fig. 1 is a schematic top view of the structure of a substrate according to a first embodiment of the present application
  • FIG. 2 is a schematic sectional view of the structure of the substrate according to the first embodiment of the present application.
  • FIG. 3 is a schematic cross-sectional structure diagram of a substrate according to a second embodiment of the present application.
  • Figure 4 is a schematic diagram of a silicon etched crystal plane
  • FIG. 5 is a schematic diagram of the first process of the manufacturing method of the substrate of the present application.
  • FIG. 6 is a schematic diagram of the structure corresponding to each stage of the manufacturing method of the substrate shown in FIG. 5;
  • FIG. 7 is a schematic flow chart of the manufacturing method of the LED of the present application.
  • FIG. 8 is a schematic flowchart of step S22 in FIG. 7;
  • FIG. 9 is a schematic flowchart of step S23 in FIG. 7;
  • FIG. 10 is a schematic flowchart of step S24 in FIG. 7;
  • FIG. 11 is a schematic diagram of the first structure corresponding to each step of the manufacturing method of the LED of the present application.
  • FIG. 12 is a schematic diagram of a second structure corresponding to each step of the manufacturing method of the LED of the present application.
  • Fig. 13 is a schematic diagram of the structure of the LED of the present application.
  • the substrate 100 includes: a substrate body 110 and a transfer support structure 120, wherein the number of the transfer support structure 120 is multiple, that is, the substrate 100 includes multiple Transfer support structure 120.
  • the main surface 111 of the substrate body 110 is provided with a plurality of openings 101 spaced apart from each other, and the arrangement of the plurality of openings 101 may be regular or irregularly distributed.
  • a plurality of openings 101 are arranged in a honeycomb shape on the main surface 111, that is, a certain opening 101 is selected as a reference, and the surrounding openings 101 are distributed in the center of the certain opening 101. At the vertex position of the regular hexagon.
  • a plurality of transfer support structures 120 are respectively correspondingly disposed in the opening 101 and arranged at intervals with each other.
  • Each transfer support structure 120 includes a support column 121 filled in the opening 101 and a support head 122 connected to the support column 121 and protruding from the main surface 111 of the substrate body 110.
  • the transfer support structure 120 is used as a weakened structure in the subsequent process, and then after the corresponding LED unit is subsequently formed, a part of the substrate body 110 can be removed, so that the support pillar 121 of the transfer support structure 120 for supporting the LED unit It is exposed, and the transfer support structure 120 is used to suspend the LED unit relative to the substrate body 110 to reduce the adhesion between the LED unit and the substrate 100.
  • an etching process may be performed on the main surface 111 of the substrate body 110 until a part of the transfer support structure 120 is exposed.
  • the etching process can also be implemented by a dry etching process or a wet etching process.
  • materials with different tolerances to specific etchants can be selected as the material of the substrate body 110 and the material of the transfer support structure 120.
  • the material of the transfer support structure 120 has greater tolerance to the specific etchant than the substrate body. 110 materials. Therefore, in the subsequent process, when a part of the substrate body 110 is etched with a specific etchant, the transfer support structure 120 for supporting the LED unit is effectively retained.
  • the material of the substrate body 110 mentioned above may specifically include Si, and the material of the transfer support structure 120 mentioned above may specifically include SiO 2 , SiN or Al 2 O 3 .
  • the specific etchant mentioned above is an alkaline solution used for anisotropic etching of the silicon substrate 100, which can be specifically composed of such as KOH (potassium hydroxide), NaOH (sodium hydroxide), NH 4 OH (ammonium hydroxide) ) Or TMAH (tetramethylammonium hydroxide) aqueous solution.
  • a 30% by weight NH 4 OH solution can be mixed with water to form an NH 4 OH concentration with a volume percentage in the range of approximately 10%-100%, or especially a weight percentage in the range of approximately 3%-30%
  • the anisotropy of the NH 4 OH concentration is a specific etchant.
  • a specific etchant can etch the substrate body 110 at different rates in different exposure planes.
  • the etching rate of the substrate body 110 along the parallel direction D1 of the main surface 111 is greater than that of the substrate body 110 along the vertical direction D2 of the main surface 111.
  • the crystal plane along the vertical direction D2 of the main surface 111 of the substrate body 110 is set as a slow etching surface
  • the crystal plane along the parallel direction D1 of the main surface 111 is set as a fast etching surface.
  • the etching rate of the alkaline solution along the direction of the B surface of silicon is approximately several hundred times that of the direction along the A surface of silicon.
  • the cross-sectional dimension r2 of the support head 122 along the parallel direction D1 of the main surface 111 gradually becomes smaller in the direction away from the substrate body 110 (the opposite direction of D2).
  • the outer surface of the support head 122 transitions in an arc in a direction away from the substrate main body 110 to form a yurt shape. This facilitates the separation of the support head 122 from the subsequent LED unit.
  • the support head 122 may be designed in a cylindrical shape, a hemispherical shape, a conical shape, a truncated cone shape, or any other shape.
  • the height d1 of the support column 121 is in the range of 0.1-10 microns
  • the cross-sectional dimension r1 of the support column 121 along the parallel direction D1 of the main surface 111 is in the range of 0.1-10 microns
  • the height d2 of the support head 122 is in the range of 0.1 Within the range of -10 microns
  • the maximum cross-sectional dimension r2 of the support head 122 along the parallel direction D1 of the main surface 111 is within the range of 0.1-10 microns.
  • the present application provides a plurality of transfer support structures on one main surface of the substrate body, and the transfer support structures are more resistant to a specific etchant than the substrate body.
  • the transfer support structure is used as a weakening structure in the subsequent process.
  • the substrate body is etched with a specific etchant, so that the transfer support structure is used to support the LED unit in the air relative to the substrate body, thereby facilitating the LED unit in the opposite direction. Separated from the weakened structure by a small external force.
  • the transfer support structure is directly supported between the LED unit and the substrate, the arrangement density of the LED unit on the substrate can be increased, the loss of the LED chip area can be reduced, and the manufacturing cost of the LED can be reduced.
  • a substrate 100 includes a substrate body 110 and a transfer support structure 120, and the number of transfer support structures 120 is multiple.
  • the main difference between the substrate 100 of this embodiment and the substrate 100 shown in FIG. 2 is that the cross-sectional dimension r1 of the support column 121 along the parallel direction of the main surface 111 is smaller than that of the support head 122 near the substrate body 110 along the parallel direction. Section size r2.
  • the main surface 111 of the substrate body 110 is provided with a plurality of bosses 112 spaced apart from each other, and the bosses 112 and the substrate body 110 may be an integral structure.
  • a plurality of openings 101 are correspondingly provided on the boss 112, and the depth of the opening 101 is greater than the height of the boss 112, so that the supporting column 121 extends from the boss 112 to the inside of the substrate body 110, and the supporting head 122 is disposed on the boss 112.
  • On stage 112. there is a smooth transition between the outer contour surface of the support head 122 and the outer contour surface of the boss 112.
  • the outer contour surface of the support head 122 is the outer arc surface of the support head 122
  • the outer contour surface of the boss 112 is the outer side wall of the boss 112
  • the outer arc surface of the support head 122 is different from the outer side wall of the boss 112. Smooth transition between the two can reduce stress concentration.
  • the material usage of the support column 121 can be reduced. ,lower the cost.
  • the support head 122 and the support post 121 can be disconnected at the connection point during subsequent separation, so that the support head 122 remains inside the LED unit as a dimming element.
  • the light-emitting direction of the LED unit can be adjusted by the refractive index difference between the supporting head 122 and the relevant components of the LED unit embedded in the supporting head 122.
  • the light emitting direction of the LED unit can be adjusted by disposing scattering particles or the like in the supporting head 122.
  • the boss 112 under the support head 122 protrudes from the main surface 111, it is easier to be etched, which facilitates the effective separation between the support head 122 and the substrate body 110.
  • the present application also proposes a method for manufacturing the substrate 100, and the method is used for manufacturing the substrate 100 in the above-mentioned embodiment.
  • the method includes the following steps:
  • S11 Provide a substrate body 110.
  • the material of the substrate body 110 may specifically include Si.
  • a plurality of openings 101 spaced apart from each other are formed on one main surface 111 of the above-mentioned substrate main body 110.
  • the opening 101 may be formed in the substrate main body 110 by a sandblasting method.
  • the opening 101 is formed in the silicon substrate 100 using an etching process.
  • the shape of the opening 101 may be rounded square, circular or elliptical, and the opening area of the opening 101 may be equal or unequal, which is not limited here.
  • the material of the transfer support layer may specifically include SiO 2 , SiN or Al 2 O 3 .
  • a silica sol layer can be formed on the main surface 111 of the Si substrate main body 110, and the Si substrate main body 110 with the silica sol layer formed on the surface can be dried to prepare SiO on the Si substrate main body 110 2 Transfer support layer; or use PECVD method to deposit SiO 2 or SiN transfer support layer on the main surface 111 of the Si substrate body 110; or use LPCVD method to deposit SiO 2 or SiN transfer on the main surface 111 of the Si substrate body 110 Support layer; or use magnetron sputtering method to grow Al 2 O 3 transfer support layer on the main surface 111 of Si substrate body 110; or use ALD (Atomic Layer Deposition, atomic layer deposition) method to deposit SiO 2 or Al 2 O 3 Transfer support layer; it should be noted here that during the formation of the transfer support layer, the openings 101 are filled and a certain thickness is deposited on the main surface 111 of the substrate body 110.
  • ALD Atomic Layer Deposition, atomic layer deposition
  • a mask is covered on the transfer support layer.
  • the transfer support layer at the position not covered by the mask is removed by etching technology to form a plurality of transfer support structures 120 spaced apart from each other.
  • the etching technique may be wet etching or dry etching, which is not limited here.
  • the transfer support structure 120 includes a support column 121 formed by a portion of the transfer support layer filled in the opening 101 and a support head 122 formed by a patterned portion of the transfer support layer, and the support head 122 is connected to the support column 121 and Protruding from the main surface 111 of the substrate body 110, the substrate 100 shown in FIG. 2 is formed.
  • Step S13 further includes etching the main surface 111 of the substrate body 110 to form the boss 112 shown in FIG. 3.
  • a mask is covered on the main surface 111 of the substrate main body 110.
  • the substrate body 110 at the position not covered by the mask is removed by etching technology to form the boss 112 under the support head 122.
  • the etching technique may be wet etching or dry etching, which is not limited here.
  • the following will take the substrate 100 as an example to describe the manufacturing method of the LED of the present application.
  • the present application also proposes a method for manufacturing an LED, and the method includes:
  • the substrate 100 is the substrate 100 in the above-mentioned embodiment.
  • the substrate 100 for the specific structure, please refer to the relevant description of the substrate 100 in the above-mentioned embodiment, which will not be repeated here.
  • the light-emitting epitaxial layer 130 has a multilayer structure, and specifically includes: a first conductivity type semiconductor layer 131, a quantum well layer 132, and a second conductivity type semiconductor layer 133.
  • the buffer layer 140, the first conductive type semiconductor layer 131, the quantum well layer 132, and the second conductive type semiconductor layer 133 may be sequentially grown on the main surface 111 of the substrate body 110 by using the MOCVD method or the MBE method.
  • the current diffusion layer 134 is further formed by other processes.
  • the buffer layer 140 is a composite buffer layer structure of AlN, AlGaN, GaN or AlN/AlGaN/GaN
  • the quantum well layer 132 may be an MQWs structure
  • the MQWs structure includes a plurality of stacked single-layer quantum wells (SQW).
  • the MQWs structure retains the advantages of SQW and has a larger active area that allows high optical power.
  • the first conductive type semiconductor layer 131 and the second conductive type semiconductor layer 133 may be a single-layer or multi-layer structure of any other suitable materials having different conductivity types.
  • an etching process is applied to pattern the light-emitting epitaxial layer 130 and the current diffusion layer 134, wherein the above-mentioned etching process may include dry etching, wet etching, or a combination thereof.
  • the etching process may include various etching steps, and each step is designed to use a specific etchant to effectively remove the corresponding light-emitting epitaxial layer 130 and the current diffusion layer 134. After that, the patterned photoresist layer is removed by wet separation or plasma ashing.
  • the LED unit may be a flip-chip light-emitting diode, a vertical light-emitting diode, or a front-mounted light-emitting diode, which is not limited here.
  • the substrate body 110 is etched, so that the multiple LED units are separated from the substrate body 110 and supported by different support transfer patterns.
  • the substrate body 110 is etched with a specific etchant.
  • the substrate body 110 can be etched to expose the support pillars 121 of the transfer support structure 120 for supporting the LED unit and separate the plurality of LED units from the substrate body 110 .
  • the transfer support structure 120 serves as a weakened structure in the subsequent process, and the LED unit can be separated from the weakened structure under the action of external force.
  • step S22 includes the following steps:
  • a buffer layer 140 is formed on the main surface 111 of the substrate body 110.
  • the buffer layer 140 covers the supporting head 122 and forms a flat surface on the side away from the substrate body 110.
  • the buffer layer 140 may be a composite buffer layer structure of AlN, AlGaN, GaN, or AlN/AlGaN/GaN. There are two main methods for preparing the buffer layer 140.
  • One is prepared by the traditional MOCVD method, that is, the organic compounds of group III elements and the hydrides of group V and VI elements are used as crystal growth source materials, and the thermal decomposition reaction method is adopted.
  • the vapor phase epitaxial growth is performed on the substrate 100.
  • the deposition process can also be completed by means of physical vapor deposition, sputtering, hydrogen phase deposition, or atomic layer deposition.
  • S222 Form the light emitting epitaxial layer 130 including the first conductive type semiconductor layer 131, the quantum well layer 132, and the second conductive type semiconductor layer 133 on the flat surface.
  • a first conductive type semiconductor layer 131 is grown on a flat surface, and the first conductive type semiconductor layer 131 is an n-type GaN layer, for example, a Si-doped GaN layer.
  • a quantum well layer 132 is grown on the first conductive type semiconductor layer 131.
  • the quantum well layer 132 can have any of the following structures: single-layer quantum well (SQW) and InGaN/GaN multilayer quantum well (MQW).
  • a second conductive type semiconductor layer 133 is grown on the quantum well layer 132.
  • the second conductive type semiconductor layer 133 is a p-type GaN layer, for example, a Mg-doped GaN layer. In this way, the light-emitting epitaxial layer 130 is completed.
  • an electron beam evaporation or magnetron sputtering method is used to grow a current diffusion layer 134 on the second conductivity type semiconductor layer 133 of the light-emitting epitaxial layer 130.
  • the current spreading layer 134 may use a transparent conductive material, such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • the current diffusion layer 134 may be a metal mirror layer including silver (Ag), nickel (Ni), platinum (Pt), or other suitable metals.
  • step S23 includes:
  • S231 Perform one patterning of the current diffusion layer 134 and the light-emitting epitaxial layer 130 to form a plurality of mesa structures 160 that are spaced apart from each other and expose a portion of the first conductivity type semiconductor layer 131.
  • an etching process is applied to remove part of the quantum well layer 132 and the second conductive type semiconductor layer 133 to form the first trench 171 and the first trench 171 on the quantum well layer 132 and the second conductive type semiconductor layer 133.
  • the quantum well layer 132 and the second conductive type semiconductor layer 133 are divided into a plurality of mesa structures 160 arranged in an array at intervals, and the first conductive type semiconductor layer 131 is exposed in the region of the first trench 171.
  • the above-mentioned etching process may include dry etching, wet etching or a combination thereof.
  • the etching process may include various etching steps, and each step is designed to use a specific etchant to effectively remove the corresponding light-emitting epitaxial layer 130.
  • a mask may be further used to form the first trench 171 through the following processes: forming a mask on the second conductive type semiconductor layer 133, patterning the mask using a photolithography process, and using a patterned The mask is used as an etching mask to etch the light emitting epitaxial layer 130 to form the first trench 171.
  • the patterned current diffusion layer 134 may be used as a mask, and is not removed after the first trench 171 is formed by etching.
  • the current diffusion layer 134 may include multiple layers of metal films that serve various functions.
  • the current diffusion layer 134 may include a metal film as a contact electrically connected to the p-type semiconductor layer.
  • the current spreading layer 134 may use a transparent conductive material, such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • the current diffusion layer 134 may be a metal mirror layer including silver (Ag), nickel (Ni), platinum (Pt), or other suitable metals.
  • the first conductivity type semiconductor layer 131 is an n-type semiconductor layer (for example, an n-type GaN layer)
  • the second conductivity type semiconductor layer 133 is a p-type semiconductor layer (for example, a p-type GaN layer)
  • the corresponding first conductivity type electrode 151 It is an n-type electrode
  • the corresponding second conductivity type electrode 152 is a p-type electrode.
  • first conductivity type electrode 151 Cr/Al/Ti metal is fabricated on the exposed part of the surface of the first conductivity type semiconductor layer 131 to form the first conductivity type electrode 151, so the first conductivity type electrode 151 is an n-type electrode, and the first conductivity type electrode 151 It is electrically connected to the first conductive type semiconductor layer 131.
  • the first conductive type electrode 151 and the first conductive type semiconductor layer 131 are electrically connected by direct contact.
  • the Ni/Au metal is fabricated on the current diffusion layer 134 to form the second conductivity type electrode 152. Therefore, the second conductivity type electrode 152 is a p-type electrode, and the second conductivity type electrode 152 is electrically connected to the second conductivity type semiconductor layer 133.
  • S233 Perform secondary patterning of the first conductive type semiconductor layer 131 and the buffer layer 140 from the spaced area between the mesa structures 160 to form a plurality of LED units, wherein each LED unit includes at least one mesa structure 160, at least One first conductivity type electrode 151 and at least one second conductivity type electrode 152.
  • an etching process is applied to remove the first conductive type semiconductor layer 131 and the buffer layer 140 between the mesa structures 160 to form the quantum well layer 132 and the second conductive type semiconductor layer 133 defining each LED unit ⁇ each second groove 172.
  • the second trench 172 may be formed through a process including a photolithography patterning process and an etching process.
  • various appropriate processes such as ALD, PECVD, sputtering or spraying, are used on the upper surface and peripheral sidewall surfaces of the reflective layer, the sidewall surface of the first trench 171, the sidewall surface of the second trench 172, and the first conductivity type.
  • the outer edge of the electrode 151 and the outer edge of the second conductivity type electrode 152 are covered with an insulating layer 180.
  • the insulating layer 180 can be made of aluminum nitride, silicon dioxide, silicon nitride, aluminum oxide, Bragg reflector DBR, silica gel, Made of either resin or acrylic.
  • the surface of the first conductivity type electrode 151 away from the current diffusion layer 134, and the surface of the second conductivity type electrode 152 away from the current diffusion layer 134 is at least partially uncovered by the first conductivity type electrode 151 and the second conductivity type electrode 151.
  • On the exposed surface of the conductive type electrode 152 and on the surface of the insulating layer 180 between the first conductive type electrode 151 and the second conductive type electrode 152 printing, electroplating, electron beam evaporation or magnetron sputtering process Fabricate a first pad 191 and a second pad 192 that are insulated from each other.
  • the first pad 191 is electrically connected to the first conductive type electrode 151 by direct contact
  • the second pad 192 is electrically connected to the second conductive type electrode 152 by direct contact. Electrically connected, so that the LED unit is completed.
  • the substrate 100 of the present application is also suitable for manufacturing vertical structure LEDs and front-mounted structure LEDs.
  • step S24 includes:
  • S241 Perform one etching on the substrate main body 110 from the spaced area between the LED units to form a groove 173 extending to a certain depth inside the substrate main body 110.
  • S242 Use a specific etchant to perform anisotropic etching on the substrate body 110 from the groove 173, wherein the specific etchant has a higher etching rate on the substrate body 110 in the direction parallel to the main surface 111 than in the vertical direction of the main surface 111 The etching rate of the bottom body 110.
  • the anisotropic corrosion characteristics of the Si substrate body 110 in the alkaline etching solution are very obvious.
  • the corrosion rate ratio of the interface along the parallel direction of the main surface 111 and the interface along the vertical direction of the main surface 111 in the TMAH solution It is about 30:1.
  • the substrate body 110 In order to ensure the etching depth of the substrate body 110, the substrate body 110 needs to be etched once from the space between the LED units to form a groove 173 extending to a certain depth inside the substrate body 110.
  • the etching depth depends on the depth of the groove 173.
  • the substrate body 110 is etched with a specific etchant.
  • the substrate body 110 can be etched to expose the support pillars 121 of the transfer support structure 120 for supporting the LED unit and separate the plurality of LED units from the substrate body 110 .
  • the transfer support structure 120 serves as a weakened structure in the subsequent process, and the LED unit can be separated from the weakened structure under the action of an external force.
  • the LED 200 includes: a substrate 100 and an LED unit 201, wherein the number of the LED unit 201 is multiple.
  • the substrate 100 includes a substrate main body 110 and a plurality of transfer support structures 120.
  • a main surface 111 of the substrate main body 110 is provided with a plurality of openings 101 spaced apart from each other, and the plurality of transfer support structures 120 are respectively arranged correspondingly They are arranged in the opening 101 and spaced apart from each other.
  • the plurality of LED units 201 are respectively supported by different support transfer patterns, and are kept at a certain distance from the substrate body 110.
  • the LED unit 201 is the LED unit 201 manufactured in the above embodiment, wherein each LED unit 201 includes at least one mesa structure 160, at least one first conductivity type electrode 151, and at least one second conductivity type electrode 152.
  • the present application provides a plurality of transfer support structures on one main surface of the substrate body, and the transfer support structures are more resistant to a specific etchant than the substrate body.
  • the transfer support structure is used as a weakening structure in the subsequent process.
  • the substrate body is etched with a specific etchant, so that the transfer support structure is used to support the LED unit in the air relative to the substrate body, thereby facilitating the LED unit in the opposite direction. Separated from the weakened structure by a small external force.
  • the transfer support structure is directly supported between the LED unit and the substrate, the arrangement density of the LED unit on the substrate can be increased, the loss of the LED chip area can be reduced, and the manufacturing cost of the LED can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

一种衬底(100)、LED(200)及其制造方法。该衬底(100)包括:衬底主体(110),衬底主体(110)的一侧主表面(111)上设置有彼此间隔排布的多个开孔(101);多个转移支撑结构(120),多个转移支撑结构(120)分别对应地设置于开孔(101)内,且彼此间隔排布,其中每个转移支撑结构(120)分别包括填充于开孔(101)内部的支撑柱(121)以及与支撑柱(121)连接且突出于衬底主体(110)的主表面(111)的支撑头(122),转移支撑结构(120)针对特定蚀刻剂的耐受度大于衬底主体(110)。通过上述方式,该衬底(100)能够在后续生成LED单元(201)后通过对衬底主体(110)进行蚀刻,而利用转移支撑结构(120)相对于衬底主体(110)悬空支撑LED单元(201),减小LED单元(201)与衬底(100)之间的附着力,降低分离和转移难度。进一步,上述方式可以提高LED单元(201)在衬底(100)上的排布密度,减少LED(200)芯片面积的损失,降低LED(200)的制造成本。

Description

衬底及其制造方法、LED及其制造方法 【技术领域】
本申请涉及发光二极管领域,特别是一种衬底及其制造方法、LED及其制造方法。
【背景技术】
发光二极管(light emitting diode,LED)是将电能转换为光的固态元件,LED具有体积小、效率高和寿命长等优点,在交通指示、户外全色显示等领域有着广泛的应用。尤其是利用大功率LED可以实现半导体固态照明,引起人类照明史的革命,从而逐渐成为目前电子学领域的研究热点。
目前,LED一般通过外延生长方式形成于衬底上,并在某些特定应用下需要将芯片从衬底进行分离和转移,例如应用于显示领域的Micro LED,以及应用于手电筒、闪光灯和车灯等领域的垂直结构LED芯片等。如何有效地实现LED与衬底之间的分离是业界有待解决的问题。
【发明内容】
本申请提供一种衬底、LED及其制造方法,能够有效地减小后续生成的LED单元与衬底之间的附着力,降低分离和转移难度。
为解决上述技术问题,本申请采用的一个技术方案是:提供了一种衬底的制造方法,该方法包括:提供一衬底主体,其中衬底主体的一侧主表面上设置有彼此间隔排布的多个开孔;在衬底主体的主表面上形成一转移支撑层,转移支撑层的材料包括SiO 2、SiN或Al 2O 3中的至少一种;对转移支撑层进行图案化,以形成彼此间隔排布的多个转移支撑结构,其中转移支撑结构包括由转移支撑层填充于开孔内的部分所形成的支撑柱以及转移支撑层被图案化的部分所形成的支撑头,支撑头与支撑柱连接且突出于衬底主体的主表面。
为解决上述技术问题,本申请采用的另一个技术方案是:提供了一种衬底,该衬底包括:衬底主体,衬底主体的一侧主表面上设置有彼此间隔排布的多个开孔;多个转移支撑结构,多个转移支撑结构分别对应地设置于开孔内,且彼此间隔排布,其中每个转移支撑结构分别包括填充于开孔内部的支撑柱以及与支撑柱连接且突出于衬底主体的主表面的支撑头,其中转移支撑结构针对特定蚀刻剂的耐受度大于衬底主体。
为解决上述技术问题,本申请采用的又一个技术方案是:提供一种LED的制造方法,该方法包括:提供衬底,衬底包括:衬底主体以及多个转移支撑结构,衬底主体的一侧主表面上设置有彼此间隔排布的多个开孔,多个转移支撑结构分别对应地设置于开孔内,且彼此间隔排布,其中每个转移支撑结构分别包括填充于开孔内部的支撑柱以及与支撑柱连接且突出于衬底主体的主表面的支撑头,其中转移支撑结构针对特定蚀刻剂的耐受度大于衬底主体;在衬底主体的主表面上形成发光外延层;对发光外延层进行图案化,以形成多个LED单元;对衬底主体进行蚀刻,以使得多个LED单元与衬底主体分离,并分别由不同的支撑转移图案进行支撑。
为解决上述技术问题,本申请采用的再一个技术方案是:提供一种LED,LED包括衬底主体以及多个转移支撑结构,衬底主体的一侧主表面上设置有彼此间隔排布的多个开孔,多个转移支撑结构分别对应地设置于开孔内,且彼此间隔排布;多个LED单元,多个LED单元分别由不同的支撑转移图案进行支撑,并与衬底主体保持一定间隔。
本申请的有益效果是:区别于现有技术的情况,本申请通过在衬底主体的一侧主表面上设置多个转移支撑结构,该转移支撑结构针对特定蚀刻剂的耐受度大于衬底主体。利用转移支撑结构在后续工艺中作为一个弱化结构,在后续生成LED单元后,通过特定蚀刻剂蚀刻衬底主体,以利用转移支撑结构相对于衬底主体悬空支撑LED单元,进而便于LED单元在相对较小的外力作用下从该弱化结构上分离。同时,由于转移支撑结构直接支撑于LED单元与衬底之间,可以提高LED单元在衬底上的排布密度,减少LED芯片面积的损失,降低LED的制造成本。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是根据本申请第一实施例的衬底的俯视结构示意图;
图2是根据本申请第一实施例的衬底的剖视结构示意图;
图3是根据本申请第二实施例的衬底的剖视结构示意图;
图4是硅刻蚀晶面的示意图;
图5是本申请衬底的制造方法的第一流程示意图;
图6是图5所示的衬底的制造方法的各阶段对应的结构示意图;
图7是本申请LED的制造方法的流程示意图;
图8是图7中步骤S22的流程示意图;
图9是图7中步骤S23的流程示意图;
图10是图7中步骤S24的流程示意图;
图11是本申请LED的制造方法的各步骤对应的第一结构示意图;
图12是本申请LED的制造方法的各步骤对应的第二结构示意图;
图13是本申请LED的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1-2所示,根据本申请第一实施例的衬底100包括:衬底主体110以及转移支撑结构120,其中,转移支撑结构120的数量为多个,即衬底100包括多个转移支撑结构120。
进一步地,衬底主体110的一侧主表面111上设置有彼此间隔排布的多个开孔101,多个开孔101的排列可以呈现规则状,也可以是不规则分布。在本实施例中,多个开孔101在主表面111上呈蜂窝状排列,即选定某一开孔101作为基准,其周围的开孔101分布于以该某一开孔101为中心的正六边形的顶点位置处。
多个转移支撑结构120分别对应地设置于开孔101内且彼此间隔排布。每个转移支撑结构120分别包括填充于开孔101内部的支撑柱121以及与支撑柱121连接且突出于衬底主体110的主表面111的支撑头122。
该转移支撑结构120在后续工艺中作为一个弱化结构,进而在后续形成相应的LED单元之后,可以通过移除一部分衬底主体110,使得用于支撑LED单元的转移支撑结构120的支撑柱121部分暴露出来,进而利用转移支撑结构120相对于衬底主体110悬空支撑LED单元,减小LED单元与衬底100之间的附着力。例如,可对衬底主体110的主表面111处进行蚀刻工艺,直至暴露出一部分转移支撑结构120。蚀刻工艺也可通过干蚀刻工艺或者湿蚀刻工艺来实施。
进一步,可以选择对特定蚀刻剂的耐受度不同的材料作为衬底主体 110材料和转移支撑结构120材料,具体来说,转移支撑结构120的材料针对特定蚀刻剂的耐受度大于衬底主体110的材料。因此,在后续的工艺中,当用特定蚀刻剂蚀刻部分衬底主体110时,用于支撑LED单元的转移支撑结构120得以有效保留。
上文所提到的衬底主体110的材料具体可包括Si,上文所提到的转移支撑结构120的材料具体可包括SiO 2、SiN或Al 2O 3。上文所提到的特定蚀刻剂为用于各向异性蚀刻硅衬底100的碱性溶液,具体可以由如KOH(氢氧化钾)、NaOH(氢氧化钠)、NH 4OH(氢氧化氨)或TMAH(氢氧化四甲基氨)的水溶液配制而成。例如,重量百分比为30%的NH 4OH溶液可与水混合,以形成具有体积百分比在接近10%-100%范围内的NH 4OH浓度、或尤其重量百分比在接近3%-30%范围内的NH 4OH浓度的各向异性特定蚀刻剂。
可以理解的是,特定蚀刻剂可在不同的暴露平面中以不同的速率蚀刻衬底主体110。如图2所示,利用特定蚀刻剂对衬底主体110进行蚀刻时,特定蚀刻剂沿主表面111的平行方向D1对衬底主体110的蚀刻速率大于沿主表面111的垂直方向D2对衬底主体110的蚀刻速率。具体地,通过将衬底主体110的沿主表面111的垂直方向D2的晶面设置成慢蚀刻面,而沿主表面111的平行方向D1的晶面设置成快蚀刻面。例如,参阅图4,以硅为例,碱性溶液沿硅的B面方向的蚀刻速率大约是沿硅的A面方向的蚀刻速率的几百倍。本申请实施例通过各向异性蚀刻,可以在保证沿平行方向D1对衬底主体110进行有效蚀刻的同时,避免沿垂直方向D2对衬底主体110的过度蚀刻,而导致支撑柱121从衬底主体110上分离。
进一步,支撑头122沿主表面111的平行方向D1的截面尺寸r2在远离衬底主体110的方向(D2的反方向)上逐渐变小。在本实施例中,支撑头122的外侧面在远离衬底主体110的方向上呈弧形过渡,以形成一蒙古包形状。由此便于支撑头122与后续LED单元的分离。在其他实施例中,支撑头122可以设计成柱形、半球形、圆锥形、圆台形或其他任意形状。
其中,该支撑柱121的高度d1在0.1-10微米范围内,该支撑柱121沿主表面111的平行方向D1的截面尺寸r1在0.1-10微米范围内,该支撑头122的高度d2在0.1-10微米范围内,该支撑头122的沿主表面111的平行方向D1的最大截面尺寸r2在0.1-10微米范围内。
区别于现有技术的情况,本申请通过在衬底主体的一侧主表面上设 置多个转移支撑结构,该转移支撑结构针对特定蚀刻剂的耐受度大于衬底主体。利用转移支撑结构在后续工艺中作为一个弱化结构,在后续生成LED单元后,通过特定蚀刻剂蚀刻衬底主体,以利用转移支撑结构相对于衬底主体悬空支撑LED单元,进而便于LED单元在相对较小的外力作用下从该弱化结构上分离。同时,由于转移支撑结构直接支撑于LED单元与衬底之间,可以提高LED单元在衬底上的排布密度,减少LED芯片面积的损失,降低LED的制造成本。
如图3所示,根据本申请另一实施例的衬底100包括衬底主体110、以及转移支撑结构120,转移支撑结构120的数量为多个。
本实施例的衬底100与图2所示的衬底100的主要区别在于,支撑柱121沿主表面111的平行方向的截面尺寸r1小于支撑头122靠近衬底主体110一侧沿平行方向的截面尺寸r2。
进一步,衬底主体110的主表面111上设置有彼此间隔排布的多个凸台112,凸台112与衬底主体110可以为一体结构。多个开孔101对应地设置于凸台112上,开孔101的深度大于凸台112的高度,以使得支撑柱121从凸台112延伸到衬底主体110的内部,支撑头122设置于凸台112上。进一步地,支撑头122的外轮廓面与凸台112的外轮廓面之间为光滑过渡。
具体地,支撑头122的外轮廓面为支撑头122的外弧面,凸台112的外轮廓面为凸台112的外侧壁,该支撑头122的外弧面与凸台112的外侧壁之间光滑过渡,可以降低应力集中。
在本实施例中,通过将支撑柱121沿主表面111的平行方向的截面尺寸r1小于支撑头122靠近衬底主体110一侧沿平行方向的截面尺寸r2,可以减少支撑柱121的材料使用量,降低成本。进一步,可以使得在后续分离时支撑头122和支撑柱121在连接处断开,而使得支撑头122保留在LED单元内部作为调光元件。例如,通过支撑头122与支撑头122所嵌入的LED单元的相关元件的折射率差异来对LED单元的出光方向进行调节。或者,通过在支撑头122内设置散射粒子等来对LED单元的出光方向进行调节。此外,由于支撑头122下方的凸台112突出于主表面111,更容易被蚀刻,便于支撑头122与衬底主体110之间的有效分离。
如图5和图6所示,本申请还提出一种衬底100的制造方法,该方法用于制造上述实施例中的衬底100。该方法包括以下步骤:
S11:提供一衬底主体110。
具体地,衬底主体110的材料具体可包括Si。其中,在上述衬底主体110的一侧主表面111上形成有彼此间隔排布的多个开孔101。在衬底主体110的加工中,可以在形成抗蚀剂掩模的开口部之后,利用喷砂法在衬底主体110上形成开孔101。或者,在形成抗蚀剂掩模的开口部之后,利用蚀刻工艺在硅衬底100上形成开孔101。在此不做限定。开孔101的形状可以为圆角正方形、圆形或椭圆形也均可,开孔101的开口面积可以相等或不相等,在此不做限定。
S12:在衬底主体110的主表面111上形成一转移支撑层。
具体地,转移支撑层的材料具体可包括SiO 2、SiN或Al 2O 3
其中,可以在Si衬底主体110的主表面111形成二氧化硅溶胶层,对表面形成有二氧化硅溶胶层的Si衬底主体110进行干燥处理,以在该Si衬底主体110上制备SiO 2转移支撑层;或者使用PECVD方式在Si衬底主体110的主表面111上沉积SiO 2或SiN转移支撑层;或者使用LPCVD方式在Si衬底主体110的主表面111上沉积SiO 2或SiN转移支撑层;或者使用磁控溅射方式在Si衬底主体110的主表面111生长Al 2O 3转移支撑层;或者使用ALD(Atomic Layer Deposition,原子层沉积)方法沉积SiO 2或Al 2O 3转移支撑层;此处需要注意的是,转移支撑层在形成过程中,填充开孔101,并在衬底主体110的主表面111沉积一定厚度。
S13:对转移支撑层进行图案化,以形成彼此间隔排布的多个转移支撑结构120。
具体地,在转移支撑层上覆盖一掩膜板。通过蚀刻技术除去掩膜板未覆盖位置的转移支撑层,形成彼此间隔排布的多个转移支撑结构120。蚀刻技术可以为湿法蚀刻或干法蚀刻,在此不做限定。
其中,转移支撑结构120包括由转移支撑层填充于开孔101内的部分所形成的支撑柱121以及转移支撑层被图案化的部分所形成的支撑头122,支撑头122与支撑柱121连接且突出于衬底主体110的主表面111,即形成图2所示的衬底100。
在步骤S13进一步包括对衬底主体110的主表面111进行蚀刻,进而形成图3所示的凸台112。
具体地,在衬底主体110的主表面111上覆盖一掩膜板。通过蚀刻技术除去掩膜板未覆盖位置的衬底主体110,形成位于支撑头122下方的凸台112。蚀刻技术可以为湿法蚀刻或干法蚀刻,在此不做限定。
下面将以衬底100为例,对本申请的LED的制造方法进行描述。
如图7和图11所示,本申请还提出一种LED的制造方法,该方法包括:
S21:提供一衬底100。
具体地,该衬底100为上述实施例中的衬底100,具体结构请参阅上述实施例的衬底100相关描述,在此不做赘述。
S22:在衬底主体110的主表面111上形成发光外延层130。
具体地,发光外延层130为多层结构,具体包括:第一导电类型半导体层131、量子阱层132、第二导电类型半导体层133。
可以采用MOCVD方法或MBE方法在衬底主体110的主表面111上依次生长缓冲层140、第一导电类型半导体层131、量子阱层132、第二导电类型半导体层133。进一步通过其他工艺形成电流扩散层134。
其中,缓冲层140为AlN、AlGaN、GaN或AlN/AlGaN/GaN的复合缓冲层结构,量子阱层132可为MQWs结构,MQWs结构包括多个相堆叠的单层量子阱(SQW)。MQWs结构保留了SQW的优点,并且具有更大体积的允许高光功率的有源区域。在其他实施例中,第一导电类型半导体层131和第二导电类型半导体层133可以是具有不同导电类型的其他任意适当材料的单层或多层结构。
S23:对发光外延层130进行图案化,以形成多个LED单元。
具体地,应用蚀刻工艺来对发光外延层130和电流扩散层134进行图案化,其中,上述蚀刻工艺可以包括干式蚀刻、湿式蚀刻或其组合。蚀刻工艺可以包括各个蚀刻步骤,每一步都被设计使用特定的蚀刻剂以有效移除相应的发光外延层130和电流扩散层134。之后,通过湿法分离或等离子灰化将经过图案化的光刻胶层移除。
该LED单元可以为倒装发光二极管、垂直发光二极管以及正装发光二极管,在此不做限定。
S24:对衬底主体110进行蚀刻,以使得多个LED单元与衬底主体110分离,并分别由不同的支撑转移图案进行支撑。
利用特定蚀刻剂对衬底主体110进行蚀刻,可以通过蚀刻衬底主体110,使得用于支撑LED单元的转移支撑结构120的支撑柱121暴露出来,并使得多个LED单元与衬底主体110分离。转移支撑结构120在后续工艺中作为一个弱化结构,进而LED单元可在外力作用下从弱化结构上分离。
如图8和11所示,在发光二极管为倒装发光二极管时,步骤S22包括以下步骤:
S221:在衬底主体110的主表面111形成缓冲层140,缓冲层140覆盖支撑头122,并在远离衬底主体110的一侧形成一平坦表面。
考虑到步骤S12中,由于在衬底主体110与转移支撑层之间的热膨胀系数差异所导致的应力,进而在衬底主体110与转移支撑结构120的接触面处发生断裂,由此衬底主体110容易与转移支撑层分离。因此,本实施例通过缓冲层140的调节,可以降低衬底主体110与转移支撑结构120的接触面处的应力及缺陷。其中,缓冲层140可以为AlN、AlGaN、GaN或AlN/AlGaN/GaN的复合缓冲层结构。缓冲层140的制备方法主要有两种,一种是通过传统的MOCVD方法制备,即以Ⅲ族元素的有机化合物和V、Ⅵ族元素的氢化物等作为晶体生长源材料,采用热分解反应方式在衬底100上进行气相外延生长。在其他实施例中,也可以借助于诸如物理气相沉积、溅射、氢气相沉积法或原子层沉积完成沉积的工序。
S222:在平坦表面上形成包括第一导电类型半导体层131、量子阱层132、第二导电类型半导体层133的发光外延层130。
具体地,在平坦表面上生长第一导电类型半导体层131,第一导电类型半导体层131为n型GaN层,例如掺杂Si的GaN层。接着在第一导电类型半导体层131上生长量子阱层132,量子阱层132可为下列任一种结构:单层量子阱(SQW)以及InGaN/GaN多层量子阱(MQW)。之后再在量子阱层132上生长第二导电类型半导体层133,第二导电类型半导体层133为p型GaN层,例如掺杂Mg的GaN层。如此便制作完成发光外延层130。
S223:在发光外延层130上形成电流扩散层134。
最后使用电子束蒸镀或磁控溅射的方法在发光外延层130的第二导电类型半导体层133上生长一层电流扩散层134。
电流扩散层134可以采用透明导电材料,比如氧化铟锡(ITO)。在其他实施例中,电流扩散层134可以为包括银(Ag)、镍(Ni)、铂(Pt)、或其他适当金属的金属反射镜层。
如图9和11所示,步骤S23包括:
S231:对电流扩散层134以及发光外延层130进行一次图案化进行一次图案化,以形成彼此间隔设置并外露部分第一导电类型半导体层131的多个台面结构160。
具体地,应用蚀刻工艺来移除部分量子阱层132以及第二导电类型半导体层133,以在量子阱层132以及第二导电类型半导体层133上形 成第一沟槽171,第一沟槽171将量子阱层132以及第二导电类型半导体层133划分成彼此间隔的多个阵列排布的台面结构160,并在第一沟槽171区域暴露第一导电类型半导体层131。其中,上述蚀刻工艺可以包括干式蚀刻、湿式蚀刻或其组合。蚀刻工艺可以包括各个蚀刻步骤,每一步都被设计使用特定的蚀刻剂以有效移除相应的发光外延层130。
在可选实施例中,可以进一步利用掩模,通过以下过程形成第一沟槽171:在第二导电类型半导体层133上形成掩模,使用光刻工艺图案化掩模,以及使用图案化的掩模作为蚀刻掩模蚀刻发光外延层130以形成第一沟槽171。
进一步地,可以使用图案化的电流扩散层134作为掩模,并且在蚀刻形成第一沟槽171之后没有被移除。电流扩散层134可以包括多层起到各种作用的金属膜。电流扩散层134可以包括作为与p型半导体层电连接的接触件的金属膜。电流扩散层134可以采用透明导电材料,比如氧化铟锡(ITO)。在其他实施例中,电流扩散层134可以为包括银(Ag)、镍(Ni)、铂(Pt)、或其他适当金属的金属反射镜层。
S232:在第一导电类型半导体层131的外露部分和电流扩散层134上形成分别与第一导电类型半导体层131和第二导电类型半导体层133电连接的第一导电类型电极151和第二导电类型电极152。
其中,第一导电类型半导体层131为n型半导体层(例如n型GaN层),第二导电类型半导体层133为p型半导体层(例如p型GaN层),对应的第一导电类型电极151为n型电极,对应的第二导电类型电极152为p型电极。
具体地,将Cr/Al/Ti金属制作于第一导电类型半导体层131的外露部分表面而形成第一导电类型电极151,因此第一导电类型电极151为n型电极,第一导电类型电极151与所述第一导电类型半导体层131电连接,例如在本实施例中,第一导电类型电极151与第一导电类型半导体层131通过直接接触的方式形成电连接。
将Ni/Au金属制作于电流扩散层134上而形成第二导电类型电极152,因此第二导电类型电极152为p型电极,第二导电类型电极152与第二导电类型半导体层133电连接。
S233:从台面结构160之间的间隔区域对第一导电类型半导体层131和缓冲层140进行二次图案化,以形成多个LED单元,其中,每个LED单元包括至少一台面结构160、至少一第一导电类型电极151和至少一第二导电类型电极152。
具体地,应用蚀刻工艺来移除台面结构160之间的间隔区域第一导电类型半导体层131和缓冲层140,以在量子阱层132以及第二导电类型半导体层133上形成限定了各个LED单元的各个第二沟槽172。其中,第二沟槽172可以通过包括光刻图案化工艺和蚀刻工艺的过程形成。
进一步地,采用ALD、PECVD、溅射或喷涂等各种适当工艺在反射层的上表面以及四周侧壁面、第一沟槽171的侧壁面、第二沟槽172的侧壁面、第一导电类型电极151的外边缘、第二导电类型电极152的外边缘处覆盖绝缘层180,绝缘层180可采用氮化铝、二氧化硅、氮化硅、三氧化二铝、布拉格反射层DBR、硅胶、树脂或丙烯酸之其一制成。
需要注意的是,第一导电类型电极151远离电流扩散层134的一侧表面、第二导电类型电极152远离电流扩散层134的一侧表面至少部分未覆在第一导电类型电极151、第二导电类型电极152的外露表面上、以及位于第一导电类型电极151和第二导电类型电极152彼此之间的绝缘层180的表面上,通过印刷、电镀、电子束蒸镀或磁控溅射工艺制造相互绝缘的第一焊盘191与第二焊盘192,其中,第一焊盘191通过直接接触第一导电类型电极151电连接,第二焊盘192通过直接接触与第二导电类型电极152电连接,如此便制作完成LED单元。
值得注意的是,在本申请中,虽然以倒装结构LED为例进行了描述,但本申请的衬底100同样适用于制造垂直结构LED和正装结构LED。
如图10和图12所示,步骤S24包括:
S241:从LED单元之间的间隔区域对衬底主体110进行一次蚀刻,以形成延伸至衬底主体110内部一定深度的凹槽173。
S242:利用特定蚀刻剂从凹槽173对衬底主体110进行各向异性蚀刻,其中特定蚀刻剂沿主表面111的平行方向对衬底主体110的蚀刻速率大于沿主表面111的垂直方向对衬底主体110的蚀刻速率。
具体地,Si衬底主体110在碱性腐蚀液中的各向异性腐蚀特性非常明显,例如在TMAH溶液中沿主表面111的平行方向的界面与沿主表面111的垂直方向界面的腐蚀速率比为30∶1左右。
为保证衬底主体110的蚀刻深度,需要从LED单元之间的间隔区域对衬底主体110进行一次蚀刻,以形成延伸至衬底主体110内部一定深度的凹槽173,该衬底主体110的蚀刻深度取决于凹槽173深度。
利用特定蚀刻剂对衬底主体110进行蚀刻,可以通过蚀刻衬底主体110,使得用于支撑LED单元的转移支撑结构120的支撑柱121暴露出来,并使得多个LED单元与衬底主体110分离。转移支撑结构120在后 续工艺中作为一个弱化结构,进而LED单元可在外力作用下从弱化结构上分离。
如图13所示,根据本申请一实施例的LED 200包括:衬底100以及LED单元201,其中LED单元201的数量为多个。
衬底100包括衬底主体110以及多个转移支撑结构120,衬底主体110的一侧主表面111上设置有彼此间隔排布的多个开孔101,多个转移支撑结构120分别对应地设置于开孔101内,且彼此间隔排布。多个LED单元201分别由不同的支撑转移图案进行支撑,并与衬底主体110保持一定间隔。LED单元201为上述实施例中制造得到的LED单元201,其中,每个LED单元201包括至少一台面结构160、至少一第一导电类型电极151和至少一第二导电类型电极152。
区别于现有技术的情况,本申请通过在衬底主体的一侧主表面上设置多个转移支撑结构,该转移支撑结构针对特定蚀刻剂的耐受度大于衬底主体。利用转移支撑结构在后续工艺中作为一个弱化结构,在后续生成LED单元后,通过特定蚀刻剂蚀刻衬底主体,以利用转移支撑结构相对于衬底主体悬空支撑LED单元,进而便于LED单元在相对较小的外力作用下从该弱化结构上分离。同时,由于转移支撑结构直接支撑于LED单元与衬底之间,可以提高LED单元在衬底上的排布密度,减少LED芯片面积的损失,降低LED的制造成本。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种衬底的制造方法,其中,所述方法包括:
    提供一衬底主体,其中所述衬底主体的一侧主表面上设置有彼此间隔排布的多个开孔;
    在所述衬底主体的所述主表面上形成一转移支撑层,所述转移支撑层的材料包括SiO 2、SiN或Al 2O 3中的至少一种;
    对所述转移支撑层进行图案化,以形成彼此间隔排布的多个转移支撑结构,其中所述转移支撑结构包括由所述转移支撑层填充于所述开孔内的部分所形成的支撑柱以及所述转移支撑层被图案化的部分所形成的支撑头,所述支撑头与所述支撑柱连接且突出于所述衬底主体的所述主表面。
  2. 根据权利要求1所述的方法,其中,所述对所述转移支撑层进行图案化的步骤进一步包括:
    对所述衬底主体的所述主表面进行蚀刻,以形成位于所述支撑头下方的凸台。
  3. 一种衬底,其中,所述衬底包括:
    衬底主体,所述衬底主体的一侧主表面上设置有彼此间隔排布的多个开孔;
    多个转移支撑结构,所述多个转移支撑结构分别对应地设置于所述开孔内,且彼此间隔排布,其中每个所述转移支撑结构分别包括填充于所述开孔内部的支撑柱以及与所述支撑柱连接且突出于所述衬底主体的所述主表面的支撑头,其中所述转移支撑结构针对特定蚀刻剂的耐受度大于所述衬底主体。
  4. 根据权利要求3所述的衬底,其中,所述特定蚀刻剂沿所述主表面的平行方向对所述衬底主体的蚀刻速率大于沿所述主表面的垂直方向对所述衬底主体的蚀刻速率。
  5. 根据权利要求3所述的衬底,其中,所述衬底主体的材料为Si,所述转移支撑结构的材料为SiO 2、SiN或Al 2O 3,所述特定蚀刻剂为碱性溶液。
  6. 根据权利要求3所述的衬底,其中,所述支撑头沿所述主表面的平行方向的截面尺寸在远离所述衬底主体的方向上逐渐变小。
  7. 根据权利要求3所述的衬底,其中,所述支撑柱沿所述主表面的平行方向的截面尺寸小于所述支撑头靠近所述衬底主体一侧沿所述平行方向的截面尺寸。
  8. 根据权利要求3所述的衬底,其中,所述衬底主体的所述主表面上设置有彼此间隔排布的多个凸台,所述多个开孔对应地设置于所述凸台上,所述开孔的深度大于所述凸台的高度,以使得所述支撑柱从所述凸台延伸到所述衬底主体的内部,所述支撑头设置于所述凸台上。
  9. 根据权利要求8所述的衬底,其中,所述支撑头的外轮廓面与所述凸台的外轮廓面之间为光滑过渡。
  10. 一种LED的制造方法,其中,所述方法包括:
    提供衬底,所述衬底包括:衬底主体以及多个转移支撑结构,所述衬底主体的一侧主表面上设置有彼此间隔排布的多个开孔,所述多个转移支撑结构分别对应地设置于所述开孔内,且彼此间隔排布,其中每个所述转移支撑结构分别包括填充于所述开孔内部的支撑柱以及与所述支撑柱连接且突出于所述衬底主体的所述主表面的支撑头,其中所述转移支撑结构针对特定蚀刻剂的耐受度大于所述衬底主体;
    在所述衬底主体的所述主表面上形成发光外延层;
    对所述发光外延层进行图案化,以形成多个LED单元;
    对所述衬底主体进行蚀刻,以使得所述多个LED单元与所述衬底主体分离,并分别由不同的所述支撑转移图案进行支撑。
  11. 根据权利要求10所述的方法,其中,在所述衬底主体的所述主表面上形成发光外延层的步骤包括:
    在所述衬底主体的所述主表面形成缓冲层,其中所述缓冲层覆盖所述支撑头,并在远离所述衬底主体的一侧形成一平坦表面;
    在所述平坦表面上形成包括第一导电类型半导体层、量子阱层、第二导电类型半导体层的发光外延层;
    在所述发光外延层上形成电流扩散层。
  12. 根据权利要求所述11的方法,其中,所述对所述发光外延层进行图案化的步骤包括:
    对所述电流扩散层以及所述发光外延层进行一次图案化,以形成彼此间隔设置并外露部分所述第一导电类型半导体层的多个台面结构;
    在所述第一导电类型半导体层的外露部分和所述电流扩散层上形成分别与所述第一导电类型半导体层和所述第二导电类型半导体层电连接的第一导电类型电极和第二导电类型电极;
    从所述台面结构之间的间隔区域对所述第一导电类型半导体层和所述缓冲层进行二次图案化,以形成多个所述LED单元,其中每个所述LED单元包括至少一所述台面结构、至少一所述第一导电类型电极和至 少一所述第二导电类型电极。
  13. 根据权利要求10所述的方法,其中,所述对所述衬底主体进行蚀刻的步骤包括:
    从所述LED单元之间的间隔区域对所述衬底主体进行一次蚀刻,以形成延伸至所述衬底主体内部一定深度的凹槽;
    利用特定蚀刻剂从所述凹槽对所述衬底主体进行各向异性蚀刻。
  14. 根据权利要求13所述的方法,其中,所述特定蚀刻剂沿所述主表面的平行方向对所述衬底主体的蚀刻速率大于沿所述主表面的垂直方向对所述衬底主体的蚀刻速率。
  15. 根据权利要求10所述的方法,其中,所述衬底主体的材料为Si,所述转移支撑结构的材料为SiO 2、SiN或Al 2O 3,所述特定蚀刻剂为碱性溶液。
  16. 根据权利要求10所述的方法,其中,所述支撑头沿所述主表面的平行方向的截面尺寸在远离所述衬底主体的方向上逐渐变小。
  17. 根据权利要求10所述的方法,其中,所述支撑柱沿所述主表面的平行方向的截面尺寸小于所述支撑头靠近所述衬底主体一侧沿所述平行方向的截面尺寸。
  18. 根据权利要求10所述的方法,其中,所述衬底主体的所述主表面上设置有彼此间隔排布的多个凸台,所述多个开孔对应地设置于所述凸台上,所述开孔的深度大于所述凸台的高度,以使得所述支撑柱从所述凸台延伸到所述衬底主体的内部,所述支撑头设置于所述凸台上。
  19. 根据权利要求18所述的方法,其中,所述支撑头的外轮廓面与所述凸台的外轮廓面之间为光滑过渡。
  20. 一种LED,其中,所述LED包括:
    衬底,所述衬底包括衬底主体以及多个转移支撑结构,所述衬底主体的一侧主表面上设置有彼此间隔排布的多个开孔,所述多个转移支撑结构分别对应地设置于所述开孔内,且彼此间隔排布;
    多个LED单元,所述多个LED单元分别由不同的所述支撑转移图案进行支撑,并与所述衬底主体保持一定间隔。
PCT/CN2020/136043 2019-12-13 2020-12-14 衬底及其制造方法、led及其制造方法 WO2021115473A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911284871.X 2019-12-13
CN201911284871.XA CN110957407B (zh) 2019-12-13 2019-12-13 衬底、led及其制造方法

Publications (1)

Publication Number Publication Date
WO2021115473A1 true WO2021115473A1 (zh) 2021-06-17

Family

ID=69981828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136043 WO2021115473A1 (zh) 2019-12-13 2020-12-14 衬底及其制造方法、led及其制造方法

Country Status (2)

Country Link
CN (1) CN110957407B (zh)
WO (1) WO2021115473A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110957407B (zh) * 2019-12-13 2021-04-09 深圳第三代半导体研究院 衬底、led及其制造方法
CN111725362A (zh) * 2020-05-27 2020-09-29 南京中电熊猫平板显示科技有限公司 一种微型发光二极管的制造方法
CN112967984B (zh) * 2020-09-24 2022-03-25 重庆康佳光电技术研究院有限公司 微芯片的巨量转移方法及显示背板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840972A (zh) * 2009-03-19 2010-09-22 先进开发光电股份有限公司 倒装芯片式半导体光电元件的结构及其制造方法
CN102751180A (zh) * 2011-04-19 2012-10-24 三星电子株式会社 GaN膜结构及其制造方法和包括其的半导体器件
CN105103310A (zh) * 2013-04-05 2015-11-25 首尔伟傲世有限公司 与生长衬底分离的紫外线发光装置及其制造方法
US20150380236A1 (en) * 2013-04-29 2015-12-31 Seoul Viosys Co., Ltd. Substrate recycling method
CN110957407A (zh) * 2019-12-13 2020-04-03 深圳第三代半导体研究院 衬底、led及其制造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261929B1 (en) * 2000-02-24 2001-07-17 North Carolina State University Methods of forming a plurality of semiconductor layers using spaced trench arrays
CN1119830C (zh) * 2000-04-27 2003-08-27 中国科学院上海冶金研究所 一种器件转移方法
TWI260800B (en) * 2005-05-12 2006-08-21 Epitech Technology Corp Structure of light-emitting diode and manufacturing method thereof
CN1828837B (zh) * 2006-01-27 2011-04-20 中国科学院上海微系统与信息技术研究所 以多孔氮化镓作为衬底的氮化镓膜的生长方法
WO2010111821A1 (en) * 2009-03-30 2010-10-07 Hong Kong Applied Science And Technology Research Institute Co., Ltd Host substrate for intride based light emitting devices
CN101958375B (zh) * 2009-07-17 2013-01-02 财团法人工业技术研究院 氮化物半导体结构及其制造方法
CN103038901A (zh) * 2010-03-31 2013-04-10 Cs解决方案有限公司 半导体模板衬底、使用半导体模板衬底的发光元件及其制造方法
CN102646574B (zh) * 2011-02-22 2015-11-04 深圳信息职业技术学院 一种氮化镓自支撑衬底的制备方法
KR20150072066A (ko) * 2013-12-19 2015-06-29 서울바이오시스 주식회사 반도체 성장용 템플릿, 성장 기판 분리 방법 및 이를 이용한 발광소자 제조 방법
CN104561926B (zh) * 2014-12-11 2017-08-18 中国电子科技集团公司第五十五研究所 一种在硅衬底上制备β‑碳化硅薄膜的方法
CN106698333A (zh) * 2017-01-16 2017-05-24 中国工程物理研究院电子工程研究所 一种选区外延纳米柱阵列的有序转移方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840972A (zh) * 2009-03-19 2010-09-22 先进开发光电股份有限公司 倒装芯片式半导体光电元件的结构及其制造方法
CN102751180A (zh) * 2011-04-19 2012-10-24 三星电子株式会社 GaN膜结构及其制造方法和包括其的半导体器件
CN105103310A (zh) * 2013-04-05 2015-11-25 首尔伟傲世有限公司 与生长衬底分离的紫外线发光装置及其制造方法
US20150380236A1 (en) * 2013-04-29 2015-12-31 Seoul Viosys Co., Ltd. Substrate recycling method
CN110957407A (zh) * 2019-12-13 2020-04-03 深圳第三代半导体研究院 衬底、led及其制造方法

Also Published As

Publication number Publication date
CN110957407B (zh) 2021-04-09
CN110957407A (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
WO2021115473A1 (zh) 衬底及其制造方法、led及其制造方法
US8946741B2 (en) LED with enhanced light extraction
US8519430B2 (en) Optoelectronic device and method for manufacturing the same
WO2021115476A1 (zh) 衬底、led及其制造方法
US9070827B2 (en) Optoelectronic device and method for manufacturing the same
JP2006032952A (ja) 透明性導電層を含む全方向性リフレクタを有する発光ダイオード
TWI501421B (zh) 光電元件及其製造方法
CN112018223B (zh) 粘合层转印的薄膜倒装结构Micro-LED芯片及其制备方法
JP2012114407A (ja) 垂直型発光素子の製造方法およびその発光素子用の基板モジュール
WO2011030789A1 (ja) 発光装置
WO2012040979A1 (zh) 发光装置及其制造方法
CN104576857B (zh) 一种高反射层倒装led芯片结构及其制作方法
EP2495773A1 (en) Light-emitting diode and method for manufacturing same
KR102212557B1 (ko) 나노구조 반도체 발광소자
CN109346564A (zh) 一种倒装发光二极管芯片的制作方法
WO2012062016A1 (zh) 发光二极管及其制造方法、发光装置
TW202032808A (zh) 發光元件的製作方法
WO2012045222A1 (zh) 发光装置及其制造方法
CN101980391A (zh) 发光二极管及其制造方法
WO2012040978A1 (zh) 发光装置及其制造方法
CN110931608B (zh) 衬底、led及其制造方法
WO2012062017A1 (zh) 发光二极管及其制造方法、发光装置
CN102136532B (zh) 发光二极管及其制造方法
CN102420281B (zh) 光电元件及其制造方法
CN102544287B (zh) 光电元件及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20900449

Country of ref document: EP

Kind code of ref document: A1