WO2012040979A1 - 发光装置及其制造方法 - Google Patents

发光装置及其制造方法 Download PDF

Info

Publication number
WO2012040979A1
WO2012040979A1 PCT/CN2010/079607 CN2010079607W WO2012040979A1 WO 2012040979 A1 WO2012040979 A1 WO 2012040979A1 CN 2010079607 W CN2010079607 W CN 2010079607W WO 2012040979 A1 WO2012040979 A1 WO 2012040979A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting device
substrate
layer
manufacturing
Prior art date
Application number
PCT/CN2010/079607
Other languages
English (en)
French (fr)
Inventor
张汝京
肖德元
Original Assignee
映瑞光电科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 映瑞光电科技(上海)有限公司 filed Critical 映瑞光电科技(上海)有限公司
Priority to US13/128,178 priority Critical patent/US20120273751A1/en
Priority to EP10827693.2A priority patent/EP2645432A4/en
Publication of WO2012040979A1 publication Critical patent/WO2012040979A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials

Definitions

  • the present invention relates to the field of semiconductor technology, and more particularly, to a light emitting device and a method of fabricating the same.
  • a light emitting diode is a semiconductor device that is excited in response to a current to generate light of various colors.
  • the III-V compound semiconductor represented by gallium nitride (GaN) has characteristics such as wide band gap, high luminous efficiency, high electron saturation drift speed, and stable chemical properties, and high-intensity blue light-emitting diodes, blue lasers, and the like.
  • the field of optoelectronic devices has great potential for application and has attracted widespread attention.
  • semiconductor light emitting diodes currently have a problem of low luminous efficiency. For unpackaged LEDs, the light extraction efficiency is generally only a few percent.
  • the problem solved by the present invention is to provide a light-emitting device to improve luminous efficiency.
  • the light emitting device provided by the present invention comprises a base and a light emitting diode mounted on the base, the light emitting diode comprising:
  • a light emitting diode die on a surface of the electrode layer the light emitting diode die having a porous surface on a light emitting surface of the light emitting diode.
  • the LED die includes, in order from the electrode layer, an N-type semiconductor layer, an active layer, and a P-type semiconductor layer, and the porous surface is located on the P-type semiconductor layer.
  • the porous surface had a pore size of 200 ⁇ and a pore depth of 150 ⁇ .
  • the porous surface has a pore density of from 10 4 to 10 1 () per square millimeter.
  • the porous surface of the P-type semiconductor layer has a transparent electrode.
  • the transparent electrode is a nickel or gold film having a thickness of 50 nm.
  • the N-type semiconductor layer is N-type doped gallium nitride
  • the P-type semiconductor layer is P-type doped gallium nitride.
  • the active layer is a multi-quantum well active layer structure and is made of indium gallium nitride.
  • the electrode layer is made of titanium, aluminum or gold.
  • the light emitting device further includes a first pin and a second pin disposed on the substrate, the first pin connecting the electrode layer and the power source negative electrode, and the second pin connecting the transparent electrode and the power source positive electrode.
  • the second lead is connected to the transparent electrode through a gold wire lead.
  • a reflective layer is further disposed on the pedestal, and the reflective layer surrounds the periphery of the light emitting diode to form a recess for accommodating the light emitting diode.
  • the groove is filled with a cover covering the light emitting diode Packed with resin.
  • the surface of the encapsulating resin has a lens structure.
  • the present invention provides a corresponding manufacturing method, including:
  • a light emitting diode die Forming a light emitting diode die on a substrate having a pyramid array structure surface, the light emitting diode die having a porous surface opposite the substrate;
  • a pedestal is provided to mount the LED dies and the electrode layers on the bottom thereof to the pedestal.
  • the providing substrate, forming a pyramid array structure on the surface of the substrate comprises: providing a substrate, depositing a dielectric layer on the substrate, and patterning the dielectric layer to form a lattice-like hard mask; The hard mask etches the substrate by a mask to form a pyramid structure; the hard mask is removed.
  • the substrate is a (100) crystal plane P-type doped silicon substrate
  • the step of etching the substrate by using a hard mask as a mask to form a pyramid array structure comprises using a tetrakis-based ammonium hydroxide solution
  • the substrate is subjected to wet etching to form a pyramid array structure having a (111) crystal plane as a side surface and a (100) crystal plane as a bottom surface; and the (111) crystal plane is a formation surface of the light emitting diode die.
  • the etching time is 20 minutes, and the etching temperature is 60 to 80 °C.
  • the angle between the side and the bottom of the pyramid is 54.74°.
  • the density of the pyramid is
  • Forming the light emitting diode die on the (111) crystal plane of the substrate includes:
  • the porous surface had a pore diameter of 200 nm and a pore depth of 150 nm.
  • the transparent electrode is a nickel or gold film having a thickness of 50 nm.
  • the nickel or gold film is formed by physical vapor deposition or atomic layer deposition or electron beam evaporation.
  • the silicon substrate is removed by a potassium hydroxide solution.
  • the electrode layer is made of titanium, aluminum or gold. Removing the substrate and forming an electrode layer at the position of the original substrate using a physical vapor deposition or sputtering process
  • the mounting the LED die and the bottom electrode layer thereof on the pedestal comprises: providing a first pin and a second pin respectively connected to the negative electrode of the power source and the positive electrode of the power source, and the electrode layer is disposed on the pedestal It is fixed on the first pin, and the transparent electrode is connected to the second pin through a gold wire lead.
  • a reflective layer is formed on the pedestal, and the reflective layer surrounds the LED die and the bottom electrode layer thereof.
  • a sealing resin is filled in the recess surrounded by the reflective layer to cover the LED die and the electrode layer.
  • the surface of the encapsulating resin has a lens structure.
  • the divergent light rays generated by the light-emitting diodes are concentrated in the same light-emitting direction by direct emission or reflection, and a porous surface is formed on the light-emitting surface, and a pyramid array structure is formed on the light-reflecting surface, thereby having a larger
  • the light output and the reflection area further improve the light extraction efficiency.
  • the light-emitting device adopts a surface mount package structure, and has the characteristics of manufacturing a tube.
  • FIG. 1 is a cross-sectional structural view showing an embodiment of a light-emitting device of the present invention
  • Figure la is a top plan view of the pyramid array structure shown in the circle of Figure 1; 2 is a schematic flow chart of an embodiment of a method for fabricating a light-emitting device according to the present invention; FIG. 3 is a schematic flow chart of a step si-embodiment shown in FIG. 2; and FIG. A side view of the device.
  • a light-emitting device including a light-emitting diode mounted on a susceptor.
  • the light-emitting diode has a reflective surface of a pyramid array structure and a porous light-emitting surface.
  • the pyramid array structure and the porous structure respectively can increase a reflective area and a light-emitting area of the light-emitting diode, and increase an active layer of the light-emitting diode.
  • the probability that light reflects or directly exits into the direction of illumination, thereby increasing the external quantum efficiency of the light-emitting diode, that is, improving the light-emitting efficiency of the light-emitting diode.
  • the illuminating device includes: a susceptor 100; a first pin 101 and a second pin 102 disposed on the susceptor 100, respectively electrically connected to the negative pole and the positive pole of the power source; and fixed on the first pin 101
  • the electrode layer 210 and the LED die 220 on the electrode layer 210, the electrode layer 210 and the LED die 220 form a light emitting diode 200 mounted on the susceptor 100.
  • the pedestal 100 is used to carry a light emitting diode, and a conventional insulating substrate can be used.
  • the first pin 101 and the second pin 102 are made of a conductive material such as copper or aluminum, and are disposed on the mounting surface of the base 100 and directly penetrate the base 100 or extend along the surface of the base 100 to the base.
  • the back of the seat is used to connect the negative pole of the power supply and the positive pole of the power supply
  • the first pin 101 and the second pin 102 are only shown on the mounting surface portion of the base 100.
  • the electrode layer 102 has a pyramid array structure with respect to one side surface of the LED die (as shown in FIG. 1a, which is a top view of the pyramid array structure shown in the circle of FIG. 1 ), and the surface serves as a reflective surface of the LED.
  • the pyramid array structure can increase the reflective area of the light emitting diode, thereby effectively increasing the probability that the light emitted by the LED die is reflected to the light emitting direction, thereby improving the light extraction efficiency.
  • the material of the electrode layer 102 may be a metal having a high reflectance such as titanium, aluminum or gold.
  • the P-type semiconductor layer 223 has a porous surface.
  • the honeycomb surface can also increase the light-emitting area, thereby effectively increasing the emission of the LED die. The probability that the light exits to the direction of illumination also increases the efficiency of light extraction.
  • the honeycomb surface of the P-type semiconductor layer 223 is formed with a transparent electrode 230 for connection to the second pin 102 on the base 100.
  • the transparent electrode 230 may be a nickel or gold film, and may be electrically connected to the second pin 102 through the connection electrode 231 and the gold wire lead 103. It can be seen that the N-type semiconductor layer 221 and the P-type semiconductor layer 223 of the LED die 220 are connected to the first pin 101 and the second pin 102 through the electrode layer 210 and the transparent electrode 230, respectively.
  • the source is connected to supply power to the active layer 222 to cause it to emit light.
  • the pedestal 100 is further provided with a reflective layer 300 surrounding the light emitting diode 200, and the reflective layer 300 is coated with a reflective material such as a ruthenium oxide film or the like on one side of the light emitting diode 200.
  • the reflective layer can reflect the light leaked from the side of the light-emitting diode 200 to the light-emitting direction, thereby further improving the light-emitting efficiency.
  • an encapsulating resin 400 covering the light emitting diode 200 is also filled.
  • the encapsulating resin 400 can protect the light emitting diode; on the other hand, the surface of the encapsulating resin is curved to have a lens structure, so that the light directly emitted or indirectly reflected by the LED 200 can be concentrated to In the direction of illumination, thereby increasing the brightness of the illumination device.
  • the present invention also provides a method of manufacturing a light-emitting device.
  • a flow chart of an embodiment of the method for manufacturing the light-emitting device is shown.
  • the manufacturing method of the light emitting device includes: Step si, providing a substrate, forming a pyramid array structure on a surface of the substrate; Step s2, forming a light emitting diode die on a substrate having a pyramid array structure surface, the LED die having a porous surface on a light emitting surface of the light emitting diode;
  • the light emitting diode die includes an N-type semiconductor layer, an active layer, and a P-type semiconductor layer sequentially formed on a substrate, wherein the porous surface is located on the P-type semiconductor layer; and further includes forming the porous layer Transparent electrode on the surface.
  • the electrode layer also has a pyramid array structure surface on the side of the LED die, as a reflective surface of the light emitting diode;
  • Step s4 providing a pedestal, mounting the LED dies and the bottom electrode layer on the pedestal.
  • FIG. 3 a flowchart of the embodiment of the step si shown in FIG. 2 is shown, including:
  • Step sl l providing a substrate
  • Step sl2 depositing a dielectric layer on the substrate, and patterning the dielectric layer to form a lattice-like hard mask
  • the substrate 500 provided in the step sl1 may be a (100) crystal plane P-type doped silicon substrate, and the silicon substrate has a resistivity of 1 to 20 ohm cm.
  • Step sl2 is performed, the material of the dielectric layer is silicon dioxide, and a hard mask 501 on the substrate 500 is formed by dry etching the silicon dioxide dielectric layer.
  • step s13 and step s14 are performed to pass tetradecyl hydroxy hydroxide (TMAH).
  • the substrate 500 is subjected to wet etching, specifically, etching time is 20 minutes, temperature is 60-80 ° C, and the silicon substrate 500 is etched to form a plurality of (111) crystal faces.
  • the side surface and the (100) plane are pyramids of the bottom surface.
  • each grid-shaped hard mask corresponds to a pyramid.
  • the plurality of pyramids are arranged in a matrix, the bottom surface is square, and the angle ⁇ between the side surface and the bottom surface is 54.74. ;
  • the density of the pyramid is large, the pyramid formed by the corrosion is not high enough. If the density of the pyramid is small, the number of pyramids is not enough, which is not conducive to increasing the area of the light-emitting surface of the light-emitting diode, usually a pyramid on the surface of the silicon substrate.
  • the density is 4 ⁇ 10 4 ⁇ 1 ⁇ 10 8 /mm 2 , and the density of the pyramid structure can be controlled by the lattice density of the lattice-like hard mask in the manufacturing method, thereby forming a large number of pyramid structures of appropriate size.
  • the square bottom surface of the pyramid has a side length of 5 ⁇ m, and the height of the pyramid from the tip to the bottom surface is 3.53 ⁇ m; the hard mask 501 of the silicon dioxide material is removed by a hydrofluoric acid solution. Thereby a substrate 500 having a pyramid array structure surface is formed.
  • step s2 is performed to sequentially form an N-type semiconductor layer 221 and an active layer 222 on the (111) plane of the substrate by a metal-organic chemical vapor deposition (MOCVD) method.
  • MOCVD metal-organic chemical vapor deposition
  • P-type semiconductor layer 223, the above three layers constitute a light-emitting diode die 220;
  • the pores between the pyramids on the surface of the substrate 500 are filled until the entire pyramid array structure is covered, thereby forming a recess having a pyramid complementary structure at the bottom of the N-type semiconductor layer 221.
  • the side of the pyramid is (111) crystal orientation silicon
  • the material of the N-type semiconductor layer 221 is N-doped gallium nitride, gallium nitride and (111) crystal orientation silicon lattice.
  • the constants are more matched;
  • the N-type semiconductor layer 221 needs to completely cover the pyramid structure.
  • the active layer 222 is a multi-quantum well active layer structure, specifically, an indium gallium nitride material is used to generate blue light having a wavelength of 470 nm, and the P-type semiconductor layer 223 is a P-type doped nitrogen. Gallium material.
  • a porous surface is formed by photolithography and dry etching.
  • the porous surface has a pore diameter of 200 nm and a pore depth of 150 nm.
  • the density of the pores may be It is lxl 0 4 ⁇ lx l0 1G pieces / mm 2 .
  • a transparent electrode 230 is formed on the honeycomb surface of the P-type semiconductor layer 223.
  • the transparent electrode 230 should not be too thick to avoid affecting the effect of light transmission.
  • a nickel or gold film may be used, and physical vapor deposition (PECVD) or atomic layer deposition (ALD), ion beam evaporation (e-) may be employed.
  • PECVD physical vapor deposition
  • ALD atomic layer deposition
  • e- ion beam evaporation
  • connection electrode 231 may be formed at the lead position of the transparent electrode 230, and the connection electrode 231 may be a P-type doped gallium nitride. Formed by a chemical vapor deposition process.
  • step s3 is performed to first selectively remove the substrate 500, and the wet etching of silicon may be performed using a potassium hydroxide solution.
  • the bottom of the LED die 220 exposes an N-type semiconductor layer 221, and the bottom surface of the N-type semiconductor layer 221 is a recess having a plurality of pyramid complementary structures (as shown by the dotted line in FIG. 9). Circle area).
  • an electrode layer 210 is formed at a position of the original substrate 500. Specifically, after the LED die 220 is inverted, deposition is performed on the surface of the pyramid complementary structure of the N-type semiconductor layer 221 The electrode material is used to form the electrode layer 210.
  • the electrode layer 210 completely covers the pyramid complementary structure to form a pyramid array structure of the original substrate 500 on the contact surface with the N-type semiconductor layer 221.
  • the material of the electrode layer 210 may be a metal having a high reflectance such as titanium, aluminum or gold, and may be formed by physical vapor deposition PECVD or a sputtering process.
  • the pyramid array structure surface of the electrode layer 210 serves as a reflection surface of the light emitting diode.
  • the electrode layer 210, the light-emitting diode 220, and the transparent electrode 230 constitute a light-emitting diode, and the fabrication of the light-emitting diode of the embodiment of the present invention is completed.
  • the LED is fixed and packaged by the susceptor.
  • step s4 is performed to provide a susceptor 100.
  • a first pin 101 and a second pin 102 are formed on the susceptor 100 for respectively connecting a negative electrode of the power source and a positive electrode.
  • an annular reflective layer 300 can be formed on the susceptor 100 such that the reflective layer 300 surrounds the mounting position of the light emitting diode.
  • the reflective layer 300 may have an inclined inner wall, and the inner wall is coated with a reflective material such as a ruthenium oxide film or the like for reflecting light leaking from the side of the light emitting diode to the light emitting direction. Referring to FIG. 12, the light emitting diode 200 formed in FIG. 10 is mounted on the susceptor 100.
  • the electrode layer 210 is first fixed on the first pin 101 so as to be electrically connected therebetween; and the connection electrode 231 on the transparent electrode 230 is connected to the second pin 102 through the gold wire lead 103, The transparent electrode 230 is electrically connected to the second pin 102.
  • the encapsulating resin 400 is filled in a groove formed around the annular reflective layer 300, and the encapsulating resin 400 covers the light emitting diode 200.
  • the surface of the encapsulating resin 400 may have a certain curvature to form a lens.
  • the structure converges the light directly emitted or indirectly reflected by the light emitting diode 200 to the light emitting direction. The manufacturing process of the light-emitting device of the present invention has thus been completed.
  • the present invention provides a light-emitting device comprising a light-emitting diode having a light-emitting surface as a porous surface and a reflective surface having a pyramid array structure, wherein the structure increases the light-emitting area and the reflection area of the light-emitting diode, thereby improving the light-emitting device.
  • the light-emitting device further includes a reflective layer that can be used to reflect light leakage from the side of the light-emitting diode to the light-emitting direction, which can further improve the light-emitting efficiency of the light-emitting device.
  • the light-emitting device further includes a light-emitting diode for protecting the light-emitting diode.
  • a package resin having a lens structure which can improve the light-emitting brightness of the light-emitting device.
  • the method for manufacturing the light-emitting device provided by the present invention the method of mounting the light-emitting diode on the front side is adopted, and the package is relatively simple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Description

发光装置及其制造方法
本申请要求于 2010 年 9 月 30 日提交中国专利局、 申请号为 201010503051.8、 发明名称为 "发光装置及其制造方法"的中国专利申请的优 先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及半导体技术领域, 更具体地, 本发明涉及发光装置及其制造方 法。
背景技术
发光二极管( LED )是响应电流而被激发从而产生各种颜色的光的半导体 器件。其中, 以氮化镓(GaN )为代表的 III- V族化合物半导体由于具有带隙宽、 发光效率高、 电子饱和漂移速度高、 化学性质稳定等特点, 在高亮度蓝光发光 二极管、蓝光激光器等光电子器件领域有着巨大的应用潜力, 引起了人们的广 泛关注。 然而, 目前半导体发光二极管存在着发光效率低的问题。对于未经封装的 发光二极管, 其出光效率一般只有百分之几。 大量的能量聚集在器件内部不能 出射, 既造成能量浪费, 又影响器件的使用寿命。 因此, 提高半导体发光二极 管的出光效率至关重要。 基于上述的应用需求,许多种提高发光二极管出光效率的方法被应用到器 件结构中, 例如表面粗糙化法, 金属反射镜结构等。 公开号为 CN1858918A的 中国专利申请公开了一种发光二极管,所述的发光二极管下表面形成全角度反 射镜结构, 可以提高发光二极管出光效率。 然而, 该方法需要在衬底上形成多 层由高折射率层与低折射率层堆叠而成的薄膜结构, 制作工艺复杂。
发明内容
本发明解决的问题是提供一种发光装置, 以提高发光效率。 本发明提供的发光装置, 包括基座、 贴装于所述基座上的发光二极管, 所 述发光二极管包括:
连接于基座的电极层, 所述电极层具有金字塔阵列结构表面, 所述金字塔 阵列结构表面作为发光二极管的反射面;
位于所述电极层表面的发光二极管管芯,所述发光二极管管芯在发光二极 管的出光面具有多孔状表面。
所述发光二极管管芯自电极层起依次包括 N型半导体层、 有源层以及 P 型半导体层,所述多孔状表面位于 P型半导体层上。所述多孔状表面的孔径为 200匪, 孔深为 150匪。 所述多孔状表面的孔密度为 ^104~^101()个/平方毫 米。所述 P型半导体层的多孔状表面具有透明电极。所述透明电极为镍或金薄 膜, 厚度为 50nm。 所述 N型半导体层为 N型掺杂的氮化镓, 所述 P型半导体 层为 P型掺杂的氮化镓。所述有源层为多量子阱有源层结构,材质为氮化铟镓。 所述电极层的材质为钛、 铝或金。
所述发光装置还包括设置于基板上的第一引脚和第二引脚,所述第一引脚 连接电极层和电源负极, 所述第二引脚连接透明电极和电源正极。所述第二引 脚通过金丝引线与透明电极连接。
可选的, 所述基座上还设置有反射层, 所述反射层围绕于发光二极管的周 围, 形成容纳发光二极管的凹槽。所述凹槽内填充有覆盖所述发光二极管的封 装树脂。 所述封装树脂的表面具有透镜结构。
为制造上述发光装置, 本发明提供了相应的制造方法, 包括:
提供衬底, 在衬底表面形成金字塔阵列结构;
在具有金字塔阵列结构表面的衬底上形成发光二极管管芯,所述发光二极 管管芯相对衬底的另一侧具有多孔状表面;
去除衬底, 并在原衬底的位置形成电极层;
提供基座, 将发光二极管管芯及其底部的电极层安装于基座上。
其中, 所述提供衬底, 在衬底表面形成金字塔阵列结构的步骤包括: 提供 衬底, 在所述衬底上沉积介质层, 并图形化所述介质层, 形成格子状硬掩膜; 以所述硬掩膜为掩膜蚀刻所述衬底, 形成金字塔结构; 去除所述硬掩膜。
所述衬底为 (100 ) 晶面的 P型掺杂的硅衬底, 所述以硬掩膜为掩膜蚀刻 所述衬底,形成金字塔阵列结构的步骤包括采用四曱基氢氧化氨溶液对所述衬 底进行湿法腐蚀, 形成以 (111 ) 晶面为侧面、 (100 ) 晶面为底面的金字塔阵 列结构; 所述(111 ) 晶面为发光二极管管芯的形成面。
可选的, 采用四曱基氢氧化氨溶液对所述衬底进行湿法腐蚀的步骤中,腐 蚀的时间为 20分钟, 腐蚀的温度为 60~80°C。 所述金字塔阵列结构中, 金字 塔侧面与底面的夹角为 54.74°。 所述金字塔阵列结构中, 金字塔的密度为
4χ104~1 χ108个 /平方毫米。
所述在衬底的 (111 ) 晶面上形成发光二极管管芯包括:
在所述衬底的 (111 ) 晶面上依次沉积 Ν型半导体层、 有源层、 Ρ型半导 体层;
采用光刻、 干法刻蚀工艺, 刻蚀所述 Ρ型半导体层形成多孔状表面; 在所述 P型半导体层的多孔状表面上形成透明电极。
所述多孔状表面的孔径为 200nm,孔深为 150nm。所述多孔状表面的孔密 度为 l x l04~l x l 01G个 /平方毫米。 所述透明电极为镍或金薄膜, 厚度为 50nm。 所述镍或金薄膜采用物理气相沉积或原子层沉积、 电子束蒸镀形成。
可选的额, 通过氢氧化钾溶液去除硅衬底。 所述电极层的材质为钛、 铝或 金。所述去除衬底, 并在原衬底的位置形成电极层采用物理气相沉积或溅射工 艺
所述将发光二极管管芯及其底部电极层安装于基座上包括:在所述基座上 设置分别与电源负极以及电源正极连接的第一引脚以及第二引脚,将所述电极 层固定于第一引脚上, 将所述透明电极通过金丝引线连接于第二引脚。
可选的,在将发光二极管管芯及其底部的电极层安装于基座前, 先在基座 上形成反射层,所述反射层围绕于所述发光二极管管芯及其底部电极层的安装 位置周围。在反射层所围成的凹槽内填充封装树脂,使其覆盖所述发光二极管 管芯以及电极层。 所述封装树脂的表面具有透镜结构。 本发明发光装置中,发光二极管所产生的发散形的光线通过直接出射或反 射被聚集于同一发光方向,且在出光面上形成多孔状表面,在反射面上形成金 字塔阵列结构, 因此具有较大的出光以及反射面积, 进一步提高了出光效率。 此外, 所述发光装置采用表面贴装式封装结构, 具有制造筒易的特点。
附图说明 图 1是本发明发光装置一实施例的剖面结构示意图;
图 la是为图 1圆圈中示出的金字塔阵列结构的俯视图; 图 2是本发明发光装置制造方法一实施方式的流程示意图; 图 3是图 2所示步骤 si—实施例的流程示意图; 图 4至图 13是本发明发光装置制造方法一实施例形成的发光装置的侧面 示意图。
具体实施方式 为使本发明的上述目的、特征和优点能够更加明显易懂, 下面结合附图对 本发明的具体实施方式做详细的说明。 在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明 还可以采用其他不同于在此描述的其它方式来实施,因此本发明不受下面公开 的具体实施例的限制。 正如背景技术所述, 为提高发光二极管的出光效率,现有技术的发光二极 管需要在衬底上形成多层由高折射率层与低折射率层堆叠而成的薄膜结构,但 所述薄膜结构的制作工艺复杂。 针对上述问题, 本发明的发明人提供了一种发光装置, 所述发光装置包括 贴装于基座上的发光二极管。所述发光二极管具有金字塔阵列结构的反射面以 及多孔状的出光面,上述金字塔阵列结构以及多孔状结构分别能够增大发光二 极管的反射面积以及出光面积,增大了发光二极管的有源层产生的光反射或直 接出射到发光方向的几率,从而增大了发光二极管的外量子效率, 即提高了发 光二极管的出光效率。 参考图 1 , 示出了本发明发光装置一实施例的剖面结构示意图。 如图 1所 示, 所述发光装置包括: 基座 100; 设置于基座 100上的第一引脚 101、 第二 引脚 102, 分别与电源的负极、 正极电连接; 固定于第一引脚 101上的电极层 210, 以及位于电极层 210上的发光二极管管芯 220, 所述电极层 210与发光 二极管管芯 220构成了贴装于基座 100的发光二极管 200。
其中, 所述基座 100, 用于承载发光二极管, 可以采用常规的绝缘基板。 所述第一引脚 101和第二引脚 102均采用铜或铝等导电材料制成,设置于基座 100的安装面, 并直接穿透基座 100或沿基座 100的表面延伸至基座背面, 用 于连接电源负极以及电源正极。 为筒化说明, 本发明实施例中, 上述第一引脚 101以及第二引脚 102仅示出位于基座 100安装面部分。
所述电极层 102相对于发光二极管管芯的一侧表面具有金字塔阵列结构 (如图 la所示, 为图 1圆圈中示出的金字塔阵列结构的俯视图), 该表面作为 发光二极管的反射面, 所述金字塔阵列结构能增大发光二极管的反射面积, 进 而有效增大了发光二极管管芯发射出的光被反射至发光方向的几率,提高出光 效率。 所述电极层 102的材质可以为钛、 铝或者金等反射率较高的金属。
有源层 222、 P型半导体层 223 ; 在具体实施例中, 所述 N型半导体层 221为 N型掺杂的氮化镓材料, 所述有源层 222为多量子阱有源层结构, 具体地, 采 用氮化铟镓材料构成,用于产生波长为 470nm的蓝光,所述 P型半导体层 223 为 P型掺杂的氮化镓材料。
所述 P型半导体层 223具有多孔状表面, 作为发光二极管 200的出光面, 所述蜂窝状表面也可以增大出光面积,进而有效增大了发光二极管管芯发射出 的光出射至发光方向的几率, 同样提高了出光效率。
所述 P型半导体层 223的蜂窝状表面形成有透明电极 230, 用于连接至基 座 100上的第二引脚 102。 具体地, 所述透明电极 230可以是镍或金薄膜, 可 以通过连接电极 231、 金丝引线 103与所述第二引脚 102电连接。 由此可以看 出, 所述发光二极管管芯 220的 N型半导体层 221以及 P型半导体层 223分 别通过电极层 210以及透明电极 230连接至第一引脚 101以及第二引脚 102 , 实现有源连通, 向有源层 222供电, 使其发光。 为了扩大反射面积,所述基座 100上还设置有围绕发光二极管 200的反射 层 300, 所述反射层 300相对发光二极管 200的一面涂覆有反射材料, 例如氧 化钡薄膜等。上述反射层, 能够将发光二极管 200侧面漏出的光反射至发光方 向, 因而进一步提高了出光效率。 在所述反射层 300围绕发光二极管 200而形成的凹槽内,还填充有覆盖所 述发光二极管 200的封装树脂 400。 一方面, 所述封装树脂 400可以保护发光 二极管; 另一方面, 将所述封装树脂的表面制作成弧形, 使其具有透镜结构, 从而能够会聚发光二极管 200的直接出射或间接反射的光线至发光方向上,从 而提高发光装置的亮度。
为了制造上述发光装置,相应的,本发明还提供一种发光装置的制造方法, 参考图 2, 示出了本发光装置制造方法一实施方式的流程图。 所述发光装置的 制造方法包括: 步骤 si , 提供衬底, 在衬底表面形成金字塔阵列结构; 步骤 s2 , 在具有金字塔阵列结构表面的衬底上形成发光二极管管芯, 所 述发光二极管管芯在发光二极管的出光面具有多孔状表面;
其中, 所述发光二极管管芯包括依次形成于衬底上的 N型半导体层、 有 源层以及 P型半导体层,上述多孔状表面即位于 P型半导体层上;还包括形成 于所述多孔状表面的透明电极。
步骤 s3 , 去除衬底, 并在原衬底位置上形成电极层; 所述电极层相对于 发光二极管管芯一侧也具有金字塔阵列结构的表面, 作为发光二极管的反射 面;
步骤 s4, 提供基座, 将发光二极管管芯及其底部电极层安装于基座上。 参考图 3 , 示出了图 2所示步骤 si实施例的流程图, 包括:
步骤 sl l , 提供衬底;
步骤 sl2, 在所述衬底上沉积介质层, 并图形化所述介质层, 形成格子状 硬掩膜;
步骤 sl3 , 以所述硬掩膜为掩膜蚀刻所述衬底, 形成金字塔阵列结构; 步骤 sl4, 去除所述硬掩膜。 具体的, 首先参考图 4, 步骤 sl l中所提供的衬底 500可以为( 100 )晶面 的 P型掺杂的硅衬底, 所述硅衬底的电阻率为 1~20欧姆厘米。
执行步骤 sl2, 所述介质层的材料为二氧化硅, 通过干法蚀刻所述二氧化 硅介质层的方法, 形成位于衬底 500上的硬掩膜 501。
参考图 5 , 执行步骤 sl3 以及步骤 sl4, 通过四曱基氢氧化氨(TMAH ) 溶液对所述衬底 500进行湿法腐蚀, 具体地, 腐蚀的时间为 20分钟, 温度为 60-80 °C ,所述硅 ^"底 500经过腐蚀后形成多个由(111 )晶面作为侧面、(100 ) 面为底面的金字塔, 具体地, 每个格子状的硬掩膜对应一个金字塔, 所述多个 金字塔按照矩阵式排列, 底面为正方形, 侧面与底面的夹角 α为 54.74。;
如果所述金字塔的密度较大, 则腐蚀所形成金字塔不够高,如果金字塔的 密度较小, 那么金字塔的数量不够多, 不利于增大发光二极管出光面的面积, 通常硅衬底表面上金字塔的密度为 4χ104~1 χ108个 /平方毫米,在制作方法中可 以通过格子状硬掩膜的格子密度控制金字塔结构的密度, 从而形成数量较多、 尺寸合适的金字塔结构。 较佳地, 所述金字塔中正方形底面的边长为 5μηι, 金 字塔的塔尖到底面的高度为 3.53μηι; 通过氢氟酸溶液去除二氧化硅材质的硬掩膜 501。 从而形成具有金字塔阵 列结构表面的衬底 500。
参考图 6, 执行步骤 s2, 通过金属有机化合物化学气相淀积 (Metal-organic Chemical Vapor Deposition, MOCVD)的方法在衬底的 (111 ) 晶面上依次形成 N型半导体层 221、有源层 222、 P型半导体层 223 , 上述三层构成了发光二极 管管芯 220;
在具体实施例中, 在沉积 N型半导体层 221时, 先填充衬底 500表面各 金字塔之间的孔隙直至覆盖整个金字塔阵列结构, 从而在 N型半导体层 221 的底部形成具有金字塔互补结构的凹陷;
本实施例中所述金字塔的侧面为( 111 )晶向的硅,所述 N型半导体层 221 的材料为 N掺杂的氮化镓, 氮化镓与 (111 ) 晶向的硅的晶格常数较为匹配; 所述 N型半导体层 221需完全覆盖金字塔结构。
所述有源层 222为多量子阱有源层结构,具体地,采用氮化铟镓材料构成, 用于产生波长为 470nm的蓝光, 所述 P型半导体层 223则采用 P型掺杂的氮 化镓材料。 参考图 7, 在 P型半导体层 223上, 采用光刻、 干法刻蚀工艺, 形成多孔 状表面, 优选的, 所述多孔状表面中, 孔径为 200nm, 孔深为 150nm; 孔的密 度可以为 l x l 04~l x l01G个 /平方毫米。
参考图 8, 在 P型半导体层 223的蜂窝状表面上形成透明电极 230。 所述 透明电极 230不宜过厚, 以避免影响透光的效果, 具体地, 可以采用镍或金薄 膜, 采用物理气相沉积 (PECVD ) 或原子层沉积 ( ALD )、 离子束蒸镀工艺 ( e-GU )形成, 厚度为 50nm。
通常为了便于在后续工艺中制作连接透明电极 230的金丝引线,在所述透 明电极 230的引线位置还可以形成连接电极 231 , 所述连接电极 231可以为 P 型掺杂的氮化镓, 通过化学气相沉积工艺形成。
参考图 9, 执行步骤 s3 , 首先选择性去除衬底 500, 可以采用氢氧化钾溶 液进行硅的湿法刻蚀。在去除衬底 500后, 所述发光二极管管芯 220的底部露 出了 N型半导体层 221 , 所述 N型半导体层 221底部表面即呈现多个金字塔 互补结构的凹陷, (如图 9中虚线所圈区域)。 参考图 10, 在原衬底 500的位置形成电极层 210。 具体地, 将上述发光二 极管管芯 220倒置后, 在 N型半导体层 221的金字塔互补结构表面上, 沉积 电极材料以形成电极层 210。 所述电极层 210完全覆盖上述金字塔互补结构, 从而在与 N型半导体层 221的接触面上形成于原先衬底 500—样的金字塔阵 列结构。 所述电极层 210的材质可以为钛、 铝或者金等反射率较高的金属, 可 以通过物理气相沉积 PECVD或者溅射工艺形成。 所述电极层 210的金字塔阵 列结构表面作为发光二极管的反射面。 至此, 上述电极层 210、 发光二极管 220以及透明电极 230便构成了发光 二极管, 完成了本发明实施例的发光二极管的制作。接下来需要对所述发光二 极管进行基座的固定以及封装。
参考图 11 , 执行步骤 s4, 提供基座 100, 在基座 100上形成第一引脚 101 以及第二引脚 102,分别用于连接电源的负极以及正极。此外还可以在基座 100 上先制作好环形的反射层 300, 并使得反射层 300环绕于发光二极管的安装位 置。 所述反射层 300可以具有倾斜的内壁, 且内壁上涂覆有反射材料, 例如氧 化钡薄膜等, 用于将发光二极管侧面漏出的光反射至发光方向上。 参考图 12,将图 10所形成的发光二极管 200贴装于基座 100上。具体地, 先将电极层 210固定在第一引脚 101上,使得两者之间电连接; 再将位于透明 电极 230上的连接电极 231通过金丝引线 103连接于第二引脚 102上,使得透 明电极 230与第二引脚 102电连接。 参考图 13 , 在环形的反射层 300所围绕形成的凹槽内填充封装树脂 400, 并使得所述封装树脂 400覆盖发光二极管 200, 所述封装树脂 400的表面可以 具有一定的弧度,从而形成透镜结构,会聚发光二极管 200的直接出射或间接 反射的光线至发光方向上。 至此完成了本发明所述发光装置的制造过程。 综上, 本发明提供了一种发光装置, 包括出光面为多孔状表面, 反射面为 金字塔阵列结构的发光二极管,上述结构增大了发光二极管的出光面积以及反 射面积, 从而提高了发光装置的出光效率; 所述发光装置中,还包括可用于将发光二极管的侧面漏光反射到发光方向 上的反射层, 可进一步提高发光装置的出光效率; 所述发光装置中,还包括用于保护发光二极管以及具有透镜结构的封装树 脂, 可提高发光装置的发光亮度; 本发明提供的发光装置的制造方法中, 采用正面贴装发光二极管的方法, 封装较为筒单。
虽然本发明己以较佳实施例披露如上,但本发明并非限定于此。任何本领 域技术人员, 在不脱离本发明的精神和范围内, 均可作各种更动与修改, 因此 本发明的保护范围应当以权利要求所限定的范围为准。

Claims

权 利 要 求
1. 一种发光装置, 其特征在于, 包括:
基座;
贴装于所述基座上的发光二极管, 所述发光二极管包括:
连接于基座的电极层, 所述电极层具有金字塔阵列结构表面, 所述金字塔 阵列结构表面作为发光二极管的反射面;
位于所述电极层表面的发光二极管管芯,所述发光二极管管芯在发光二极 管的出光面具有多孔状表面。
2. 如权利要求 1 所述的发光装置, 其特征在于, 所述发光二极管管芯自电极 层起依次包括 N型半导体层、 有源层以及 P型半导体层, 所述多孔状表面 位于 P型半导体层上。
3. 如权利要求 2 所述的发光装置, 其特征在于, 所述多孔状表面的孔径为 200nm, 孔深为 150nm。
4. 如权利要求 2所述的发光装置, 其特征在于, 所述多孔状表面的孔密度为 l x l04~l x l01G个 /平方毫米。
5. 如权利要求 2所述的发光装置, 其特征在于, 所述 P型半导体层的多孔状 表面具有透明电极。
6. 如权利要求 5所述的发光装置, 其特征在于, 所述透明电极为镍或金薄膜, 厚度为 50nm。
7. 如权利要求 2所述的发光装置, 其特征在于, 所述 N型半导体层为 N型掺 杂的氮化镓, 所述 P型半导体层为 P型掺杂的氮化镓。
8. 如权利要求 2所述的发光装置, 其特征在于, 所述有源层为多量子阱有源 层结构, 材质为氮化铟镓。
9. 如权利要求 1所述的发光装置, 其特征在于, 电极层的材质为钛、 铝或金。
10.如权利要求 5所述的发光装置, 其特征在于, 所述发光装置还包括: 设置 于基板上的第一引脚, 所述第一引脚连接电极层和电源负极; 设置于基板 上的第二引脚, 所述第二引脚连接透明电极和电源正极。
11.如权利要求 10所述的发光装置, 其特征在于, 所述第二引脚通过金丝引线 与透明电极连接。
12.如权利要求 1所述的发光装置, 其特征在于, 所述基座上还设置有反射层, 所述反射层围绕于发光二极管的周围, 形成容纳发光二极管的凹槽。
13.如权利要求 12所述的发光装置, 其特征在于, 所述凹槽内填充有覆盖所述 发光二极管的封装树脂。
14.如权利要求 13所述的发光装置, 其特征在于, 所述封装树脂的表面具有透 镜结构。
15.—种发光装置的制造方法, 其特征在于, 包括:
提供衬底, 在衬底表面形成金字塔阵列结构;
在具有金字塔阵列结构表面的衬底上形成发光二极管管芯,所述发光二极 管管芯相对衬底的另一侧具有多孔状表面;
去除衬底, 并在原衬底的位置形成电极层;
提供基座, 将发光二极管管芯及其底部的电极层安装于基座上。
16.如权利要求 15所述的发光装置的制造方法, 其特征在于, 所述提供衬底, 在衬底表面形成金字塔阵列结构的步骤包括: 提供衬底, 在所述衬底上沉 积介质层, 并图形化所述介质层, 形成格子状硬掩膜; 以所述硬掩膜为掩 膜蚀刻所述衬底, 形成金字塔结构; 去除所述硬掩膜。
17.如权利要求 16所述的发光装置的制造方法,其特征在于,所述衬底为( 100 ) 晶面的 P型掺杂的硅衬底, 所述以硬掩膜为掩膜蚀刻所述衬底, 形成金字 塔阵列结构的步骤包括采用四曱基氢氧化氨溶液对所述衬底进行湿法腐 蚀, 形成以 (111 ) 晶面为侧面、 (100 ) 晶面为底面的金字塔阵列结构; 所 述(111 ) 晶面为发光二极管管芯的形成面。
18.如权利要求 17所述的发光装置的制造方法, 其特征在于, 采用四曱基氢氧 化氨溶液对所述衬底进行湿法腐蚀的步骤中, 腐蚀的时间为 20分钟, 腐蚀 的温度为 60~80°C。
19.如权利要求 17所述的发光装置的制造方法, 其特征在于, 所述金字塔阵列 结构中, 金字塔侧面与底面的夹角为 54.74°。
20.如权利要求 17所述的发光装置的制造方法, 其特征在于, 所述金字塔阵列 结构中, 金字塔的密度为 4χ104~1 χ108个 /平方毫米。
21.如权利要求 17 所述的发光装置的制造方法, 其特征在于, 所述在衬底的
( 111 ) 晶面上形成发光二极管管芯包括:
在所述衬底的 (111 ) 晶面上依次沉积 Ν型半导体层、 有源层、 Ρ型半导 体层;
采用光刻、 干法刻蚀工艺, 刻蚀所述 Ρ型半导体层形成多孔状表面; 在所述 Ρ型半导体层的多孔状表面上形成透明电极。
22.如权利要求 21所述的发光装置的制造方法, 其特征在于, 所述多孔状表面 的孔径为 200nm, 孔深为 150nm。
23.如权利要求 21所述的发光装置的制造方法, 其特征在于, 所述多孔状表面 的孔密度为 1 χ 104~1 χ 101()个 /平方毫米。
如权利要求 21所述的发光装置的制造方法, 其特征在于, 所述透明电极为 镍或金薄膜, 厚度为 50nm。
如权利要求 24所述的发光装置的制造方法, 其特征在于, 所述镍或金薄膜 采用物理气相沉积或原子层沉积、 电子束蒸镀形成。
如权利要求 17所述的发光装置的制造方法, 其特征在于, 通过氢氧化钾溶 液去除硅衬底。
如权利要求 15所述的发光装置的制造方法, 其特征在于, 所述电极层的材 质为钛、 铝或金。
如权利要求 17所述的发光装置的制造方法, 其特征在于, 所述去除衬底, 并在原衬底的位置形成电极层采用物理气相沉积或溅射工艺。
如权利要求 21所述的发光装置的制造方法, 其特征在于, 所述将发光二极 管管芯及其底部电极层安装于基座上包括: 在所述基座上设置分别与电源 负极以及电源正极连接的第一引脚以及第二引脚, 将所述电极层固定于第 一引脚上, 将所述透明电极通过金丝弓 )线连接于第二引脚。
如权利要求 29所述的发光装置的制造方法, 其特征在于, 在将发光二极管 管芯及其底部的电极层安装于基座前, 先在基座上形成反射层, 所述反射 层围绕于所述发光二极管管芯及其底部电极层的安装位置周围。
如权利要求 30所述的发光装置的制造方法, 其特征在于, 在反射层所围成 的凹槽内填充封装树脂, 使其覆盖所述发光二极管管芯以及电极层。
如权利要求 31所述的反光装置的制造方法, 其特征在于, 所述封装树脂的 表面具有透镜结构。
PCT/CN2010/079607 2010-09-30 2010-12-09 发光装置及其制造方法 WO2012040979A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/128,178 US20120273751A1 (en) 2010-09-30 2010-12-09 Light emitting device and a manufacturing method thereof
EP10827693.2A EP2645432A4 (en) 2010-09-30 2010-12-09 LIGHT-EMITTING DEVICE AND METHOD OF MANUFACTURING THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010503051.8 2010-09-30
CN2010105030518A CN102130260B (zh) 2010-09-30 2010-09-30 发光装置及其制造方法

Publications (1)

Publication Number Publication Date
WO2012040979A1 true WO2012040979A1 (zh) 2012-04-05

Family

ID=44268231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079607 WO2012040979A1 (zh) 2010-09-30 2010-12-09 发光装置及其制造方法

Country Status (5)

Country Link
US (1) US20120273751A1 (zh)
EP (2) EP2897181B1 (zh)
CN (1) CN102130260B (zh)
MY (1) MY172467A (zh)
WO (1) WO2012040979A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9293656B2 (en) * 2012-11-02 2016-03-22 Epistar Corporation Light emitting device
CN102623600A (zh) * 2011-01-31 2012-08-01 隆达电子股份有限公司 半导体发光结构
CN103199186A (zh) * 2013-04-27 2013-07-10 中国科学院苏州纳米技术与纳米仿生研究所 一种盖帽表面粗化结构的光电器件
CN104638081A (zh) * 2015-01-20 2015-05-20 中国科学院半导体研究所 基于晶硅光伏技术的硅基GaN发光器件及制备方法
US10243105B2 (en) 2015-02-10 2019-03-26 iBeam Materials, Inc. Group-III nitride devices and systems on IBAD-textured substrates
KR102547293B1 (ko) 2015-02-10 2023-06-23 아이빔 머티리얼스 인코퍼레이티드 이온 빔 보조 증착 텍스처드 기판의 에피택셜 육각형 재료
USRE49869E1 (en) 2015-02-10 2024-03-12 iBeam Materials, Inc. Group-III nitride devices and systems on IBAD-textured substrates
CN104993031B (zh) * 2015-06-12 2018-03-06 映瑞光电科技(上海)有限公司 高压倒装led芯片及其制造方法
CN105140364A (zh) * 2015-07-27 2015-12-09 中国科学院半导体研究所 一种GaN发光器件及其制备方法
CN108133986A (zh) * 2017-11-27 2018-06-08 北京灵犀微光科技有限公司 发光二极管及照明装置
CN108011000B (zh) * 2017-11-30 2020-04-28 西安交通大学 硅基mos薄膜发光器件及其制备方法和全光谱薄膜发光器件
US11244937B2 (en) * 2018-10-09 2022-02-08 Industrial Technology Research Institute Spliced display with LED modules disposed on transparent substrate
CN110379899A (zh) * 2019-08-26 2019-10-25 厦门乾照光电股份有限公司 一种led芯片及其制作方法
US11742381B2 (en) * 2020-07-14 2023-08-29 Semiconductor Components Industries, Llc Monolithic semiconductor device assemblies
WO2022094801A1 (zh) * 2020-11-04 2022-05-12 苏州晶湛半导体有限公司 谐振腔发光二极管及其制备方法
CN112688163B (zh) * 2020-12-10 2022-07-29 天津华慧芯科技集团有限公司 分布反馈式激光器的不规则反射镜结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100428510C (zh) * 2005-06-06 2008-10-22 日立电线株式会社 发光二极管及其制造方法
WO2009035219A2 (en) * 2007-09-14 2009-03-19 Wooree Lst Co., Ltd. Gan-based light emitting diode and method for fabricating the same
CN101740698A (zh) * 2008-11-17 2010-06-16 Lg伊诺特有限公司 半导体发光器件

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW564584B (en) * 2001-06-25 2003-12-01 Toshiba Corp Semiconductor light emitting device
JP4593890B2 (ja) * 2003-07-28 2010-12-08 京セラ株式会社 半導体発光素子の製造方法
CN100435360C (zh) * 2004-12-27 2008-11-19 北京大学 带有二维自然散射出光面的led芯片的制备方法
CN100379043C (zh) 2005-04-30 2008-04-02 中国科学院半导体研究所 全角度反射镜结构GaN基发光二极管及制作方法
US7606276B2 (en) * 2005-05-19 2009-10-20 Panasonic Corporation Nitride semiconductor device and method for fabricating the same
KR100638819B1 (ko) * 2005-05-19 2006-10-27 삼성전기주식회사 광추출효율이 개선된 수직구조 질화물 반도체 발광소자
JP4462249B2 (ja) * 2005-09-22 2010-05-12 ソニー株式会社 発光ダイオードの製造方法、集積型発光ダイオードの製造方法および窒化物系iii−v族化合物半導体の成長方法
CN1960015A (zh) * 2005-11-02 2007-05-09 夏普株式会社 氮化物半导体发光元件及其制造方法
US7323911B2 (en) * 2005-11-21 2008-01-29 Macronix International Co., Ltd. Differential sense amplifier circuit and method triggered by a clock signal through a switch circuit
JP2007305909A (ja) * 2006-05-15 2007-11-22 Kyocera Corp 窒化ガリウム系化合物半導体の製造方法及び発光素子の製造方法
JP2008091862A (ja) * 2006-09-08 2008-04-17 Sharp Corp 窒化物半導体発光素子および窒化物半導体発光素子の製造方法
CN101355119B (zh) * 2007-07-25 2010-08-18 中国科学院半导体研究所 采用全光学膜体系的垂直结构发光二极管制作方法
WO2010033792A1 (en) * 2008-09-18 2010-03-25 Lumenz Llc Textured semiconductor light-emitting devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100428510C (zh) * 2005-06-06 2008-10-22 日立电线株式会社 发光二极管及其制造方法
WO2009035219A2 (en) * 2007-09-14 2009-03-19 Wooree Lst Co., Ltd. Gan-based light emitting diode and method for fabricating the same
CN101740698A (zh) * 2008-11-17 2010-06-16 Lg伊诺特有限公司 半导体发光器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2645432A4 *

Also Published As

Publication number Publication date
EP2645432A1 (en) 2013-10-02
CN102130260A (zh) 2011-07-20
CN102130260B (zh) 2013-09-18
MY172467A (en) 2019-11-26
US20120273751A1 (en) 2012-11-01
EP2897181A1 (en) 2015-07-22
EP2897181B1 (en) 2018-04-04
EP2645432A4 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
WO2012040979A1 (zh) 发光装置及其制造方法
US9455378B2 (en) High efficiency light emitting diode and method for fabricating the same
KR101891777B1 (ko) 유전체 리플렉터를 구비한 발광소자 및 그 제조방법
CN108922950B (zh) 一种高亮度倒装led芯片及其制作方法
JP5354622B2 (ja) 半導体発光ダイオード
US20080303047A1 (en) Light-emitting diode device and manufacturing method therof
JP2010500774A (ja) 発光ダイオードの外部発光効率の改善
TW201616676A (zh) 發光設備
WO2015101068A1 (zh) 发光二极管芯片及其制作方法
JP2012044132A (ja) 光学密度の高い材料によるコーティング基板を有する発光器具
KR20100095134A (ko) 발광소자 및 그 제조방법
WO2012058961A1 (zh) 发光二极管及其制造方法
JP2010278112A (ja) 半導体発光素子
CN102082216B (zh) 一种发光二极管芯片及其制造方法
WO2012062016A1 (zh) 发光二极管及其制造方法、发光装置
US8580587B2 (en) Light emitting device and manufacturing method thereof
JP5989318B2 (ja) 半導体発光素子及びその製造方法
WO2011143919A1 (zh) 发光二极管及其制造方法
WO2012040978A1 (zh) 发光装置及其制造方法
CN111106212A (zh) 垂直结构深紫外发光二极管及其制备方法
US20130214309A1 (en) Light emitting diode and manufacturing method thereof, light emitting device
KR20110115795A (ko) 반도체 발광소자 및 그 제조방법
CN111864019A (zh) 一种具有嵌入式散射层的倒装发光二极管及其制备方法
CN112789737B (zh) 一种半导体发光元件和发光装置
KR101093208B1 (ko) 확산 렌즈를 구비한 엘이디 및 그 제작방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13128178

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010827693

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10827693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE