WO2022094801A1 - 谐振腔发光二极管及其制备方法 - Google Patents

谐振腔发光二极管及其制备方法 Download PDF

Info

Publication number
WO2022094801A1
WO2022094801A1 PCT/CN2020/126522 CN2020126522W WO2022094801A1 WO 2022094801 A1 WO2022094801 A1 WO 2022094801A1 CN 2020126522 W CN2020126522 W CN 2020126522W WO 2022094801 A1 WO2022094801 A1 WO 2022094801A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
emitting structure
mirror
resonant cavity
Prior art date
Application number
PCT/CN2020/126522
Other languages
English (en)
French (fr)
Inventor
郭志中
张丽旸
Original Assignee
苏州晶湛半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州晶湛半导体有限公司 filed Critical 苏州晶湛半导体有限公司
Priority to CN202080100005.5A priority Critical patent/CN116210093A/zh
Priority to PCT/CN2020/126522 priority patent/WO2022094801A1/zh
Publication of WO2022094801A1 publication Critical patent/WO2022094801A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector

Definitions

  • the present disclosure relates to the technical field of semiconductors, and in particular, to a resonant cavity light-emitting diode and a method for preparing the resonant cavity light-emitting diode.
  • LED Light Emitting Diode
  • Resonant Cavity Light Emitting Diode is a kind of LED whose radiation area is in an optical cavity.
  • the basic structure of the resonant cavity light emitting diode includes a first Bragg mirror, a second Bragg mirror, a light emitting structure layer, and the like.
  • the light emitting structure layer is located between the first Bragg mirror and the second Bragg mirror.
  • the purpose of the present disclosure is to provide a resonant cavity light emitting diode and a method for manufacturing the resonant cavity light emitting diode, which can improve the luminous efficiency of the resonant cavity light emitting diode, reduce the steps of manufacturing an insulating protective layer, and save costs.
  • a resonant cavity light emitting diode comprising:
  • a light emitting structure layer comprising a first surface and a second surface opposite to each other and a sidewall connecting the first surface and the second surface;
  • a first mirror layer disposed on the first surface
  • the second reflector layer covers at least a partial area of the sidewall of the light emitting structure layer and the second surface, and the second reflector layer is an insulating material.
  • the resonant cavity light-emitting diode also includes:
  • the conductive support layer is disposed on the side of the light emitting structure layer away from the second mirror layer, and the conductive support layer covers the first mirror layer.
  • the second mirror layer covers the upper surface of the conductive support layer and the light emitting structure layer.
  • the second mirror layer covers the entire area of the sidewall of the light emitting structure layer
  • the light emitting structure layer includes a first conductive type semiconductor layer, a light emitting layer and a second conductive type semiconductor layer that are stacked and arranged;
  • the first surface is the surface of the first conductive type semiconductor layer facing away from the light-emitting layer
  • the second surface is the surface of the second conductive type semiconductor layer facing away from the light-emitting layer
  • the first conductive type semiconductor layer is facing away from the light-emitting layer;
  • the sidewalls of the type semiconductor layer, the sidewalls of the light emitting layer, and the sidewalls of the second conductive type semiconductor layer are flush.
  • the light-emitting structure layer includes:
  • a first conductive type semiconductor layer comprising a first region and a second region surrounding the first region, the thickness of the first region being greater than the thickness of the second region;
  • a light-emitting layer disposed on the first region
  • a second conductive type semiconductor layer disposed on a side of the light-emitting layer away from the first conductive type semiconductor layer, the second conductive type is opposite to the first conductive type;
  • the first surface is the surface of the first conductive type semiconductor layer facing away from the light emitting layer
  • the second surface is the surface of the second conductive type semiconductor layer facing away from the light emitting layer
  • the reflector layer covers the second surface, the surface of the second region facing away from the first reflector layer, and the sidewall of the light emitting structure layer sandwiched between the two surfaces.
  • the resonant cavity light-emitting diode also includes:
  • a first electrode disposed on the side of the conductive support layer away from the light-emitting structure layer;
  • the second electrode is arranged on the second surface of the light-emitting structure layer.
  • the conductive support layer includes:
  • a metal bonding layer disposed on the side of the light-emitting structure layer away from the second mirror layer, and the first mirror layer is clad between the metal bonding layer and the light-emitting structure layer;
  • the heavily doped silicon substrate covers the side of the metal bonding layer away from the light emitting structure layer.
  • the reflectivity of the second mirror layer is 50-80%.
  • the first reflector layer is a Bragg reflector
  • the resonant cavity light-emitting diode further includes:
  • the ITO layer is located between the first mirror layer and the light emitting structure layer.
  • the first reflector layer is a metal reflector
  • the resonant cavity light-emitting diode further includes:
  • the metal protection layer is arranged on the side of the light emitting structure layer away from the second reflector layer, and covers the first reflector layer.
  • a method for fabricating a resonant cavity light-emitting diode comprising:
  • the light emitting structure layer comprising a first surface and a second surface opposite to each other and a sidewall connecting the first surface and the second surface;
  • a second mirror layer is formed covering at least a part of the sidewall of the light emitting structure layer and the second surface, and the second mirror layer is an insulating material.
  • the preparation method further includes:
  • a conductive support layer is formed on the side of the light emitting structure layer away from the second mirror layer, and the conductive support layer covers the first mirror layer.
  • forming a second mirror layer covering at least part of the sidewall of the light emitting structure layer and the second surface includes:
  • a second mirror layer covering the upper surface of the conductive support layer and the light emitting structure layer is formed.
  • the light-emitting structure layer includes:
  • a first conductive type semiconductor layer comprising a first region and a second region surrounding the first region, the thickness of the first region being greater than the thickness of the second region;
  • a light-emitting layer disposed on the first region
  • a second conductive type semiconductor layer disposed on a side of the light-emitting layer away from the first conductive type semiconductor layer, the second conductive type is opposite to the first conductive type;
  • the first surface is the surface of the first conductive type semiconductor layer facing away from the light emitting layer
  • the second surface is the surface of the second conductive type semiconductor layer facing away from the light emitting layer
  • Forming a second mirror layer covering at least a partial area of the sidewall of the light emitting structure layer and the second surface includes:
  • a second mirror layer is formed covering a surface of the second region facing away from the first mirror layer, the second surface, and a sidewall of the light emitting structure layer interposed between the two surfaces.
  • the invention discloses a resonant cavity light emitting diode and a method for preparing a resonant cavity light emitting diode.
  • the light emitting structure layer includes a first surface and a second surface opposite to each other and a side wall connecting the first surface and the second surface, and the second mirror layer not only covers
  • the second surface of the light emitting structure layer also covers the side wall of the light emitting structure layer, which can reflect the light emitted from the side wall of the light emitting structure layer, avoid light leakage from the side wall of the light emitting structure layer, improve the reflection efficiency, and thus improve the resonance.
  • the second mirror layer is an insulating material, which can act as a protective layer of the light-emitting diode, protect the top and sidewalls of the light-emitting diode, reduce the steps of manufacturing the insulating protective layer, and save costs.
  • FIG. 1 is a schematic diagram of a resonant cavity light emitting diode according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of a light-emitting structure layer in the structure shown in FIG. 1 .
  • FIG. 3 is another schematic diagram of a resonant cavity light emitting diode according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a light-emitting structure layer in the structure shown in FIG. 3 .
  • FIG. 5 is a schematic diagram of the first conductive type semiconductor layer in the structure shown in FIG. 4 .
  • FIG. 6 is a flowchart of a method for fabricating a resonant cavity light-emitting diode according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram after forming a metal protective layer in a method for fabricating a resonant cavity light-emitting diode according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram after forming a first metal bonding layer in a method for fabricating a resonant cavity light-emitting diode according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram after forming a second metal bonding layer in a method for fabricating a resonant cavity light-emitting diode according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a first metal bonding layer and a second metal bonding layer after bonding in the method for fabricating a resonant cavity light-emitting diode according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a method for fabricating a resonant cavity light-emitting diode according to an embodiment of the present disclosure after removing the substrate.
  • FIG. 12 is a schematic diagram after forming an isolation trench in a method for fabricating a resonant cavity light-emitting diode according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram after forming a second mirror layer in a method for fabricating a resonant cavity light-emitting diode according to an embodiment of the present disclosure.
  • FIG. 14 is another schematic diagram after forming an isolation trench in a method for fabricating a resonant cavity light-emitting diode according to an embodiment of the present disclosure.
  • FIG. 15 is another schematic diagram after forming the second mirror layer in the method for fabricating the resonant cavity light emitting diode according to the embodiment of the present disclosure.
  • first electrode 2. conductive support layer; 201, heavily doped silicon substrate; 202, metal bonding layer; 2021, first metal bonding layer; 2022, second metal bonding layer ; 3. Metal protection layer; 4. The first mirror layer; 5. Light-emitting structure layer; 501, The first conductivity type semiconductor layer; Two conductive type semiconductor layer; 504, first surface; 505, second surface; 506, sidewall; 6, second mirror layer; 7, second electrode; 8, substrate; 9, buffer layer; 10, isolation groove.
  • the present disclosure provides a resonant cavity light emitting diode.
  • the resonant cavity light emitting diode may include a light emitting structure layer 5 , a first mirror layer 4 and a second mirror layer 6 , wherein:
  • the light emitting structure layer 5 includes a first surface 504 and a second surface 505 opposite to each other and a sidewall 506 connecting the first surface 504 and the second surface 505 .
  • the first mirror layer 4 is disposed on the first surface 504 .
  • the second mirror layer 6 covers at least part of the sidewall 506 of the light emitting structure layer 5 and the second surface 505 , and the second mirror layer 6 is made of insulating material.
  • the light emitting structure layer 5 includes a first surface 504 and a second surface 505 opposite to each other and a sidewall 506 connecting the first surface 504 and the second surface 505, and the second mirror layer 6 not only covers the light emitting structure
  • the second surface 505 of the layer 5 also covers the side wall 506 of the light emitting structure layer 5, which can reflect the light emitted from the side wall 506 of the light emitting structure layer 5, avoid light leakage from the side wall 506 of the light emitting structure layer 5, and improve the reflection efficiency, thereby improving the luminous efficiency of the resonant cavity light-emitting diode
  • the second mirror layer 6 is an insulating material, which can act as a protective layer of the light-emitting diode, protect the top and sidewalls 506 of the light-emitting diode, and reduce manufacturing insulation. The step of protecting the layer saves the cost.
  • the light emitting structure layer 5 may include a first conductive type semiconductor layer 501 , a light emitting layer 502 and a second conductive type semiconductor layer 503 which are stacked.
  • the light emitting layer 502 may be at least one of a single quantum well structure, a multiple quantum well (MQW) structure, a quantum wire structure and a quantum dot structure.
  • the first conductivity type is different from the second conductivity type.
  • the first conductive type semiconductor layer 501 may be a P-type semiconductor layer
  • the second conductive type semiconductor layer 503 may be an N-type semiconductor layer, but this disclosure does not make any special limitation.
  • the P-type semiconductor layer may be a P-type GaN layer
  • the N-type semiconductor layer may be an N-type GaN layer.
  • the first surface 504 of the light-emitting structure layer 5 is the surface of the first conductive type semiconductor layer 501 facing away from the light-emitting layer 502 .
  • the second surface 505 of the light-emitting structure layer 5 is the surface of the second conductive type semiconductor layer 503 facing away from the light-emitting layer 502 .
  • the sidewalls of the first conductivity type semiconductor layer 501 , the sidewalls of the light emitting layer 502 and the sidewalls of the second conductivity type semiconductor layer 503 are flush.
  • the first conductive type semiconductor layer 501 includes a first region 5011 and a second region 5012 surrounding the first region 5011 .
  • the thickness of the first region 5011 is The thickness of the light emitting layer 502 is greater than that of the second region 5012 , that is, the edge of the first conductive type semiconductor layer 501 protrudes from the light emitting layer 502 and the second conductive type semiconductor layer 503 .
  • the first mirror layer 4 is disposed on the first surface 504 of the light emitting structure layer 5 .
  • the first mirror layer 4 may be disposed on the above-mentioned first conductive type semiconductor layer 501 .
  • the reflectivity of the first mirror layer 4 may be 99%-100%.
  • the first mirror layer 4 is a Bragg reflector (DBR).
  • the Bragg reflector is made of materials including TiO 2 /SiO 2 , Ti 3 O 5 /SiO 2 , Ta 2 O 5 /SiO 2 , Ti 3 O 5 /Al 2 O 3 , ZrO 2 /SiO 2 or TiO A group of multiperiodic materials in the group of materials such as 2 /Al 2 O 3 . Further, an ITO layer may also be provided between the first mirror layer 4 and the light emitting structure layer 5 .
  • the first mirror layer 4 is a metal mirror.
  • the material of the metal mirror can be Ag, Ni/Ag/Ni, or the like.
  • the use of metal mirrors solves the problem of difficult epitaxial growth of Bragg mirrors.
  • the present disclosure may further include a metal protective layer 3 .
  • the metal protection layer 3 can be disposed on the side of the light emitting structure layer 5 away from the second mirror layer 6 and cover the first mirror layer 4 .
  • the material of the metal protective layer 3 can be Ni, TiW, Pt, or the like.
  • the size of the first mirror layer 4 as a metal mirror may be smaller than that of the first conductive type semiconductor layer 501 .
  • the reflectivity of the second mirror layer 6 is 50%-80%.
  • the second mirror layer 6 may be a Bragg mirror.
  • the second mirror layer 6 covers at least part of the sidewall 506 of the light emitting structure layer 5 and the second surface 505 .
  • the second mirror layer 6 covers the entire area of the sidewall 506 and the second surface 505 of the light emitting structure layer 5 .
  • the resonant cavity light-emitting diode of the present disclosure may further include a conductive support layer 2 .
  • the conductive support layer 2 is disposed on the side of the light emitting structure layer 5 away from the second mirror layer 6 and covers the first mirror layer 4 .
  • the outer edge of the conductive support layer 2 protrudes from the light emitting structure layer 5 .
  • the second mirror layer 6 covers the upper surface of the conductive support layer 2 and the light emitting structure layer 5 , so that the second mirror layer 6 covers the entire area of the sidewall 506 of the light emitting structure layer 5 .
  • the second mirror layer 6 covers a partial area of the sidewall 506 of the light emitting structure layer 5 .
  • the first conductive type semiconductor layer 501 including the first region 5011 and the second region 5012 as an example, the second mirror layer 6 covers the second surface 505 and the second region 5012 faces away from the first mirror layer 4 .
  • the distance between the part of the second mirror layer 6 covering the second surface 505 and the first mirror layer 4, that is, the cavity length of the resonant cavity is equal to an integer multiple of the effective half wavelength inside the light-emitting diode.
  • the above-mentioned conductive support layer 2 may include a metal bonding layer 202 and a heavily doped silicon substrate 201 .
  • the metal bonding layer 202 can be disposed on the side of the light emitting structure layer 5 away from the second mirror layer 6 .
  • the metal bonding layer 202 may be in contact with the first conductive type semiconductor layer 501 of the light emitting structure layer 5 .
  • the first mirror layer 4 is wrapped between the metal bonding layer 202 and the light emitting structure layer 5 .
  • the material of the metal bonding layer 202 includes at least one of Gr, Ti, and Au.
  • the above-mentioned metal protective layer 3 is also wrapped between the metal bonding layer 202 and the light emitting structure layer 5 .
  • the heavily doped silicon substrate 201 covers the side of the metal bonding layer 202 away from the light emitting structure layer 5 .
  • the resonant cavity light emitting diode may further include a first electrode 1 and a second electrode 7 .
  • the first electrode 1 can be disposed on the side of the conductive support layer 2 away from the light emitting structure layer 5, and the second electrode 7 can be disposed on the second surface 505 of the light emitting structure layer 5. Based on this, the current can flow perpendicular to the electrodes, solving the problem of It solves the problem of local heating caused by the lateral flow of current when the first electrode 1 and the second electrode 7 are arranged on the same side.
  • the second electrode 7 may pass through the second mirror layer 6 to be in contact with the light emitting structure layer 5 .
  • the first electrode 1 is a P-type electrode
  • the second electrode 7 is an N-type electrode.
  • the present disclosure also provides a method for preparing a resonant cavity light-emitting diode, which is used for preparing the resonant cavity light-emitting diode according to any one of the above embodiments.
  • the manufacturing method of the resonant cavity light-emitting diode may include steps S100 to S120, wherein:
  • Step S100 forming a light-emitting structure layer, the light-emitting structure layer includes a first surface and a second surface opposite to each other and a side wall connecting the first surface and the second surface.
  • Step S110 forming a first mirror layer on the first surface of the light emitting structure layer.
  • Step S120 forming a second mirror layer covering at least part of the sidewall of the light emitting structure layer and the second surface, where the second mirror layer is an insulating material.
  • the prepared resonant cavity light emitting diode is the same as the resonant cavity light emitting diode in the above-mentioned embodiments, and therefore, it has the same beneficial effects, which will not be repeated here.
  • step S100 a light-emitting structure layer is formed, and the light-emitting structure layer includes a first surface and a second surface opposite to each other and a side wall connecting the first surface and the second surface.
  • step S100 may include:
  • Step S1000 providing a substrate.
  • the substrate 8 can be a silicon substrate, of course, a silicon carbide substrate, but not limited to this, it can also be a sapphire substrate.
  • a buffer layer 9 may also be formed on the substrate 8 .
  • Step S1001 growing a light emitting structure layer on a substrate.
  • the light emitting structure layer 5 can be grown on the side of the buffer layer 9 away from the substrate 8 .
  • the surface of the light-emitting structure layer 5 facing away from the substrate 8 is the first surface 504
  • the surface of the light-emitting structure layer 5 facing the substrate 8 is the second surface 505 .
  • step S110 a first mirror layer is formed on the first surface of the light emitting structure layer.
  • the first reflector can be prepared by electron beam evaporation. Among them, an annealing process needs to be performed after the evaporation is completed.
  • the embodiment of the present disclosure may further form a metal protection layer 3 covering the first mirror layer 4 .
  • the metal protective layer 3 can be prepared by magnetron sputtering.
  • the number of the first mirror layers 4 may be multiple.
  • the number of the metal protection layers 3 may also be multiple, and the multiple metal protection layers 3 cover the multiple first mirror layers 4 in one-to-one correspondence.
  • the embodiment of the present disclosure may further form a conductive support layer 2 that coats the metal protection layer 3 .
  • the steps of forming the conductive support layer 2 may include: providing a heavily doped silicon substrate 201 ; forming a first metal bonding layer 2021 on the surface of the heavily doped silicon substrate 201 ; The second metal bonding layer 2022; the first metal bonding layer 2021 is bonded to the second metal bonding layer 2022.
  • the heavily doped silicon substrate 201 , the first metal bonding layer 2021 and the second metal bonding layer 2022 constitute the conductive support layer 2 .
  • the embodiment of the present disclosure may also remove the aforementioned substrate 8 and buffer layer 9 .
  • step S120 a second mirror layer covering at least part of the sidewall of the light emitting structure layer and the second surface is formed, and the second mirror layer is an insulating material.
  • step 120 may include: forming a second mirror layer 6 covering the upper surface of the conductive support layer 2 and the light emitting structure layer 5 , that is, the first mirror layer 6 .
  • the two mirror layers 6 cover the entire area of the sidewall 506 of the light emitting structure layer 5 .
  • step 120 may include: after removing the substrate 8 and the buffer layer 9, patterning the light emitting structure layer 5 to form the isolation trench 10,
  • the light-emitting structure layer 5 is divided into a plurality of parts by the isolation trench 10, each part of the light-emitting structure layer 5 is provided with a first mirror layer 4, the isolation trench 10 exposes the above-mentioned conductive support layer 2;
  • the upper surface of the layer 2 and the second mirror layer 6 of each part of the light-emitting structure layer 5 may include: after removing the substrate 8 and the buffer layer 9, patterning the light emitting structure layer 5 to form the isolation trench 10,
  • the light-emitting structure layer 5 is divided into a plurality of parts by the isolation trench 10, each part of the light-emitting structure layer 5 is provided with a first mirror layer 4, the isolation trench 10 exposes the above-mentioned conductive support layer 2;
  • the upper surface of the layer 2 and the second mirror layer 6 of each part of the light-emitting structure layer 5 may include: after removing the substrate
  • step 120 may include: after removing the substrate 8 and the buffer layer 9 , patterning the light emitting structure layer 5 to form isolation trenches The groove 10, the light emitting structure layer 5 is divided into a plurality of parts by the isolation trench 10, each part of the light emitting structure layer 5 is provided with a first mirror layer 4, the isolation trench 10 exposes the above-mentioned first conductive type semiconductor layer 501 , wherein, the area exposed by the first conductive type semiconductor layer 501 through the isolation trench 10 is the second area 5012 of the first conductive type semiconductor layer 501 (see FIG.
  • the second mirror layer 6 covers part of the sidewall 506 of the light emitting structure layer 5 .
  • the manufacturing method of the resonant cavity light emitting diode provided by the embodiment of the present disclosure belongs to the same inventive concept as the resonant cavity light emitting diode in the above-mentioned embodiments, and the description of the relevant details and beneficial effects can be referred to each other, and the description will not be repeated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本公开提供了一种谐振腔发光二极管及其制备方法。该谐振腔发光二极管可以包括发光结构层、第一反射镜层以及第二反射镜层。该发光结构层包括相对的第一表面与第二表面以及连接第一表面和第二表面的侧壁。该第一反射镜层设于第一表面。该第二反射镜层覆盖发光结构层的侧壁的至少部分区域和第二表面,且第二反射镜层为绝缘材料。本公开能够解决由于发光结构层的侧壁受损所导致的器件性能降低的问题,同时减少了制造绝缘保护层的步骤,节约了成本。

Description

谐振腔发光二极管及其制备方法 技术领域
本公开涉及半导体技术领域,尤其涉及一种谐振腔发光二极管及谐振腔发光二极管的制备方法。
背景技术
近年来,发光二极管(Light Emitting Diode,简称LED)作为新一代绿色光源,广泛应用于照明、背光、显示、指示等领域。
谐振腔发光二极管(Resonant Cavity Light Emitting Diode,简称RCLED)是一种辐射区在光学腔中的LED。谐振腔发光二极管的基本结构包括第一布拉格反射镜、第二布拉格反射镜、发光结构层等。该发光结构层位于第一布拉格反射镜和第二布拉格反射镜之间。实际产品中,上述谐振腔发光二极管的发光效率较低,且制造步骤繁琐。
发明内容
本公开的目的在于提供一种谐振腔发光二极管及谐振腔发光二极管的制备方法,能够提高谐振腔发光二极管的发光效率,同时减少了制造绝缘保护层的步骤,节约了成本。
根据本公开的一个方面,提供一种谐振腔发光二极管,包括:
发光结构层,包括相对的第一表面与第二表面以及连接所述第一表面和所述第二表面的侧壁;
第一反射镜层,设于所述第一表面;
第二反射镜层,覆盖所述发光结构层的侧壁的至少部分区域和所述第二表面,且所述第二反射镜层为绝缘材料。
进一步地,所述谐振腔发光二极管还包括:
导电支撑层,设于所述发光结构层远离所述第二反射镜层的一侧,所述导电支撑层包覆所述第一反射镜层。
进一步地,所述第二反射镜层覆盖所述导电支撑层的上表面和所述发光结构层。
进一步地,所述第二反射镜层覆盖所述发光结构层的侧壁的全部区域,所述发光结构层包括层叠设置的第一导电类型半导体层、发光层以及第二导电类型半导体层;所述第一表面为所述第一导电类型半导体层背向所述发光层的表面,所述第二表面为所述第二导电类型半导体层背向所述发光层的表面;所述第一导电类型半导体层的侧壁、所述发光层的侧壁以及所述第二导电类型半导体层的侧壁平齐。
进一步地,所述发光结构层包括:
第一导电类型半导体层,包括第一区域以及围绕所述第一区域的第二区域,所述第一区域的厚度大于所述第二区域的厚度;
发光层,设于所述第一区域上;
第二导电类型半导体层,设于所述发光层远离所述第一导电类型半导体层的一侧,所述第二导电类型与所述第一导电类型相反;
所述第一表面为所述第一导电类型半导体层背向所述发光层的表面,所述第二表面为所述第二导电类型半导体层背向所述发光层的表面;所述第二反射镜层覆盖所述第二表面、所述第二区域背向所述第一反射镜层的表面以及夹在两表面之间的所述发光结构层的侧壁。
进一步地,所述谐振腔发光二极管还包括:
第一电极,设于所述导电支撑层远离所述发光结构层的一侧;
第二电极,设于所述发光结构层的第二表面。
进一步地,所述导电支撑层包括:
金属键合层,设于所述发光结构层远离所述第二反射镜层的一侧,所述第一反射镜层包覆于所述金属键合层与所述发光结构层之间;
重掺杂硅衬底,覆盖于所述金属键合层远离所述发光结构层的一侧。
进一步地,所述第二反射镜层的反射率为50-80%。
进一步地,所述第一反射镜层为布拉格反射镜,所述谐振腔发光二极管还包括:
ITO层,位于所述第一反射镜层与所述发光结构层之间。
进一步地,所述第一反射镜层为金属反射镜,所述谐振腔发光二极管还包括:
金属保护层,设于所述发光结构层远离所述第二反射镜层的一侧,且包覆所述第一反射镜层。
根据本公开的一个方面,提供一种谐振腔发光二极管的制备方法,包括:
形成发光结构层,所述发光结构层包括相对的第一表面与第二表面以及连接所述第一表面和所述第二表面的侧壁;
在所述发光结构层的第一表面形成第一反射镜层;
形成覆盖所述发光结构层的侧壁的至少部分区域和所述第二表面的第二反射镜层,所述第二反射镜层为绝缘材料。
进一步地,在形成覆盖所述发光结构层的侧壁的至少部分区域和所述第二表面的第二反射镜层之前,所述制备方法还包括:
在所述发光结构层远离所述第二反射镜层的一侧形成导电支撑层,所述导电支撑层包覆所述第一反射镜层。
进一步地,形成覆盖所述发光结构层的侧壁的至少部分区域和所述第二表面的第二反射镜层包括:
形成覆盖所述导电支撑层的上表面和所述发光结构层的第二反射镜层。
进一步地,所述发光结构层包括:
第一导电类型半导体层,包括第一区域以及围绕所述第一区域的第二区域,所述第一区域的厚度大于所述第二区域的厚度;
发光层,设于所述第一区域上;
第二导电类型半导体层,设于所述发光层远离所述第一导电类型半导体层的一侧,所述第二导电类型与所述第一导电类型相反;
所述第一表面为所述第一导电类型半导体层背向所述发光层的表面,所述第二表面为所述第二导电类型半导体层背向所述发光层的表面;
形成覆盖所述发光结构层的侧壁的至少部分区域和所述第二表面的第二反射镜层包括:
形成覆盖所述第二区域背向所述第一反射镜层的表面、所述第二表面以及介于所述两个表面之间的所述发光结构层的侧壁的第二反射镜层。
本发明公开的谐振腔发光二极管及谐振腔发光二极管的制备方法,发光结构层包括相对的第一表面与第二表面以及连接第一表面和第二表面的侧壁,第二反射镜层不仅覆盖发光结构层的第二表面,而且还覆盖发光结构层的侧壁,可以对发光结构层的侧壁出射的光进行反射,避免光从发光结构层的侧壁漏出,提高反射效率,从而提高谐振腔发光二极管的发光效率,另一方面,第二反射镜层为绝缘材料,可以充当发光二极管保护层的作用,保护 发光二极管的顶部和侧壁,减少了制造绝缘保护层的步骤,节约成本。
附图说明
图1是本公开实施方式的谐振腔发光二极管的示意图。
图2是图1所示结构中发光结构层的示意图。
图3是本公开实施方式的谐振腔发光二极管的另一示意图。
图4是图3所示结构中发光结构层的示意图。
图5是图4所示结构中第一导电类型半导体层的示意图。
图6是本公开实施方式的谐振腔发光二极管的制备方法的流程图。
图7是本公开实施方式的谐振腔发光二极管的制备方法中形成金属保护层后的示意图。
图8是本公开实施方式的谐振腔发光二极管的制备方法中形成第一金属键合层后的示意图。
图9是本公开实施方式的谐振腔发光二极管的制备方法中形成第二金属键合层后的示意图。
图10是本公开实施方式的谐振腔发光二极管的制备方法中第一金属键合层和第二金属键合层键合后的示意图。
图11是本公开实施方式的谐振腔发光二极管的制备方法中去除衬底后的示意图。
图12是本公开实施方式的谐振腔发光二极管的制备方法中形成隔离沟槽后的示意图。
图13是本公开实施方式的谐振腔发光二极管的制备方法中形成第二反射镜层后的示意图。
图14是本公开实施方式的谐振腔发光二极管的制备方法中形成隔离沟槽后的另一示意图。
图15是本公开实施方式的谐振腔发光二极管的制备方法中形成第二反射镜层后的另一示意图。
附图标记说明:1、第一电极;2、导电支撑层;201、重掺杂硅衬底;202、金属键合层;2021、第一金属键合层;2022、第二金属键合层;3、金属保护层;4、第一反射镜层;5、发光结构层;501、第一导电类型半导体层;5011、第一区域;5012、第二区域;502、发光层;503、第二导电类型半导体层;504、第一表面;505、第二表面;506、侧壁;6、第二反射镜层;7、第二电极;8、衬底;9、缓冲层;10、隔离沟槽。
具体实施方式
这里将详细地对示例性实施方式进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施方式中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置的例子。
本公开提供了一种谐振腔发光二极管。如图1至图4所示,该谐振腔发光二极管可以包括发光结构层5、第一反射镜层4以及第二反射镜层6,其中:
该发光结构层5包括相对的第一表面504与第二表面505以及连接第一表面504和第二表面505的侧壁506。该第一反射镜层4设于第一表面504。该第二反射镜层6覆盖发光结构层5的侧壁506的至少部分区域和第二表面505,且第二反射镜层6为绝缘材料。
本公开的谐振腔发光二极管,发光结构层5包括相对的第一表面504与第二表面505以及连接第一表面504和第二表面505的侧壁506,第二反射镜层6不仅覆盖发光结构层5的第二表面505,而且还覆盖发光结构层5的侧壁506,可以对发光结构层5的侧壁506出射的光进行反射,避免光从发光结构层5的侧壁506漏出,提高反射效率,从而提高谐振腔发光二极管的发光效率;另一方便,第二反射镜层6为绝缘材料,可以充当发光二极管保护层的作用,保护发光二极管的顶部和侧壁506,减少了制造绝缘保护层的步骤,节约了成本。
下面对本公开的谐振腔发光二极管的各部分进行详细说明:
如图2和图4所示,该发光结构层5可以包括层叠设置的第一导电类型半导体层501、发光层502以及第二导电类型半导体层503。该发光层502可以为单量子阱结构、多量子阱(MQW)结构、量子线结构和量子点结构中的至少一种。该第一导电类型与第二导电类型不同。该第一导电类型半导体层501可以为P型半导体层,该第二导电类型半导体层503可以为N型半导体层,但本公开对此不做特殊限定。该P型半导体层可以为P型GaN层,该N型半导体层可以为N型GaN层。上述发光结构层5的第一表面504为第一导电类型半导体层501背向发光层502的表面。上述发光结构层5的第二表面505为第二导电类型半导体层503背向发光层502的表面。在本公开一实施方式中,如图2所示,该第一导电类型半导体层501的侧壁、发光层502的侧壁以及第二导电类型半导体层503的侧壁平齐。在本公开另一实施方式中,如图4和图5所示,该第一导电类型半导体层501包括第一区域5011以及围绕第一区域5011的第二区域5012,该第一区域5011的厚度大于第二区域5012的厚度,该发光层502设于第一区域5011上,也就是说,该第一导电类型半导体层501的边缘伸出发光层502和第二导电类型半导体层503。
如图1和图2所示,该第一反射镜层4设于发光结构层5的第一表面504。具体地,该第一反射镜层4可以设于上述的第一导电类型半导体层501 上。该第一反射镜层4的反射率可以为99%-100%。在本公开一实施方式中,该第一反射镜层4为布拉格反射镜(DBR)。该布拉格反射镜的材质为选自于包括TiO 2/SiO 2、Ti 3O 5/SiO 2、Ta 2O 5/SiO 2、Ti 3O 5/Al 2O 3、ZrO 2/SiO 2或TiO 2/Al 2O 3等材料群组中的一组多周期材料。进一步地,该第一反射镜层4与发光结构层5之间还可以设有ITO层。
在本公开另一实施方式中,该第一反射镜层4为金属反射镜。该金属反射镜的材质可以为Ag、Ni/Ag/Ni等。采用金属反射镜解决了布拉格反射镜外延生长困难的问题。为了避免第一反射镜层4被氧化,本公开还可以包括金属保护层3。该金属保护层3可以设于发光结构层5远离第二反射镜层6的一侧,且包覆第一反射镜层4。该金属保护层3的材质可以为Ni、TiW、Pt等。此外,作为金属反射镜的第一反射镜层4的尺寸可以小于第一导电类型半导体层501的尺寸。
如图1所示,该第二反射镜层6的反射率为50%-80%。该第二反射镜层6可以为布拉格反射镜。该第二反射镜层6覆盖发光结构层5的侧壁506的至少部分区域和第二表面505。在本公开一实施方式中,如图1和图2所示,该第二反射镜层6覆盖发光结构层5的侧壁506的全部区域和第二表面505。具体地,本公开的谐振腔发光二极管还可以包括导电支撑层2。该导电支撑层2设于发光结构层5远离第二反射镜层6的一侧,且包覆第一反射镜层4。该导电支撑层2的外边缘伸出发光结构层5。该第二反射镜层6覆盖导电支撑层2的上表面和发光结构层5,从而使第二反射镜层6覆盖发光结构层5的侧壁506的全部区域。在本公开另一实施方式中,如图3至图5所示,该第二反射镜层6覆盖发光结构层5的侧壁506的部分区域。以包括上述第一区域5011和上述第二区域5012的第一导电类型半导体层501为例,该第二反射镜层6覆盖第二表面505、第二区域5012背向第一反射镜层4的表面以及夹在两表面之间的发光结构层5的侧壁506。此外,该第二反射镜层6覆盖于第二表面505的部分与第一反射镜层4之间的距离,即谐振腔的腔长等于发光二极管内 部有效半波长的整数倍。
如图1和图3所示,上述的导电支撑层2可以包括金属键合层202和重掺杂硅衬底201。该金属键合层202可以设于发光结构层5远离第二反射镜层6的一侧。该金属键合层202可以与发光结构层5的第一导电类型半导体层501接触。该第一反射镜层4包覆于金属键合层202与发光结构层5之间。该金属键合层202的材料包括Gr、Ti、Au中的至少一种。进一步地,上述的金属保护层3也包覆于金属键合层202与发光结构层5之间。该重掺杂硅衬底201覆盖于金属键合层202远离发光结构层5的一侧。
如图1和图3所示,本公开实施方式的谐振腔发光二极管还可以包括第一电极1和第二电极7。该第一电极1可以设于导电支撑层2远离发光结构层5的一侧,该第二电极7可以设于发光结构层5的第二表面505,基于此,电流可以垂直于电极流动,解决了第一电极1和第二电极7同侧设置时电流横向流动所导致的局部发热问题。其中,该第二电极7可以穿设于第二反射镜层6,以与发光结构层5接触。以第一导电类型半导体层501为P型半导体层且第二导电类型半导体层503为N型半导体层为例,该第一电极1为P型电极,该第二电极7为N型电极。
本公开还提供一种谐振腔发光二极管的制备方法,用于制备上述任一实施方式所述的谐振腔发光二极管。如图6所示,该谐振腔发光二极管的制备方法可以包括步骤S100至步骤S120,其中:
步骤S100、形成发光结构层,发光结构层包括相对的第一表面与第二表面以及连接第一表面和第二表面的侧壁。
步骤S110、在发光结构层的第一表面形成第一反射镜层。
步骤S120、形成覆盖发光结构层的侧壁的至少部分区域和第二表面的第二反射镜层,第二反射镜层为绝缘材料。
本公开的谐振腔发光二极管的制备方法,所制备的谐振腔发光二极管 同上述实施方式中的谐振腔发光二极管相同,因此,其具有相同的有益效果,在此不再赘述。
下面对本公开的谐振腔发光二极管的制备方法的各步骤进行详细说明:
在步骤S100中,形成发光结构层,发光结构层包括相对的第一表面与第二表面以及连接第一表面和第二表面的侧壁。
举例而言,步骤S100可以包括:
步骤S1000、提供衬底。
如图7所示,该衬底8可以为硅衬底,当然,也可以碳化硅衬底,但不限于此,还可以为蓝宝石衬底。此外,该衬底8上还可以形成有缓冲层9。
步骤S1001、在衬底上生长发光结构层。
如图2和图7所示,以设有缓冲层9的衬底8为例,该发光结构层5可以生长于缓冲层9远离衬底8的一侧。其中,该发光结构层5背向衬底8的表面为第一表面504,该发光结构层5面向衬底8的表面为第二表面505。
在步骤S110中,在发光结构层的第一表面形成第一反射镜层。
如图7所示,以第一反射镜层4为金属反射镜为例,该第一反射镜可以通过电子束蒸镀制备而成。其中,在蒸镀完成后还需要进行退火工艺。为了对第一反射镜层4进行保护,本公开实施方式还可以形成包覆第一反射镜层4的金属保护层3。该金属保护层3可以通过磁控溅射制备而成。该第一反射镜层4的数量可以为多个。该金属保护层3的数量也可以为多个,且多个金属保护层3一一对应地包覆多个第一反射镜层4。
进一步地,如图8至图10所示,本公开实施方式还可以形成包覆金属保护层3的导电支撑层2。具体地,该导电支撑层2的形成步骤可以包括:提供一重掺杂硅衬底201;在重掺杂硅衬底201的表面形成第一金属键合层 2021;形成包覆金属保护层3的第二金属键合层2022;使第一金属键合层2021键合于第二金属键合层2022。其中,该重掺杂硅衬底201、第一金属键合层2021以及第二金属键合层2022构成所述的导电支撑层2。此外,在导电支撑层2形成后,本公开实施方式还可以去除上述的衬底8和缓冲层9。
在步骤S120中,形成覆盖发光结构层的侧壁的至少部分区域和第二表面的第二反射镜层,第二反射镜层为绝缘材料。
在本公开一实施方式中,如图11至图13所示,步骤120可以包括:形成覆盖上述导电支撑层2的上表面和发光结构层5的第二反射镜层6,也就是说,第二反射镜层6覆盖发光结构层5的侧壁506的全部区域。进一步地,以第一反射镜层4的数量为多个为例,步骤120可以包括:在去除衬底8和缓冲层9后,对发光结构层5进行图案化,以形成隔离沟槽10,该发光结构层5被隔离沟槽10分成多个部分,各部分发光结构层5均设有一个第一反射镜层4,该隔离沟槽10暴露上述的导电支撑层2;形成覆盖上述导电支撑层2的上表面和各部分发光结构层5的第二反射镜层6。
在本公开另一实施方式中,如图11、图14以及图15所示,步骤120可以包括:在去除衬底8和缓冲层9后,对发光结构层5进行图案化,以形成隔离沟槽10,该发光结构层5被隔离沟槽10分成多个部分,各部分发光结构层5均设有一个第一反射镜层4,该隔离沟槽10暴露上述的第一导电类型半导体层501,其中,该第一导电类型半导体层501通过该隔离沟槽10暴露的区域即为上述的第一导电类型半导体层501的第二区域5012(见图5);形成覆盖第二区域5012背向第一反射镜层4的表面、第二表面505以及介于两个表面之间的发光结构层5的侧壁506的第二反射镜层6。可知,在本公开实施方式中,该第二反射镜层6覆盖发光结构层5的部分侧壁506。
本公开实施方式提供的谐振腔发光二极管的制备方法与上述实施方式中的谐振腔发光二极管属于同一发明构思,相关细节及有益效果的描述可互相参见,不再进行赘述。
以上所述仅是本公开的较佳实施方式而已,并非对本公开做任何形式上的限制,虽然本公开已以较佳实施方式揭露如上,然而并非用以限定本公开,任何熟悉本专业的技术人员,在不脱离本公开技术方案的范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施方式,但凡是未脱离本公开技术方案的内容,依据本公开的技术实质对以上实施方式所作的任何简单修改、等同变化与修饰,均仍属于本公开技术方案的范围内。

Claims (14)

  1. 一种谐振腔发光二极管,其特征在于,包括:
    发光结构层(5),包括相对的第一表面(504)与第二表面(505)以及连接所述第一表面(504)和所述第二表面(505)的侧壁(506);
    第一反射镜层(4),设于所述第一表面(504);
    第二反射镜层(6),覆盖所述发光结构层(5)的侧壁(506)的至少部分区域和所述第二表面(505),且所述第二反射镜层(6)为绝缘材料。
  2. 根据权利要求1所述的谐振腔发光二极管,其特征在于,所述谐振腔发光二极管还包括:
    导电支撑层(2),设于所述发光结构层(5)远离所述第二反射镜层(6)的一侧,所述导电支撑层(2)包覆所述第一反射镜层(4)。
  3. 根据权利要求2所述的谐振腔发光二极管,其特征在于,所述第二反射镜层(6)覆盖所述导电支撑层(2)的上表面和所述发光结构层(5)。
  4. 根据权利要求1所述的谐振腔发光二极管,其特征在于,所述第二反射镜层(6)覆盖所述发光结构层(5)的侧壁(506)的全部区域,所述发光结构层(5)包括层叠设置的第一导电类型半导体层(501)、发光层(502)以及第二导电类型半导体层(503);所述第一表面(504)为所述第一导电类型半导体层(501)背向所述发光层(502)的表面,所述第二表面(505)为所述第二导电类型半导体层(503)背向所述发光层(502)的表面;所述第一导电类型半导体层(501)的侧壁、所述发光层(502)的侧壁以及所述第二导电类型半导体层(503)的侧壁平齐。
  5. 根据权利要求1所述的谐振腔发光二极管,其特征在于,所述发光结构层(5)包括:
    第一导电类型半导体层(501),包括第一区域(5011)以及围绕所述第一区域(5011)的第二区域(5012),所述第一区域(5011)的厚度大于所述第二区域(5012)的厚度;
    发光层(502),设于所述第一区域(5011)上;
    第二导电类型半导体层(503),设于所述发光层(502)远离所述第一导电类型半导体层(501)的一侧,所述第二导电类型与所述第一导电类型相反;
    所述第一表面(504)为所述第一导电类型半导体层(501)背向所述发光层(502)的表面,所述第二表面(505)为所述第二导电类型半导体层(503)背向所述发光层(502)的表面;所述第二反射镜层(6)覆盖所述第二表面(505)、所述第二区域(5012)背向所述第一反射镜层(4)的表面以及夹在两表面之间的所述发光结构层(5)的侧壁(506)。
  6. 根据权利要求2所述的谐振腔发光二极管,其特征在于,所述谐振腔发光二极管还包括:
    第一电极(1),设于所述导电支撑层(2)远离所述发光结构层(5)的一侧;
    第二电极(7),设于所述发光结构层(5)的第二表面(505)。
  7. 根据权利要求2所述的谐振腔发光二极管,其特征在于,所述导电支撑层(2)包括:
    金属键合层(202),设于所述发光结构层(5)远离所述第二反射镜层(6)的一侧,所述第一反射镜层(4)包覆于所述金属键合层(202)与所述发光结构层(5)之间;
    重掺杂硅衬底(201),覆盖于所述金属键合层(202)远离所述发光结构层(5)的一侧。
  8. 根据权利要求1所述的谐振腔发光二极管,其特征在于,所述第二反射镜层(6)的反射率为50%-80%。
  9. 根据权利要求1所述的谐振腔发光二极管,其特征在于,所述第一反射镜层(4)为布拉格反射镜,所述谐振腔发光二极管还包括:
    ITO层,位于所述第一反射镜层(4)与所述发光结构层(5)之间。
  10. 根据权利要求1所述的谐振腔发光二极管,其特征在于,所述第一反射镜层(4)为金属反射镜,所述谐振腔发光二极管还包括:
    金属保护层(3),设于所述发光结构层(5)远离所述第二反射镜层(6)的一侧,且包覆所述第一反射镜层(6)。
  11. 一种谐振腔发光二极管的制备方法,其特征在于,包括:
    形成发光结构层(5),所述发光结构层(5)包括相对的第一表面(504)与第二表面(505)以及连接所述第一表面(504)和所述第二表面(505)的侧壁(506);
    在所述发光结构层(5)的第一表面(504)形成第一反射镜层(4);
    形成覆盖所述发光结构层(5)的侧壁(506)的至少部分区域和所述第二表面(505)的第二反射镜层(6),所述第二反射镜层(6)为绝缘材料。
  12. 根据权利要求11所述的谐振腔发光二极管的制备方法,其特征在于,在形成覆盖所述发光结构层(5)的侧壁(506)的至少部分区域和所述第二表面(505)的第二反射镜层(6)之前,所述制备方法还包括:
    在所述发光结构层(5)远离所述第二反射镜层(6)的一侧形成导电支撑层(2),所述导电支撑层(2)包覆所述第一反射镜层(4)。
  13. 根据权利要求12所述的谐振腔发光二极管的制备方法,其特征在于,形成覆盖所述发光结构层(5)的侧壁(506)的至少部分区域和所述第二表面(505)的第二反射镜层(6)包括:
    形成覆盖所述导电支撑层(2)的上表面和所述发光结构层(5)的第二反射镜层(6)。
  14. 根据权利要求11所述的谐振腔发光二极管的制备方法,其特征在于,所述发光结构层(5)包括:
    第一导电类型半导体层(501),包括第一区域(5011)以及围绕所述第一区域(5011)的第二区域(5012),所述第一区域(5011)的厚度大于所述第二区域(5012)的厚度;
    发光层(502),设于所述第一区域(5011)上;
    第二导电类型半导体层(503),设于所述发光层(502)远离所述第一导电类型半导体层(501)的一侧,所述第二导电类型与所述第一导电类型相反;
    所述第一表面(504)为所述第一导电类型半导体层(501)背向所述发光层(502)的表面,所述第二表面(505)为所述第二导电类型半导体层(503)背向所述发光层(502)的表面;
    形成覆盖所述发光结构层(5)的侧壁(506)的至少部分区域和所述第二表面(505)的第二反射镜层(6)包括:
    形成覆盖所述第二区域(5012)背向所述第一反射镜层(4)的表面、所述第二表面(505)以及介于所述两个表面之间的所述发光结构层(5)的侧壁(506)的第二反射镜层(6)。
PCT/CN2020/126522 2020-11-04 2020-11-04 谐振腔发光二极管及其制备方法 WO2022094801A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080100005.5A CN116210093A (zh) 2020-11-04 2020-11-04 谐振腔发光二极管及其制备方法
PCT/CN2020/126522 WO2022094801A1 (zh) 2020-11-04 2020-11-04 谐振腔发光二极管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/126522 WO2022094801A1 (zh) 2020-11-04 2020-11-04 谐振腔发光二极管及其制备方法

Publications (1)

Publication Number Publication Date
WO2022094801A1 true WO2022094801A1 (zh) 2022-05-12

Family

ID=81456832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126522 WO2022094801A1 (zh) 2020-11-04 2020-11-04 谐振腔发光二极管及其制备方法

Country Status (2)

Country Link
CN (1) CN116210093A (zh)
WO (1) WO2022094801A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024017092A1 (zh) * 2022-07-20 2024-01-25 中国科学院半导体研究所 基于多色谐振腔发光二极管的生物探针及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7642562B2 (en) * 2006-09-29 2010-01-05 Innolume Gmbh Long-wavelength resonant-cavity light-emitting diode
CN102130260A (zh) * 2010-09-30 2011-07-20 映瑞光电科技(上海)有限公司 发光装置及其制造方法
CN208127232U (zh) * 2018-05-07 2018-11-20 厦门市三安光电科技有限公司 一种发光二极管芯片结构
CN110729322A (zh) * 2019-10-22 2020-01-24 厦门乾照光电股份有限公司 一种垂直型led芯片结构及其制作方法
CN111446336A (zh) * 2020-04-01 2020-07-24 厦门三安光电有限公司 发光二极管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7642562B2 (en) * 2006-09-29 2010-01-05 Innolume Gmbh Long-wavelength resonant-cavity light-emitting diode
CN102130260A (zh) * 2010-09-30 2011-07-20 映瑞光电科技(上海)有限公司 发光装置及其制造方法
CN208127232U (zh) * 2018-05-07 2018-11-20 厦门市三安光电科技有限公司 一种发光二极管芯片结构
CN110729322A (zh) * 2019-10-22 2020-01-24 厦门乾照光电股份有限公司 一种垂直型led芯片结构及其制作方法
CN111446336A (zh) * 2020-04-01 2020-07-24 厦门三安光电有限公司 发光二极管

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024017092A1 (zh) * 2022-07-20 2024-01-25 中国科学院半导体研究所 基于多色谐振腔发光二极管的生物探针及其制备方法

Also Published As

Publication number Publication date
CN116210093A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
US10950757B2 (en) Flip chip type light emitting diode chip
CN108922950B (zh) 一种高亮度倒装led芯片及其制作方法
KR101017394B1 (ko) 발광 소자 및 그것을 제조하는 방법
JP5776535B2 (ja) Iii族窒化物半導体発光素子
KR20190090485A (ko) 반도체 발광소자
JP2012069909A (ja) 発光素子
JP2005183911A (ja) 窒化物半導体発光素子及び製造方法
KR20100095134A (ko) 발광소자 및 그 제조방법
KR20140000818A (ko) 유전체 리플렉터를 구비한 발광소자 및 그 제조방법
TWI376039B (en) Light-emitting diode
JP5855344B2 (ja) 分布ブラッグ反射器を有する発光ダイオードチップ及びその製造方法
KR20190104692A (ko) 반도체 발광소자
JP2012028773A (ja) 半導体発光素子及びその製造方法
KR20190104693A (ko) 반도체 발광소자
WO2022094801A1 (zh) 谐振腔发光二极管及其制备方法
WO2021129214A1 (zh) 垂直结构深紫外发光二极管及其制备方法
JP2018032820A (ja) 半導体発光素子
JP2012080104A (ja) 半導体発光素子及びその製造方法
KR20120126496A (ko) 발광 다이오드 및 그의 제조 방법
TWI825507B (zh) 發光器件及其製備方法
JP2011071340A (ja) 発光素子
JP7453588B2 (ja) 垂直共振器面発光レーザ素子
JP6162478B2 (ja) 半導体発光装置
JP6082653B2 (ja) 半導体発光装置
WO2022109990A1 (zh) 半导体发光器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960263

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20960263

Country of ref document: EP

Kind code of ref document: A1