WO2012090613A1 - 非接触充電装置 - Google Patents

非接触充電装置 Download PDF

Info

Publication number
WO2012090613A1
WO2012090613A1 PCT/JP2011/076428 JP2011076428W WO2012090613A1 WO 2012090613 A1 WO2012090613 A1 WO 2012090613A1 JP 2011076428 W JP2011076428 W JP 2011076428W WO 2012090613 A1 WO2012090613 A1 WO 2012090613A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
time
charging time
power
battery
Prior art date
Application number
PCT/JP2011/076428
Other languages
English (en)
French (fr)
Inventor
敏祐 甲斐
クライソン トロンナムチャイ
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to RU2013135263/11A priority Critical patent/RU2545243C2/ru
Priority to US13/991,966 priority patent/US9199547B2/en
Priority to EP11852899.1A priority patent/EP2660944B1/en
Priority to KR1020137016580A priority patent/KR101481925B1/ko
Priority to JP2012550779A priority patent/JP5527431B2/ja
Priority to MX2013006593A priority patent/MX2013006593A/es
Priority to BR112013015095-5A priority patent/BR112013015095B1/pt
Priority to CN201180063021.2A priority patent/CN103283110B/zh
Publication of WO2012090613A1 publication Critical patent/WO2012090613A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • B60L2240/622Vehicle position by satellite navigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates to a non-contact charging device.
  • a charging device that is installed in the vicinity of the stopping position and charges a battery mounted on the vehicle, and a portable device that is held by a driver of the vehicle and has a communication function Based on the result of communication between the vehicle-side communication device mounted on the vehicle that communicates with the portable device and the portable device mounted on the vehicle and the vehicle-side communication device, it is determined that the driver is moving away from the vehicle.
  • a battery charging control unit that starts charging the battery and terminates the charging of the battery when it is determined that the driver is approaching the vehicle.
  • a charging system is known in which a battery is charged by exchanging electric power by electromagnetic coupling while maintaining a non-contact state with a unit (Patent Document 1).
  • the problem to be solved by the present invention is to provide a non-contact charging device that improves user convenience.
  • the present invention calculates the charging time of the battery according to the charging state and the position of the power transmission coil according to the charging state detected by the charging state detecting unit detecting the charging state of the battery and the charging state detecting unit.
  • the above problem is solved by providing the charging time calculation means.
  • the allowable charging range by setting the allowable charging range according to the charging state or calculating the charging time according to the charging state and the position of the power transmission coil, for example, when the charging state is high, the power required for charging Since the amount of charge is low, by setting the allowable charging range wide, the range that allows the displacement of the power transmission coil can be expanded, or even if the charging time is long due to the displacement of the power transmission coil, for example, Charging can be started at the confirmed user's judgment, and as a result, convenience for the user can be enhanced.
  • FIG. 1 is a block diagram of a non-contact charging system according to an embodiment of the present invention. It is a block diagram of the battery controller and electronic control unit of FIG. It is the top view and perspective view which show the state which the power transmission coil and power receiving coil of FIG. 1 opposed. It is the top view and perspective view which show the state which the power transmission coil and power receiving coil of FIG. 1 opposed, and is a figure which shows the case where it shifts
  • FIG. 4 shows the characteristics of power that can be received with respect to the power receiving coil 1B in the X-axis direction (Y-axis direction) and the Z-axis direction shown in FIGS. 3A and 3B.
  • Y-axis direction Y-axis direction
  • FIG. 1 it is a graph which shows the characteristic of the charging power of the battery 5 with respect to charging time, and is a graph which shows the characteristic at the time of charging in the state whose receiving power of a receiving coil is 3.0 kW.
  • FIG. 1 it is a graph which shows the characteristic of the charging power of the battery 5 with respect to charging time, and is a graph which shows the characteristic at the time of charging in the state whose receiving power of a receiving coil is 1.5 kW.
  • FIG. 1 it is a graph which shows the characteristic of the charging power of the battery 5 with respect to charging time, and is a graph which shows the characteristic at the time of charging in the state whose receiving power of a receiving coil is 3.0 kW.
  • FIG. 1 it is a graph which shows the characteristic of the charging power of the battery 5 with respect to charging time, and is a graph which shows the characteristic at the time of charging in the state whose receiving power of a receiving coil is 3.0 kW.
  • FIG. 1 is a block diagram showing a non-contact charging system to which an embodiment of the present invention is applied.
  • the ground side unit 100 includes a ground side unit 100 and a vehicle side unit 200.
  • electric power is supplied in a non-contact manner to a load such as the battery 5 of the vehicle-side unit 200 mounted on the vehicle, and the battery 5 is charged.
  • a non-contact charging device including a non-contact charging system is mounted on a charging device provided in a parking space of an electric vehicle and a vehicle.
  • the non-contact charging device to be included may be provided in a vehicle other than the electric vehicle or may be provided in other than the vehicle.
  • the ground side unit 100 includes a power transmission coil 1A, a ground side electric circuit 2A, an electronic control unit (ECU) 3, a system power source 4, and a ground side communication device 8A.
  • the system power supply 4 supplies AC power to the ground side electric circuit 2A.
  • the ground side electric circuit 2A is a circuit including a rectifier, a power converter, a resonance circuit, and the like, converts AC power transmitted from the system power supply 4 into AC wave AC power, and transmits the AC power to the power transmission coil 1A.
  • the power transmission coil 1A transmits high-frequency power to the power receiving coil 1B in a non-contact state by electromagnetic induction.
  • the power transmission coil 1A is provided in a parking space in a parking lot provided with the contactless charging system of this example.
  • the power transmission coil 1A is positioned below the power reception coil 1B and is positioned at a distance from the power reception coil 1B.
  • the ECU 3 is a control controller that controls the entire ground side unit 100 and controls the ground side electric circuit 2A, for example, starts and ends power transmission from the power transmission coil 1A to the power reception coil 1B, and from the power transmission coil 1A. Adjust the transmitted power.
  • the ground side communication device 8 ⁇ / b> A communicates with the vehicle side communication type 8 ⁇ / b> B, and transmits power transmission timing, transmitted power, and the like to the vehicle side unit 200 based on the control signal of the ECU 3.
  • the ground-side communication apparatus. 8A the position of the power transmission coil. 1A, transmitted to the vehicle side unit 200.
  • the vehicle-side unit 200 includes a power receiving coil 1B, a vehicle-side electric circuit 2B, a battery 5, an electronic control unit (ECU) 7, a battery controller (BC) 6, and a vehicle-side communication device 8B.
  • the power receiving coil 1 ⁇ / b> B is a coil that receives high-frequency power transmitted from the power transmitting coil 1 ⁇ / b> A in a non-contact state due to electromagnetic induction, and is provided on the bottom surface (chassis) of the vehicle including the vehicle-side unit 200.
  • the vehicle-side electric circuit 2B is a circuit including a resonance circuit, a rectifier, a junction block (J / B), etc., converts electric power transmitted from the power receiving coil 1B, supplies electric power to the battery 5, and charges the battery 5.
  • the vehicle-side electric circuit 2 ⁇ / b> B has a function of a charger that charges the battery 5.
  • the battery 5 is a battery in which a plurality of secondary batteries are connected, and is a power source for a vehicle including the vehicle-side unit 200.
  • the BC 6 is a controller that manages the battery 5, and detects the state of charge (SOC) of the battery 5, the remaining capacity of the battery 5, and the like.
  • the ECU 7 is a controller that comprehensively controls the power receiving coil 1B, the vehicle-side electric circuit 2B, and BC6. The ECU 7 controls the electric circuit 2B according to the state of the battery 5 managed by the BU 6, and charges the battery 5. Manage.
  • the vehicle-side communicator 8B communicates with the ground-side communicator 8A, receives position information of the power transmission coil 1A, information related to the power transmitted from the power transmission coil 1A, and the like, and transmits them to the ECU 7.
  • FIG. 2 is a block diagram showing the configuration of the BC 6 and the ECU 7.
  • the BC 6 includes a charge state detection unit 601.
  • the charge state detection unit 601 detects the SOC of the battery 5. Since the SOC has a correlation with the voltage of the battery 5, the charging state detection unit 601 may detect the SOC of the battery 5 by detecting the voltage of the battery 5. Information regarding the SOC of the battery 5 detected by the charge state detection unit 601 is transmitted to the ECU 7.
  • the ECU 7 includes a charge allowable range setting unit 701, a determination unit 702, a determination result notification unit 703, and a charge control unit 704.
  • the charge allowable range setting unit 701 sets the charge allowable range according to the SOC detected by the charge state detection unit 601.
  • the charge allowable range indicates the range of the position of the power transmission coil 1A that allows the battery 5 to be charged with respect to the position of the power receiving coil 1B. Since the power transmission coil 1A is provided in the ground unit 100 and the power reception coil 1B is provided in the vehicle unit 200, the relative position of the power transmission coil 1A with respect to the power reception coil 1B varies depending on the parking position of the vehicle. In this example, as will be described later, a charge allowable range is set as a determination criterion for the positional relationship of the coils that permits charging of the battery 5 when the vehicle is parked in the parking space.
  • the determination unit 702 determines whether to permit charging of the battery 5 according to the position of the power transmission coil 1A with respect to the position of the power reception coil 1B, and the position of the power transmission coil 1A is in a state where the vehicle is parked. Charging is permitted when it is within the allowable charging range, and charging is not permitted when the position of the power transmission coil 1A is outside the allowable charging range.
  • the determination result notification unit 703 displays the determination result by the determination unit 702 to the user by, for example, a navigation system (not shown) provided on the instrumental panel, voice, or the like.
  • the optimum electric power for charging is set in advance according to the SOC, and is set so as to become smaller as the battery is fully charged.
  • the BC 6 manages the SOC of the battery 5 and requests the charge control unit 704 for power necessary for charging based on a preset charging method.
  • the charging control unit 704 controls the electric power output from the vehicle-side electric circuit 2B to the battery 5 when charging the battery 5 according to the electric power requested from the BC 6, and the SOC of the battery 5 is increased. Accordingly, the output power of the vehicle-side electric circuit 2B is lowered step by step, and the charging power of the battery 5 is limited.
  • the charging of the battery 5 by the charger of the vehicle-side electric circuit 2B under the charging control unit 704 is, for example, started by constant current charging and switched to multistage constant current charging or multistage constant voltage charging. Done.
  • 3A and 3B are a plan view a) showing a state in which the power transmitting coil 1A and the power receiving coil 1B face each other, and perspective views b) and c).
  • 3A and 3B, the X axis and the Y axis indicate planar directions of the power transmitting coil 1A and the power receiving coil 1B, and the Z axis indicates the height direction.
  • the power transmission coil 1A and the power reception coil 1B are both formed in the same circular shape, but in this example, it is not necessarily required to have a circular shape, and the power transmission coil 1A and the power reception coil 1B have the same shape. There is no need to make it.
  • the power reception coil 1B matches the power transmission coil 1A in the X-axis and Y-axis directions which are planar directions.
  • the relative position between the power transmission coil 1A and the power reception coil 1B may be shifted in the plane direction, as shown in FIG. 3B. is there.
  • the distance in the height direction Z between the power transmission coil 1A and the power reception coil 1B varies depending on the vehicle height.
  • the efficiency of the power received by the power reception coil 1B is such that the power reception coil 1B matches the power transmission coil 1A (the state shown in FIG. 3A). Equivalent) is the highest and becomes lower when the center point of the power receiving coil 1B is farther from the center point of the power transmitting coil 1A.
  • FIG. 4 shows characteristics of power that can be received with respect to the power receiving coil 1B in the X-axis direction (Y-axis direction) and the Z-axis direction shown in FIGS. 3A and 3B.
  • the power supplied from the ground-side electric circuit 2A to the power transmission coil 1A is constant.
  • the power transmission coil 1A and the power reception coil 1B Therefore, the power received by the power receiving coil 1B decreases.
  • the power receiving coil 1B is fixed to the vehicle, and the distance in the Z direction between the power receiving coil 1B and the power transmitting coil 1A does not change greatly with respect to the parking position of the vehicle, and is fixed at a distance (Z 1 ) in the Z direction. Yes.
  • the distance in the Z direction in a state of being fixed to Z 1 shows the maximum power received by the power receiving coil 1B.
  • the power reception coil The maximum power received at 1B is 3.0 kW (point A in FIG. 4).
  • FIG. 5A and 5B are graphs showing the characteristics of the charging power of the battery 5 with respect to the charging time
  • FIG. 5A shows the characteristics when the receiving power of the power receiving coil 1B is 3.0 kW. Indicates the characteristics when the receiving coil 1B is charged with the received power of 1.5 kW. Charging is started when the SOC of the battery 5 is 10%, and the charging is terminated when the SOC of the battery 5 reaches 100%.
  • the charging characteristics in FIG. 5A are the positional relationships of the coils shown in FIG. 3A, and show the characteristics when charging is performed with the power at point A in FIG. 4.
  • the charging characteristics in FIG. 4 shows the characteristics when the battery is charged with electric power at point B in FIG.
  • the charging control unit 704 sets the charging power of the battery 5 to 3.0 kW until the SOC of the battery 5 reaches 80%, and the charging power of the battery 5 to 2.5 kW when the SOC of the battery 5 reaches 80%.
  • the charging power of the battery 5 is lowered to 1.5 kW.
  • the SOC of the battery 5 becomes 94%, the charging power of the battery 5 is lowered to 1.2 kW, and the SOC of the battery 5 is 96
  • the battery charge reaches 5% the charging power of the battery 5 is lowered to 1.0 kW.
  • the SOC of the battery 5 becomes 98%, the charging power of the battery 5 is lowered to 0.8 kW and the battery 5 is charged.
  • the charging control unit 704 causes the maximum received power of the power receiving coil 1B ( 3.0 kW) is supplied to the battery 5 as charging power and charged, and the charging power is lowered stepwise according to the SOC in accordance with the charging control described above.
  • the charging time the time required for the SOC to change from 10% to 80% is 6 h, the time required for the SOC to change from 80% to 90% is 0.5 h, and the SOC ranges from 90% to 94%.
  • the time required to reach% is 0.5 h
  • the time required for the SOC to change from 94% to 96% is 0.5 h
  • the time required for the SOC to increase from 96% to 98% is 0.5 h
  • the time required for the SOC to change from 98% to 100% is 0.5 h.
  • the charging control unit 704 causes the maximum receiving power of the receiving coil 1B. It is supplied to the battery 5 power (1.5 kW) as a charging power to charge the battery 5.
  • the battery 5 of this example can be charged with power of 1.5 kW or more until the SOC reaches 94%.
  • the maximum power received by the power receiving coil 1B is 1.5 kW, so the charging power is set to 1.5 kW until the SOC of the battery 5 reaches 94%.
  • the charging power is gradually reduced in the same manner as described above.
  • the time required for the SOC to change from 10% to 80% is 12 h
  • the time required for the SOC to be 80% to 90% is 0.835 h
  • the SOC is 90% to 94%.
  • the time required to reach% is 0.5 h
  • the time required for the SOC to change from 94% to 96% is 0.5 h
  • the time required for the SOC to change from 98% to 100% is 0.5 h.
  • the maximum power received by the power receiving coil 1B is smaller than that in the coil position state shown in FIG. 3A, so the charging time for charging from SOC 10% to full charge Becomes longer.
  • FIG. 6A and 6B are graphs showing the characteristics of the charging power of the battery 5 with respect to the charging time, and FIG. 6A shows the characteristics when the receiving power of the power receiving coil 1B is 3.0 kW. Indicates the characteristics when the receiving coil 1B is charged with the received power of 1.5 kW.
  • the charging characteristics in FIG. 6A are the positional relationships of the coils shown in FIG. 3A, and show the characteristics when charging is performed with the power at point A in FIG. 4.
  • the charging characteristics in FIG. 4 shows the characteristics when the battery is charged with electric power at point B in FIG.
  • the charging control unit 704 sets the charging power of the battery 5 to 1.5 kW until the SOC of the battery 5 reaches 94%.
  • the charging power of the battery 5 is reduced to 1.2 kW.
  • the SOC of the battery 5 becomes 96%
  • the charging power of the battery 5 is reduced to 1.0 kW
  • the SOC of the battery 5 is 98%. to become the lower the charging power of the battery 5 to 0.8 kW, to charge the battery 5.
  • the charging control unit 704 causes the maximum received power of the power receiving coil 1B ( 3.0 kW) is reduced to the charging power (1.5 kW), supplied to the battery 5 and charged, and the charging power is lowered stepwise according to the SOC in accordance with the above charging control.
  • the charging time the time required for the SOC to change from 90% to 94% is 0.5 h
  • the time required for the SOC to change from 94% to 96% is 0.5 h
  • the SOC is 96%.
  • the time required to reach 98% from 0.5% is 0.5 h, and the time required to reach SOC from 98% to 100% is 0.5 h.
  • the charging control unit 704 causes the maximum receiving power of the receiving coil 1B.
  • Electric power (1.5 kW) is supplied as charging power to the battery 5 for charging, and the charging power is lowered stepwise according to the SOC in accordance with the charging control described above.
  • the charging time the time required for the SOC to change from 90% to 94% is 0.5 h, the time required for the SOC to change from 94% to 96% is 0.5 h, and the SOC is 96%.
  • the time required to reach 98% from 0.5% is 0.5 h, and the time required to reach SOC from 98% to 100% is 0.5 h.
  • the maximum power received by the power receiving coil 1B is smaller than that in the coil position state shown in FIG. 3A.
  • the maximum received power of the power receiving coil 1B is equal to or greater than the maximum charging power at the start of charging of the battery 5, the charging time does not change even if the coil is misaligned as shown in FIG. 3B.
  • the power required for charging may be small. Also good.
  • FIG. 7 is a schematic diagram for explaining the allowable charging range, and corresponds to a plan view of the power receiving coil 1B.
  • the non-contact charging system of this example operates when the vehicle is parked in a parking space provided with the ground unit 100.
  • the charge state detection unit 601 detects the SOC of the battery 5 and transmits information related to the detected SOC to the ECU 7.
  • the allowable charge range setting unit 701 sets the allowable charge range as follows according to the SOC of the battery 5.
  • Charging allowable range setting unit 701 sets a charging allowable range along the main surface direction of power transmission coil 1A or power receiving coil 1B.
  • the allowable charging range is a virtual circular range centering on the power receiving coil 1B, and is a range for determining that charging is permitted when the power transmitting coil 1A is included in the allowable charging range.
  • the allowable charging range is set so that charging is completed within a charging time that is assumed in advance. As shown in FIG. 5B, even when the positional deviation between the power transmitting coil 1A and the power receiving coil 1B is large, the battery 5 can be charged as long as the power receiving coil 1B can receive power. However, when the battery 5 is charged from a small SOC to a full charge, the charging time becomes long. For this reason, the allowable charging range is determined in accordance with the SOC of the battery 5 in order to finish the charging within a predetermined charging time in accordance with the allowable displacement of the coil in the horizontal direction (direction parallel to the parking space). It is set as an area.
  • the charge allowable range setting unit 701 sets the area (a) as the charge allowable range, and the battery 5
  • the area (b) is set as an allowable charging range.
  • the area (a) is set as the allowable charging range. Set to. That is, the allowable charging range setting unit 701 sets the allowable charging range wider as the SOC is larger, so that the higher the SOC is, the larger the allowable positional deviation of the coil is.
  • the ECU 7 uses the parking support system using the navigation device and the vehicle-mounted camera (not shown) to display the charge allowable range on the display of the navigation device. Display the allowable charging range.
  • the driver of the vehicle can park at a position suitable for charging by adjusting the parking position while viewing the display so that the position of the power transmission coil 1A is included in the allowable charging range.
  • ECU7 detects the position of the power transmission coil 1A via the communication devices 8A and 8B.
  • the position of the power transmission coil 1A is detected by communication performed by the ground side communication device 8A and the vehicle communication device 8B.
  • the position is detected by providing a position sensor in the power transmission coil 1A or the power reception coil 1B. May be.
  • a signal transmission antenna may be provided in the ground side unit 100
  • a receiver may be provided in the vehicle side unit 200
  • the position of the coil may be detected from the communication state of the signal transmitted from the antenna.
  • the determination unit 702 determines whether or not the position of the power transmission coil is within the allowable charging range. When the position of the power transmission coil is within the allowable charging range, the determination unit 702 determines that the battery 5 can be charged. When the determination unit 702 determines that charging is permitted, the charging control unit 704 uses the power received by the power receiving coil 1B for charging the battery 5 in accordance with the SOC detected by the charging state detection unit 601. The charging power is controlled to be supplied to the battery 5. That is, when the received power of the power receiving coil 1B is larger than the charging power suitable for charging, the charging control unit 704 narrows the received power and supplies the charging power suitable for charging to the battery 5.
  • the charging control unit 704 supplies the received power of the receiving coil 1B to the battery 5 as the charging power.
  • the determination result notification unit 703 may notify the driver of reparking by notifying the determination result.
  • the charging state detection unit 601 detects the SOC even while the battery 5 is being charged, and the charging control unit 704 gradually decreases the charging power as the SOC increases. Then, when the battery 5 is fully charged, the charge control unit 704 ends the power supply to the battery 5. Thereby, the battery 5 is charged in the non-contact charging system of this example.
  • FIG. 8 is a flowchart showing a control procedure of the contactless charging system of this example.
  • the charging state detection unit 601 detects the SOC of the battery 5 and transmits information of the detected SOC to the ECU 7 in step S1.
  • charge allowable range setting unit 701 sets the charge allowable range according to the detected SOC.
  • the ECU 7 detects the position of the transmission coil 1A via the ground side communication device 8A and the vehicle side communication device 8B.
  • the ground side communication device 8A starts communication with the vehicle side communication device 8B.
  • the position of the transmission coil 1A may be detected.
  • step S4 the determination unit 702 determines whether or not the position of the power transmission coil 1A is within the allowable charging range. If the position of the power transmission coil 1A is not within the allowable charging range, the determination unit 702 does not allow charging, and the determination result notification unit 703 displays a display for prompting reparking to the occupant in step S41. by performing, it notifies the determination result to the effect that does not allow charging the passenger returns to step S1. If the position of the power transmission coil 1A is within the allowable charging range, the determination unit 702 allows charging and proceeds to step S5.
  • step S5 the charging control unit 704 starts charging the battery 5 by setting the charging power according to the SOC of the battery 5 and the power received by the power receiving coil 1B and supplying the power to the battery 5.
  • the determination result notification unit 703 notifies the occupant of the determination result indicating that charging is permitted by notifying the occupant that charging is to be started. Then, the SOC of the battery 5 is fully charged, and the control by the non-contact charging system of this example is finished.
  • the non-contact charging device of this example includes the power receiving coil 1B, the vehicle-side electric circuit 2B, the battery 5, the charge state detection unit 601, and the charge allowable range setting unit 701, depending on the SOC.
  • an allowable charging range indicating the range of the position of the power transmission coil 1A that permits charging of the battery is set with respect to the position of the power receiving coil 1B.
  • the positional deviation between the power receiving coil 1 ⁇ / b> B and the power transmitting coil 1 ⁇ / b> A that is allowed to charge the battery 5 varies depending on the SOC of the battery 5.
  • the allowable charging range is set according to the SOC, the allowable range can be determined.
  • the misalignment of the coil is charged. Since the driver only needs to park the vehicle so as to be within the allowable range, convenience for the user can be improved.
  • the driver parks the vehicle while looking at the charge allowable range.
  • the position of the power receiving coil 1B can be matched with the position of the power transmitting coil 1A within a range in which charging of the battery 5 is allowed. As a result, the non-contact apparatus of this embodiment can enhance the convenience for the user.
  • the allowable charging range setting unit 701 sets the allowable charging range wider as the SOC is higher.
  • the optimum charging power for charging the battery 5 having a high SOC is smaller than the charging power of the battery 5 having a low SOC. For this reason, when the SOC is high, the power received by the power receiving coil 1B may be small, so that the range in which the positional deviation of the coil is allowed is widened.
  • the allowable charging range is set wider. Therefore, the range of the coil misalignment allowed when charging can be set according to the SOC. As a result, the convenience of the user can be set. Can increase the sex.
  • the communication devices 8A and 8B for detecting the position of the power transmission coil, a determination unit 702, and a determination result notification unit 703 that notifies the determination result of the determination unit 702 are provided.
  • the determination unit 702 determines that charging of the battery 5 is permitted. Thereby, the occupant can confirm whether or not charging can be performed in the current parking state by looking at the determination result notified by the determination result notification unit 703.
  • the vehicle is parked in a state that is not suitable for charging due to a large coil position shift, the occupant can confirm the state by notification of the determination result notification unit 703, and as a result, this example is convenient for the user. Can increase the sex.
  • the power received by the power receiving coil 1B is small, so that the battery 5 cannot be charged to full charge, or the battery It takes a long time to fully charge 5.
  • the occupant can confirm a state unsuitable for charging by the notification of the determination result notification unit 703, so that the occupant is in a state suitable for charging. As a result, the charging time can be shortened.
  • the allowable charging range is circular.
  • the charging allowable range is not necessarily circular, and may be rectangular.
  • the allowable charging range is a two-dimensional plane, but a three-dimensional three-dimensional area may be the allowable charging range.
  • a plurality of charge allowable ranges are set with SOC (80%) and SOC (90%) as a boundary.
  • the boundary does not necessarily need to be SOC (80%) and SOC (90%), and the allowable charging range may be continuously changed according to the SOC.
  • control part of the vehicle-side system is divided into BC6 and ECU7, but BC6 and ECU7 may be a single controller.
  • the range of the allowable charging range may be set according to the charging time required by the occupant. For example, when the driver parks the vehicle and there is time until the next driving, the charging time may be long. Further, when the charging time may be long, as shown in FIGS. 5 and 6, the received power of the power receiving coil 1 ⁇ / b> B may be small, so that the allowable charging range may be widened. That is, the occupant sets a desired charging time, and the charging allowable range setting unit 701 sets the charging allowable range wide when the charging time is long, and sets the charging allowable range when the charging time is short. Set narrower. Thereby, since the range which accept
  • the vehicle-side electric circuit 2B includes a temperature detection circuit such as a thermistor, detects the temperature of the battery 5, and the charge allowable range setting unit 701 determines the charge allowable range according to the detected temperature of the battery 5. May be set.
  • the vehicle-side electric circuit 2B has a temperature detection circuit such as a thermistor to detect the temperature in the vehicle, and the charge allowable range setting unit 701 sets the charge allowable range according to the detected temperature in the vehicle. Also good. Thereby, according to the temperature of the battery 5 or the temperature inside the vehicle, it is possible to appropriately determine whether to allow charging, and it is possible to improve the convenience for the user.
  • the power receiving coil 1B and the vehicle-side electric circuit 2B correspond to the “power receiving device” of the present invention
  • the charging state detection unit 601 is a “charging state detection unit”
  • the charging allowable range setting unit 701 is a “charging allowable range setting unit”.
  • the determination unit 702 is a “determination unit”
  • the determination result notification unit 703 is a “determination result notification unit”
  • the ground side communication device 8A and the vehicle side communication device 8B are “position detection unit”
  • the charge control unit 704 is “ In the “charge control means”
  • the temperature detection circuit included in the vehicle-side electric circuit 2B corresponds to the “temperature detection means”.
  • FIG. 9 is a block diagram showing a non-contact charging system according to another embodiment of the invention. This example differs from the first embodiment described above in that a charging time calculation unit 705 and a time notification unit 706 are provided. Since the configuration other than this is the same as that of the first embodiment described above, the description thereof is incorporated as appropriate.
  • the ECU 7 includes a charging control unit 704, a charging time calculation unit 705, and a time notification unit 706.
  • the charging time calculation unit 705 calculates a charging time (T 1 ) for charging the battery 5 according to the SOC detected by the charging state detection unit 601 and the position of the power transmission coil with respect to the position of the power receiving coil 1B.
  • the received power of the power receiving coil 1 ⁇ / b> B changes according to the amount of positional deviation of the power receiving coil 1 ⁇ / b> B with respect to the power transmitting coil 1 ⁇ / b> A.
  • the power received by the power receiving coil 1B can be known. Then, as shown in FIGS. 5 and 6, if the received power of the receiving coil 1 ⁇ / b> B and the current SOC of the battery 5 are known, the charging time of the battery 5 is calculated.
  • the ECU 7 detects the position of the power transmission coil 1A via the ground side communication device 8A and the vehicle side communication device 8B. Further, the charging state detection unit 601 detects the SOC of the battery 5. The charging time calculation unit 705 calculates the magnitude of the coil position deviation from the position of the power transmission coil 1A with respect to the power reception coil 1B. Then, the charging time calculation unit 705 calculates the received power of the power receiving coil 1B from the magnitude of the position shift of the coil. Regarding the received power of the power receiving coil 1B, the ECU 7 stores a map as shown in FIG. 4, and calculates the received power of the power receiving coil 1B by referring to the detected position of the power transmitting coil 1A in the map.
  • the charging time calculation unit 705 uses what percentage of the fixed output power.
  • the received power of the power receiving coil 1B may be calculated by calculating whether the power can be received by the power receiving coil 1B or according to the magnitude of the position shift of the coil.
  • the ECU 7 sends the output power of the power transmission coil 1A set by the ECU 3 via the communication devices 8A and 8B. To detect. Then, the charging time calculation unit 705 calculates how much of the detected output power can be received by the receiving coil 1B according to the magnitude of the positional deviation of the coil, thereby receiving the received power of the receiving coil 1B. May be calculated.
  • the charging control unit 704 sets the charging power of the battery 5 from the charging power requested from the BC 6 and the receiving power of the power receiving coil 1B.
  • the charging time calculation unit 705 calculates the charging time (T 1 ) from the SOC to full charge under the charging method of the charging control unit 704 from the charging power and SOC set by the charging control unit 704. For example, when the target SOC after charging is set according to a user request or the like, the charging control unit 704 calculates the charging time (T 1 ) from the current SOC to the target SOC.
  • the charging time calculation unit 705 calculates the charging time (T 1 ) from the detected position and SOC of the power transmission coil 1A.
  • the calculated charging time (T 1 ) becomes longer as the position shift of the power transmission coil 1A with respect to the position of the power receiving coil 1B is larger, and is longer as the SOC is smaller.
  • the charging time calculation unit 705 calculates a charging time (T 2 ) when the power receiving coil 1B is disposed at a position corresponding to the position of the power transmitting coil 1A from the SOC.
  • the position where the power receiving coil 1B corresponds to the position of the power transmitting coil 1A indicates a position where the center of the power transmitting coil 1A and the center of the power receiving coil 1B overlap in the plane direction of the power transmitting coil 1A or the power receiving coil 1B.
  • 1A and the receiving coil 1B have the highest power receiving efficiency, which corresponds to an ideal parking state of the vehicle.
  • the ideal parking state of the vehicle is a state in which the power transmission coil 1A and the power reception coil 1B face each other, and the charging time is the shortest. Therefore, the charging time (T 1 ) in the case where the position of the coil is shifted under the condition that the SOC is the same value is longer than the charging time (T 2 ).
  • the charging time (T 2 ) can be calculated using the current SOC without using the 1A position information of the coil.
  • the ECU 7 when the output power from the power transmission coil 1A to the power reception coil 1B varies, the ECU 7 sends the output power of the power transmission coil 1A set by the ECU 3 via the communication devices 8A and 8B. To detect. The ECU 7 calculates the received power of the power receiving coil 1B by subtracting the power loss during power transmission in the ideal parking state of the vehicle from the output power.
  • the charging control unit 704 sets the charging power of the battery 5 from the charging power requested from the BC 6 and the receiving power of the power receiving coil 1B. Then, the charging time calculation unit 705 can calculate the charging time (T 2 ) using the charging power and the current SOC.
  • the ECU 7 calculates the time difference ( ⁇ T) between the charging time (T 1 ) and the charging time (T 2 ). Then, it is compared with a preset time difference ( ⁇ Tc).
  • the time difference ( ⁇ Tc) represents the time difference between the charging time (T 2 ) and the allowable charging time. That is, when the position of the coil is displaced with respect to the position of the coil corresponding to the charging time (T 2 ), the charging time (T 1 ) becomes longer than the charging time (T 2 ), and the position of the coil The larger the deviation, the longer the charging time (T 1 ).
  • the time difference ( ⁇ Tc) corresponds to a permissible magnitude of the coil position deviation.
  • the time difference ( ⁇ Tc) may be set so as to correspond to the charging time assumed in advance, or may be set according to the charging time requested by the occupant, and the charging time requested by the occupant. The longer the time difference ( ⁇ Tc), the greater.
  • the ECU 7 determines that the coil is misaligned to the extent that charging is not possible within the allowable charging time.
  • the occupant is notified of the charging time (T 1 ).
  • the occupant confirms the charging time (T 1 ) and determines that the battery 5 may be charged by charging the charging time (T 1 )
  • the occupant charges the battery 5 by operating a charging start button (not shown). To start.
  • the driver reparks the vehicle so that the coil misalignment is further reduced.
  • the ECU 7 determines that the coil can be charged within the allowable charging time, controls the charging control unit 704, and controls the battery 5 Start charging.
  • FIG. 10 is a flowchart showing a control procedure of the contactless charging system of this example.
  • the charging state detection unit 601 detects the SOC of the battery 5 and transmits information of the detected SOC to the ECU 7 in step S11.
  • the ECU 7 detects the position of the transmission coil 1A via the ground side communication device 8A and the vehicle side communication device 8B.
  • charging time calculation unit 705 calculates the charging time (T 1 ) according to the detected position of power transmission coil 1A and the SOC.
  • charging time calculation unit 705 calculates a charging time (T 2 ) according to the SOC.
  • step S15 the ECU 7 calculates a time difference ( ⁇ T) between the charging time (T 1 ) and the charging time (T 2 ), and compares the time difference ( ⁇ T) with a preset time ( ⁇ Tc).
  • ⁇ T time difference
  • ⁇ Tc preset time
  • the ECU 7 determines that charging can be performed within a preset allowable time
  • the charging control unit 704 receives the SOC of the battery 5 and the power reception of the power receiving coil 1B.
  • Charging power is set according to the power and supplied to the battery 5 to start charging the battery 5 (step S16).
  • step S151 the ECU 7 determines that charging cannot be performed within a preset allowable time, and the time notification unit 706 determines the charging time (T 1 ) as the navigation device.
  • the charging time (T 1 ) is notified to the occupant by displaying on the display or the like (step S151).
  • step S152 the occupant determines whether or not charging is performed according to the charging time (T 1 ). If the occupant determines that it may take a charging time (T 1 ) to charge the battery 5 and operates a charging start button (not shown) or the like to start charging, the process proceeds to step S16. .
  • the driver reparks the vehicle in step S153 and returns to step S11.
  • the time difference ( ⁇ Tc) is 1 hour
  • the charging time (T 1 ) is 9 hours
  • the charging time (T 2 ) is 7 hours
  • the occupant may be charged within 10 hours.
  • charging does not need to be re-parked in the ideal parking state, and thus charging starts in the charging time (T 1 ).
  • the vehicle cannot be finished within the desired time of the occupant because of the positional relationship of the coils during the charging time (T 1 ). .
  • the contactless charging apparatus of this example includes the power receiving coil 1B, the vehicle-side electric circuit 2B, the battery 5, the charging state detection unit 601, the communication devices 8A and 8B, and the charging time calculation unit 705.
  • the charging time (T 1 ) of the battery 5 is calculated according to the detected position of the power transmission coil 1A and the SOC.
  • the charging time (T 1 ) of the battery 5 varies depending on the position shift between the power receiving coil 1B and the power transmitting coil 1A and the SOC.
  • the charging time (T 1 ) can be calculated according to the position of the power transmission coil 1A and the SOC, for example, when notifying the occupant of the charging time (T 1 ), It is possible to know the charging time (T 1 ) according to the positional deviation.
  • the notified charging time (T 1 ) is long, the occupant can recognize that the coil misalignment is large, so that recharging is performed by reparking to reduce the coil misalignment. Time can be shortened.
  • the driver can recharge the battery because the occupant can charge the battery 5 even when the coil is misaligned and the charge time (T 1 ) is long.
  • the trouble of aligning the position of the coil can be saved, and as a result, the present example can improve the convenience for the user.
  • the allowable amount of displacement of the coil can be determined by the charging time, so that the charging time (T 1 ) and the charging time are (T s) and by comparing, for the current parking status, it is possible to grasp whether or not it is possible to end the charging in the charging time (T s).
  • charging is allowed when the charging time (T 1 ) is smaller than the charging time (T s ), and charging is not performed when the charging time (T 1 ) is longer than the charging time (T s ).
  • the driver may park the vehicle so that the positional relationship of the coils allowed according to the SOC is maintained, and this example can improve the convenience for the user.
  • the allowable charging time (T s ) may be a time set by the occupant.
  • the charging time (T 2 ) of the battery 5 when the power receiving coil 1B is arranged at a position corresponding to the position of the power transmitting coil 1A is calculated.
  • the magnitude of the position shift of the coil with respect to the center point of the power transmitting coil 1A and the power receiving coil 1B can be determined by the charging time.
  • the time notification unit 706 notifies at least the charging time (T 1 ).
  • the user can charge at the charging time (T 1 ) when there is time, and when there is no time, the user can change the coil position by re-parking the vehicle, for example.
  • the battery can be charged in a shorter time than the charging time (T 1 ).
  • the total charging time can be shortened while improving user convenience.
  • step S151 when the time difference ( ⁇ T) is larger than the time difference ( ⁇ Tc), the time notification unit 706 notifies the charging time (T 1 ), but may also notify the charging time (T 2 ).
  • the time notification unit 706 may notify at least the charging time (T 1 ).
  • the time notification unit 706 by notifying the charging time (T 1) and the charging time (T 2), the occupant charging time of the current parking status (T 1) the ideal parked state of charging time (T 2) Since the occupant can start charging in the current parking state or select reparking as necessary, this example can improve the convenience for the user.
  • the charging time calculation unit 705 corresponds to “charging time calculation means”
  • the time notification unit 706 corresponds to “charging time notification means”.
  • FIG. 11 is a block diagram showing a non-contact charging system according to another embodiment of the invention. This example is different from the second embodiment described above in that a consumption time calculation unit 707 is provided. Since the configuration other than this is the same as that of the second embodiment described above, the description thereof is incorporated as appropriate.
  • the ECU 7 includes a charge control unit 704, a charge time calculation unit 705, a time notification unit 706, and a consumption amount calculation unit 707.
  • the consumption calculation unit 707 calculates the consumption of the battery 5 that is consumed by moving the vehicle including the vehicle-side unit 200.
  • the vehicle is re-parked by the driver in step S153 of FIG. 10, and the power transmission coil 1A and the power reception coil 1B are aligned.
  • the charging time when the battery 5 is charged in the ideal parking state after re-parking is the time obtained by adding the charging time for charging the capacity for the consumption consumed by the re-parking to the charging time (T 2 ). It becomes.
  • the consumption amount calculation unit 707 calculates the consumption amount of the battery 5 to be consumed by moving the power reception coil 1B to a position corresponding to the position of the power transmission coil 1A by reparking. That is, the consumption calculation unit 707 calculates how much power the battery 5 consumes by parking the current parking state to the ideal parking state. Then, the charging time calculation unit 705 calculates a charging time (T 3 ) for charging the consumption. In other words, the charging time calculation unit 705 converts the consumption amount of the battery 5 into charging time. When the vehicle is parked and the coil is misaligned, the charging time for charging the battery 5 to full charge is the charging time (T 1 ) calculated by the charging time calculation unit 705.
  • the charging time (T 4 ) for charging the battery 5 to the full charge is charged by the charging time calculation unit 705 (the charging time ( It is calculated by adding the charging time (T 3 ) to T 2 ).
  • the charging time calculation unit 705 calculates the charging time (T 4 ) before reparking the vehicle.
  • T 4 the charging time
  • the travel trajectory from when the coil is misaligned until it is re-parked from the ideal parking state is calculated by using an optimum route calculation system or the like used in navigation or obstacle avoidance control. Therefore, the consumption calculation means 707 can detect the current SOC by the charge state detection unit 601 and calculate the consumption of the battery 5 from the SOC and the travel locus before reparking.
  • the ECU 7 compares the charging time (T 1 ) with the charging time (T 4 ).
  • the charging time is shortened when the driver reparks the vehicle to an ideal parking state. Therefore, when the charging time (T 1 ) is longer than the charging time (T 4 ), the ECU 7 notifies the occupant of the charging time (T 1 ) and the charging time (T 4 ) by the time notification unit 706.
  • control is performed so as to determine whether to start charging or to repark.
  • the charging time (T 1 ) is shorter than the charging time (T 4 )
  • the charging time when the driver reparks becomes longer. Shortening can be achieved. Therefore, when the charging time (T 1 ) is shorter than the charging time (T 4 ), the ECU 7 causes the charging control unit 704 to start charging the battery 5.
  • the charging time at the current parking state (T 1) and calculates the charging time of the ideal state in consideration of consumption of the battery 5 by re-parking (T 4), the charging time (T 1 ) and the battery 5 are charged according to the comparison result between the charging time (T 4 ).
  • FIG. 12 is a flowchart showing a control procedure of the contactless charging system of this example.
  • the control process of steps S21 to S24 is performed. Since the control processing in steps S21 to S24 is the same as the control processing in steps S11 to S14 according to the second embodiment, a description thereof will be omitted.
  • the consumption calculation unit 707 re-parks the vehicle and moves the power reception coil 1B to a position corresponding to the power transmission coil 1A, thereby calculating the consumption of the battery 5 to be consumed.
  • the charging time calculation unit 705 calculates a charging time (T 3 ) for charging the capacity corresponding to the consumption (step S25).
  • ECU 7 is a charge time calculation unit 705 calculates a charging time (T 4) by adding the charge time (T 2) to the charging time (T 3), the charging time (T 1) charging Compare the time (T 4 ).
  • step S ⁇ b> 27 charging power is set according to the SOC of the battery 5 and the received power of the power receiving coil 1 ⁇ / b> B and supplied to the battery 5, thereby starting charging of the battery 5 (step S ⁇ b> 27).
  • the unit 706 notifies the occupant of the charging time (T 1 ) and the charging time (T 4 ) by displaying the charging time (T 1 ) and the charging time (T 4 ) on the display or the like of the navigation device.
  • the occupant determines whether or not charging is performed based on the charging time (T 1 ). If the occupant determines that it may take a charging time (T 1 ) to charge the battery 5 and operates a charging start button (not shown) or the like to start charging, the process proceeds to step S27. .
  • the driver reparks the vehicle at step S263 and returns to step S21.
  • the contactless charging apparatus of this example causes the consumption calculation unit 707 to repark the vehicle having the vehicle side unit 200 and move the power receiving coil 1B to a position corresponding to the power transmitting coil 1A. Then, the consumption amount of the consumed battery 5 is calculated, and the charging time (T 3 ) for charging the capacity corresponding to the consumption amount is calculated. Thereby, the charging time in the case of reparking can be calculated in consideration of the consumption of the battery 5B consumed when reparking in the ideal parking state. Also, in this example, comparing the charging time (T 1 ) with the charging time (T 4 ), it can be seen whether it is better to repark the vehicle in order to shorten the charging time. The charging time can be shortened.
  • this example can make it recognize that charge time becomes short when it is reparked with respect to a user, and according to the charge time which a user desires, whether a user reparks or not. Can be judged. As a result, this example can improve the convenience for the user.
  • charging time (T 4 ) is longer than the charging time (T 1 )
  • charging is started at the position of the power transmission coil 1A with respect to the power receiving coil 1B when the coil is displaced.
  • the current parking state shortens the charging time rather than re-parking
  • charging can be started without re-parking, so that convenience for the user can be improved.
  • the output of the drive motor (not shown) of the vehicle may be limited to reduce battery consumption due to reparking as much as possible. Thereby, estimation of battery consumption time becomes easy. Furthermore, automating reparking makes it easier.
  • the consumption calculation unit 707 corresponds to the “consumption amount calculation means" of the present invention.
  • FIG. 13 is a block diagram showing a non-contact charging system according to another embodiment of the invention.
  • the point which provides the consumption calculation part 707, the parking time calculation part 708, and the re-parking notification part 709 differs with respect to 2nd Embodiment mentioned above.
  • the other configuration is the same as that of the second embodiment described above, and the description of the second embodiment and the description of the third embodiment are incorporated as appropriate.
  • the ECU 7 includes a charging control unit 704, a charging time calculation unit 705, a time notification unit 706, a consumption amount calculation unit 707, a parking time calculation unit 708, and a re-parking notification unit 709.
  • the parking time calculation unit 708 calculates a parking time (T p ) for parking the vehicle having the vehicle-side unit 200 from the current parking state to the ideal parking state.
  • the re-parking notification unit 709 notifies the occupant to urge re-parking under a predetermined condition.
  • the notification is performed by, for example, displaying on the display unit of the navigation device.
  • a parking time (T p ) for moving the vehicle is required. Then, the parking time (T p ) may be taken into account for the charging time for recharging the vehicle in the ideal state and charging it to full charge, based on the state where the coil is displaced.
  • the parking time calculation unit 708 calculates the parking time (T p ), and the charging time calculation unit 705 adds the charging time (T 3 ) and the parking time (T p ) to the charging time (T 2 ). In addition, the charging time (T 5 ) is calculated.
  • the charging time for charging the battery 5 to full charge is the charging time (T 1 ) calculated by the charging time calculation unit 705.
  • the charging time (T 5 ) for charging the battery 5 to full charge is charged by the charging time calculation unit 705 ( It is calculated by adding the charging time (T 3 ) and the parking time (T p ) to T 2 ).
  • the parking time calculation unit 708 calculates the parking time (T p ) before reparking the vehicle.
  • the travel trajectory from when the coil is misaligned until it is re-parked from the ideal parking state is calculated by using an optimum route calculation system or the like used in navigation or obstacle avoidance control. Therefore, the parking time calculation unit 708 can calculate the parking time (T p ) before re-parking from the travel locus and an average speed set in advance when parking.
  • the ECU 7 compares the charging time (T 1 ) with the charging time (T 5 ).
  • the charging time is shortened when the driver reparks the vehicle to an ideal parking state. Therefore, when the charging time (T 1 ) is longer than the charging time (T 5 ), the ECU 7 uses the time notification unit 706 to notify the charging time (T 1 ) and the charging time (T 5 ) while reparking. Notification means 709 notifies reparking.
  • this example shows the charging time (T 5 ) in the ideal state in consideration of the charging time (T 1 ) in the current parking state, the consumption amount of the battery 5 due to re-parking, and the parking time (T p ).
  • the battery 5 is charged in accordance with the comparison result between the charging time (T 1 ) and the charging time (T 5 ).
  • FIG. 14 is a flowchart showing a control procedure of the contactless charging system of this example.
  • the control process of steps S31 to S35 is performed. Since the control processing in steps S31 to S35 is the same as the control processing in steps S21 to S25 according to the second embodiment, a description thereof will be omitted.
  • the parking time calculation unit 708 calculates a parking time (T p ) for re-parking the vehicle in order to move the power reception coil 1B to a position corresponding to the power transmission coil 1A (step S36).
  • step S37 the ECU 7 calculates the charging time (T 5 ) by adding the charging time (T 3 ) and the parking time (T p ) to the charging time (T 2 ) by the charging time calculation unit 705, and charging.
  • the time (T 1 ) is compared with the charging time (T 5 ).
  • charging time (T 1 ) is equal to or shorter than the charging time (T 5 )
  • the charging time can be shortened by charging in the current parking state rather than re-parking.
  • charging power is set according to the SOC of the battery 5 and the received power of the power receiving coil 1B, and is supplied to the battery 5, whereby charging of the battery 5 is started (step S38).
  • the charging time (T 1 ) is longer than the charging time (T 5 ), it is possible to shorten the charging time by re-parking to the ideal parking state.
  • the unit 706 notifies the occupant of the charging time (T 1 ) and the charging time (T 5 ) by displaying the charging time (T 1 ) and the charging time (T 5 ) on the display or the like of the navigation device.
  • the re-parking notifying unit 709 notifies that the re-parking is urged.
  • step S373 the occupant determines whether or not charging is performed according to the charging time (T 1 ). If the occupant determines that it may take a charging time (T 1 ) to charge the battery 5 and operates a charging start button (not shown) or the like to start charging, the process proceeds to step S38. . If it is determined that the occupant wants to charge with a charging time (T 5 ) shorter than the charging time (T 1 ), the driver reparks the vehicle at step S374 and returns to step S31.
  • the non-contact charging apparatus of the present example uses the parking time calculation unit 708 to park the vehicle having the vehicle side unit 200 in order to move the power receiving coil 1B to a position corresponding to the power transmitting coil 1A.
  • Time (T p ) is calculated.
  • the charging time in the case of re-parking can be calculated in consideration of the parking time when re-parking in the ideal parking state.
  • comparing the charging time (T 1 ) and the charging time (T 5 ) it can be seen whether it is better to repark the vehicle in order to shorten the charging time.
  • the charging time can be shortened.
  • this example can make it recognize that charge time becomes short when it is reparked with respect to a user, and according to the charge time which a user desires, whether a user reparks or not. Can be judged. As a result, this example can improve the convenience for the user.
  • the re-parking notification unit 709 notifies that re-parking is urged.
  • this example can make it recognize that charge time becomes short when it is reparked with respect to a user, and according to the charge time which a user desires, whether a user reparks or not. Can be judged. As a result, this example can improve the convenience for the user.
  • charging time (T 5 ) is longer than the charging time (T 1 )
  • charging is started at the position of the power transmission coil 1A with respect to the power receiving coil 1B when the coil is misaligned.
  • the current parking state shortens the charging time rather than re-parking
  • charging can be started without re-parking, so that convenience for the user can be improved.
  • the parking time calculation unit 708 corresponds to the “parking time calculation unit” of the present invention
  • the repark notification unit 709 corresponds to the “reparking notification unit”.
  • FIG. 15 is a block diagram showing a non-contact charging system according to another embodiment of the invention. This example differs from the first embodiment described above in that a charging time calculation unit 705 and a time notification unit 706 are provided. Since the configuration other than this is the same as that of the second embodiment described above, the description thereof is incorporated.
  • the ECU 7 includes a charge allowable range setting unit 701, a determination unit 702, a determination result notification unit 703, a charge time calculation unit 704, a charge time calculation unit 705, and a time notification unit 706.
  • the allowable charging range setting unit 701 sets the allowable charging range according to the SOC.
  • the charging time calculation unit 705 calculates the charging time (T 1 ) until full charging from the position of the power transmission coil 1A relative to the power receiving coil 1B and the SOC. Further, the charging time calculation unit 705 calculates a charging time (T 2 ) when the power receiving coil 1B is disposed at a position corresponding to the position of the power transmitting coil 1A from the SOC.
  • the charging time (T 1 ) indicates the charging time for the coil position in the current parking state of the vehicle
  • the charging time (T 2 ) indicates the charging time for the coil position in the ideal parking state.
  • a time difference ( ⁇ Tc) is set in advance in order to compare with a time difference ( ⁇ T) between the charging time (T 1 ) and the charging time (T 2 ).
  • the time difference ( ⁇ Tc) represents the time difference between the charging time (T 2 ) and the allowable charging time.
  • the allowable charging range and the time difference ( ⁇ Tc) indicate the size of the allowable position deviation of the coil with respect to the ideal vehicle state in terms of the spatial range and time, respectively, but the time difference ( ⁇ Tc) indicates the charging difference. It is set so that the size that allows the positional deviation of the coil is wider than the allowable range. For example, in a certain value of SOC, even when the position of the power transmission coil 1A is detected outside the allowable charging range, the time difference ( ⁇ T) between the charging time (T 1 ) and the charging time (T 2 ) is greater than the time difference ( ⁇ Tc). If it is smaller, it is determined that the displacement of the coil is smaller than the allowable size, and charging is permitted.
  • FIG. 16 is a flowchart showing a control procedure of the contactless charging system of this example.
  • the charging state detection unit 601 detects the SOC of the battery 5 and transmits the detected SOC information to the ECU 7 in step S41.
  • charge allowable range setting unit 701 sets the charge allowable range according to the detected SOC.
  • the ECU 7 detects the position of the transmission coil 1A via the ground side communication device 8A and the vehicle side communication device 8B.
  • determination unit 702 determines whether or not the position of power transmission coil 1A is within the allowable charging range.
  • step S45 the charging control unit 704 sets the charging power according to the SOC of the battery 5 and the received power of the power receiving coil 1B. To start charging the battery 5.
  • step S441 the charging time calculation unit 705 determines the charging time (T 1) according to the detected position of the power transmission coil 1A and the SOC. ) Is calculated.
  • step S442 charging time calculation unit 705 calculates the charging time (T 2 ) according to the SOC.
  • step S443 the ECU 7 calculates a time difference ( ⁇ T) between the charging time (T 1 ) and the charging time (T 2 ), and compares the time difference ( ⁇ T) with a preset time ( ⁇ Tc).
  • the ECU 7 determines that charging can be performed within a preset allowable time even when the coil position is outside the allowable charging range, and the charging control unit In 704, charging power is set according to the SOC of the battery 5 and the received power of the power receiving coil 1B, and is supplied to the battery 5 to start charging the battery 5 (step S45).
  • step S444 the ECU 7 determines that charging cannot be performed within a preset allowable time, and the time notification unit 706 determines the charging time (T 1 ) as the navigation device.
  • the charging time (T 1 ) is notified to the passenger (step S444).
  • step S445 the occupant determines whether or not charging is performed based on the charging time (T 1 ). If the occupant determines that it may take a charging time (T 1 ) to charge the battery 5 and operates a charging start button (not shown) or the like to start charging, the process proceeds to step S45. . If it is determined that the occupant does not charge the battery for the charging time (T 1 ), the driver reparks the vehicle in step S446 and returns to step S41.
  • the non-contact charging device of this example includes the power receiving coil 1B, the vehicle-side electric circuit 2B, the battery 5, the charging state detection unit 601, the communication devices 8A and 8B, and the charge allowable range setting unit 701. And a charging time calculation unit 705, and in accordance with the SOC, a charging allowable range indicating the range of the position of the power transmission coil 1A that allows charging of the battery is set and detected for the position of the power receiving coil 1B.
  • the charging time (T 1 ) of the battery 5 is calculated according to the position of the power transmission coil 1A and the SOC.
  • the allowable charging range and the charging time are calculated, and the charging permission is determined based on both, so that the determination accuracy can be improved and the convenience for the user can be increased.
  • the non-contact charging system of this example calculates the charging time (T 3 ) and the charging time (T 4 ) as in the non-contact charging system according to the third embodiment, and performs steps S26, S27, and S261. It is also possible to use a system to which control processing of ⁇ 263 is added, or to calculate the charging time (T 5 ) and parking time (T p ) and add the control processing of steps S37, S38 and S371 to 373. Good.
  • DESCRIPTION OF SYMBOLS 100 ... Ground side unit 1A ... Power transmission coil 2A ... Ground side electric circuit 3 ... ECU 4 ... System power supply 8A ... Ground side communication device 200 ... Vehicle side unit 1B ... Power receiving coil 2B ... Vehicle side electric circuit 5 ... Battery 6 ... Battery controller 7 ... ECU 8B ... Vehicle side communication device 601 ... Charge state detection unit 701 ... Charge allowable range setting unit 702 ... Determination unit 703 ... Determination result notification unit 704 ... Charge control unit 705 ... Charge time calculation unit 706 ... Time notification unit 707 ... Consumption calculation Unit 708 ... parking time calculation unit 709 ... re-parking notification unit

Abstract

少なくとも磁気的結合によって送電コイル1Aからの電力を非接触で受電する受電コイル1Bを有する受電装置と、電力により充電されるバッテリ5と、バッテリ5の充電状態を検出する充電状態検出手段と、送電コイル1Aの位置を検出する位置検出手段と、充電状態検出手段により検出される充電状態と、位置検出手段により検出された送電コイル1Aの第1の位置とに応じて、バッテリ5の第1の充電時間を算出する充電時間算出手段と、を備える。

Description

非接触充電装置
 本発明は、非接触充電装置に関するものである。
 本出願は、2010年12月27日に出願された日本国特許出願の特願2010―290133に基づく優先権を主張するものであり、文献の参照による組み込みが認められる指定国については、上記の出願に記載された内容を参照により本出願に組み込み、本出願の記載の一部とする。
 車両が所定位置に停車されたときに、その停車位置近傍に予め設置され、車両に搭載されたバッテリに充電を行う充電装置と、車両の運転者によって保持され、通信機能を備えた携帯機と、携帯機と通信を行なう、車両に搭載された車両側通信機と、車両に搭載されて、車両側通信機による携帯機との通信結果に基づいて、運転者が車両から遠ざかっていると判定されたとき、バッテリの充電を開始させ、運転者が車両に接近していると判定されたとき、バッテリの充電を終了させるバッテリ充電制御部と、を備え、車両の受電部と充電装置の給電部との間で非接触状態を保ちながら電磁的な結合によって電力の授受を行いバッテリを充電する、充電システムが知られている(特許文献1)。
特開2009-89452号公報
 しかしながら、受電部の位置と送電部の位置とに基づく充電の可否を判定しておらず、ユーザが、受電部の位置に対する送電部の位置のずれを、どの程度まで許容されるか把握することができないため、車両のユーザに対して利便性がよくない、という問題があった。
 本発明が解決しようとする課題は、ユーザの利便性を向上させる非接触充電装置を提供することである。
 本発明は、バッテリの充電状態を検出する充電状態検出手段と、充電状態検出手段により検出される充電状態に応じて、当該充電状態及び送電コイルの位置に応じて、バッテリの充電時間を算出する充電時間算出手段を備えることによって上記課題を解決する。
 本発明によれば、充電状態に応じて充電許容範囲を設定し、又は、充電状態及び送電コイルの位置に応じて充電時間を算出することにより、例えば充電状態が高い場合には充電に要する電力量が低い分、充電許容範囲を広く設定することで、送電コイルの位置ずれを許容する範囲を広げることができ、または、例えば送電コイルの位置ずれにより充電時間が長い場合でも、当該充電時間を確認したユーザの判断で充電を開始させることができ、その結果として、ユーザの利便性を高めることができる。
本発明の実施形態に係る非接触充電システムのブロック図である。 図1のバッテリコントローラ及び電子制御ユニットのブロック図である。 図1の送電コイル及び受電コイルが対向した状態を示す平面図及び斜視図である。 図1の送電コイル及び受電コイルが対向した状態を示す平面図及び斜視図であり、X軸方向にずれた場合を示す図である。 図4は、図3A,3Bに示すX軸方向(Y軸方向)およびZ軸方向の受電コイル1Bに対する、受電可能な電力の特性を示す。 図1において、充電時間に対するバッテリ5の充電電力の特性を示すグラフであり、受電コイルの受電電力が3.0kWである状態で充電した場合の特性を示すグラフである。 図1において、充電時間に対するバッテリ5の充電電力の特性を示すグラフであり、受電コイルの受電電力が1.5kWである状態で充電した場合の特性を示すグラフである。 図1において、充電時間に対するバッテリ5の充電電力の特性を示すグラフであり、受電コイルの受電電力が3.0kWである状態で充電した場合の特性を示すグラフである。 図1において、充電時間に対するバッテリ5の充電電力の特性を示すグラフであり、受電コイルの受電電力が1.5kWである状態で充電した場合の特性を示すグラフである。 図2の充電許容範囲設定部により設定される充電許容範囲を説明するための図である。 図1の非接触充電システムの制御手順を示すフローチャートである。 本発明の他の実施形態にかかる非接触充電システムのバッテリコントローラ及び電子制御ユニットのブロック図である。 図9の非接触充電システムの制御手順を示すフローチャートである。 本発明の他の実施形態にかかる非接触充電システムのバッテリコントローラ及び電子制御ユニットのブロック図である。 図11の非接触充電システムの制御手順を示すフローチャートである。 本発明の他の実施形態にかかる非接触充電システムのバッテリコントローラ及び電子制御ユニットのブロック図である。 図13の非接触充電システムの制御手順を示すフローチャートである。 本発明の他の実施形態にかかる非接触充電システムのバッテリコントローラ及び電子制御ユニットのブロック図である。 図15の非接触充電システムの制御手順を示すフローチャートである。
 以下、本発明の実施形態に係る非接触充電装置を図面に基づいて説明する。
《第1実施形態》
 図1は本発明の一実施の形態を適用した非接触充電システムを示すブロック図であり、地上側ユニット100と車両側ユニット200とを備え、給電スタンドなどに設置される地上側ユニット100から、車両などに搭載される車両側ユニット200のバッテリ5等の負荷に非接触で電力を供給し、バッテリ5を充電するシステムである。以下、本例は、非接触充電システムを含む非接触充電装置を、電気自動車及び車両の駐車スペースに設けられる充電装置に、搭載する例を挙げて説明するが、本例の非接触充電システムを含む非接触充電装置は、電気自動車以外の車両に設けてもよく、また車両以外に設けてもよい。
 地上側ユニット100は、送電コイル1Aと、地上側電気回路2Aと、電子制御ユニット(ECU)3と、系統電源4と、地上側通信機8Aとを備える。系統電源4は、地上側電気回路2Aに交流電力を供給する。地上側電気回路2Aは、整流器、電力変換器、共振回路などを含む回路であり、系統電源4から送電される交流電力を交流波交流電力に変換し、送電コイル1Aに送電する。送電コイル1Aは、電磁誘導作用により非接触状態で高周波電力を受電コイル1Bに送電する。送電コイル1Aは、本例の非接触充電システムを設けた駐車場における、駐車スペースに設けられる。車両側ユニット200を備えた車両が当該駐車スペースに駐車されると、送電コイル1Aは、受電コイル1Bの下部であり、受電コイル1Bと距離を保って、位置づけられる。ECU3は、地上側ユニット100の全体を制御する制御コントローラであって、地上側電気回路2Aを制御し、例えば、送電コイル1Aから受電コイル1Bへの送電の開始及び終了を行い、送電コイル1Aから送電される電力を調整する。地上側通信機8Aは、車両側通信式8Bとの間で、通信を行い、ECU3の制御信号に基づいて、送電するタイミング、送電電力等を車両側ユニット200に送信する。また地上側通信機8Aは、送電コイル1Aの位置を、車両側ユニット200に送信する。
 車両側ユニット200は、受電コイル1Bと、車両側電気回路2Bと、バッテリ5と、電子制御ユニット(ECU)7と、バッテリコントローラ(BC)6と、車両側通信機8Bとを備える。受電コイル1Bは、電磁誘導作用により非接触状態で送電コイル1Aから送電される高周波電力を受電するコイルであって、車両側ユニット200を備えた車両の底面(シャシ)等に設けられる。車両側電気回路2Bは共振回路、整流器、ジャンクションブロック(J/B)等を含む回路であり、受電コイル1Bから送電される電力を変換し、バッテリ5に電力を供給し、バッテリ5を充電する。すなわち、車両側電気回路2Bは、バッテリ5を充電する充電器の機能を備える。バッテリ5は、複数の二次電池を接続した電池であって、車両側ユニット200を備えた車両の動力源である。BC6は、バッテリ5を管理するコントローラであって、バッテリ5の充電状態(SOC:State of Charge)、バッテリ5の残存容量等を検出する。ECU7は、受電コイル1B、車両側電気回路2B及びBC6を統括して制御するコントローラであって、BU6によって管理されているバッテリ5の状態に応じて、電気回路2Bを制御し、バッテリ5の充電を管理する。車両側通信器8Bは、地上側通信器8Aとの間で、通信を行い、送電コイル1Aの位置情報や、送電コイル1Aから送電される電力に関する情報等を受信し、ECU7に送信する。
 次に、図2を用いて、BC6とECU7の構成を説明する。図2はBC6とECU7の構成を示すブロック図である。BC6は充電状態検出部601を備える。充電状態検出部601は、バッテリ5のSOCを検出する。SOCは、バッテリ5の電圧と相関性をもっているため、充電状態検出部601はバッテリ5の電圧を検出することで、バッテリ5のSOCを検出すればよい。充電状態検出部601により検出された、バッテリ5のSOCに関する情報はECU7に送信される。
 ECU7は、充電許容範囲設定部701と、判定部702と、判定結果通知部703と、充電制御部704とを備える。充電許容範囲設定部701は、充電状態検出部601により検出されるSOCに応じて、充電許容範囲を設定する。充電許容範囲は、受電コイル1Bの位置に対して、バッテリ5の充電を許容する送電コイル1Aの位置の範囲を示している。送電コイル1Aは地上側ユニット100に設けられ、受電コイル1Bは車両ユニット200に設けられているため、受電コイル1Bに対する送電コイル1Aの相対的な位置は、車両の駐車位置に応じて変わる。本例は、車両が駐車スペースに駐車された場合における、バッテリ5の充電を許容する、コイルの位置関係の判定基準として、後述するように、充電許容範囲を設定する。
 判定部702は、受電コイル1Bの位置に対する送電コイル1Aの位置に応じて、バッテリ5の充電を許容するか否かの判定を行い、車両が駐車されている状態で、送電コイル1Aの位置が充電許容範囲内にある場合には充電を許容し、送電コイル1Aの位置が充電許容範囲外にある場合には充電を許容しない。判定結果通知部703は、判定部702による判定結果を、例えば、インストメンタルパネルに設けられるナビゲーションシステム(図示しない)や音声等によりユーザに表示する。
 ここで、バッテリ5の充電について、充電するための最適な電力はSOCに応じて予め設定されており、満充電に近づくにつれて小さくなるように設定されている。そして、BC6は、バッテリ5のSOCを管理しており、予め設定された充電方式に基づき、充電制御部704に対して、充電のために必要な電力を要求する。そして、充電制御部704は、BC6から要求される電力に応じて、バッテリ5の充電の際に、車両側電気回路2Bからバッテリ5に出力される電力を制御し、バッテリ5のSOCが高くなるにつれて、段階的に、車両側電気回路2Bの出力電力を下げて、バッテリ5の充電電力を制限する。具体的には、充電制御部704の下、車両側電気回路2Bの充電器による、バッテリ5の充電は、例えば、定電流充電で開始し、多段定電流充電又は多段定電圧充電に切り換える方式で行われる。
 次に、図3及び図4を用いて、送電コイル1Aと受電コイル1Bとの位置関係により、受電コイル1Aにより受電される電力が変化することを説明する。図3A及び図3Bは、送電コイル1A及び受電コイル1Bが対向した状態を示す平面図a)と、斜視図b),c)である。図3A及び図3Bにおいて、X軸及びY軸は、送電コイル1A及び受電コイル1Bの平面方向を示し、Z軸は高さ方向を示す。なお、本説明のために、送電コイル1A及び受電コイル1Bは共に同じ円形形状とされているが、本例は必ずしも円形にする必要はなく、また送電コイル1Aと受電コイル1Bとを同一の形状にする必要もない。
 いま、送電コイル1Aを地上に、受電コイル1Bを車載したとした場合に、図3Aに示すように、平面方向であるX軸、Y軸方向において、受電コイル1Bが送電コイル1Aに合致するように車両が駐車場に駐車されればよいが、運転者の技量により、図3Bに示すように、送電コイル1Aと受電コイル1Bとの相対的な位置が、平面方向において、ずれてしまうことがある。また、車両の高さは、車両の種類や積荷量によって異なるため、送電コイル1Aと受電コイル1Bとの高さ方向Zの距離は車高によっても異なる。
 地上側電気回路2Aから送電コイル1Aに供給される電力を一定にする場合に、受電コイル1Bにより受電される電力の効率は、受電コイル1Bが送電コイル1Aに合致する状態(図3Aの状態に相当)が最も高く、受電コイル1Bの中心点が送電コイル1Aの中心点から遠くなると低くなってしまう。
 図4は、図3A,3Bに示すX軸方向(Y軸方向)およびZ軸方向の受電コイル1Bに対する、受電可能な電力の特性を示す。なお、地上側電気回路2Aから送電コイル1Aに供給される電力は一定とする。図4に示すように、送電コイル1Aと受電コイル1Bの位置を変えず、送電コイル1Aと受電コイル1Bとの距離を、Z軸方向に大きくした場合には、送電コイル1Aと受電コイル1Bとの間隔が広くなるため、受電コイル1Bの受電電力は下がる。
 受電コイル1Bは車両に固定されており、受電コイル1Bと送電コイル1AとのZ方向の距離は、車両の駐車位置に対して大きく変化せず、Z方向の距離(Z)で固定されている。Z方向の距離をZに固定した状態で、図4の点線は、受電コイル1Bで受電される最大電力を示している。平面方向において、送電コイル1Aの中心点と受電コイル1Bの中心点との位置ずれがなく、送電コイル1Aと受電コイル1Bが正対した状態である場合(図3Aに相当)には、受電コイル1Bで受電される最大電力は、3.0kWとなる(図4の点A)。受電コイル1Bの中心点が受電コイル1Bの中心点からX方向(またはY方向)にずれて、送電コイル1Aと受電コイル1BとのX方向の距離がXになると(図3Bに相当)、受電コイル1Bで受電される最大電力は下がり、1.5kWとなる(図4の点B)。さらに、受電コイル1Bの中心点が受電コイル1Bの中心点からX方向(またはY方向)にずれて、送電コイル1Aと受電コイル1BとのX方向の距離がXになると、受電コイル1Bで受電される電力はさらに下がり、1.0kWとなる(図4の点C)。
 次に、図5を用いて、受電コイル1Bの受電電力とバッテリ5の充電時間について説明する。図5A及び図5Bは、充電時間に対するバッテリ5の充電電力の特性を示すグラフであって、図5Aは受電コイル1Bの受電電力が3.0kWである状態で充電した場合の特性を、図5Bは受電コイル1Bの受電電力が1.5kWある状態で充電した場合の特性を示す。バッテリ5のSOCが10%の状態から充電を開始し、バッテリ5のSOCが100%になった時点で充電を終了させる。図5Aの充電の特性は、図3Aに示すコイルの位置関係であって、図4の点Aにおける電力で充電を行った場合の特性を示しており、図5Bの充電の特性は、図3Bに示すコイルの位置関係であって、図4の点Bにおける電力で充電を行った場合の特性を示している。
 また、充電制御部704は、バッテリ5のSOCが80%になるまでは、バッテリ5の充電電力を3.0kWにし、バッテリ5のSOCが80%になるとバッテリ5の充電電力を2.5kWに下げ、バッテリ5のSOCが90%になるとバッテリ5の充電電力を1.5kWに下げ、バッテリ5のSOCが94%になるとバッテリ5の充電電力を1.2kWに下げ、バッテリ5のSOCが96%になるとバッテリ5の充電電力を1.0kWに下げ、バッテリ5のSOCが98%になるとバッテリ5の充電電力を0.8kWに下げて、バッテリ5を充電する。
 図5Aに示すように、受電コイル1Bの最大の受電電力が3.0kWである状態で、SOCが10%の状態から充電を開始すると、充電制御部704は受電コイル1Bの最大の受電電力(3.0kW)を充電電力としてバッテリ5に供給して充電し、上記の充電制御に従って、SOCに応じて段階的に充電電力を下げる。充電時間について、SOCが10%から80%になるまでに必要な時間は6hであり、SOCが80%から90%になるまでに必要な時間は0.5hであり、SOCが90%から94%になるまでに必要な時間は0.5hであり、SOCが94%から96%になるまでに必要な時間は0.5hであり、SOCが96%から98%になるまでに必要な時間は0.5hであり、SOCが98%から100%になるまでに必要な時間は0.5hとなる。そして、バッテリ5のSOCが10%の状態から満充電まで充電するために必要な充電時間は、8.5h(=6+0.5+0.5+0.5+0.5+0.5)となる。
 一方、図5Bに示すように、受電コイル1Bの最大の受電電力が1.5kWである状態で、SOCが10%の状態から充電を開始すると、充電制御部704は受電コイル1Bの最大の受電電力(1.5kW)を充電電力としてバッテリ5に供給して、バッテリ5を充電する。上記のとおり、SOCが94%になるまでは、本例のバッテリ5は1.5kW以上の電力で充電することができる。しかし、図3Bに示すコイルの位置の状態では、受電コイル1Bで受電される最大電力は1.5kWであるため、バッテリ5のSOCが94%になるまでは、充電電力を1.5kWにして充電し、バッテリ5のSOCが94%に達した時から、上記と同様に、段階的に充電電力を下げる。
 充電時間について、SOCが10%から80%になるまでに必要な時間は12hであり、SOCが80%から90%になるまでに必要な時間は0.835hであり、SOCが90%から94%になるまでに必要な時間は0.5hであり、SOCが94%から96%になるまでに必要な時間は0.5hであり、SOCが96%から98%になるまでに必要な時間は0.5hであり、SOCが98%から100%になるまでに必要な時間は0.5hとなる。そして、バッテリ5のSOCが10%の状態から満充電まで充電するために必要な充電時間は、14.835h(=12+0.835+0.5+0.5+0.5+0.5)となる。
 すなわち、図3Bに示すコイルの位置状態では、図3Aに示すコイルの位置状態と比較して、受電コイル1Bで受電される最大電力が小さいため、SOC10%から満充電まで充電させるための充電時間が長くなる。
 次に、図6を用いて、受電コイル1Bの受電電力とバッテリ5の充電時間について説明する。図5と異なる点は、SOCが90%の時点から充電を開始する点である。図6A及び図6Bは、充電時間に対するバッテリ5の充電電力の特性を示すグラフであって、図6Aは受電コイル1Bの受電電力が3.0kWである状態で充電した場合の特性を、図6Bは受電コイル1Bの受電電力が1.5kWある状態で充電した場合の特性を示す。図6Aの充電の特性は、図3Aに示すコイルの位置関係であって、図4の点Aにおける電力で充電を行った場合の特性を示しており、図6Bの充電の特性は、図3Bに示すコイルの位置関係であって、図4の点Bにおける電力で充電を行った場合の特性を示している。
 図6に示す例では、バッテリ5のSOCが90%の状態から充電を行うため、充電制御部704は、バッテリ5のSOCが94%になるまでは、バッテリ5の充電電力を1.5kWにし、バッテリ5のSOCが94%になるとバッテリ5の充電電力を1.2kWに下げ、バッテリ5のSOCが96%になるとバッテリ5の充電電力を1.0kWに下げ、バッテリ5のSOCが98%になるとバッテリ5の充電電力を0.8kWに下げて、バッテリ5を充電する。
 図6Aに示すように、受電コイル1Bの最大の受電電力が3.0kWである状態で、SOCが90%の状態から充電を開始すると、充電制御部704は受電コイル1Bの最大の受電電力(3.0kW)を充電電力(1.5kW)に絞って、バッテリ5に供給して充電し、上記の充電制御に従って、SOCに応じて段階的に充電電力を下げる。充電時間について、SOCが90%から94%になるまでに必要な時間は0.5hであり、SOCが94%から96%になるまでに必要な時間は0.5hであり、SOCが96%から98%になるまでに必要な時間は0.5hであり、SOCが98%から100%になるまでに必要な時間は0.5hとなる。そして、バッテリ5のSOCが90%の状態から満充電まで充電するために必要な充電時間は、2.0h(=0.5+0.5+0.5+0.5)となる。
 一方、図6Bに示すように、受電コイル1Bの最大の受電電力が1.5kWである状態で、SOCが90%の状態から充電を開始すると、充電制御部704は受電コイル1Bの最大の受電電力(1.5kW)を充電電力としてバッテリ5に供給して充電し、上記の充電制御に従って、SOCに応じて段階的に充電電力を下げる。充電時間について、SOCが90%から94%になるまでに必要な時間は0.5hであり、SOCが94%から96%になるまでに必要な時間は0.5hであり、SOCが96%から98%になるまでに必要な時間は0.5hであり、SOCが98%から100%になるまでに必要な時間は0.5hとなる。そして、バッテリ5のSOCが90%の状態から満充電まで充電するために必要な充電時間は、2.0h(=0.5+0.5+0.5+0.5)となる。
 図3Bに示すコイルの位置状態では、図3Aに示すコイルの位置状態と比較して、受電コイル1Bで受電される最大電力が小さくなる。しかし、受電コイル1Bの最大の受電電力が、バッテリ5の充電開始時の最大充電電力以上のため、図3Bに示すようにコイルの位置ずれが生じていても、充電時間は変わらない。
 すなわち、SOCが満充電に近い場合には、図5及び図6に示すように、充電に必要な電力は小さくてもよいため、SOCが満充電に近いほど、コイルの位置ずれを容認してもよい。
 次に、本例の非接触充電システムにおける制御内容を、図2及び図7を用いて説明する。図7は、充電許容範囲を説明するための概要図であって、受電コイル1Bの平面図に対応している。
 本例の非接触充電システムは、車両を、地上側ユニット100を備えた駐車スペースに駐車させる時に作動する。まず、充電状態検出部601はバッテリ5のSOCを検出し、検出されたSOCに関する情報をECU7に送信する。そして、充電許容範囲設定部701は、バッテリ5のSOCに応じて、以下のように、充電許容範囲を設定する。充電許容範囲設定部701は、送電コイル1A又は受電コイル1Bの主面方向に沿った充電許容範囲を設定する。充電許容範囲は、受電コイル1Bを中心とした、仮想的な円状の範囲であって、充電許容範囲内に送電コイル1Aを含む場合に充電を許可すると判定するための範囲である。また充電許容範囲は、予め想定されている充電時間内で充電を終えるように、設定されている。図5Bに示すように、送電コイル1Aと受電コイル1Bとの位置ずれが大きい場合でも、受電コイル1Bが電力を受電できる状態であれば、バッテリ5を充電することができる。しかし、バッテリ5のSOCが小さい状態から満充電まで充電させる場合には、充電時間が長くなってしまう。そのため、充電許容範囲は、バッテリ5のSOCに応じて、予め想定されている充電時間内で充電を終えるために、許容されるコイルの位置ずれを、水平方向(駐車スペースに平行な方向)の領域として、設定されている。
 具体的には図7に示すように、充電許容範囲設定部701は、バッテリ5のSOCが0%から80%未満である場合には、エリア(a)を充電許容範囲に設定し、バッテリ5のSOCが80%以上で90%未満である場合には、エリア(b)を充電許容範囲に設定し、バッテリ5のSOCが90%以上である場合には、エリア(a)を充電許容範囲に設定する。すなわち、充電許容範囲設定部701は、SOCが大きいほど充電許容範囲を広く設定することで、SOCが高いほど許容される、コイルの位置ずれが大きくなる。
 充電許容範囲設定部701により、充電許容範囲が設定されると、ECU7は、当該充電許容範囲を図示しないナビゲーション装置及び車載カメラを用いた駐車支援システムを利用して、ナビゲーション装置のディスプレイに、当該充電許容範囲を表示する。車両の運転手は、送電コイル1Aの位置が充電許容範囲内に含まれるように、当該ディスプレイを見て駐車位置を合わせることで、充電に適した位置に駐車させることができる。
 そして駐車後、ECU7は、通信器8A、8Bを介して、送電コイル1Aの位置を検出する。なお、本例において、送電コイル1Aの位置は、地上側通信機8A及び車両通信機8Bで行われる通信により検出されるが、例えば送電コイル1A又は受電コイル1Bに位置センサを設けることで検出してもよい。あるいは、地上側ユニットの100に信号送信用のアンテナを設け、車両側ユニット200にレシーバを設け、当該アンテナから送信される信号の通信状態から、コイルの位置を検出してもよい。
 通信器8A、8Bを介して、送電コイル1Aの位置が検出されると、判定部702は、送電コイルの位置が充電許容範囲内にあるか否かを判定する。そして、送電コイルの位置が充電許容範囲内にある場合には、判定部702は、バッテリ5を充電することができる、と判定する。判定部702により充電を許容する判定がされた場合には、充電制御部704は、充電状態検出部601により検出されたSOCに応じて、受電コイル1Bの受電電力を、バッテリ5の充電に適した充電電力になるよう制御して、バッテリ5に供給する。すなわち、受電コイル1Bの受電電力が充電に適した充電電力より大きい場合には、充電制御部704は受電電力を絞って、充電に適した充電電力をバッテリ5に供給する。一方、受電コイル1Bの受電電力が充電に適した充電電力より小さい場合には、充電制御部704は、受電コイル1Bの受電電力を、充電電力として、バッテリ5に供給する。判定部702により充電を許容しない判定がされた場合には、判定結果通知部703は、当該判定の結果を通知し、運転手に対して再駐車を促す旨の通知をしてもよい。
 充電状態検出部601は、バッテリ5の充電中もSOCを検出し、充電制御部704は、SOCが高くなるにつれて、充電電力を段階的に下げる。そして、バッテリ5が満充電になった時点で、充電制御部704はバッテリ5への電力供給を終了する。これにより、本例の非接触充電システムにおいて、バッテリ5が充電される。
 次に、図8を用いて、本例の非接触充電システムの制御手順を説明する。図8は、本例の非接触充電システムの制御手順を示すフローチャートである。本例の非接触充電システムによる制御が開始されると、ステップS1にて、充電状態検出部601は、バッテリ5のSOCを検出し、ECU7に検出したSOCの情報を送信する。ステップS2にて、充電許容範囲設定部701は検出したSOCに応じて、充電許容範囲を設定する。ステップS3にて、ECU7は、地上側通信器8A及び車両側通信器8Bを介して、送信コイル1Aの位置を検出する。なお、本例の非接触充電システムにおいて、例えば車両が駐車スペースに近づいた場合や車両が駐車スペースに駐車され始めた場合に、地上側通信器8Aは、車両側通信器8Bと通信を開始し、送信コイル1Aの位置を検出してもよい。
 ステップS4にて、判定部702は、送電コイル1Aの位置が充電許容範囲内にあるか否かを判定する。送電コイル1Aの位置が充電許容範囲内にない場合には、判定部702は充電を許容せず、ステップS41にて、判定結果通知部703は、再駐車を促すための表示を乗員に対して行うことで、充電を許容しない旨の判定結果を乗員に通知し、ステップS1に戻る。送電コイル1Aの位置が充電許容範囲内にある場合には、判定部702は充電を許容し、ステップS5に遷る。
 ステップS5にて、充電制御部704は、バッテリ5のSOC及び受電コイル1Bの受電電力に応じて、充電電力を設定し、バッテリ5に供給することにより、バッテリ5の充電を開始する。また判定結果通知部703は、充電を開始することを乗員に対して通知することで、充電を許容する旨の判定結果を乗員に通知する。そして、バッテリ5のSOCが満充電の状態になり、本例の非接触充電システムによる制御が終了する。
 上記のように、本例の非接触充電装置は、受電コイル1Bと、車両側電気回路2Bと、バッテリ5と、充電状態検出部601と、充電許容範囲設定部701とを備え、SOCに応じて、受電コイル1Bの位置に対して、バッテリの充電を許容する送電コイル1Aの位置の範囲を示す充電許容範囲を設定する。バッテリ5を充電するために許容される、受電コイル1Bと送電コイル1Aとの位置ずれは、バッテリ5のSOCに応じて変わる。本例は、SOCに応じて充電許容範囲を設定するため、当該位置ズレを許容する範囲を定めることができ、例えば、コイルの位置ずれが充電許容範囲外であれば、コイルの位置ずれが充電許容範囲内に収まるように、運転手は車両を駐車させればよいため、ユーザに対する利便性を高めることができる。また、本例は、例えば、ナビゲーション装置における駐車支援システムを利用して、ナビゲーション装置のディスプレイに充電許容範囲を表示させる場合には、運転手は当該充電許容範囲を見ながら車両を駐車することで、送電コイル1Aの位置に対して、バッテリ5の充電を許容する範囲内に、受電コイル1Bの位置を合わせることができる。その結果として、本例の非接触装置は、ユーザに対する利便性を高めることができる。
 また本例において、充電許容範囲設定部701は、SOCが高いほど充電許容範囲を広く設定する。SOCが高いバッテリ5を充電するための最適な充電電力は、SOCが低いバッテリ5の充電電力より小さくなる。そのため、SOCが高い場合には、受電コイル1Bの受電電力が小さくてもよいため、コイルの位置ずれを許容する範囲が広くなる。本例では、SOCが高いほど充電許容範囲を広く設定するため、SOCに応じて、充電する際に許容される、コイルの位置ずれの範囲を設定することができ、その結果として、ユーザの利便性を高めることができる。
 また本例において、送電コイルの位置を検出ための通信機8A、8Bと、判定部702と、判定部702の判定結果を通知する判定結果通知部703と、を備え、判定部702は、送電コイルの位置が充電許容範囲内にある場合に、判定部702はバッテリ5の充電を許容する、と判定する。これにより、乗員は判定結果通知部703により通知される判定結果を見ることで、現在の駐車状態で、充電をすることができるか否か確認することができる。またコイルの位置ずれが大きく、充電に適さない状態に車両を駐車した場合には、乗員は判定結果通知部703の通知により当該状態を確認することができ、その結果として本例はユーザの利便性を高めることができる。また、コイルの位置ずれが大きく、車両を充電に適さない状態に駐車した場合には、受電コイル1Bにより受電される電力が小さいため、バッテリ5を満充電まで充電することができない、あるいは、バッテリ5を満充電にするための充電時間が長時間かかってしまう。本例では、コイルの位置ずれが大きく充電に適さない場合には、乗員は判定結果通知部703の通知により、充電に適さない状態を確認することができるため、乗員が充電に適した状態になるよう再駐車させることができ、その結果として、充電時間の短縮化を図ることができる。
 なお本例は、充電許容範囲を円状にしたが、必ずしも円状である必要はなく、四角形の形状にしてもよい。また、本例は充電許容範囲を二次元の平面とするが、三次元の立体的な領域を充電許容範囲としてもよい。
 また本例は、SOCが高いほど充電許容範囲を広く設定するために、図7に示すように、SOC(80%)及びSOC(90%)を境界にして、複数の充電許容範囲を設定するが、必ずしも境界をSOC(80%)及びSOC(90%)にする必要はなく、SOCに応じて、充電許容範囲を連続的に変化させもよい。
 また本例は、車両側システムの制御部分をBC6及びECU7に分けているが、BC6及びECU7を1つのコントローラにしてもよい。
 また充電許容範囲は、予め想定されている充電時間内で充電を終えるように、予め設定されているが、乗員が要求する充電時間に応じて充電許容範囲の広さを設定してもよい。例えば運転手が車両を駐車し、次の運転まで時間がある場合には、充電時間は長くてもよい。また、充電時間が長くてもよい場合には、図5及び図6に示すように、受電コイル1Bの受電電力は小さくてもよいため、充電許容範囲を広くとってもよい。すなわち、乗員が所望の充電時間を設定し、充電許容範囲設定部701は、当該充電時間が長い場合には、充電許容範囲を広く設定し、当該充電時間が短い場合には、充電許容範囲を狭く設定する。これにより、本例は、乗員が要求する充電時間とSOCに応じて、コイルの位置ずれを許容する範囲を設定することができるため、ユーザの利便性を高めることができる。
 なお、本例において、車両側電気回路2Bはサーミスタ等の温度検出回路を有し、バッテリ5の温度を検出し、充電許容範囲設定部701は、バッテリ5の検出温度に応じて、充電許容範囲を設定してもよい。また、車両側電気回路2Bはサーミスタ等の温度検出回路を有し、車両内の温度を検出し、充電許容範囲設定部701は、車両内の検出温度に応じて、充電許容範囲を設定してもよい。これにより、バッテリ5の温度又は車内温度に応じて、充電の許容を適切に判定することができ、ユーザの利便性を高めることができる。
 上記受電コイル1B及び車両側電気回路2Bは本発明の「受電装置」に相当し、充電状態検出部601は「充電状態検出手段」、充電許容範囲設定部701は「充電許容範囲設定手段」に、判定部702は「判定手段」に、判定結果通知部703は「判定結果通知手段」に、地上側通信器8A及び車両側通信器8Bは「位置検出手段」に、充電制御部704は「充電制御手段」に、車両側電気回路2Bに含まれる温度検出回路が「温度検出手段」に相当する。
《第2実施形態》
 図9は、発明の他の実施形態に係る非接触充電システムを示すブロック図である。本例では上述した第1実施形態に対して、充電時間算出部705及び時間通知部706を設ける点が異なる。これ以外の構成は上述した第1実施形態と同じであるため、その記載を適宜、援用する。
 図9に示すように、ECU7は、充電制御部704と、充電時間算出部705と、時間通知部706とを備える。充電時間算出部705は、充電状態検出部601により検出されるSOCと、受電コイル1Bの位置に対する送電コイルの位置とに応じて、バッテリ5を充電する充電時間(T)を算出する。図4に示すように、受電コイル1Bの受電電力は、送電コイル1Aに対する受電コイル1Bの位置ずれの大きさに応じて変化する。そのため、送電コイル1Aに対する受電コイル1Bの位置ずれの大きさが検出できれば、受電コイル1Bの受電電力が分かる。そして、図5及び図6に示すように、受電コイル1Bの受電電力と、バッテリ5の現在のSOCとが分かれば、バッテリ5の充電時間が算出される。
 本例では、まず車両が所定の駐車スペースに駐車されると、ECU7は地上側通信機8Aと車両側通信機8Bを介して、送電コイル1Aの位置を検出する。また充電状態検出部601は、バッテリ5のSOCを検出する。充電時間算出部705は、受電コイル1Bに対する送電コイル1Aの位置から、コイルの位置ずれの大きさを算出する。そして、充電時間算出部705は、コイルの位置ずれの大きさから、受電コイル1Bの受電電力を算出する。なお、受電コイル1Bの受電電力について、ECU7は、図4に示すようなマップを格納し、検出した送電コイル1Aの位置を当該マップに参照させることで、受電コイル1Bの受電電力を算出する。
 地上側ユニット100において、送電コイル1Aから受電コイル1Bへの出力電力が固定化されている場合には、充電時間算出部705は、予め固定からされている出力電力のうち、何%の電力を受電コイル1Bにより受電できるか、コイルの位置ずれの大きさに応じて算出することで、受電コイル1Bの受電電力を算出すればよい。一方、地上側ユニット100において、送電コイル1Aから受電コイル1Bへの出力電力が可変する場合には、ECU7は、ECU3により設定される送電コイル1Aの出力電力を、通信機8A及び8Bを介して検出する。そして、充電時間算出部705は、検出した出力電力のうち、何%の電力を受電コイル1Bにより受電できるか、コイルの位置ずれの大きさに応じて算出することで、受電コイル1Bの受電電力を算出すればよい。
 次に、充電制御部704は、BC6から要求される充電電力と受電コイル1Bの受電電力とから、バッテリ5の充電電力を設定する。充電時間算出部705は、充電制御部704により設定される充電電力及びSOCから、充電制御部704の充電方式の下、当該SOCから満充電までの充電時間(T)を算出する。なお、例えばユーザの要求等により目標となる充電後のSOCが設定されている場合には、充電制御部704は、現在のSOCから目標となるSOCまでの充電時間(T)を算出する。
 これにより、充電時間算出部705は、検出された、送電コイル1Aの位置及びSOCから、充電時間(T)を算出する。算出された充電時間(T)は、受電コイル1Bの位置に対する送電コイル1Aの位置のずれが大きいほど、長くなり、SOCが小さいほど、長くなる。
 また充電時間算出部705は、SOCから、受電コイル1Bが送電コイル1Aの位置と対応する位置に配置される場合の充電時間(T)を算出する。受電コイル1Bが送電コイル1Aの位置と対応する位置とは、送電コイル1A又は受電コイル1Bの平面方向において、送電コイル1Aの中心と受電コイル1Bの中心とが重なる位置を示しており、送電コイル1Aと受電コイル1Bの受電効率が最も高い状態であって、車両の理想の駐車状態に相当する。また、車両の理想の駐車状態とは、送電コイル1Aと受電コイル1Bとが正対した状態であり、充電時間が最短になる状態である。そのため、SOCを同じ値の条件の下、コイルの位置ずれが生じている場合の充電時間(T)は、充電時間(T)より長くなる。
 受電コイル1Bが送電コイル1Aの位置と対応する位置に配置された場合(車両の理想の駐車状態)に、送電コイル1Aから受電コイル1Bに送電する際の電力損失は予め決まっている。そのため、送電コイル1Aから受電コイル1Bへの出力電力が固定化されている場合には、車両の理想の駐車状態における、受電コイル1Bの受電電力は予め決まるため、充電時間算出部705は、送電コイルの1Aの位置情報を用いずに、現在のSOCを用いて、充電時間(T)を算出することができる。
 また、地上側ユニット100において、送電コイル1Aから受電コイル1Bへの出力電力が可変する場合には、ECU7は、ECU3により設定される送電コイル1Aの出力電力を、通信機8A及び8Bを介して検出する。ECU7は、当該出力電力から、車両の理想の駐車状態における、送電する際の電力損失を差し引くことで、受電コイル1Bの受電電力を算出する。充電制御部704は、BC6から要求される充電電力と受電コイル1Bの受電電力とから、バッテリ5の充電電力を設定する。そして、充電時間算出部705は、充電電力と、現在のSOCを用いて、充電時間(T)を算出することができる。
 充電時間算出部705により、充電時間(T)及び充電時間(T)が算出されると、ECU7は、充電時間(T)と充電時間(T)との時間差(ΔT)を算出し、予め設定されている時間差(ΔTc)と比較する。時間差(ΔTc)は、充電時間(T)に対して許容される充電時間との時間差を表している。すなわち、充電時間(T)に対応するコイルの位置に対して、コイルの位置ずれが生じている場合には、充電時間(T)は充電時間(T)より長くなり、コイルの位置ずれが大きいほど、充電時間(T)は長くなる。そのため、時間差(ΔTc)は、許容される、コイルの位置ずれの大きさに相当する。なお、時間差(ΔTc)は、予め想定されている充電時間と対応するよう設定してもよく、また乗員により要求された充電時間に応じて設定してもよく、乗員により要求された充電時間が長いほど、時間差(ΔTc)は大きくなる。
 そして、時間差(ΔT)が時間差(ΔTc)より大きい場合には、ECU7は、許容された充電時間内で充電できない程度にコイルの位置ずれが生じている、と判断し、時間通知部706にて、乗員に充電時間(T)を通知する。乗員は、充電時間(T)を確認し、充電時間(T)の充電によりバッテリ5を充電させてもよいと判断する場合には、図示しない充電開始ボタン等を操作することで、充電を開始する。一方、乗員は、充電時間(T)の充電によりバッテリ5を充電しないと判断する場合には、よりコイルの位置ずれが小さくするように、運転手は車両を再駐車する。
 時間差(ΔT)が時間差(ΔTc)より大きい場合には、ECU7は、コイルの位置ずれが許容された充電時間内で充電できる程度である、と判断し、充電制御部704を制御し、バッテリ5の充電を開始する。
 これにより、本例は、送電コイル1Aの位置とSOCとに応じて、充電時間(T)を算出し、充電時間(T)と充電時間(T)との比較結果に応じて、充電時間(T)を通知し、バッテリ5を充電する。
 次に、図10を用いて、本例の非接触充電システムの制御手順を説明する。図10は、本例の非接触充電システムの制御手順を示すフローチャートである。本例の非接触充電システムによる制御が開始されると、ステップS11にて、充電状態検出部601は、バッテリ5のSOCを検出し、検出したSOCの情報をECU7に送信する。ステップS12にて、ECU7は、地上側通信器8A及び車両側通信器8Bを介して、送信コイル1Aの位置を検出する。ステップS13にて、充電時間算出部705は、検出された送電コイル1Aの位置とSOCとに応じて、充電時間(T)を算出する。ステップS14にて、充電時間算出部705は、SOCに応じて、充電時間(T)を算出する。
 ステップS15にて、ECU7は、充電時間(T)と充電時間(T)との時間差(ΔT)を算出し、時間差(ΔT)と予め設定されている時間(ΔTc)とを比較する。時間差(ΔT)が時間(ΔTc)以下である場合には、ECU7は、予め設定されている許容時間内で充電できると判断し、充電制御部704により、バッテリ5のSOC及び受電コイル1Bの受電電力に応じて、充電電力を設定し、バッテリ5に供給することにより、バッテリ5の充電を開始する(ステップS16)。
 一方、時間差(ΔT)が時間差(ΔTc)より大きい場合には、ECU7は、予め設定されている許容時間内で充電できないと判断し、時間通知部706により、充電時間(T)をナビゲーション装置のディスプレイ等に表示させることで、乗員に充電時間(T)を通知する(ステップS151)。ステップS152にて、乗員は、充電時間(T)による充電を行うか否かを判断する。乗員が、バッテリ5を充電させるために、充電時間(T)かかってもよいと判断し、充電開始ボタン(図示しない)等を操作し、充電を開始した場合には、ステップS16に遷る。乗員が充電時間(T)による充電を行わないと判断した場合には、ステップS153にて、運転手は車両を再駐車させて、ステップS11に戻る。例えば、時間差(ΔTc)を1時間として、充電時間(T)が9時間であって、充電時間(T)が7時間である場合において、乗員が10時間以内で充電されればよい、と考える時には、車両を理想の駐車状態に再駐車させる必要はないため、本例は充電時間(T)で充電を開始する。一方、乗員が8時間以内で充電したい、と考える時には、充電時間(T)のコイルの位置関係では、充電を乗員の所望時間内に終えることができないため、車両を再駐車させることになる。
 そして、バッテリ5のSOCが満充電の状態になり、本例の非接触充電システムによる制御が終了する。
 上記のように、本例の非接触充電装置は、受電コイル1Bと、車両側電気回路2Bと、バッテリ5と、充電状態検出部601と、通信機8A、8Bと、充電時間算出部705とを備え、検出された送電コイル1Aの位置と、SOCとに応じて、バッテリ5の充電時間(T)を算出する。バッテリ5の充電時間(T)は、受電コイル1Bと送電コイル1Aとの位置ずれとSOCに応じて変わる。本例は、送電コイル1Aの位置とSOCとに応じて充電時間(T)を算出することができるため、例えば充電時間(T)を乗員に対して通知する場合には、乗員はコイルの位置ずれに応じた充電時間(T)を知ることができる。また、通知された充電時間(T)が長い場合には、乗員は、コイルの位置ずれが大きいことを認識することができるため、再駐車させてコイルの位置ずれを小さくすることで、充電時間の短縮化を図ることができる。また乗員にとって、充電時間に余裕が有る場合には、コイルの位置ずれが大きく充電時間(T)が長い場合でも、乗員はバッテリ5を充電させることができるため、運転手は車両を再駐車させてコイルの位置を合わせる手間を省くことができ、その結果として、本例はユーザの利便性を高めることができる。
 また、例えば、許容する充電時間(T)が設定されている場合には、許容されるコイルの位置ずれの大きさを充電時間により定めることができるため、充電時間(T)と充電時間(T)とを比較することで、現在の駐車状態で、充電時間(T)内に充電を終わらせることができるか否かを把握することができる。具体的には、充電時間(T)が充電時間(T)より小さい場合には充電が許容され、充電時間(T)が充電時間(T)より大きい場合には充電がされない。そして、判定結果に応じて、SOCに応じて許容されるコイルの位置関係が保たれるように、運転手は車両を駐車させればよく、本例はユーザの利便性を高めることができる。またコイルの位置ずれによる充電時間(T)が許容する充電時間(T)外であれば、再駐車しコイルの位置ずれを小さくすることで、総充電時間の短縮化を図ることができる。なお、許容する充電時間(T)は、乗員により設定される時間であってもよい。
 また、本例は、受電コイル1Bが送電コイル1Aの位置と対応する位置に配置された場合のバッテリ5の充電時間(T)を算出する。本例は充電時間(T)及び充電時間(T)を算出することで、送電コイル1A及び受電コイル1Bの中心点に対するコイルの位置ずれの大きさを充電時間により定めることができる。
 また本例において、充電時間(T)と充電時間(T)との時間差(ΔT)が時間差(ΔTc)より大きい場合に、時間通知部706は少なくとも充電時間(T)を通知する。これにより、コイルの位置ずれが大きく、許容される時間内で充電を終えることができないことをユーザに伝えることができる。またユーザは、時間に余裕が有る場合には、当該充電時間(T)で充電することができ、時間に余裕がない場合には、例えば車両を再駐車する等によりコイル位置を変えることで、充電時間(T)より短い時間で充電することができる。その結果として、本例は、ユーザの利便性を高めつつ、総充電時間の短縮化を図ることができる。
 なおステップS151にて、時間差(ΔT)が時間差(ΔTc)より大きい場合に、時間通知部706は充電時間(T)を通知するが、充電時間(T)を合わせて通知してもよく、時間通知部706は少なくとも充電時間(T)を通知すればよい。時間通知部706は充電時間(T)及び充電時間(T)を通知することで、乗員が現在の駐車状態の充電時間(T)と理想の駐車状態の充電時間(T)とを知ることができるため、乗員は必要に応じて、現在の駐車状態で充電を開始、又は、再駐車を選択することができるため、本例はユーザの利便性を高めることができる。
 上記充電時間算出部705は「充電時間算出手段」に相当し、時間通知部706は「充電時間通知手段」に相当する。
《第3実施形態》
 図11は、発明の他の実施形態に係る非接触充電システムを示すブロック図である。本例では上述した第2実施形態に対して、消費時間算出部707を設ける点が異なる。これ以外の構成は上述した第2実施形態と同じであるため、その記載を適宜、援用する。
 図11に示すように、ECU7は、充電制御部704と、充電時間算出部705と、時間通知部706と、消費量算出部707とを備える。消費量算出部707は、車両側ユニット200を備えた車両を移動させることにより、消費されるバッテリ5の消費量を算出する。
 第2の実施形態に係る非接触充電システムは、図10のステップS153において、運転手により車両を再駐車して、送電コイル1Aと受電コイル1Bとの位置あわせを行う。再駐車の際には、バッテリ5に充電されている電力が消費されてしまう。そのため、再駐車させて、理想の駐車状態でバッテリ5を充電した時の充電時間は、充電時間(T)に、再駐車によって消費した消費量分の容量を充電する充電時間を加えた時間となる。
 本例において、消費量算出部707は、再駐車により受電コイル1Bを、送電コイル1Aの位置と対応する位置に移動させることにより、消費するバッテリ5の消費量を、演算する。すなわち、消費量算出部707は、現在の駐車状態から理想の駐車状態に駐車させることで、バッテリ5がどの程度、電力を消費するかを演算する。そして、充電時間算出部705は、当該消費量を充電するための充電時間(T)を算出する。言い換えると、充電時間算出部705は、バッテリ5の消費量を充電時間に換算している。車両が駐車され、コイルの位置ずれが生じている場合には、バッテリ5を満充電まで充電する充電時間は、充電時間算出部705によって算出される充電時間(T)となる。また、コイルの位置ずれが生じている駐車状態から理想の駐車状態に再駐車させる場合には、バッテリ5を満充電まで充電する充電時間(T)は、充電時間算出部705によって充電時間(T)に充電時間(T)を加えることで算出される。
 充電時間算出部705は、車両を再駐車させる前に、充電時間(T)を算出する。すなわち、コイルの位置ずれが生じている駐車状態から理想の駐車状態に再駐車するまでの走行軌跡は、ナビや障害物回避制御等で用いている最適経路算出システムなどを用いることで算出されるため、消費量算出手段707は、現在のSOCを充電状態検出部601で検出し、当該SOCと走行軌跡から、バッテリ5の消費量を、再駐車の前に算出することができる。
 そして、ECU7は、充電時間(T)と充電時間(T)とを比較する。充電時間(T)が充電時間(T)より長い場合には、運転手が再駐車させて、理想の駐車状態にした方が、充電時間が短縮する。そのため、充電時間(T)が充電時間(T)より長い場合には、ECU7は、時間通知部706により、充電時間(T)及び充電時間(T)を通知して、乗員に対して、充電を開始するか、再駐車させるか、を判断させるよう制御する。一方、充電時間(T)が充電時間(T)より短い場合には、運転手が再駐車させた場合の充電時間が長くなるため、現在の駐車状態で充電させた方が充電時間の短縮化を図ることができる。そのため充電時間(T)が充電時間(T)より短い場合には、ECU7は、充電制御部704により、バッテリ5の充電を開始させる。
 これにより、本例は、現在の駐車状態での充電時間(T)と、再駐車によるバッテリ5の消費量を考慮した理想状態での充電時間(T)を算出し、充電時間(T)と充電時間(T)との比較結果に応じて、バッテリ5を充電する。
 次に、図12を用いて、本例の非接触充電システムの制御手順を説明する。図12は、本例の非接触充電システムの制御手順を示すフローチャートである。本例の非接触充電システムによる制御が開始されると、ステップS21~ステップS24の制御処理が行われる。ステップS21~ステップS24の制御処理は、第2の実施形態に係るステップS11~ステップS14の制御処理と同じであるため、説明を省略する。ステップS24の後に、消費量算出部707は、車両を再駐車させて、受電コイル1Bを送電コイル1Aと対応する位置まで移動させることにより、消費されるバッテリ5の消費量を算出する。そして、充電時間算出部705は、当該消費量分の容量を充電する充電時間(T)を算出する(ステップS25)。ステップS26にて、ECU7は、充電時間算出部705により、充電時間(T)に充電時間(T)を加えることで充電時間(T)を算出し、充電時間(T)と充電時間(T)とを比較する。
 充電時間(T)が充電時間(T)以下である場合には、再駐車させるよりも現在の駐車状態で充電した方が充電時間を短縮させることができるため、ECU7は、充電制御部704により、バッテリ5のSOC及び受電コイル1Bの受電電力に応じて、充電電力を設定し、バッテリ5に供給することにより、バッテリ5の充電を開始する(ステップS27)。
 一方、充電時間(T)が充電時間(T)より長い場合には、再駐車して理想の駐車状態にした方が充電時間を短縮させることができるため、ステップS261にて、時間通知部706は、ナビゲーション装置のディスプレイ等に充電時間(T)及び充電時間(T)を表示させることで、乗員に充電時間(T)及び充電時間(T)を通知する。ステップS262にて、乗員は、充電時間(T)による充電を行うか否かを判断する。乗員が、バッテリ5を充電させるために、充電時間(T)かかってもよいと判断し、充電開始ボタン(図示しない)等を操作し、充電を開始した場合には、ステップS27に遷る。乗員が充電時間(T)より短い充電時間(T)で充電したい判断した場合には、ステップS263にて、運転手は車両を再駐車させて、ステップS21に戻る。
 そして、バッテリ5のSOCが満充電の状態になり、本例の非接触充電システムによる制御が終了する。
 上記のように、本例の非接触充電装置は、消費量算出部707により、車両側ユニット200を有する車両を再駐車させて、受電コイル1Bを送電コイル1Aと対応する位置まで移動させることにより、消費されるバッテリ5の消費量を演算し、当該消費量分の容量を充電する充電時間(T)を算出する。これにより、理想の駐車状態に再駐車させる際に消費するバッテリ5Bの消費量を考慮して、再駐車させる場合の充電時間を算出することができる。また、本例は、充電時間(T)と充電時間(T)とを比較することで、充電時間を短縮化するために、再駐車させた方がよいか否かが分かるため、総充電時間の短縮化を図ることができる。
 また、本例は、充電時間算出部705により、充電時間(T)に充電時間(T)を加算して充電時間(T)を算出し、充電時間(T)が充電時間(T)より短い場合には、時間通知部706により、充電時間(T)と充電時間(T)とを通知させる。これにより、本例は、ユーザに対して再駐車させた場合には充電時間が短くなることを認識させることができ、またユーザが所望する充電時間に応じて、再駐車させるか否かをユーザに判断させることができる。その結果として、本例はユーザの利便性を高めることができる。
 また本例は、充電時間(T)が充電時間(T)より長い場合には、コイルの位置ずれが生じている時の、受電コイル1Bに対する送電コイル1Aの位置で、充電を開始する。これにより、再駐車するよりも現在の駐車状態の方が充電時間を短縮する場合には、再駐車させることなく充電を開始させることができるため、ユーザの利便性を高めることができる。
 なお、本例において、再駐車する場合は、車両の駆動モータ(図示しない)の出力を制限し、できる限り再駐車によるバッテリ消費を抑えてもよい。これにより、バッテリ消費時間の推定は容易になる。さらに、再駐車を自動化するとより安易になる。
 上記消費量算出部707は本発明の「消費量算出手段」に相当する。
《第4実施形態》
 図13は、発明の他の実施形態に係る非接触充電システムを示すブロック図である。本例では上述した第2実施形態に対して、消費量算出部707、駐車時間算出部708、再駐車通知部709を設ける点が異なる。これ以外の構成は上述した第2実施形態と同じであり、第2実施形態の記載及び第3実施形態の記載を適宜、援用する。
 図13に示すように、ECU7は、充電制御部704と、充電時間算出部705と、時間通知部706と、消費量算出部707と、駐車時間算出部708と、再駐車通知手段709とを備える。駐車時間算出部708は、車両側ユニット200を有する車両を、現在の駐車状態から理想の駐車状態に駐車するための駐車時間(T)を算出する。再駐車通知手段709は、所定の条件の下、乗員に対して再駐車を促す旨の通知を行う。当該通知は、例えばナビゲーション装置の表示部等に表示することで行われる。運転手により車両を再駐車して、送電コイル1Aと受電コイル1Bとの位置合わせをする場合には、車両を移動するための駐車時間(T)を要する。そして、コイルの位置ずれが生じている状態を基準として、車両を理想状態に再駐車させて、満充電まで充電するための充電時間は、当該駐車時間(T)も考慮してもよい。
 そのため、本例において、駐車時間算出部708は駐車時間(T)を算出し、充電時間算出部705は、充電時間(T)に充電時間(T)及び駐車時間(T)を加えて、充電時間(T)を算出する。車両が駐車され、コイルの位置ずれが生じている場合には、バッテリ5を満充電まで充電する充電時間は、充電時間算出部705によって算出される充電時間(T)となる。また、コイルの位置ずれが生じている駐車状態から理想の駐車状態に再駐車させる場合には、バッテリ5を満充電まで充電する充電時間(T)は、充電時間算出部705によって充電時間(T)に充電時間(T)及び駐車時間(T)を加えることで算出される。
 なお、駐車時間算出部708は、車両を再駐車させる前に、駐車時間(T)を算出する。すなわち、コイルの位置ずれが生じている駐車状態から理想の駐車状態に再駐車するまでの走行軌跡は、ナビや障害物回避制御等で用いている最適経路算出システムなどを用いることで算出されるため、駐車時間算出部708は、当該走行軌跡及び駐車させる際の予め設定される平均速度から、駐車時間(T)を再駐車の前に算出することができる。
 そして、ECU7は、充電時間(T)と充電時間(T)とを比較する。充電時間(T)が充電時間(T)より長い場合には、運転手が再駐車させて、理想の駐車状態にした方が、充電時間が短縮される。そのため、充電時間(T)が充電時間(T)より長い場合には、ECU7は、時間通知部706により、充電時間(T)及び充電時間(T)を通知しつつ、再駐車通知手段709により再駐車を通知する。
 これにより、本例は、現在の駐車状態での充電時間(T)と、再駐車によるバッテリ5の消費量及び駐車時間(T)を考慮した理想状態での充電時間(T)を算出し、充電時間(T)と充電時間(T)との比較結果に応じて、バッテリ5を充電する。
 次に、図14を用いて、本例の非接触充電システムの制御手順を説明する。図14は、本例の非接触充電システムの制御手順を示すフローチャートである。本例の非接触充電システムによる制御が開始されると、ステップS31~ステップS35の制御処理が行われる。ステップS31~ステップS35の制御処理は、第2の実施形態に係るステップS21~ステップS25の制御処理と同じであるため、説明を省略する。ステップS35の後に、駐車時間算出部708は、受電コイル1Bを送電コイル1Aと対応する位置まで移動させるために、車両を再駐車する駐車時間(T)を算出する(ステップS36)。ステップS37にて、ECU7は、充電時間算出部705により、充電時間(T)に充電時間(T)及び駐車時間(T)を加えることで充電時間(T)を算出し、充電時間(T)と充電時間(T)とを比較する。
 充電時間(T)は充電時間(T)以下である場合には、再駐車させるよりも現在の駐車状態で充電した方が充電時間を短縮させることができるため、ECU7は、充電制御部704により、バッテリ5のSOC及び受電コイル1Bの受電電力に応じて、充電電力を設定し、バッテリ5に供給することにより、バッテリ5の充電を開始する(ステップS38)。
 一方、充電時間(T)が充電時間(T)より長い場合には、再駐車して理想の駐車状態にした方が充電時間を短縮させることができるため、ステップS371にて、時間通知部706は、ナビゲーション装置のディスプレイ等に充電時間(T)及び充電時間(T)を表示させることで、乗員に充電時間(T)及び充電時間(T)を通知する。また、ステップS372にて、再駐車通知手段709は、再駐車を促す旨の通知を行う。
 ステップS373にて、乗員は、充電時間(T)による充電を行うか否かを判断する。乗員が、バッテリ5を充電させるために、充電時間(T)かかってもよいと判断し、充電開始ボタン(図示しない)等を操作し、充電を開始した場合には、ステップS38に遷る。乗員が充電時間(T)より短い充電時間(T)で充電したい判断した場合には、ステップS374にて、運転手は車両を再駐車させて、ステップS31に戻る。
 そして、バッテリ5のSOCが満充電の状態になり、本例の非接触充電システムによる制御が終了する。
 上記のように、本例の非接触充電装置は、駐車時間算出部708により、受電コイル1Bを送電コイル1Aと対応する位置まで移動させるために、車両側ユニット200を有する車両を再駐車させる駐車時間(T)を算出する。これにより、理想の駐車状態に再駐車させる際の駐車時間を考慮して、再駐車させる場合の充電時間を算出することができる。また、本例は、充電時間(T)と充電時間(T)とを比較することで、充電時間を短縮化するために、再駐車させた方がよいか否かが分かるため、総充電時間の短縮化を図ることができる。
 また、本例は、充電時間算出部705により、充電時間(T)に充電時間(T)及び駐車時間(T)を加算して充電時間(T)を算出し、充電時間(T)が充電時間(T)より短い場合には、時間通知部706により、充電時間(T)と充電時間(T)とを通知させる。これにより、本例は、ユーザに対して再駐車させた場合には充電時間が短くなることを認識させることができ、またユーザが所望する充電時間に応じて、再駐車させるか否かをユーザに判断させることができる。その結果として、本例はユーザの利便性を高めることができる。
 また、本例は、充電時間(T)が充電時間(T)より短い場合には、再駐車通知部709により、再駐車を促す旨を通知する。これにより、本例は、ユーザに対して再駐車させた場合には充電時間が短くなることを認識させることができ、またユーザが所望する充電時間に応じて、再駐車させるか否かをユーザに判断させることができる。その結果として、本例はユーザの利便性を高めることができる。
 また本例は、充電時間(T)が充電時間(T)より長い場合には、コイルの位置ずれが生じている時の、受電コイル1Bに対する送電コイル1Aの位置で、充電を開始する。これにより、再駐車するよりも現在の駐車状態の方が充電時間を短縮する場合には、再駐車させることなく充電を開始させることができるため、ユーザの利便性を高めることができる。
 上記駐車時間算出部708は本発明の「駐車時間算出手段」に相当し、再駐車通知部709は「再駐車通知手段」に相当する。
《第5実施形態》
 図15は、発明の他の実施形態に係る非接触充電システムを示すブロック図である。本例では上述した第1実施形態に対して、充電時間算出部705及び時間通知部706を設ける点が異なる。これ以外の構成は上述した第2実施形態と同じであるため、その記載を援用する。
 図15に示すように、ECU7は、充電許容範囲設定部701と、判定部702と、判定結果通知部703と、充電時間算出部704と、充電時間算出部705と、時間通知部706とを備える。充電許容範囲設定部701は、SOCに応じて、充電許容範囲を設定する。充電時間算出部705は、受電コイル1Bに対する送電コイル1Aの位置と、SOCとから、満充電までの充電時間(T)を算出する。また充電時間算出部705は、SOCから、受電コイル1Bが送電コイル1Aの位置と対応する位置に配置される場合の充電時間(T)を算出する。充電時間(T)は、現在の車両の駐車状態における、コイル位置に対する充電時間を示し、充電時間(T)は、理想の駐車状態における、コイル位置に対する充電時間を示す。ECU7には、充電時間(T)と充電時間(T)との時間差(ΔT)と比較するために、時間差(ΔTc)が予め設定されている。時間差(ΔTc)は、充電時間(T)に対して許容される充電時間との時間差を表している。
 ここで、充電許容範囲及び時間差(ΔTc)は、理想の車両状態に対する、コイルの位置ずれを許容する大きさを、空間的な範囲及び時間でそれぞれ示しているが、時間差(ΔTc)は、充電許容範囲に対して、コイルの位置ずれを許容する大きさが広くなるよう、設定されている。例えば、ある値のSOCにおいて、送電コイル1Aの位置が充電許容範囲外で検出された場合でも、充電時間(T)と充電時間(T)との時間差(ΔT)が時間差(ΔTc)より小さい場合には、コイルの位置ずれが許容する大きさより小さい、と判断して、充電を許容する。
 次に、図16を用いて、本例の非接触充電システムの制御手順を説明する。図16は、本例の非接触充電システムの制御手順を示すフローチャートである。本例の非接触充電システムによる制御が開始されると、ステップS41にて、充電状態検出部601は、バッテリ5のSOCを検出し、ECU7に検出したSOCの情報を送信する。ステップS42にて、充電許容範囲設定部701は検出したSOCに応じて、充電許容範囲を設定する。ステップS43にて、ECU7は、地上側通信器8A及び車両側通信器8Bを介して、送信コイル1Aの位置を検出する。ステップS44にて、判定部702は、送電コイル1Aの位置が充電許容範囲内にあるか否かを判定する。
 送電コイル1Aの位置が充電許容範囲内にある場合には、ステップS45にて、充電制御部704は、バッテリ5のSOC及び受電コイル1Bの受電電力に応じて、充電電力を設定し、バッテリ5に供給することにより、バッテリ5の充電を開始する。
 一方、送電コイル1Aの位置が充電許容範囲内にない場合には、ステップS441にて、充電時間算出部705は、検出された送電コイル1Aの位置とSOCとに応じて、充電時間(T)を算出する。ステップS442にて、充電時間算出部705は、SOCに応じて、充電時間(T)を算出する。ステップS443にて、ECU7は、充電時間(T)と充電時間(T)との時間差(ΔT)を算出し、時間差(ΔT)と予め設定されている時間(ΔTc)とを比較する。時間差(ΔT)が時間(ΔTc)以下である場合には、ECU7は、コイルの位置は充電許容範囲外にある場合でも、予め設定されている許容時間内で充電できると判断し、充電制御部704により、バッテリ5のSOC及び受電コイル1Bの受電電力に応じて、充電電力を設定し、バッテリ5に供給することにより、バッテリ5の充電を開始する(ステップS45)。
 一方、時間差(ΔT)が時間差(ΔTc)より大きい場合には、ECU7は、予め設定されている許容時間内で充電できないと判断し、時間通知部706により、充電時間(T)をナビゲーション装置のディスプレイ等に表示させることで、乗員に充電時間(T)を通知する(ステップS444)。ステップS445にて、乗員は、充電時間(T)による充電を行うか否かを判断する。乗員が、バッテリ5を充電させるために、充電時間(T)かかってもよいと判断し、充電開始ボタン(図示しない)等を操作し、充電を開始した場合には、ステップS45に遷る。乗員が充電時間(T)による充電を行わないと判断した場合には、ステップS446にて、運転手は車両を再駐車させて、ステップS41に戻る。
 そして、バッテリ5のSOCが満充電の状態になり、本例の非接触充電システムによる制御が終了する。
 上記のように、本例の非接触充電装置は、受電コイル1Bと、車両側電気回路2Bと、バッテリ5と、充電状態検出部601と、通信機8A、8Bと、充電許容範囲設定部701と、充電時間算出部705とを備え、SOCに応じて、受電コイル1Bの位置に対して、バッテリの充電を許容する送電コイル1Aの位置の範囲を示す充電許容範囲を設定し、また検出された送電コイル1Aの位置と、SOCとに応じて、バッテリ5の充電時間(T)を算出する。本例は、充電許容範囲及び充電時間を算出し、両方に基づいて充電の許容を判定するため、判定精度を高めることができ、ユーザの利便性を高めることができる。
 なお本例の非接触充電システムは、第3の実施形態にかかる非接触充電システムのように、充電時間(T)及び充電時間(T)を算出し、ステップS26、ステップS27及びステップS261~263の制御処理を加えたシステムとしてもよく、また充電時間(T)及び駐車時間(T)を算出し、ステップS37、ステップS38及びステップS371~373の制御処理を加えたシステムとしてもよい。
100…地上側ユニット
1A…送電コイル
2A…地上側電気回路
3…ECU
4…系統電源
8A…地上側通信機
200…車両側ユニット
1B…受電コイル
2B…車両側電気回路
5…バッテリ
6…バッテリコントローラ
7…ECU
8B…車両側通信機
601…充電状態検出部
701…充電許容範囲設定部
702…判定部
703…判定結果通知部
704…充電制御部
705…充電時間算出部
706…時間通知部
707…消費量算出部
708…駐車時間算出部
709…再駐車通知部

Claims (12)

  1. 少なくとも磁気的結合によって送電コイルからの電力を非接触で受電する受電コイルを有する受電装置と、
    前記電力により充電されるバッテリと、
    前記バッテリの充電状態を検出する充電状態検出手段と、
    前記送電コイルの位置を検出する位置検出手段と、
    前記充電状態検出手段により検出される前記充電状態と、前記位置検出手段により検出された前記送電コイルの第1の位置とに応じて、前記バッテリの第1の充電時間を算出する充電時間算出手段と、を備えることを特徴とする非接触充電装置。
  2. 前記充電時間算出手段は、前記受電コイルの位置に対する前記送電コイルの第1の位置のずれが大きいほど、前記第1の充電時間を長くすることを特徴とする請求項1記載の非接触充電装置。
  3. 前記充電時間算出手段は、
     前記充電状態検出手段により検出される前記充電状態に応じて、前記受電コイルが前記送電コイルの位置と対応する第2の位置に配置された場合のバッテリの第2の充電時間を算出する
    ことを特徴とする請求項1又は2記載の非接触充電装置。
  4. 前記第1の充電時間と前記第2の充電時間との時間差が所定の時間差より大きい場合に、少なくとも前記第1の充電時間を通知する充電時間通知手段をさらに備えることを特徴とする請求項3記載の非接触充電装置。
  5. 前記受電装置を有する車両を再駐車させて、前記受電コイルを前記第2の位置まで移動させることにより、消費される前記バッテリの消費量を算出する消費量算出手段をさらに備え、
    前記充電時間算出手段は、
     前記消費量算出手段により算出された前記消費量分の前記バッテリの容量を充電する第3の充電時間を算出する
    ことを特徴とする請求項3記載の非接触充電装置。
  6. 充電時間を通知する充電時間通知手段をさらに備え、
    前記充電時間算出手段は、
     前記第2の充電時間に前記第3の充電時間を加算して第4の充電時間を算出し、
     前記充電時間通知手段は、
     前記第4の充電時間が前記第1の充電時間より短い場合に、前記第1の充電時間及び前記第4の充電時間を通知する
    ことを特徴とする請求項5記載の非接触充電装置。
  7. 前記バッテリの充電を制御する充電制御手段をさらに備え、
    前記充電時間算出手段は、
     前記第2の充電時間に前記第3の充電時間を加算して第4の充電時間を算出し、
    前記充電制御手段は、
     前記第4の充電時間が前記第1の充電時間より大きい場合に、前記送電コイルが前記第1の位置に配置されている状態で、前記バッテリの充電を開始する
    ことを特徴とする請求項5記載の非接触充電装置。
  8. 前記受電コイルを前記第2の位置まで移動させるために、前記受電装置を有する車両を駐車する駐車時間を算出する駐車時間算出手段をさらに備える
    ことを特徴とする請求項5記載の非接触充電装置。
  9. 充電時間を通知する充電時間通知手段をさらに備え、
    前記充電時間算出手段は、
     前記第2の充電時間に前記第3の消費時間及び前記駐車時間を加算して第5の充電時間を算出し、
     前記充電時間通知手段は、
     前記第5の充電時間が前記第1の充電時間より短い場合に、前記第1の充電時間及び前記第5の充電時間を通知する
    ことを特徴とする請求項8記載の非接触充電装置。
  10. 前記バッテリの充電を制御する充電制御手段をさらに備え、
    前記充電時間算出手段は、
     前記第2の充電時間に前記第3の消費時間及び前記駐車時間を加算して第5の充電時間を算出し、
     前記充電制御手段は、
     前記第5の充電時間が前記第1の充電時間より大きい場合に、前記送電コイルが前記第1の位置に配置されている状態で、前記充電器による充電を開始させる
    ことを特徴とする請求項8記載の非接触充電装置。
  11. 前記車両の運転手に対し、再度駐車することを勧める通知を出力する再駐車通知手段をさらに備え、
    前記充電時間算出手段は、
     前記第2の充電時間に前記第3の消費時間及び前記駐車時間を加算して第5の充電時間を算出し、
    前記再駐車通知手段は、
     前記第5の充電時間が前記第1の充電時間より小さい場合に、前記再度駐車することを勧める通知を出力する
    ことを特徴とする請求項8記載の非接触充電装置。
  12. 前記充電状態検出手段により検出される前記充電状態に応じて、前記バッテリの充電電力を制御する充電制御手段をさらに備え、
    前記充電器制御手段は、前記充電状態が高くなるにつれて、段階的に前記充電電力を下げることを特徴とする請求項1~11のいずれか一項に記載の非接触充電装置。
PCT/JP2011/076428 2010-12-27 2011-11-16 非接触充電装置 WO2012090613A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
RU2013135263/11A RU2545243C2 (ru) 2010-12-27 2011-11-16 Бесконтактное зарядное устройство
US13/991,966 US9199547B2 (en) 2010-12-27 2011-11-16 Non-contact charging device
EP11852899.1A EP2660944B1 (en) 2010-12-27 2011-11-16 Non-contact charging device
KR1020137016580A KR101481925B1 (ko) 2010-12-27 2011-11-16 비접촉 충전 장치
JP2012550779A JP5527431B2 (ja) 2010-12-27 2011-11-16 非接触充電装置
MX2013006593A MX2013006593A (es) 2010-12-27 2011-11-16 Dispositivo de carga sin contacto.
BR112013015095-5A BR112013015095B1 (pt) 2010-12-27 2011-11-16 Dispositivo de carregamento sem contato
CN201180063021.2A CN103283110B (zh) 2010-12-27 2011-11-16 非接触充电装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-290133 2010-12-27
JP2010290133 2010-12-27

Publications (1)

Publication Number Publication Date
WO2012090613A1 true WO2012090613A1 (ja) 2012-07-05

Family

ID=46382733

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/076427 WO2012090612A1 (ja) 2010-12-27 2011-11-16 非接触充電装置
PCT/JP2011/076428 WO2012090613A1 (ja) 2010-12-27 2011-11-16 非接触充電装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076427 WO2012090612A1 (ja) 2010-12-27 2011-11-16 非接触充電装置

Country Status (10)

Country Link
US (2) US9050900B2 (ja)
EP (2) EP2660946B1 (ja)
JP (2) JP5664665B2 (ja)
KR (2) KR101533175B1 (ja)
CN (2) CN103329387B (ja)
BR (2) BR112013015095B1 (ja)
MX (2) MX2013007480A (ja)
MY (2) MY167081A (ja)
RU (2) RU2545243C2 (ja)
WO (2) WO2012090612A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529291A (ja) * 2011-10-04 2014-10-30 エルジー・ケム・リミテッド バッテリー充電装置及び方法
GB2518128A (en) * 2013-06-20 2015-03-18 Nokia Technologies Oy Charging rechargeable apparatus
JP2015531064A (ja) * 2012-08-09 2015-10-29 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフトBayerische Motoren Werke Aktiengesellschaft 無線ベースのロッキングシステムを利用した位置決め
EP2985872A4 (en) * 2013-03-26 2016-04-06 Panasonic Ip Man Co Ltd POWER SUPPLY, CIRCULAR DEVICE AND POWER SUPPLY SYSTEM
WO2016121044A1 (ja) * 2015-01-29 2016-08-04 日産自動車株式会社 駐車支援システム及び駐車支援方法
KR101730728B1 (ko) 2015-10-01 2017-05-11 현대자동차주식회사 무선 충전 시스템의 그라운드 어셈블리 탐지 방법 및 장치
KR101747064B1 (ko) 2014-02-25 2017-06-14 닛산 지도우샤 가부시키가이샤 비접촉 급전 시스템 및 송전 장치
KR101778480B1 (ko) 2013-09-30 2017-09-13 닛산 지도우샤 가부시키가이샤 비접촉 급전 장치 및 주차 지원 장치
KR101780163B1 (ko) 2014-01-31 2017-09-19 닛산 지도우샤 가부시키가이샤 비접촉 급전 시스템 및 송전 장치
KR101816471B1 (ko) 2014-02-25 2018-01-08 닛산 지도우샤 가부시키가이샤 비접촉 급전 시스템 및 송전 장치
KR101817455B1 (ko) 2014-02-25 2018-01-11 닛산 지도우샤 가부시키가이샤 비접촉 급전 시스템 및 송전 장치
JP2018126004A (ja) * 2017-02-02 2018-08-09 トヨタ自動車株式会社 車両の充電制御装置
JP2019154651A (ja) * 2018-03-09 2019-09-19 シャープ株式会社 調理器
WO2022201694A1 (ja) * 2021-03-22 2022-09-29 パナソニックIpマネジメント株式会社 充電制御装置、充電制御システム、充電サービス提供方法及び情報提示方法

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101533175B1 (ko) * 2010-12-27 2015-07-01 닛산 지도우샤 가부시키가이샤 비접촉 충전 장치
US9637014B2 (en) * 2011-06-28 2017-05-02 Wireless Ev Charge, Llc Alignment, verification, and optimization of high power wireless charging systems
CN104271384B (zh) 2012-05-09 2017-10-10 丰田自动车株式会社 车辆
DE102012211151B4 (de) * 2012-06-28 2021-01-28 Siemens Aktiengesellschaft Ladeanordnung und Verfahren zum induktiven Laden eines elektrischen Energiespeichers
JP2014110681A (ja) * 2012-12-03 2014-06-12 Nissan Motor Co Ltd 非接触給電装置、非接触給電システム及び非接触給電方法
CN103219783A (zh) * 2013-04-11 2013-07-24 重庆邮电大学 一种适用于电动汽车充电过程的变频控制方法
WO2015013217A1 (en) * 2013-07-25 2015-01-29 Part It Device, system and method for capturing motor vehicle behavior
JP6138620B2 (ja) * 2013-07-30 2017-05-31 本田技研工業株式会社 非接触給電システム
JP6110758B2 (ja) * 2013-08-26 2017-04-05 本田技研工業株式会社 車両誘導装置
CN104518674A (zh) * 2013-09-27 2015-04-15 中兴通讯股份有限公司 一种非接触变压器的调节方法及系统
US9906076B2 (en) 2013-11-11 2018-02-27 Samsung Electro-Mechanics Co., Ltd. Non-contact type power transmitting coil and non-contact type power supplying apparatus
CN103633697A (zh) * 2013-11-22 2014-03-12 北京航空航天大学 电磁感应式非接触充电系统及其对准方法
GB2520990A (en) * 2013-12-06 2015-06-10 Bombardier Transp Gmbh Inductive power transfer for transferring electric energy to a vehicle
JP6361132B2 (ja) * 2013-12-24 2018-07-25 トヨタ自動車株式会社 非接触電力伝送システム、充電ステーション、および車両
KR20150139368A (ko) * 2014-06-03 2015-12-11 엘지전자 주식회사 차량 충전 보조장치 및 이를 구비한 차량
KR102207324B1 (ko) * 2014-08-04 2021-01-27 현대모비스 주식회사 무선 전력전송 장치의 인터페이스
CN104906797A (zh) * 2014-08-14 2015-09-16 王红胜 无轨磁电动感车
KR20160038352A (ko) * 2014-09-30 2016-04-07 현대모비스 주식회사 개인 단말기와 무선 전력전송 장치 사이의 인터페이스
GB2531505A (en) 2014-10-09 2016-04-27 Bombardier Transp Gmbh A method of operating an inductive power transfer system and an inductive power transfer system
JP5953385B1 (ja) * 2015-02-25 2016-07-20 本田技研工業株式会社 車両
JP6060195B2 (ja) * 2015-03-06 2017-01-11 本田技研工業株式会社 車両駐車制御装置
US11025094B2 (en) 2015-04-16 2021-06-01 Wits Co., Ltd. Wireless power receiving device and apparatus including the same
KR20160123932A (ko) 2015-04-16 2016-10-26 삼성전기주식회사 무선 전력 수신 장치, 이 장치를 위한 코일 모듈, 및 이 장치를 포함하는 기기
US20170182903A1 (en) * 2015-12-26 2017-06-29 Intel Corporation Technologies for wireless charging of electric vehicles
CN105539186B (zh) * 2016-01-20 2017-07-07 厦门新页科技有限公司 一种汽车无线充电对准匹配系统及方法
CN105691231B (zh) * 2016-03-10 2018-11-06 中车株洲电力机车有限公司 快速充电的控制方法、车载系统及地面充电站控制系统
JP6637836B2 (ja) * 2016-05-12 2020-01-29 株式会社ダイヘン 送電装置、受電装置、および、非接触充電システム
US10688874B2 (en) * 2016-06-14 2020-06-23 Intel Corporation Vehicular inductive power transfer systems and methods
CN106143188B (zh) * 2016-07-06 2018-09-11 北京新能源汽车股份有限公司 电动汽车无线充电位置的对准方法和系统
KR20180007117A (ko) * 2016-07-12 2018-01-22 삼성전자주식회사 무선 전력 송신기 및 무선 전력 수신기와 그 동작 방법
CN107042768A (zh) * 2016-12-12 2017-08-15 蔚来汽车有限公司 基于用户行为习惯的主动加电调度方法
DE102017130173A1 (de) * 2017-02-24 2018-08-30 Denso Ten Limited Ladeunterstützungsvorrichtung
DE102017130169A1 (de) * 2017-02-24 2018-08-30 Denso Ten Limited Ladeunterstützungsvorrichtung
JP6693455B2 (ja) * 2017-03-28 2020-05-13 Tdk株式会社 ワイヤレス受電装置及びワイヤレス電力伝送システム
CN107276241B (zh) * 2017-05-10 2023-05-09 北京交通大学长三角研究院 基于有轨电车停车偏移误差的无线电能传输调节方法
JP6527554B2 (ja) * 2017-06-22 2019-06-05 本田技研工業株式会社 非接触電力伝送システム
KR101857407B1 (ko) * 2018-01-30 2018-06-20 (주)에프티글로벌 차량 위치파악이 가능한 자동경로차량용 무선전력전송 시스템 및 자동경로차량 위치파악방법
CN109050306B (zh) * 2018-08-13 2020-07-10 浙江大学 一种智能自主定位和充电的车辆无线充电系统
JP7040400B2 (ja) * 2018-10-26 2022-03-23 トヨタ自動車株式会社 車両
US20230344285A1 (en) * 2018-11-09 2023-10-26 Wbtec, Llc Wireless charging navigation system
CN110518717A (zh) * 2019-09-05 2019-11-29 北京交通大学 基于非接触式电能传输系统的信息交互装置及方法
JP7312966B2 (ja) * 2019-11-28 2023-07-24 パナソニックIpマネジメント株式会社 駐車支援装置、車両、駐車支援方法、プログラム、および非一時的記録媒体
KR102227856B1 (ko) * 2020-07-08 2021-03-15 현대모비스 주식회사 무선 전력전송 장치의 인터페이스
KR102288364B1 (ko) * 2020-07-08 2021-08-10 현대모비스 주식회사 무선 전력전송 장치의 인터페이스
KR102543532B1 (ko) * 2020-07-08 2023-06-15 현대모비스 주식회사 무선 전력전송 장치의 인터페이스
JP7205677B1 (ja) * 2021-07-21 2023-01-17 三菱電機株式会社 ワイヤレス給電システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215211A (ja) * 1996-02-02 1997-08-15 Sumitomo Wiring Syst Ltd 電気自動車用充電システム
JP2009089452A (ja) 2007-09-27 2009-04-23 Denso Corp 充電システム
WO2010052785A1 (ja) * 2008-11-07 2010-05-14 トヨタ自動車株式会社 車両用給電システム、電動車両および車両用給電設備

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1061631A1 (en) * 1996-01-30 2000-12-20 Sumitomo Wiring Systems, Ltd. Connection system and connection method for an electric automotive vehicle
JPH11341694A (ja) * 1998-05-28 1999-12-10 Fuji Film Celltec Kk 二次電池の充電方法
JP2000341887A (ja) * 1999-03-25 2000-12-08 Toyota Autom Loom Works Ltd 給電用カプラ、給電装置、受電器及び電磁誘導型非接触充電装置
RU2180465C1 (ru) * 2001-03-06 2002-03-10 Варакин Леонид Егорович Способ обеспечения аварийного питания сотовых радиотелефонов
JP3767422B2 (ja) 2001-06-01 2006-04-19 日産自動車株式会社 充電方法および充電装置
DE10326614A1 (de) * 2003-06-13 2004-12-30 Dürr Automotion Gmbh Transportsystem
AT505966B1 (de) 2003-10-13 2012-11-15 Cochlear Ltd Verfahren und system zur batterieladekontrolle von hörimplantaten
US20060284593A1 (en) * 2005-06-21 2006-12-21 Nagy Louis L Wireless battery charging system and method
CN2850099Y (zh) * 2005-09-26 2006-12-20 珠海市共创有限公司 一种高转换效率非接触式充电装置
US8169185B2 (en) * 2006-01-31 2012-05-01 Mojo Mobility, Inc. System and method for inductive charging of portable devices
JP4353197B2 (ja) * 2006-03-13 2009-10-28 トヨタ自動車株式会社 車両および電気機器
RU2306653C1 (ru) 2006-04-20 2007-09-20 Олег Валерьевич Белянин Беспроводная зарядная система с обратной связью
JP2008236680A (ja) * 2007-03-23 2008-10-02 Ntt Docomo Inc 情報通信装置および機能制限方法
JP4333798B2 (ja) 2007-11-30 2009-09-16 トヨタ自動車株式会社 充電制御装置および充電制御方法
KR101437975B1 (ko) * 2007-12-06 2014-09-05 엘지전자 주식회사 충전상태 표시기능을 갖는 무접점 충전장치 및 그 충전방법
JP5277858B2 (ja) 2008-10-20 2013-08-28 トヨタ自動車株式会社 給電システム及び移動体用給電装置
CN101764434B (zh) * 2008-12-22 2014-05-14 爱信艾达株式会社 受电引导装置
JP2010158133A (ja) * 2009-01-05 2010-07-15 Alpha Corp 電気自動車の充電終了案内システム
JP5425539B2 (ja) * 2009-01-27 2014-02-26 パナソニック株式会社 非接触電力伝送システム
JP2010183814A (ja) * 2009-02-09 2010-08-19 Toyota Industries Corp 非接触電力伝送装置
JP5347708B2 (ja) * 2009-05-18 2013-11-20 トヨタ自動車株式会社 コイルユニット、非接触電力伝送装置、非接触給電システムおよび車両
US8768624B2 (en) * 2009-05-26 2014-07-01 Hitachi, Ltd. Vehicle operation support system and vehicle operation support method
JP5321521B2 (ja) 2010-03-31 2013-10-23 アイシン・エィ・ダブリュ株式会社 車両用充電支援装置、車両用充電支援方法、コンピュータプログラム
KR101794348B1 (ko) * 2010-10-21 2017-11-07 삼성전자주식회사 무선 충전을 수행 시 전력의 세기와 충전 예상 시간을 표시하는 장치 및 방법
JP5348325B2 (ja) * 2010-12-24 2013-11-20 トヨタ自動車株式会社 非接触充電システム、非接触充電方法、非接触充電型の車両、および非接触充電管理装置
KR101533175B1 (ko) * 2010-12-27 2015-07-01 닛산 지도우샤 가부시키가이샤 비접촉 충전 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215211A (ja) * 1996-02-02 1997-08-15 Sumitomo Wiring Syst Ltd 電気自動車用充電システム
JP2009089452A (ja) 2007-09-27 2009-04-23 Denso Corp 充電システム
WO2010052785A1 (ja) * 2008-11-07 2010-05-14 トヨタ自動車株式会社 車両用給電システム、電動車両および車両用給電設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2660944A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529291A (ja) * 2011-10-04 2014-10-30 エルジー・ケム・リミテッド バッテリー充電装置及び方法
JP2015531064A (ja) * 2012-08-09 2015-10-29 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフトBayerische Motoren Werke Aktiengesellschaft 無線ベースのロッキングシステムを利用した位置決め
EP2985872A4 (en) * 2013-03-26 2016-04-06 Panasonic Ip Man Co Ltd POWER SUPPLY, CIRCULAR DEVICE AND POWER SUPPLY SYSTEM
GB2518128A (en) * 2013-06-20 2015-03-18 Nokia Technologies Oy Charging rechargeable apparatus
GB2518128B (en) * 2013-06-20 2021-02-10 Nokia Technologies Oy Charging rechargeable apparatus
US10559979B2 (en) 2013-06-20 2020-02-11 Nokia Technologies Oy Charging rechargeable apparatus
KR101778480B1 (ko) 2013-09-30 2017-09-13 닛산 지도우샤 가부시키가이샤 비접촉 급전 장치 및 주차 지원 장치
KR101780163B1 (ko) 2014-01-31 2017-09-19 닛산 지도우샤 가부시키가이샤 비접촉 급전 시스템 및 송전 장치
KR101817455B1 (ko) 2014-02-25 2018-01-11 닛산 지도우샤 가부시키가이샤 비접촉 급전 시스템 및 송전 장치
KR101747064B1 (ko) 2014-02-25 2017-06-14 닛산 지도우샤 가부시키가이샤 비접촉 급전 시스템 및 송전 장치
KR101816471B1 (ko) 2014-02-25 2018-01-08 닛산 지도우샤 가부시키가이샤 비접촉 급전 시스템 및 송전 장치
WO2016121044A1 (ja) * 2015-01-29 2016-08-04 日産自動車株式会社 駐車支援システム及び駐車支援方法
KR101860695B1 (ko) * 2015-01-29 2018-05-23 닛산 지도우샤 가부시키가이샤 주차 지원 시스템 및 주차 지원 방법
US10432039B2 (en) 2015-01-29 2019-10-01 Nissan Motor Co., Ltd. Parking assist system and parking assist method
JPWO2016121044A1 (ja) * 2015-01-29 2017-12-07 日産自動車株式会社 駐車支援システム及び駐車支援方法
KR101730728B1 (ko) 2015-10-01 2017-05-11 현대자동차주식회사 무선 충전 시스템의 그라운드 어셈블리 탐지 방법 및 장치
JP2018126004A (ja) * 2017-02-02 2018-08-09 トヨタ自動車株式会社 車両の充電制御装置
JP2019154651A (ja) * 2018-03-09 2019-09-19 シャープ株式会社 調理器
WO2022201694A1 (ja) * 2021-03-22 2022-09-29 パナソニックIpマネジメント株式会社 充電制御装置、充電制御システム、充電サービス提供方法及び情報提示方法

Also Published As

Publication number Publication date
RU2547930C2 (ru) 2015-04-10
BR112013016594A2 (pt) 2016-09-27
BR112013015095A2 (pt) 2016-10-04
CN103329387A (zh) 2013-09-25
BR112013016594B1 (pt) 2020-09-08
MY167081A (en) 2018-08-10
EP2660946A4 (en) 2017-03-29
RU2013135278A (ru) 2015-02-10
WO2012090612A1 (ja) 2012-07-05
KR101533175B1 (ko) 2015-07-01
CN103329387B (zh) 2016-04-27
US9199547B2 (en) 2015-12-01
RU2013135263A (ru) 2015-02-10
US9050900B2 (en) 2015-06-09
MY164465A (en) 2017-12-15
RU2545243C2 (ru) 2015-03-27
CN103283110B (zh) 2016-01-13
EP2660944A4 (en) 2017-04-05
JP5664665B2 (ja) 2015-02-04
MX2013007480A (es) 2013-08-15
EP2660946A1 (en) 2013-11-06
JPWO2012090613A1 (ja) 2014-06-05
JPWO2012090612A1 (ja) 2014-06-05
JP5527431B2 (ja) 2014-06-18
EP2660944B1 (en) 2018-11-07
EP2660944A1 (en) 2013-11-06
US20140111152A1 (en) 2014-04-24
KR20130114695A (ko) 2013-10-17
KR20130093667A (ko) 2013-08-22
EP2660946B1 (en) 2019-01-23
MX2013006593A (es) 2013-07-15
CN103283110A (zh) 2013-09-04
BR112013015095B1 (pt) 2021-08-10
KR101481925B1 (ko) 2015-01-12
US20130278212A1 (en) 2013-10-24

Similar Documents

Publication Publication Date Title
JP5527431B2 (ja) 非接触充電装置
JP6427873B2 (ja) 駐車支援装置及びシステム
CA2908349C (en) Power supply device, vehicle, and non-contact power supply system
JP5834463B2 (ja) トルク制御装置及び非接触充電システム
WO2010098397A1 (ja) 移動体の電力供給システム
WO2013088488A1 (ja) 非接触送受電システム、車両および送電装置
EP2928046B1 (en) Non-contact power supply apparatus, non-contact power supply system, and non-contact power supply method
WO2011114942A1 (ja) 移動体給電装置
US20150048688A1 (en) Electric power transmission system
JP6610503B2 (ja) 車両および供給装置
JP2013228238A (ja) 車両用情報提供システム、端末装置、および、サーバー
JP5488724B2 (ja) 共鳴型非接触給電システム
JP6897371B2 (ja) 車両および電力伝送システム
US20230021364A1 (en) Wireless charging apparatus, wireless charging method, and wireless charging system
JP2023018476A (ja) 交通流制御装置及び情報表示装置
JPWO2013088488A1 (ja) 非接触送受電システム、車両および送電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852899

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012550779

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13991966

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 12013501202

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/006593

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20137016580

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011852899

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013135263

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013015095

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013015095

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130617