WO2012086781A1 - 研磨液及びこの研磨液を用いた基板の研磨方法 - Google Patents

研磨液及びこの研磨液を用いた基板の研磨方法 Download PDF

Info

Publication number
WO2012086781A1
WO2012086781A1 PCT/JP2011/079873 JP2011079873W WO2012086781A1 WO 2012086781 A1 WO2012086781 A1 WO 2012086781A1 JP 2011079873 W JP2011079873 W JP 2011079873W WO 2012086781 A1 WO2012086781 A1 WO 2012086781A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polishing
polishing liquid
group
film
Prior art date
Application number
PCT/JP2011/079873
Other languages
English (en)
French (fr)
Inventor
宗宏 太田
田中 孝明
寿夫 瀧澤
吉川 茂
貴彬 松本
貴浩 吉川
隆 篠田
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to US13/884,883 priority Critical patent/US9564337B2/en
Priority to CN201180048658.4A priority patent/CN103155112B/zh
Priority to KR1020137019602A priority patent/KR101886464B1/ko
Priority to SG2013025564A priority patent/SG190765A1/en
Priority to KR1020137013602A priority patent/KR101389235B1/ko
Publication of WO2012086781A1 publication Critical patent/WO2012086781A1/ja
Priority to US15/366,380 priority patent/US20170133237A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • H01L21/31055Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step

Definitions

  • the present invention relates to a polishing liquid and a method for polishing a substrate using the polishing liquid. More specifically, the present invention is a semiconductor element manufacturing technique, a planarization process of a substrate surface, in particular, a planarization process of an interlayer insulating film and a BPSG film (boron, phosphorus-doped silicon dioxide film), shallow trench isolation.
  • the present invention relates to a polishing liquid and a method for polishing a substrate using the polishing liquid, which are used in a (STI) forming process.
  • CMP Chemical Mechanical Polishing
  • an inorganic insulating film such as a silicon oxide film is formed by a method such as plasma-CVD (chemical vapor deposition) or low-pressure CVD (chemical vapor deposition).
  • a chemical mechanical polishing liquid for planarizing the inorganic insulating film it has been generally studied to use a fumed silica-based polishing liquid.
  • the fumed silica-based polishing liquid is produced by adjusting the pH of a slurry containing particles obtained by grain growth by a method such as thermal decomposition of tetrachlorosilicic acid.
  • a fumed silica-based polishing liquid has a technical problem that the polishing rate is low.
  • STI is used for element isolation in the integrated circuit.
  • CMP technology is used to remove an excess silicon oxide film formed on a substrate.
  • a stopper film having a low polishing rate is formed under the silicon oxide film.
  • a silicon nitride film or the like is used for the stopper film. It is desirable that the polishing rate ratio between the silicon oxide film and the stopper film is large in order to efficiently remove the excess silicon oxide film and sufficiently suppress the subsequent polishing.
  • the conventional colloidal silica-based polishing liquid has a polishing rate ratio between the silicon oxide film and the stopper film as small as about 3, and does not have a characteristic that can be practically used for STI.
  • a cerium oxide polishing liquid containing cerium oxide particles is used as a polishing liquid for glass surfaces such as photomasks and lenses.
  • Cerium oxide particles have a lower hardness than silica particles and alumina particles, and are difficult to scratch on the polished surface during polishing, and thus are useful for finish mirror polishing.
  • the cerium oxide polishing liquid has an advantage that the polishing rate is faster than the silica polishing liquid such as fumed silica type or colloidal silica type.
  • Patent Document 1 describes a semiconductor CMP polishing liquid using high-purity cerium oxide abrasive grains.
  • Patent Document 2 describes a technique of adding an additive to control the polishing rate of a cerium oxide polishing liquid and improve global flatness.
  • JP-A-10-106994 Japanese Patent No. 3278532
  • the present invention has been made in view of the above circumstances, and in the CMP technique for polishing a film to be polished formed on the surface of a substrate, the polishing rate of the film to be polished is improved and the flatness after polishing is further improved. It is an object of the present invention to provide a polishing liquid that can be used and a method for polishing a substrate using the polishing liquid.
  • the present invention is a polishing slurry for CMP containing cerium oxide particles, an organic acid A, a polymer compound B having a carboxylic acid group or a carboxylic acid group, and water, wherein the organic acid A includes a —COOM group, —Ph— OM group, —SO 3 M group and —PO 3 M 2 group (wherein M is any one selected from H, NH 4 , Na and K, and Ph may have a substituent) At least one group selected from the group consisting of a phenyl group), the pKa of the organic acid A is less than 9, and the content of the organic acid A is 0. 001 to 1% by mass, the content of polymer compound B is 0.01 to 0.50% by mass with respect to the total mass of the polishing liquid, and the pH is 4.0 or more and 7.0 or less.
  • the organic acid A includes a —COOM group, —Ph— OM group, —SO 3 M group and —PO 3 M 2 group (wherein M
  • the polishing rate of the film to be polished is improved and after polishing The flatness of the film can be improved.
  • the polishing liquid of the present invention is stored as a two-part polishing liquid composed of a first liquid containing cerium oxide particles and water, and a second liquid containing organic acid A, polymer compound B and water. You may keep it. Thereby, since dispersion stability of cerium oxide particles can be kept better until just before using the polishing liquid, it is possible to obtain a more effective polishing rate and flatness.
  • the first liquid further contains a dispersant.
  • the dispersion stability of the cerium oxide particles can be kept better.
  • the present invention also provides a method for polishing a substrate, wherein a film to be polished formed on the substrate surface is polished using the polishing liquid of the present invention. According to such a polishing method using the polishing liquid of the present invention, it is possible to improve the polishing rate of the film to be polished and further improve the flatness after polishing.
  • the polishing rate of the film to be polished is improved and the surface flatness after polishing is further improved.
  • a polishing method for a substrate using the polishing liquid can be provided.
  • the polishing liquid according to this embodiment is a polishing liquid for CMP containing cerium oxide particles, a dispersant, an organic acid A, a polymer compound B, and water.
  • a polishing liquid for CMP containing cerium oxide particles, a dispersant, an organic acid A, a polymer compound B, and water.
  • cerium oxide particles There is no restriction
  • cerium oxide is obtained by oxidizing a cerium compound such as carbonate, nitrate, sulfate, or oxalate.
  • Examples of the method for producing the cerium oxide particles include firing, an oxidation method using hydrogen peroxide, and the like.
  • the cerium oxide particles are preferably composed of two or more crystallites, and have a grain boundary, and more preferably particles having a crystallite diameter in the range of 1 to 300 nm.
  • the crystallite diameter can be measured by observation with a scanning electron microscope (SEM). Specifically, from the image obtained by scanning electron microscope (SEM) observation, the major axis and minor axis of the particle are measured, and the square root of the product of the major axis and the minor axis is taken as the particle diameter.
  • SEM scanning electron microscope
  • the content of alkali metal and halogens in the cerium oxide particles is preferably 10 ppm or less because it is suitably used for polishing in the manufacture of semiconductor elements.
  • the average particle diameter of the cerium oxide particles is preferably 10 to 500 nm, more preferably 20 to 400 nm, and still more preferably 50 to 300 nm. If the average particle size of the cerium oxide particles is 10 nm or more, a good polishing rate tends to be obtained, and if the average particle size is 500 nm or less, the film to be polished tends not to be damaged.
  • the average particle diameter of the cerium oxide particles is measured with a laser diffraction particle size distribution meter (for example, product name: Master Size Microplus, refractive index: 1.93, light source: He—Ne laser, absorption 0 manufactured by Malvern). Means the value of D50 (median diameter of volume distribution, cumulative median value).
  • a sample in which the polishing liquid is diluted to an appropriate concentration for example, a concentration at which the measurement transmittance (H) for a He—Ne laser is 60 to 70% is used.
  • the cerium oxide polishing liquid is stored separately in a cerium oxide slurry in which cerium oxide particles are dispersed in water and an additive solution in which an additive is dissolved in water as described later, the cerium oxide slurry is stored. Can be diluted to an appropriate concentration and measured.
  • the content of the cerium oxide particles is preferably 0.1% by mass or more and more preferably 0.5% by mass or more based on the total mass of the polishing liquid from the viewpoint that a good polishing rate tends to be obtained. Further, the content of the cerium oxide particles is preferably 20% by mass or less, more preferably 5% by mass or less, from the viewpoint that the aggregation of the particles is suppressed and the film to be polished is less likely to be damaged. A mass% or less is more preferable.
  • the polishing liquid according to this embodiment contains an organic acid and / or a salt thereof as the organic acid A.
  • the polishing rate can be improved and the flatness of the film to be polished (for example, a silicon oxide film) after the polishing can be improved.
  • the polishing time can be shortened, and the phenomenon that a part of the surface is excessively polished and recessed like a dish, so-called dishing, is suppressed. can do. This effect can be obtained more efficiently by using an organic acid and / or a salt thereof and cerium oxide particles in combination.
  • the organic acid and / or salt thereof includes -COOM group, -Ph-OM group (phenolic -OM group), -SO 3 M group and -PO 3 M 2 group (wherein M is H, NH 4 , Na And Ph represents at least one group selected from the group consisting of a phenyl group which may have a substituent, and is water-soluble. It is preferable that it is an organic compound.
  • organic acid A for example, Formic acid, acetic acid, propionic acid, butyric acid, valeric acid, cyclohexanecarboxylic acid, phenylacetic acid, benzoic acid, o-toluic acid, m-toluic acid, p-toluic acid, o-methoxybenzoic acid, m-methoxybenzoic acid, p -Methoxybenzoic acid, acrylic acid, methacrylic acid, crotonic acid, pentenoic acid, hexenoic acid, heptenoic acid, octenoic acid, nonenoic acid, decenoic acid, undecenoic acid, dodecenoic acid, tridecenoic acid, tetradecenoic acid, pentadecenoic acid, hexadecenoic acid, Heptadecenoic acid, isobutyric acid, isovaleric acid, cinnamic acid, quinaldic acid,
  • Sulfonic acids of And phosphonic acids such as decylphosphonic acid and phenylphosphonic acid.
  • carboxylic acid, sulfonic acid and phosphonic acid one or more protons of these main chains are represented by atoms or atomic groups such as F, Cl, Br, I, OH, CN and NO 2. It may be a substituted derivative. These can be used alone or in combination of two or more.
  • the content of the organic acid A is 0.001 to 1% by mass based on the total mass of the polishing liquid. If the content of the organic acid and / or salt thereof is 0.001% by mass or more, the flatness of the polishing target film (for example, silicon oxide film) after polishing tends to be improved. In addition, the content of the organic acid and / or salt thereof is preferably 0.005% by mass or more, and more preferably 0.01% by mass or more. On the other hand, if the content is 1% by mass or less, the polishing rate of the film to be polished tends to be sufficiently improved, and aggregation of the cerium oxide particles tends to be suppressed. Alternatively, the content of the salt is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.
  • the organic acid A has an acid dissociation constant pKa at room temperature (25 ° C.) (the lowest first stage pKa 1 when there are two or more pKa) is less than 9, but the pKa is less than 8. Is preferably less than 7, more preferably less than 6, and most preferably less than 5. If the pKa of the organic acid A is less than 9, at least a part of the organic acid A becomes an organic acid ion in the polishing liquid to release hydrogen ions, and the pH can be maintained in a desired pH range.
  • the polishing liquid according to this embodiment includes a polymer compound B having a carboxylic acid group or a carboxylic acid group.
  • the carboxylic acid group is a functional group represented by —COOH
  • the carboxylic acid group is a functional group represented by —COOX (X is a cation derived from a base, such as ammonium. Ions, sodium ions and potassium ions).
  • the polymer compound B preferably contains a water-soluble organic polymer having a carboxylic acid group or a carboxylate group and / or a salt thereof. Thereby, the flatness of the film to be polished (for example, a silicon oxide film) after the polishing can be improved.
  • dishing when a surface to be polished having irregularities is polished, it is possible to suppress the phenomenon that a part of the surface is excessively polished and recessed like a dish, so-called dishing.
  • This effect can be obtained more efficiently by using a water-soluble organic polymer having a carboxylic acid group or a carboxylate group and / or a salt thereof, an organic acid and / or a salt thereof, and cerium oxide particles in combination. It is done.
  • polymer compound B water-soluble organic polymer having a carboxylic acid group or a carboxylic acid group
  • Polycarboxylic acids such as polyaspartic acid, polyglutamic acid, polylysine, polymalic acid, polyamic acid, polyamic acid ammonium salt, polyamic acid sodium salt and polyglyoxylic acid and salts thereof;
  • Examples thereof include a homopolymer of a monomer having a carboxylic acid group such as acrylic acid, methacrylic acid, and maleic acid, and a homopolymer in which the carboxylic acid group portion of the polymer is an ammonium salt.
  • a copolymer of a monomer having a carboxylate group and a derivative such as an alkyl ester of carboxylic acid can be mentioned.
  • Specific examples thereof include poly (meth) acrylic acid or a polymer in which a part of the carboxylic acid group of poly (meth) acrylic acid is substituted with an ammonium carboxylate base (hereinafter referred to as poly (meth) ammonium acrylate). ) And the like.
  • poly (meth) acrylic acid means at least one of polyacrylic acid and polymethacrylic acid.
  • a homopolymer of a monomer having a carboxylic acid group such as acrylic acid, methacrylic acid, and maleic acid and a homopolymer in which the carboxylic acid group portion of the polymer is an ammonium salt or the like are preferred, homopolymers of (meth) acrylic acid (poly (meth) acrylic acid) and ammonium salts thereof are more preferred, and polyacrylic acid and ammonium salts thereof are even more preferred.
  • the content of the polymer compound B is 0.01% by mass or more based on the total mass of the polishing liquid from the viewpoint of improving the flatness of the film to be polished (eg, silicon oxide film) after polishing.
  • 0.02% by mass or more is preferable, and 0.05% by mass or more is more preferable.
  • the content is 0.50% by mass or less, the polishing rate of the film to be polished tends to be sufficiently improved, and from the viewpoint that aggregation of cerium oxide particles tends to be suppressed, the polymer compound B
  • the content of is 0.50% by mass or less based on the total mass of the polishing liquid, but is preferably 0.40% by mass or less, more preferably 0.30% by mass or less, and further preferably 0.20% by mass or less.
  • the weight average molecular weight of the polymer compound B is not particularly limited, but is 100,000 or less from the viewpoint that the polishing rate of the film to be polished tends to be sufficiently obtained and tends to suppress aggregation of the cerium oxide particles. Is preferable, and 10,000 or less is more preferable. Moreover, the weight average molecular weight of the high molecular compound B is preferably 1000 or more from the viewpoint that the flatness improving effect tends to be easily obtained.
  • the weight average molecular weight is a value obtained by measuring with GPC (Gel Permeation Chromatography) and converting to standard polyoxyethylene.
  • the polishing liquid may further contain a solvent other than water, for example, a polar solvent such as ethanol or acetone, if necessary.
  • the polishing liquid according to the present embodiment can contain a dispersant for dispersing the cerium oxide particles.
  • the dispersant include water-soluble anionic dispersants, water-soluble nonionic dispersants, water-soluble cationic dispersants and water-soluble amphoteric dispersants, and among them, water-soluble anionic dispersants are preferable. . These can be used alone or in combination of two or more.
  • the said compound (for example, ammonium polyacrylate) illustrated as the high molecular compound B can also be used as a dispersing agent.
  • a polymer containing acrylic acid as a copolymer component and a salt thereof are preferable, and a salt of the polymer is more preferable.
  • Polymers containing acrylic acid as a copolymerization component and salts thereof include, for example, polyacrylic acid and ammonium salts thereof, copolymers of acrylic acid and methacrylic acid and ammonium salts thereof, and acrylic amides and acrylic acids. And copolymers thereof and ammonium salts thereof.
  • water-soluble anionic dispersants include, for example, lauryl sulfate triethanolamine, ammonium lauryl sulfate, polyoxyethylene alkyl ether sulfate triethanolamine, and special polycarboxylic acid type polymer dispersants.
  • water-soluble nonionic dispersant examples include polyethylene glycol monolaurate, polyethylene glycol monostearate, polyethylene glycol distearate, polyethylene glycol monooleate, polyoxyethylene alkylamine, and polyoxyethylene hydrogenated castor oil. 2-hydroxyethyl methacrylate and alkylalkanolamides.
  • water-soluble cationic dispersant examples include polyvinyl pyrrolidone, coconut amine acetate, and stearyl amine acetate.
  • water-soluble amphoteric dispersant examples include lauryl betaine, stearyl betaine, lauryl dimethylamine oxide and 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine.
  • the content of the dispersant is in the range of 0.001 to 10% by mass based on the total mass of the polishing liquid from the viewpoint of improving the dispersibility of the cerium oxide particles to suppress sedimentation and further reducing the polishing flaws of the film to be polished. preferable.
  • the weight average molecular weight of the dispersant is not particularly limited, but is preferably 100 to 150,000, more preferably 1000 to 20000. When the molecular weight of the dispersant is 100 or more, a good polishing rate tends to be easily obtained when a film to be polished such as a silicon oxide film or a silicon nitride film is polished. If the molecular weight of the dispersant is 150,000 or less, the storage stability of the polishing liquid tends to be difficult to decrease.
  • the weight average molecular weight is a value measured by GPC and converted to standard polyoxyethylene.
  • the polishing liquid according to the present embodiment uses a water-soluble polymer as an additive different from the organic acid and / or salt thereof, and the water-soluble organic polymer having carboxylic acid group or carboxylate group and / or salt thereof. can do.
  • water-soluble polymers include polysaccharides such as alginic acid, pectic acid, carboxymethylcellulose, agar, curdlan and pullulan; vinyl polymers such as polyvinyl alcohol, polyvinylpyrrolidone and polyacrolein.
  • These water-soluble polymers preferably have a weight average molecular weight of 500 or more.
  • the weight average molecular weight is a value measured by GPC and converted to standard polyoxyethylene.
  • the content of these water-soluble polymers is preferably 0.01 to 5% by mass based on the total mass of the polishing liquid.
  • the polishing liquid according to this embodiment is obtained, for example, by adding cerium oxide particles, water, and a dispersing agent to disperse the cerium oxide particles, and further adding an organic acid A and a polymer compound B.
  • the polishing liquid according to this embodiment may be stored as a one-part polishing liquid containing cerium oxide particles, a dispersant, an organic acid A, a polymer compound B, water, and optionally a water-soluble polymer.
  • additives other than the organic acid A and the polymer compound B may be included in either the cerium oxide slurry or the additive liquid, but this affects the dispersion stability of the cerium oxide particles. It is preferable that it is contained in an additive liquid at the point which does not have.
  • the cerium oxide slurry and the additive liquid are separated, it is possible to adjust the flattening characteristics and polishing rate by arbitrarily changing the combination of these two liquids.
  • polishing with a two-part polishing liquid the cerium oxide slurry and additive liquid are sent through separate pipes, and these pipes are combined just before the supply pipe outlet to mix the two liquids onto the polishing pad. Or a method of mixing the cerium oxide slurry and the additive solution immediately before polishing.
  • the polishing liquid and slurry according to the present embodiment are used for polishing liquid storage, which is used after being diluted with a liquid medium such as water, for example, twice or more at the time of use, from the viewpoint of suppressing costs related to storage, transportation, storage and the like. It can be stored as a liquid or slurry stock.
  • a liquid medium such as water
  • Each of the storage liquids may be diluted with a liquid medium immediately before polishing, or may be diluted on the polishing pad by supplying the storage liquid and the liquid medium onto the polishing pad.
  • the dilution ratio of the stock solution is preferably 2 times or more and more preferably 3 times or more because the higher the magnification, the higher the effect of suppressing the cost related to storage, transportation, storage and the like.
  • the upper limit is not particularly limited. However, the higher the magnification, the greater the amount of components contained in the stock solution (the higher the concentration), and the lower the stability during storage. Is preferably 7 times or less, more preferably 7 times or less, and still more preferably 5 times or less. In addition, you may divide a structural component into three or more liquids, and the case is the same also in that case.
  • the polishing liquid according to this embodiment is adjusted to a desired pH and used for polishing.
  • the pH adjuster is not particularly limited, and examples thereof include acids such as nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, boric acid and acetic acid, and bases such as sodium hydroxide, aqueous ammonia, potassium hydroxide and calcium hydroxide. It is done.
  • ammonia water and an acid component are preferably used.
  • an ammonium salt of a water-soluble polymer that has been partially neutralized with ammonia in advance can be used.
  • the pH of the polishing liquid at room temperature is 4.0 or more and 7.0 or less.
  • the pH is 4.0 or more, the storage stability of the polishing liquid tends to be improved, and the number of scratches on the polished film tends to decrease.
  • the pH is 4.5 The above is preferable, and 4.8 or more is more preferable.
  • the pH is 7.0 or less, the effect of improving flatness can be sufficiently exhibited.
  • the pH is preferably 6.5 or less, more preferably 6.0 or less, 5.5 or less is more preferable.
  • the pH of the polishing liquid can be measured with a pH meter (for example, Model PH81 (trade name) manufactured by Yokogawa Electric Corporation).
  • the electrode is polished.
  • the pH of the polishing liquid can be measured by putting the liquid in the liquid and measuring the value after passing for 2 minutes or more at 25 ° C. and stabilizing.
  • a film to be polished formed on the substrate surface is polished using the polishing liquid. More specifically, for example, while the polishing film formed on the substrate surface is pressed against the polishing pad of the polishing surface plate, the polishing liquid is supplied between the polishing film and the polishing pad while the polishing liquid is being supplied between the polishing film and the polishing pad.
  • the film to be polished is polished by moving the board relatively.
  • a substrate As a substrate, it relates to the manufacture of semiconductor elements such as a semiconductor substrate in which an inorganic insulating film is formed on a semiconductor substrate such as a semiconductor substrate in which a circuit element and a wiring pattern are formed, and a semiconductor substrate in a stage in which a circuit element is formed. Examples include substrates.
  • the film to be polished examples include inorganic insulating films such as a silicon oxide film, a silicon nitride film, and a composite film of a silicon oxide film.
  • inorganic insulating films such as a silicon oxide film, a silicon nitride film, and a composite film of a silicon oxide film.
  • a polishing apparatus As a polishing apparatus, a holder for holding a substrate such as a semiconductor substrate having a film to be polished, a motor capable of changing the number of rotations, etc. are attached, and a polishing surface plate on which a polishing pad (polishing cloth) can be attached, A general polishing apparatus having the following can be used.
  • a polishing apparatus manufactured by Ebara Manufacturing Co., Ltd .: model number EPO-111, MIRRA, Reflexion manufactured by AMAT, etc. can be used.
  • polishing pad a general nonwoven fabric, foamed polyurethane, porous fluororesin, or the like can be used without particular limitation. Moreover, it is preferable that the polishing pad is grooved so that the polishing liquid is accumulated.
  • the polishing conditions are not limited, but the rotation speed of the surface plate is preferably low rotation of 200 rotations / minute or less so that the semiconductor substrate does not pop out, and the pressure (working load) applied to the semiconductor substrate is scratched after polishing. 100 kPa or less is preferable.
  • the polishing liquid is continuously supplied to the polishing pad with a pump or the like. Although there is no restriction
  • the semiconductor substrate is preferably washed in running water and then dried by removing water droplets adhering to the semiconductor substrate using a spin dryer or the like.
  • the inorganic insulating film which is the film to be polished
  • the polishing liquid polishing the unevenness of the surface
  • a smooth surface can be obtained over the entire surface of the semiconductor substrate.
  • Examples of the inorganic insulating film polished by the polishing liquid according to this embodiment include a silicon oxide film and a silicon nitride film.
  • the silicon oxide film may be doped with elements such as phosphorus and boron.
  • a method for manufacturing the inorganic insulating film a low pressure CVD method, a plasma CVD method, or the like can be given.
  • the silicon oxide film formation by the low pressure CVD method uses monosilane: SiH 4 as the Si source and oxygen: O 2 as the oxygen source.
  • a silicon oxide film can be obtained by performing this SiH 4 —O 2 -based oxidation reaction at a low temperature of 400 ° C. or lower.
  • the silicon oxide film obtained by CVD is heat-treated at a temperature of 1000 ° C. or lower.
  • doping silicon: P with phosphorus: P it is preferable to use a SiH 4 —O 2 —PH 3 -based reaction gas.
  • the plasma CVD method has an advantage that a chemical reaction requiring a high temperature can be performed at a low temperature under normal thermal equilibrium.
  • the substrate temperature is preferably 250 to 400 ° C.
  • the reaction pressure is preferably 67 to 400 Pa.
  • Silicon nitride film formation by the low pressure CVD method uses dichlorosilane: SiH 2 Cl 2 as a Si source and ammonia: NH 3 as a nitrogen source. By performing this SiH 2 Cl 2 —NH 3 oxidation reaction at a high temperature of 900 ° C., a silicon nitride film can be obtained.
  • the reactive gas include SiH 4 —NH 3 based gas using SiH 4 as the Si source and NH 3 as the nitrogen source.
  • the substrate temperature is preferably 300 to 400 ° C.
  • the polishing liquid and the substrate polishing method according to the present embodiment can be applied not only to the inorganic insulating film formed on the semiconductor substrate but also to manufacturing processes of various semiconductor devices.
  • the polishing liquid and substrate polishing method according to the present embodiment include, for example, a silicon oxide film formed on a wiring board having a predetermined wiring, an inorganic insulating film such as glass and silicon nitride, polysilicon, Al, Cu, Ti, Optical integrated circuits / optical switching elements / lights composed of films mainly containing TiN, W, Ta, TaN, etc., optical glasses such as photomasks / lenses / prisms, inorganic conductive films such as ITO, glass and crystalline materials Polishing waveguides, optical fiber end faces, scintillator and other optical single crystals, solid state laser single crystals, blue laser LED sapphire substrates, semiconductor single crystals such as SiC, GaP and GaAs, glass substrates for magnetic disks, and magnetic heads Can also be applied.
  • Arbitrary 50 crystallites were selected from the obtained SEM images, and the particle diameter was determined from the square root of the product of the major axis and the minor axis for each.
  • the crystallite diameters were all included in the range of 1 to 300 nm. It was.
  • Example 1-1 200.0 g of the cerium oxide particles prepared above and 795.0 g of deionized water are mixed, and 5 g of an aqueous solution of ammonium polyacrylate (weight average molecular weight: 8000, 40% by mass) is added as a dispersant and stirred. Then, ultrasonic dispersion was performed to obtain a cerium oxide dispersion. Ultrasonic dispersion was performed at an ultrasonic frequency of 400 kHz and a dispersion time of 20 minutes.
  • cerium oxide dispersion 1 kg was placed in a 1 liter container (height: 170 mm) and allowed to stand to perform sedimentation classification. After 15 hours of classification time, the supernatant above a depth of 13 cm from the water surface was pumped up. The obtained supernatant cerium oxide dispersion was diluted with deionized water so that the content of cerium oxide particles was 5% by mass to obtain a cerium oxide slurry.
  • the slurry is diluted so that the measurement transmittance (H) with respect to the He—Ne laser is 60 to 70%, and a measurement sample is obtained. It was.
  • this measurement sample was measured using a laser diffraction particle size distribution meter Master Sizer Microplus (trade name, manufactured by Malvern) as a refractive index of 1.93 and an absorption of 0, the value of D50 was 150 nm.
  • pKa (25 ° C.) ⁇ 2.8
  • cerium polishing liquid (cerium oxide particle content: 0.67% by mass) was prepared.
  • a measurement sample was prepared in the same manner as described above, and the average particle diameter of the particles in the polishing liquid was measured with a laser diffraction particle size distribution analyzer. As a result, the value of D50 was 150 nm.
  • polishing test wafer As the polishing test wafer, a trade name “pattern wafer 764” (diameter: 300 mm) manufactured by SEMATECH was used. The polishing test wafer and a method for evaluating polishing characteristics using the wafer will be described with reference to FIG.
  • FIG. 1A is a schematic cross-sectional view showing an enlarged part of a polishing test wafer.
  • a plurality of grooves are formed on the surface of the wafer 1, and a silicon nitride film 2 having a thickness of 150 nm (1500 mm) is formed on the surface of the convex portion of the wafer 1.
  • the depth of the groove is 500 nm (5000 mm).
  • the convex portion is referred to as an active portion
  • the concave portion is referred to as a trench portion.
  • the wafer 1 is formed with three regions having trench / active section cross-sectional widths of 100 ⁇ m / 100 ⁇ m, 20 ⁇ m / 80 ⁇ m, and 80 ⁇ m / 20 ⁇ m.
  • FIG. 1B is an enlarged schematic cross-sectional view of a part of the polishing test wafer.
  • the silicon oxide film 3 is formed in the active part and the trench part by the plasma TEOS method so that the thickness of the silicon oxide film 3 from the surface of the active part becomes 600 nm (6000 mm).
  • the silicon oxide film 3 of the polishing test wafer is polished and planarized.
  • FIG. 1C is a schematic cross-sectional view showing an enlarged part of a polishing test wafer after polishing the silicon oxide film 3. Polishing is completed on the surface of the silicon nitride film 2 in the active portion, and the time required for this polishing is defined as the polishing time, and a value obtained by subtracting the thickness 5 of the silicon oxide film 3 in the trench portion from the depth 4 of the trench portion.
  • the dishing amount is 6. It should be noted that the polishing time should be shorter and the dishing amount 6 should be smaller.
  • a polishing apparatus (Reflexion manufactured by AMAT) was used for polishing the polishing test wafer.
  • a polishing test wafer was set in a holder on which a suction pad for mounting the substrate was attached.
  • the polishing platen and the polishing test wafer were each operated at 130 rpm to polish the polishing test wafer.
  • the polishing time when the silicon nitride film of the active part in the 100 ⁇ m / 100 ⁇ m region was exposed on the surface was defined as the polishing end time.
  • the evaluation of the flatness was performed on a wafer that was over-polished by 20% from that time (for example, if the polishing end time is 100 seconds, polishing is performed for an additional 20 seconds from that point).
  • polishing excessively it is easy to make a difference in the value of the item to be evaluated, it is easy to evaluate, and the number is good even if it is excessively polished (good characteristics) from the aspect of the polishing process This is because there is a likelihood of the process, which is advantageous and can be proved.
  • the polished test wafer after polishing was thoroughly washed with pure water and then dried.
  • Item 1 Dishing amount of the trench portion in the 100 ⁇ m / 100 ⁇ m region: Measured using a stylus type step meter (manufactured by Model No. P16, manufactured by KLA-tencor).
  • Item 2 SiN loss in active part of 100 ⁇ m / 100 ⁇ m region: thickness of silicon nitride film (SiN film) removed by polishing using interference type film thickness measuring device Nanospec / AFT5100 (trade name) manufactured by Nanometrics Was measured.
  • Item 3 SiO 2 residual film thickness difference (SiO 2 density difference) in the trench part of 20 ⁇ m / 80 ⁇ m region and 80 ⁇ m / 20 ⁇ m region: using interference type film thickness measuring device Nanospec / AFT5100 (trade name) manufactured by Nanometrics The residual film thickness of the silicon oxide film (SiO 2 film) in each region was measured, and the difference was obtained.
  • Examples 1-2 to 6-9 and Comparative Examples 1-1 to 6-9) A cerium oxide polishing liquid was prepared in the same manner as in Example 1-1 except that the pH of the polishing liquid, the type and amount of organic acid A, or the amount of polymer compound B used were changed to those shown in Tables 1 to 19.
  • the insulating film was prepared and polished. The results are shown in the same table. From Tables 1 to 19, it is clear that the polishing liquid provided by the present invention improves the polishing rate and flatness and achieves dishing reduction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

 酸化セリウム粒子、有機酸A、カルボン酸基又はカルボン酸塩基を有する高分子化合物B及び水を含んでおり、有機酸Aは、-COOM基、-Ph-OM基、-SOM基及び-PO基からなる群より選択される少なくとも一つの基を有しており、有機酸AのpKaが9未満であり、有機酸Aの含有量が、研磨液全質量に対して0.001~1質量%であり、高分子化合物Bの含有量が、研磨液全質量に対して0.01~0.50質量%であり、pHが4.0以上7.0以下である研磨液。

Description

研磨液及びこの研磨液を用いた基板の研磨方法
 本発明は、研磨液及びこの研磨液を用いた基板の研磨方法に関する。より詳細には、本発明は、半導体素子製造技術である、基板表面の平坦化工程、特に、層間絶縁膜、BPSG膜(ボロン、リンをドープした二酸化珪素膜)の平坦化工程、シャロートレンチ分離(STI)の形成工程等において使用される、研磨液及びこの研磨液を用いた基板の研磨方法に関する。
 現在のULSI半導体素子製造工程では、半導体素子の高密度・微細化のための加工技術が研究開発されている。その加工技術の一つであるCMP(ケミカルメカニカルポリッシング:化学機械研磨)技術は、半導体素子製造工程において、層間絶縁膜の平坦化、STI形成、プラグ及び埋め込み金属配線形成等を行う際に、必須の技術となってきている。
 従来、半導体素子製造工程において、酸化珪素膜等の無機絶縁膜はプラズマ-CVD(化学気相成長)、低圧-CVD(化学気相成長)等の方法で形成されている。この無機絶縁膜を平坦化するための化学機械研磨液として、フュームドシリカ系の研磨液を用いることが一般的に検討されている。フュームドシリカ系の研磨液は、四塩化珪酸を熱分解する等の方法で粒成長させて得られた粒子が配合されたスラリのpHを調整することによって製造される。但し、この様なフュームドシリカ系の研磨液は、研磨速度が低いという技術課題がある。
 また、デザインルール0.25μm以降の世代では、集積回路内の素子分離にSTIが用いられている。STIでは、基板上に成膜した余分な酸化珪素膜を取り除くためにCMP技術が使用される。この場合、任意の深さにて研磨を停止させるために、酸化珪素膜の下に研磨速度の低いストッパ膜が形成される。ストッパ膜には、窒化珪素膜等が使用される。余分な酸化珪素膜を効率的に取り除くとともに、その後の研磨の進行を充分に抑制するには、酸化珪素膜とストッパ膜との研磨速度比が大きいことが望ましい。しかし、従来のコロイダルシリカ系の研磨液は、酸化珪素膜とストッパ膜との研磨速度比が3程度と小さく、STI用としては実用に耐える特性を有していない。
 一方、フォトマスクやレンズ等のガラス表面に対する研磨液として、酸化セリウム粒子を含む酸化セリウム研磨液が用いられている。酸化セリウム粒子は、シリカ粒子やアルミナ粒子に比べ硬度が低く、研磨に際し研磨表面に傷が入りにくいことから、仕上げ鏡面研磨に有用である。また、酸化セリウム研磨液は、フュームドシリカ系やコロイダルシリカ系等のシリカ研磨液に比べ、研磨速度が速い利点がある。
 酸化セリウム研磨液として、下記特許文献1には、高純度酸化セリウム砥粒を用いた半導体用CMP研磨液が記載されている。また、下記特許文献2には、酸化セリウム研磨液の研磨速度を制御し、グローバルな平坦性を向上させるために添加剤を加える技術が記載されている。
特開平10-106994号公報 特許3278532号公報
 しかしながら、配線やSTIのデザインルールの微細化の進展に伴い、前記のような酸化セリウム研磨液に対して更なる平坦性の向上(例えば、絶縁膜のディッシング量の低減)が求められている。また、半導体デバイスの生産のさらなる精度向上も求められており、例えば、トレンチ密度の異なる部分における絶縁膜の残膜厚差が小さいことや、ストッパー膜の過剰研磨の量が少ないことが求められている。さらに、同時に研磨プロセスの尤度が大きいことも、精度の高い半導体デバイス生産には、重要なことである。
 本発明は、前記実情に鑑みてなされたものであり、基板の表面に形成された被研磨膜を研磨するCMP技術において、被研磨膜の研磨速度を向上させ、さらに研磨後の平坦性を向上させることが可能な研磨液及びこの研磨液を用いた基板の研磨方法を提供することを目的とする。
 本発明は、酸化セリウム粒子、有機酸A、カルボン酸基又はカルボン酸塩基を有する高分子化合物B及び水を含むCMP用の研磨液であって、有機酸Aは、-COOM基、-Ph-OM基、-SOM基及び-PO基(式中、MはH、NH、Na及びKから選択されるいずれか一種であり、Phは置換基を有していても良いフェニル基を示す)からなる群より選択される少なくとも一つの基を有しており、有機酸AのpKaが9未満であり、有機酸Aの含有量が、研磨液全質量に対して0.001~1質量%であり、高分子化合物Bの含有量が、研磨液全質量に対して0.01~0.50質量%であり、pHは4.0以上7.0以下である、研磨液を提供する。
 本発明の研磨液では、基板の表面に形成された被研磨膜(例えば、層間絶縁膜、BPSG膜、STI膜)を研磨するCMP技術において、被研磨膜の研磨速度を向上させ、かつ研磨後の平坦性を向上させることができる。
 本発明の研磨液は、酸化セリウム粒子及び水を含む第1の液と、有機酸A、高分子化合物B及び水を含む第2の液と、から構成される二液式研磨液として保存しておいてもよい。これにより、研磨液を使用する直前まで酸化セリウム粒子の分散安定性をより良好に保つことができるため、より効果的な研磨速度及び平坦性を得ることが可能である。
 なお、本発明の研磨液は、前記第1の液が、分散剤をさらに含むことが好ましい。これにより、酸化セリウム粒子の分散安定性をさらに良好に保つことができる。
 本発明は、また、基板表面に形成された被研磨膜を本発明の研磨液を用いて研磨する、基板の研磨方法を提供する。本発明の研磨液を使用するこのような研磨方法によれば、被研磨膜の研磨速度を向上させ、さらに研磨後の平坦性を向上させることが可能である。
 本発明によれば、基板の表面に形成された被研磨膜(例えば、STI膜)を研磨するCMP技術において、被研磨膜の研磨速度を向上させ、さらに研磨後の表面平坦性を向上させることが可能な研磨液及びこの研磨液を用いた基板の研磨方法を提供することができる。
研磨特性の評価基板を示す模式断面図である。
 以下、本発明の実施形態について詳細に説明する。
[研磨液]
 本実施形態に係る研磨液は、酸化セリウム粒子と、分散剤と、有機酸Aと、高分子化合物Bと、水とを含有するCMP用の研磨液である。以下、本実施形態に係る研磨液に含まれる各成分について詳細に説明する。
(酸化セリウム粒子)
 酸化セリウム粒子としては、特に制限はなく、公知のものを使用することができる。一般に酸化セリウムは、炭酸塩、硝酸塩、硫酸塩、しゅう酸塩等のセリウム化合物を酸化することによって得られる。酸化セリウム粒子を作製する方法としては、焼成、過酸化水素等による酸化法等が挙げられる。
 TEOS-CVD法等で形成される酸化珪素膜の研磨に酸化セリウム粒子を使用する場合、酸化セリウム粒子の結晶子径(結晶子の直径)が大きく、かつ結晶歪みが少ない程、即ち結晶性が良い程、高速研磨が可能であるが、被研磨膜に研磨傷が入りやすい傾向がある。このような観点から、酸化セリウム粒子は、2個以上の結晶子から構成され、結晶粒界を有する粒子が好ましく、結晶子径が1~300nmの範囲内である粒子がより好ましい。
 前記結晶子径は走査型電子顕微鏡(SEM)による観察で測定することができる。具体的には、走査型電子顕微鏡(SEM)観察で得られた画像から、粒子の長径と短径とを測定し、長径と短径との積の平方根を粒子径とする。
 酸化セリウム粒子中のアルカリ金属及びハロゲン類の含有率は、半導体素子の製造に係る研磨に好適に用いられることから、10ppm以下であることが好ましい。
 酸化セリウム粒子の平均粒径は、10~500nmであることが好ましく、20~400nmであることがより好ましく、50~300nmであることが更に好ましい。酸化セリウム粒子の平均粒径が10nm以上であれば、良好な研磨速度が得られる傾向があり、500nm以下であれば、被研磨膜に傷がつきにくくなる傾向がある。
 ここで、酸化セリウム粒子の平均粒径は、レーザ回折式粒度分布計(例えば、Malvern社製 商品名:Master Sizer Microplus、屈折率:1.93、光源:He-Neレーザ、吸収0)で測定したD50の値(体積分布のメジアン径、累積中央値)を意味する。平均粒径の測定には、適切な濃度(例えば、He-Neレーザに対する測定時透過率(H)が60~70%となる濃度)に研磨液を希釈したサンプルを用いる。なお、酸化セリウム研磨液が、後述するように酸化セリウム粒子を水に分散させた酸化セリウムスラリと、添加剤を水に溶解させた添加液とに分けて保存されている場合は、酸化セリウムスラリを適切な濃度に希釈して測定することができる。
 酸化セリウム粒子の含有量は、良好な研磨速度が得られる傾向がある観点で、研磨液全質量基準で0.1質量%以上が好ましく、0.5質量%以上がより好ましい。また、酸化セリウム粒子の含有量は、粒子の凝集が抑制されて被研磨膜に傷がつきにくくなる傾向がある観点で、20質量%以下が好ましく、5質量%以下がより好ましく、1.5質量%以下が更に好ましい。
(有機酸A)
 本実施形態に係る研磨液は、有機酸Aとして有機酸及び/又はその塩を含有する。これにより、研磨速度を向上させ、かつ研磨終了後の被研磨膜(例えば、酸化珪素膜)の平坦性を向上させることができる。より詳細には、凹凸を有する被研磨面を研磨した場合に、研磨時間を短縮できることに加え、一部が過剰に研磨されて皿のように凹む現象、いわゆるディッシング(Dishing)が生じることを抑制することができる。この効果は、有機酸及び/又はその塩と酸化セリウム粒子とを併用することにより、より効率的に得られる。
 有機酸及び/又はその塩は、-COOM基、-Ph-OM基(フェノール性-OM基)、-SOM基及び-PO基(式中、MはH、NH、Na及びKからなる群より選択されるいずれか一種であり、Phは置換基を有していてもよいフェニル基を示す)からなる群より選択される少なくとも一つの基を有するものであり、水溶性の有機化合物であることが好ましい。
 有機酸Aとしては、例えば、
ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、シクロヘキサンカルボン酸、フェニル酢酸、安息香酸、o-トルイル酸、m-トルイル酸、p-トルイル酸、o-メトキシ安息香酸、m-メトキシ安息香酸、p-メトキシ安息香酸、アクリル酸、メタクリル酸、クロトン酸、ペンテン酸、ヘキセン酸、ヘプテン酸、オクテン酸、ノネン酸、デセン酸、ウンデセン酸、ドデセン酸、トリデセン酸、テトラデセン酸、ペンタデセン酸、ヘキサデセン酸、ヘプタデセン酸、イソ酪酸、イソ吉草酸、ケイ皮酸、キナルジン酸、ニコチン酸、1-ナフトエ酸、2-ナフトエ酸、ピコリン酸、ビニル酢酸、フェニル酢酸、フェノキシ酢酸、2-フランカルボン酸、メルカプト酢酸、レブリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,9-ノナンジカルボン酸、1,10-デカンジカルボン酸、1,11-ウンデカンジカルボン酸、1,12-ドデカンジカルボン酸、1,13-トリデカンジカルボン酸、1,14-テトラデカンジカルボン酸、1,15-ペンタデカンジカルボン酸、1,16-ヘキサデカンジカルボン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、メサコン酸、キノリン酸、キニン酸、ナフタル酸、フタル酸、イソフタル酸、テレフタル酸、グリコール酸、乳酸、3-ヒドロキシプロピオン酸、2-ヒドロキシ酪酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、3-ヒドロキシ吉草酸、5-ヒドロキシ吉草酸、キナ酸、キヌレン酸、サリチル酸、酒石酸、アコニット酸、アスコルビン酸、アセチルサリチル酸、アセチルリンゴ酸、アセチレンジカルボン酸、アセトキシコハク酸、アセト酢酸、3-オキソグルタル酸、アトロパ酸、アトロラクチン酸、アントラキノンカルボン酸、アントラセンカルボン酸、イソカプロン酸、イソカンホロン酸、イソクロトン酸、2-エチル-2-ヒドロキシ酪酸、エチルマロン酸、エトキシ酢酸、オキサロ酢酸、オキシ二酢酸、2-オキソ酪酸、カンホロン酸、クエン酸、グリオキシル酸、グリシド酸、グリセリン酸、グルカル酸、グルコン酸、クロコン酸、シクロブタンカルボン酸、シクロヘキサンジカルボン酸、ジフェニル酢酸、ジ-O-ベンゾイル酒石酸、ジメチルコハク酸、ジメトキシフタル酸、タルトロン酸、タンニン酸、チオフェンカルボン酸、チグリン酸、デソキサル酸、テトラヒドロキシコハク酸、テトラメチルコハク酸、テトロン酸、デヒドロアセト酸、テレビン酸、トロパ酸、バニリン酸、パラコン酸、ヒドロキシイソフタル酸、ヒドロキシケイ皮酸、ヒドロキシナフトエ酸、o-ヒドロキシフェニル酢酸、m-ヒドロキシフェニル酢酸、p-ヒドロキシフェニル酢酸、3-ヒドロキシ-3-フェニルプロピオン酸、ピバル酸、ピリジンジカルボン酸、ピリジントリカルボン酸、ピルビン酸、α-フェニルケイ皮酸、フェニルグリシド酸、フェニルコハク酸、フェニル酢酸、フェニル乳酸、プロピオル酸、ソルビン酸、2,4-ヘキサジエン二酸、2-ベンジリデンプロピオン酸、3-ベンジリデンプロピオン酸、ベンジリデンマロン酸、ベンジル酸、ベンゼントリカルボン酸、1,2-ベンゼンジ酢酸、ベンゾイルオキシ酢酸、ベンゾイルオキシプロピオン酸、ベンゾイルギ酸、ベンゾイル酢酸、O-ベンゾイル乳酸、3-ベンゾイルプロピオン酸、没食子酸、メソシュウ酸、5-メチルイソフタル酸、2-メチルクロトン酸、α-メチルケイ皮酸、メチルコハク酸、メチルマロン酸、2-メチル酪酸、o-メトキシケイ皮酸、p-メトキシケイ皮酸、メルカプトコハク酸、メルカプト酢酸、O-ラクトイル乳酸、リンゴ酸、ロイコン酸、ロイシン酸、ロジゾン酸、ロゾール酸、α-ケトグルタル酸、L-アルコルビン酸、イズロン酸、ガラクツロン酸、グルクロン酸、ピログルタミン酸、エチレンジアミン四酢酸、シアン化三酢酸、アスパラギン酸、グルタミン酸、N’-ヒドロキシエチル-N,N,N’-トリ酢酸及びニトリロトリ酢酸等のカルボン酸;
メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ブタンスルホン酸、ペンタンスルホン酸、ヘキサンスルホン酸、ヘプタンスルホン酸、オクタンスルホン酸、ノナンスルホン酸、デカンスルホン酸、ウンデカンスルホン酸、ドデカンスルホン酸、トリデカンスルホン酸、テトラデカンスルホン酸、ペンタデカンスルホン酸、ヘキサデカンスルホン酸、ヘプタデカンスルホン酸、オクタデカンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、トルエンスルホン酸、ヒドロキシエタンスルホン酸、ヒドロキシフェノールスルホン酸及びアントラセンスルホン酸等のスルホン酸;
デシルホスホン酸及びフェニルホスホン酸等のホスホン酸、などが挙げられる。さらに、前記のカルボン酸、スルホン酸及びホスホン酸については、これらの主鎖のプロトンを1つ又は2つ以上、F、Cl、Br、I、OH、CN及びNO等の原子又は原子団で置換した誘導体であってもよい。これらは1種類を単独で又は2種類以上を組み合わせて使用することができる。
 有機酸A(有機酸及び又はその塩)の含有量は、研磨液全質量基準で0.001~1質量%である。有機酸及び/又はその塩の含有量が0.001質量%以上であれば、研磨終了後の被研磨膜(例えば、酸化珪素膜)の平坦性を向上させることができる傾向があり、この観点で、有機酸及び/又はその塩の含有量は0.005質量%以上が好ましく、0.01質量%以上がより好ましい。一方、含有量が1質量%以下であれば、被研磨膜の研磨速度が充分に向上する傾向があり、また酸化セリウム粒子の凝集が抑制される傾向があり、この観点で、有機酸及び/又はその塩の含有量は0.1質量%以下が好ましく、0.05質量%以下がより好ましい。
 有機酸Aは、室温(25℃)における酸解離定数pKa(pKaが2つ以上ある場合は一番低い第一段階のpKa)が9未満であるが、pKaとしては、8未満であることが好ましく、7未満であることがより好ましく、6未満であることが更に好ましく、5未満であることが最も好ましい。有機酸AのpKaが9未満であれば、研磨液中で少なくともその一部以上が有機酸イオンとなって水素イオンを放出し、所望するpH領域にpHを保つことができる。
(高分子化合物B)
 本実施形態に係る研磨液は、カルボン酸基又はカルボン酸塩基を有する高分子化合物Bを含む。ここで、カルボン酸基とは、-COOHで表される官能基であり、カルボン酸塩基とは、-COOXで表される官能基である(Xは塩基由来の陽イオンであり、例えば、アンモニウムイオン、ナトリウムイオン及びカリウムイオンが挙げられる)。特に、高分子化合物Bとしてカルボン酸基又はカルボン酸塩基を有する水溶性有機高分子及び/又はその塩を含有することが好ましい。これにより、研磨終了後の被研磨膜(例えば、酸化珪素膜)の平坦性を向上させることができる。より詳細には、凹凸を有する被研磨面を研磨した場合に、一部が過剰に研磨されて皿のように凹む現象、いわゆるディッシングが生じることを抑制することができる。この効果は、カルボン酸基又はカルボン酸塩基を有する水溶性有機高分子及び/又はその塩と、有機酸及び/又はその塩と、酸化セリウム粒子と、を併用することにより、より効率的に得られる。
 高分子化合物B(カルボン酸基又はカルボン酸塩基を有する水溶性有機高分子)の具体例としては、
ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及びポリグリオキシル酸等のポリカルボン酸及びその塩;
アクリル酸、メタクリル酸、マレイン酸等のカルボン酸基を有するモノマの単独重合体及び当該重合体のカルボン酸基の部分がアンモニウム塩等である単独重合体、等が挙げられる。
 また、カルボン酸塩基を有するモノマと、カルボン酸のアルキルエステル等の誘導体との共重合体が挙げられる。その具体例としては、ポリ(メタ)アクリル酸、又はポリ(メタ)アクリル酸のカルボン酸基の一部が、カルボン酸アンモニウム塩基に置換されたポリマ(以下、ポリ(メタ)アクリル酸アンモニウムと称する)等が挙げられる。ここでポリ(メタ)アクリル酸とは、ポリアクリル酸とポリメタクリル酸の少なくとも一方であることを示す。
 高分子化合物Bとしては、前記の中でも、アクリル酸、メタクリル酸、マレイン酸等のカルボン酸基を有するモノマの単独重合体及び当該重合体のカルボン酸基の部分がアンモニウム塩等である単独重合体が好ましく、(メタ)アクリル酸の単独重合体(ポリ(メタ)アクリル酸)及びそのアンモニウム塩がより好ましく、ポリアクリル酸及びそのアンモニウム塩が更に好ましい。
 高分子化合物Bの含有量は、研磨終了後の被研磨膜(例えば、酸化珪素膜)の平坦性を向上させることができる傾向がある観点で、研磨液全質量基準で0.01質量%以上であるが、同様の観点で、0.02質量%以上が好ましく、0.05質量%以上がより好ましい。また、含有量が0.50質量%以下であれば、被研磨膜の研磨速度が充分に向上する傾向があり、また酸化セリウム粒子の凝集が抑制される傾向がある観点で、高分子化合物Bの含有量は、研磨液全質量基準で0.50質量%以下であるが、0.40質量%以下が好ましく、0.30質量%以下がより好ましく、0.20質量%以下が更に好ましい。
 高分子化合物Bの重量平均分子量は、特に制限はないが、被研磨膜の研磨速度が充分に得られる傾向があり、また、酸化セリウム粒子の凝集を抑制しやすい傾向がある観点で、100000以下が好ましく、10000以下がより好ましい。また、平坦性向上効果を得やすくなる傾向がある観点で、高分子化合物Bの重量平均分子量は、1000以上が好ましい。なお、重量平均分子量は、GPC(Gel Permeation Chromatography:ゲル浸透クロマトグラフィー)で測定し、標準ポリオキシエチレン換算した値である。
(水)
 水としては、特に制限されないが、脱イオン水、イオン交換水及び超純水等が好ましい。水の含有量は、前記各含有成分の含有量の残部でよく、研磨液中に含有されていれば特に限定されない。なお、研磨液は、必要に応じて水以外の溶媒、例えば、エタノール、アセトン等の極性溶媒等を更に含有してもよい。
(分散剤)
 本実施形態に係る研磨液には、酸化セリウム粒子を分散させるための分散剤を含有させることができる。分散剤としては、水溶性陰イオン性分散剤、水溶性非イオン性分散剤、水溶性陽イオン性分散剤及び水溶性両性分散剤等が挙げられ、中でも、水溶性陰イオン性分散剤が好ましい。これらは一種類を単独で又は二種類以上を組み合わせて使用することができる。なお、高分子化合物Bとして例示された前記化合物(例えば、ポリアクリル酸アンモニウム)を分散剤として使用することもできる。
 水溶性陰イオン性分散剤としては、共重合成分としてアクリル酸を含む高分子及びその塩が好ましく、当該高分子の塩がより好ましい。共重合成分としてアクリル酸を含む高分子及びその塩としては、例えば、ポリアクリル酸及びそのアンモニウム塩、アクリル酸とメタクリル酸との共重合体及びそのアンモニウム塩、並びに、アクリル酸アミドとアクリル酸との共重合体及びそのアンモニウム塩が挙げられる。
 その他の水溶性陰イオン性分散剤としては、例えば、ラウリル硫酸トリエタノールアミン、ラウリル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン及び特殊ポリカルボン酸型高分子分散剤が挙げられる。
 また、水溶性非イオン性分散剤としては、例えば、ポリエチレングリコールモノラウレート、ポリエチレングリコールモノステアレート、ポリエチレングリコールジステアレート、ポリエチレングリコールモノオレエート、ポリオキシエチレンアルキルアミン、ポリオキシエチレン硬化ヒマシ油、2-ヒドロキシエチルメタクリレート及びアルキルアルカノールアミドが挙げられる。
 水溶性陽イオン性分散剤としては、例えば、ポリビニルピロリドン、ココナットアミンアセテート及びステアリルアミンアセテートが挙げられる。
 水溶性両性分散剤としては、例えば、ラウリルベタイン、ステアリルベタイン、ラウリルジメチルアミンオキサイド及び2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタインが挙げられる。
 分散剤の含有量は、酸化セリウム粒子の分散性を向上させて沈降を抑制し、被研磨膜の研磨傷を更に減らす観点から、研磨液全質量基準で0.001~10質量%の範囲が好ましい。
 分散剤の重量平均分子量は、特に制限はないが、100~150000が好ましく、1000~20000がより好ましい。分散剤の分子量が100以上であれば、酸化珪素膜又は窒化珪素膜等の被研磨膜を研磨するときに、良好な研磨速度が得られやすい傾向がある。分散剤の分子量が150000以下であれば、研磨液の保存安定性が低下しにくい傾向がある。なお、重量平均分子量は、GPCで測定し、標準ポリオキシエチレン換算した値である。
[その他の添加剤]
 本実施形態に係る研磨液は、有機酸及び/又はその塩、並びにカルボン酸基又はカルボン酸塩基を有する水溶性有機高分子及び/又はその塩とは別の添加剤として水溶性高分子を使用することができる。このような水溶性高分子としては、例えば、アルギン酸、ペクチン酸、カルボキシメチルセルロース、寒天、カードラン及びプルラン等の多糖類;ポリビニルアルコール、ポリビニルピロリドン及びポリアクロレイン等のビニル系ポリマ等が挙げられる。
 これら水溶性高分子の重量平均分子量は、500以上が好ましい。なお、重量平均分子量は、GPCで測定し、標準ポリオキシエチレン換算した値である。また、これら水溶性高分子の含有量は、研磨液全質量基準で0.01~5質量%が好ましい。
[研磨液の調製・保存方法]
 本実施形態に係る研磨液は、例えば、酸化セリウム粒子、水及び分散剤を配合して酸化セリウム粒子を分散させた後に、さらに有機酸A及び高分子化合物Bを添加することによって得られる。なお、本実施形態に係る研磨液は、酸化セリウム粒子、分散剤、有機酸A、高分子化合物B、水及び任意に水溶性高分子を含む一液式研磨液として保存してもよく、酸化セリウム粒子、分散剤及び水を含む酸化セリウムスラリ(第1の液)と、有機酸A、高分子化合物B、水及び任意に水溶性高分子を含む添加液(第2の液)と、から構成される二液式研磨液として保存してもよい。
 なお、二液式研磨液の場合は、有機酸A及び高分子化合物B以外の添加剤は、酸化セリウムスラリと添加液のいずれに含まれてもよいが、酸化セリウム粒子の分散安定性に影響がない点で、添加液に含まれることが好ましい。
 酸化セリウムスラリと添加液とを分けた二液式研磨液として保存する場合、これら二液の配合を任意に変えることにより平坦化特性と研磨速度の調整が可能となる。二液式研磨液を用いて研磨する場合、酸化セリウムスラリ及び添加液をそれぞれ別の配管で送液し、これらの配管を供給配管出口の直前で合流させて両液を混合して研磨パッド上に供給する方法や、研磨直前に酸化セリウムスラリと添加液とを混合する方法を用いることができる。
 本実施形態に係る研磨液及びスラリは、貯蔵・運搬・保管等に係るコストを抑制できる観点で、使用時に水等の液状媒体で例えば2倍以上に希釈されて使用される、研磨液用貯蔵液又はスラリ用貯蔵液として保管することができる。前記各貯蔵液は、研磨の直前に液状媒体で希釈されてもよいし、研磨パッド上に貯蔵液と液状媒体を供給し、研磨パッド上で希釈されてもよい。
 前記貯蔵液の希釈倍率としては、倍率が高いほど貯蔵・運搬・保管等に係るコストの抑制効果が高いため、2倍以上が好ましく、3倍以上がより好ましい。また、上限としては特に制限はないが、倍率が高いほど貯蔵液に含まれる成分の量が多く(濃度が高く)なり、保管中の安定性が低下する傾向があるため、一般的には10倍以下が好ましく、7倍以下がより好ましく、5倍以下が更に好ましい。なお、三液以上に構成成分を分けてもよく、その場合についても同様である。
 本実施形態に係る研磨液は、所望のpHに調整して研磨に供する。pH調整剤としては特に制限はないが、例えば、硝酸、硫酸、塩酸、リン酸、ホウ酸及び酢酸等の酸、並びに水酸化ナトリウム、アンモニア水、水酸化カリウム及び水酸化カルシウム等の塩基が挙げられる。研磨液が半導体研磨に使用される場合には、アンモニア水、酸成分が好適に使用される。pH調整剤としては、予めアンモニアで部分的に中和された水溶性高分子のアンモニウム塩を使用することができる。
 なお、室温(25℃)における研磨液のpHは4.0以上7.0以下である。pHが4.0以上であることにより研磨液の保存安定性が向上する傾向があり、被研磨膜の傷の発生数が減少する傾向があり、同様の観点で、前記pHは、4.5以上が好ましく、4.8以上がより好ましい。また、pHが7.0以下であることにより、平坦性の向上効果を充分に発揮することができ、同様の観点で、前記pHは6.5以下が好ましく、6.0以下がより好ましく、5.5以下が更に好ましい。研磨液のpHは、pHメータ(例えば、横河電機株式会社製のModel PH81(商品名))で測定することができる。例えば、標準緩衝液(フタル酸塩pH緩衝液pH:4.21(25℃)、中性リン酸塩pH緩衝液pH6.86(25℃))を用いて2点校正した後、電極を研磨液に入れて、25℃で2分以上経過して安定した後の値を測定することで、研磨液のpHを測定することができる。
 次に、本実施形態に係る研磨液の、基板表面に形成された被研磨膜の研磨への応用(Use)について説明する。
[研磨方法]
 本実施形態に係る基板の研磨方法は、基板表面に形成された被研磨膜を前記研磨液を用いて研磨する。より詳しくは、例えば、基板表面に形成された被研磨膜を研磨定盤の研磨パッドに押圧した状態で、前記研磨液を被研磨膜と研磨パッドとの間に供給しながら、基板と研磨定盤とを相対的に動かして被研磨膜を研磨する。
 基板としては、回路素子及び配線パターンが形成された段階の半導体基板や、回路素子が形成された段階の半導体基板等の半導体基板上に無機絶縁膜が形成された基板等の半導体素子製造に係る基板などが挙げられる。
 前記被研磨膜としては、例えば、酸化珪素膜、窒化珪素膜、酸化珪素膜の複合膜等の無機絶縁膜などが挙げられる。このような基板上に形成された無機絶縁膜を、本実施形態に係る研磨液で研磨することによって、無機絶縁膜表面の凹凸を解消し、基板全面にわたって平滑な面とすることができる。また、本実施形態に係る研磨液は、シャロートレンチ分離にも使用できる。
 以下、無機絶縁膜が形成された半導体基板の場合を例に挙げて、基板の研磨方法を更に詳細に説明する。
 研磨装置としては、被研磨膜を有する半導体基板等の基板を保持するホルダーと、回転数を変更可能なモータ等が取り付けてあり、研磨パッド(研磨布)を貼り付け可能な研磨定盤と、を有する一般的な研磨装置を使用することができる。研磨装置としては、例えば、株式会社荏原製作所製の研磨装置:型番EPO-111、AMAT製MIRRA,Reflexion等を使用できる。
 研磨パッドとしては、一般的な不織布、発泡ポリウレタン及び多孔質フッ素樹脂等を特に制限なく使用できる。また、研磨パッドには、研磨液が溜まるような溝加工が施されていることが好ましい。
 研磨条件に制限はないが、定盤の回転速度は、半導体基板が飛び出さないように200回転/分以下の低回転が好ましく、半導体基板にかける圧力(加工荷重)は、研磨後に傷が発生しないように100kPa以下が好ましい。研磨している間は、研磨パッドに研磨液をポンプ等で連続的に供給する。この供給量に制限はないが、研磨パッドの表面が常に研磨液で覆われていることが好ましい。
 研磨終了後の半導体基板は、流水中で良く洗浄後、スピンドライヤ等を用いて半導体基板上に付着した水滴を払い落として、乾燥させることが好ましい。
 このように被研磨膜である無機絶縁膜を研磨液で研磨することによって、表面の凹凸を解消し、半導体基板全面にわたって平滑な面が得られる。平坦化されたシャロートレンチを形成した後は、無機絶縁膜の上にアルミニウム配線を形成し、その配線間及び配線上に再度無機絶縁膜を形成後、研磨液を用いて当該無機絶縁膜を研磨して平滑な面を得る。この工程を所定数繰り返すことにより、所望の層数を有する半導体基板を製造することができる。
 本実施形態に係る研磨液により研磨される無機絶縁膜としては、例えば、酸化珪素膜及び窒化珪素膜が挙げられる。酸化珪素膜は、リン及びホウ素等の元素がドープされていても良い。無機絶縁膜の作製方法としては、低圧CVD法、プラズマCVD法等が挙げられる。
 低圧CVD法による酸化珪素膜形成は、Si源としてモノシラン:SiH、酸素源として酸素:Oを用いる。このSiH-O系酸化反応を、400℃以下の低温で行うことにより酸化珪素膜が得られる。場合によっては、CVDにより得られた酸化珪素膜は、1000℃又はそれ以下の温度で熱処理される。高温リフローによる表面平坦化を図るために、酸化珪素膜にリン:Pをドープするときには、SiH-O-PH系反応ガスを用いることが好ましい。
 プラズマCVD法は、通常の熱平衡下では高温を必要とする化学反応が低温でできる利点を有する。プラズマ発生法には、容量結合型と誘導結合型の2つが挙げられる。反応ガスとしては、Si源としてSiH、酸素源としてNOを用いたSiH-NO系ガスとテトラエトキシシラン(TEOS)をSi源に用いたTEOS-O系ガス(TEOS-プラズマCVD法)が挙げられる。基板温度は、250~400℃、反応圧力は、67~400Paが好ましい。
 低圧CVD法による窒化珪素膜形成は、Si源としてジクロルシラン:SiHCl、窒素源としてアンモニア:NHを用いる。このSiHCl-NH系酸化反応を、900℃の高温で行わせることにより窒化珪素膜が得られる。プラズマCVD法による窒化珪素膜形成は、反応ガスとしては、Si源としてSiH、窒素源としてNHを用いたSiH-NH系ガスが挙げられる。基板温度は、300~400℃が好ましい。
 本実施形態に係る研磨液及び基板の研磨方法は、半導体基板に形成された無機絶縁膜だけでなく、各種半導体装置の製造プロセス等にも適用することができる。本実施形態に係る研磨液及び基板の研磨方法は、例えば、所定の配線を有する配線板に形成された酸化珪素膜、ガラス及び窒化珪素等の無機絶縁膜、ポリシリコン、Al、Cu、Ti、TiN、W、Ta及びTaN等を主として含有する膜、フォトマスク・レンズ・プリズム等の光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバーの端面、シンチレータ等の光学用単結晶、固体レーザ単結晶、青色レーザLED用サファイヤ基板、SiC、GaP及びGaAs等の半導体単結晶、磁気ディスク用ガラス基板、並びに磁気ヘッド等を研磨することにも適用することができる。
 以下、実施例により本発明を説明するが、本発明はこれらの実施例に制限されるものではない。
(酸化セリウム粒子の作製)
 市販の炭酸セリウム水和物40kgをアルミナ製容器に入れ、830℃、空気中で2時間焼成することにより黄白色の粉末を20kg得た。この粉末の相同定をX線回折法で行ったところ酸化セリウムであることを確認した。得られた酸化セリウム粉末20kgを、ジェットミルを用いて乾式粉砕し、粉末状(粒子状)の酸化セリウムを得た。得られた粉末状の酸化セリウムを走査型電子顕微鏡(SEM)で観察したところ、結晶子サイズの粒子と、2個以上の結晶子から構成され結晶粒界を有する粒子とが含まれていた。得られたSEM画像から任意に50個の結晶子を選択し、それぞれについて長径と短径との積の平方根から粒子径を求めたところ、結晶子径はいずれも1~300nmの範囲に含まれていた。
(実施例1-1)
 前記で作製した酸化セリウム粒子200.0gと、脱イオン水795.0gとを混合し、分散剤としてポリアクリル酸アンモニウム水溶液(重量平均分子量:8000、40質量%)5gを添加して、攪拌しながら超音波分散を行い、酸化セリウム分散液を得た。超音波分散は、超音波周波数400kHz、分散時間20分で行った。
 その後、1リットル容器(高さ:170mm)に1kgの酸化セリウム分散液を入れて静置し、沈降分級を行なった。分級時間15時間後、水面からの深さ13cmより上の上澄みをポンプでくみ上げた。得られた上澄みの酸化セリウム分散液を、次いで酸化セリウム粒子の含有量が5質量%になるように、脱イオン水で希釈して酸化セリウムスラリを得た。
 酸化セリウムスラリ中における酸化セリウム粒子の平均粒径(D50)を測定するため、He-Neレーザに対する測定時透過率(H)が60~70%になるように前記スラリを希釈して、測定サンプルとした。この測定サンプルをレーザ回折式粒度分布計Master Sizer Microplus(Malvern社製、商品名)を用い、屈折率:1.93、吸収:0として測定したところ、D50の値は150nmであった。
 有機酸Aとしてパラトルエンスルホン酸一水和物(pKa(25℃)=-2.8)0.1gと、脱イオン水800gとを混合し、高分子化合物Bとしてポリアクリル酸水溶液(重量平均分子量:4000、40質量%)を2.5g加えた後、アンモニア水(25質量%)を加えてpH4.5(25℃)に調整した。さらに脱イオン水を加えて、全体量850gとして有機酸添加液とした。
 ここに、前記の酸化セリウムスラリ134gを添加して、アンモニア水(25質量%)を加えて、pH5.0(25℃)に調整し、さらに脱イオン水を加えて、全量を1000gとし、酸化セリウム研磨液(酸化セリウム粒子含有量:0.67質量%)を作製した。
 また、前記と同様に測定サンプルを調製して、研磨液中の粒子の平均粒径をレーザ回折式粒度分布計で測定した結果、D50の値は150nmであった。
(絶縁膜の研磨)
 研磨試験ウエハとして、SEMATECH社製の商品名「パタンウエハ764」(直径:300mm)を用いた。この研磨試験ウエハとこれを用いた研磨特性の評価方法を、図1を用いて説明する。
 図1(a)は、研磨試験ウエハの一部分を拡大した模式断面図である。ウエハ1の表面には複数の溝が形成されていて、ウエハ1の凸部表面には厚さ150nm(1500Å)の窒化珪素膜2が形成されている。溝の深さ(凸部の表面から凹部の底面までの段差)は500nm(5000Å)である。以下、凸部をアクティブ部、凹部をトレンチ部という。なお、図1には明示されていないが、ウエハ1には、トレンチ部/アクティブ部の断面幅が100μm/100μm、20μm/80μm及び80μm/20μmである3つの領域が形成されている。
 図1(b)は、研磨試験ウエハの一部分を拡大した模式断面図である。研磨試験ウエハは、アクティブ部の表面からの酸化珪素膜3の厚さが600nm(6000Å)となるように、プラズマTEOS法によってアクティブ部及びトレンチ部に酸化珪素膜3が形成されている。研磨試験では、研磨試験ウエハの酸化珪素膜3を研磨して平坦化を行う。
 図1(c)は、酸化珪素膜3を研磨した後の研磨試験ウエハの一部分を拡大した模式断面図である。アクティブ部の窒化珪素膜2表面で研磨を終了し、このときの研磨に要した時間を研磨時間とし、トレンチ部の深さ4からトレンチ部内の酸化珪素膜3の厚さ5を引いた値をディッシング量6とする。なお、研磨時間は短いほうが良く、ディッシング量6は小さい方が良い。
 このような研磨試験ウエハの研磨には研磨装置(AMAT製のReflexion)を用いた。基板取り付け用の吸着パッドを貼り付けたホルダーに研磨試験ウエハをセットした。研磨装置の直径600mmの研磨定盤に、多孔質ウレタン樹脂製の研磨パッド(溝形状=パーフォレートタイプ:Rohm and Haas社製、型番IC1010)を貼り付けた。更に、被研磨膜である絶縁膜(酸化珪素被膜)面を下にして前記ホルダーを研磨定盤上に載せ、加工荷重を210gf/cm(20.6kPa)に設定した。
 前記研磨パッド上に前記酸化セリウム研磨液を250ミリリットル/分の速度で滴下しながら、研磨定盤と研磨試験ウエハとをそれぞれ130回転/分で作動させて、研磨試験ウエハを研磨した。100μm/100μm領域のアクティブ部の窒化珪素膜が表面に露出したときの研磨時間を研磨終了時間とした。ただし、平坦性の評価は、その時間から20%のオーバー研磨(例えば、研磨終了時間が100秒とすると、その時点から追加で20秒間多い時間研磨すること)したウエハについて行った。過剰に研磨することで、評価する項目の値に差が出やすく、評価がしやすいことと、また、過剰に研磨しても数字が良い(特性が良い)ということは、研磨プロセスの面からみてもプロセスの尤度があるということにつながり、有利であるので、その証明もできることからである。研磨後の研磨試験ウエハは、純水で良く洗浄後、乾燥した。
 平坦性の評価項目として、以下の3項目について評価した。
項目1:100μm/100μm領域のトレンチ部のディッシング(Dishing)量:触針式段差計(型番P16 KLA-tencor製)を用いて測定した。
項目2:100μm/100μm領域のアクティブ部のSiNロス:ナノメトリクス社製の干渉式膜厚測定装置ナノスペック/AFT5100(商品名)を用い、研磨により除去された窒化珪素膜(SiN膜)の厚さを測定した。
項目3:20μm/80μm領域及び80μm/20μm領域のトレンチ部のSiO残膜厚差(SiO密度差):ナノメトリクス社製の干渉式膜厚測定装置ナノスペック/AFT5100(商品名)を用いて、それぞれの領域における酸化珪素膜(SiO膜)の残膜厚を測定し、その差を求めた。
(実施例1-2~6-9及び比較例1-1~6-9)
 研磨液のpH、有機酸Aの種類及び使用量、又は高分子化合物Bの使用量を表1~19に示すものへ変更した以外は、実施例1-1と同様にして酸化セリウム研磨液を作製し、絶縁膜の研磨を行った。結果を同表に示す。表1~19から、本発明により提供される研磨液により研磨速度及び平坦性が向上し、ディッシングの低減が達成されることが明らかとなった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 1…ウエハ、2…窒化珪素膜、3…プラズマTEOS法によって形成された酸化珪素膜、4…トレンチ部の深さ、5…研磨後のトレンチ部の酸化珪素膜厚、6…ディッシング量。

Claims (4)

  1.  酸化セリウム粒子、有機酸A、カルボン酸基又はカルボン酸塩基を有する高分子化合物B及び水を含むCMP用の研磨液であって、
     前記有機酸Aは、-COOM基、-Ph-OM基、-SOM基及び-PO基(式中、MはH、NH、Na及びKからなる群より選択されるいずれか一種であり、Phは置換基を有していても良いフェニル基を示す)からなる群より選択される少なくとも一つの基を有しており、
     前記有機酸AのpKaが9未満であり、
     前記有機酸Aの含有量が、研磨液全質量に対して0.001~1質量%であり、
     前記高分子化合物Bの含有量が、研磨液全質量に対して0.01~0.50質量%であり、pHが4.0以上7.0以下である、研磨液。
  2.  前記酸化セリウム粒子及び前記水を含む第1の液と、前記有機酸A、前記高分子化合物B及び前記水を含む第2の液と、から構成される二液式研磨液として保存される、請求項1に記載の研磨液。
  3.  前記第1の液が、分散剤をさらに含む、請求項2に記載の研磨液。
  4.  基板表面に形成された被研磨膜を請求項1~3のいずれか一項に記載の研磨液を用いて研磨する、基板の研磨方法。
PCT/JP2011/079873 2010-12-24 2011-12-22 研磨液及びこの研磨液を用いた基板の研磨方法 WO2012086781A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/884,883 US9564337B2 (en) 2010-12-24 2011-12-22 Polishing liquid and method for polishing substrate using the polishing liquid
CN201180048658.4A CN103155112B (zh) 2010-12-24 2011-12-22 研磨液及使用该研磨液的基板的研磨方法
KR1020137019602A KR101886464B1 (ko) 2010-12-24 2011-12-22 연마액 및 이 연마액을 이용한 기판의 연마 방법
SG2013025564A SG190765A1 (en) 2010-12-24 2011-12-22 Polishing liquid and method for polishing substrate using the polishing liquid
KR1020137013602A KR101389235B1 (ko) 2010-12-24 2011-12-22 연마액 및 이 연마액을 이용한 기판의 연마 방법
US15/366,380 US20170133237A1 (en) 2010-12-24 2016-12-01 Polishing liquid and method for polishing substrate using the polishing liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-287594 2010-12-24
JP2010287594 2010-12-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/884,883 A-371-Of-International US9564337B2 (en) 2010-12-24 2011-12-22 Polishing liquid and method for polishing substrate using the polishing liquid
US15/366,380 Continuation US20170133237A1 (en) 2010-12-24 2016-12-01 Polishing liquid and method for polishing substrate using the polishing liquid

Publications (1)

Publication Number Publication Date
WO2012086781A1 true WO2012086781A1 (ja) 2012-06-28

Family

ID=46314047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079873 WO2012086781A1 (ja) 2010-12-24 2011-12-22 研磨液及びこの研磨液を用いた基板の研磨方法

Country Status (7)

Country Link
US (2) US9564337B2 (ja)
JP (10) JP2012146973A (ja)
KR (2) KR101389235B1 (ja)
CN (2) CN103155112B (ja)
SG (1) SG190765A1 (ja)
TW (2) TWI437087B (ja)
WO (1) WO2012086781A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103680525A (zh) * 2012-09-06 2014-03-26 旭硝子株式会社 信息记录介质用玻璃基板的制造方法及磁盘的制造方法
CN105229098A (zh) * 2013-05-15 2016-01-06 巴斯夫欧洲公司 包含n,n,n',n'-四(2-羟基丙基)乙二胺或甲磺酸的化学机械抛光组合物

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140011362A1 (en) * 2012-07-06 2014-01-09 Basf Se Chemical mechanical polishing (cmp) composition comprising a non-ionic surfactant and an aromatic compound comprising at least one acid group
CN105189676B (zh) * 2013-05-15 2021-03-23 巴斯夫欧洲公司 包含一种或多种选自n-乙烯基均聚物和n-乙烯基共聚物的聚合物的化学机械抛光组合物
SG11201606157VA (en) * 2014-01-31 2016-08-30 Basf Se A chemical mechanical polishing (cmp) composition comprising a poly(aminoacid)
JP6611485B2 (ja) * 2014-11-07 2019-11-27 株式会社フジミインコーポレーテッド 研磨方法およびポリシング用組成物
US9758697B2 (en) * 2015-03-05 2017-09-12 Cabot Microelectronics Corporation Polishing composition containing cationic polymer additive
KR102583709B1 (ko) * 2015-03-10 2023-09-26 가부시끼가이샤 레조낙 연마제, 연마제용 저장액 및 연마 방법
JP6393231B2 (ja) * 2015-05-08 2018-09-19 信越化学工業株式会社 合成石英ガラス基板用研磨剤及び合成石英ガラス基板の研磨方法
JP2017011162A (ja) * 2015-06-24 2017-01-12 日立化成株式会社 研磨液の製造方法、研磨液及び研磨方法
JP6551136B2 (ja) * 2015-10-14 2019-07-31 日立化成株式会社 Cmp用研磨液及び研磨方法
KR20170044522A (ko) * 2015-10-15 2017-04-25 삼성전자주식회사 화학적 기계적 연마용 슬러리 조성물, 그의 제조 방법, 그를 이용한 연마 방법
JP6708951B2 (ja) * 2016-03-28 2020-06-10 日立化成株式会社 研磨液及び研磨方法
KR102475282B1 (ko) 2017-03-29 2022-12-07 삼성전자주식회사 화학적 기계적 연마용 슬러리 조성물
JP6943284B2 (ja) 2017-08-14 2021-09-29 昭和電工マテリアルズ株式会社 研磨液、研磨液セット及び研磨方法
JP7249725B2 (ja) * 2017-08-31 2023-03-31 アドバンスト ナノ プロダクツ カンパニー リミテッド 表面処理された酸化セリウム粉末及び研磨組成物
JP7220522B2 (ja) * 2018-05-24 2023-02-10 株式会社バイコウスキージャパン 研磨砥粒、その製造方法、それを含む研磨スラリー及びそれを用いる研磨方法
US12013502B2 (en) * 2022-06-22 2024-06-18 Ecole polytechnique fédérale de Lausanne (EPFL) High-resolution scintillation detector for two-dimensional reconstruction
US20230418154A1 (en) * 2022-06-22 2023-12-28 Ecole Polytechnique Federale De Lausanne (Epfl) Method for Manufacturing an Active Structure for A Radiation Detector and Polymeric Mold for the Method
KR20240062235A (ko) * 2022-10-28 2024-05-09 솔브레인 주식회사 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
CN118185477A (zh) * 2022-12-13 2024-06-14 安集微电子科技(上海)股份有限公司 一种化学机械抛光液及其用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231795A (ja) * 2008-02-27 2009-10-08 Hitachi Chem Co Ltd 研磨液
JP2010161201A (ja) * 2009-01-08 2010-07-22 Jsr Corp 化学機械研磨用水系分散体およびそれを用いた化学機械研磨方法、化学機械研磨用水系分散体の製造方法
JP2010199595A (ja) * 2004-09-28 2010-09-09 Hitachi Chem Co Ltd Cmp研磨剤及び基板の研磨方法

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3278532B2 (ja) 1994-07-08 2002-04-30 株式会社東芝 半導体装置の製造方法
JPH10106994A (ja) 1997-01-28 1998-04-24 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の研磨法
TW501197B (en) * 1999-08-17 2002-09-01 Hitachi Chemical Co Ltd Polishing compound for chemical mechanical polishing and method for polishing substrate
US6740589B2 (en) * 2000-11-30 2004-05-25 Showa Denko Kabushiki Kaisha Composition for polishing semiconductor wafer, semiconductor circuit wafer, and method for producing the same
US20020068454A1 (en) * 2000-12-01 2002-06-06 Applied Materials, Inc. Method and composition for the removal of residual materials during substrate planarization
TWI314950B (en) 2001-10-31 2009-09-21 Hitachi Chemical Co Ltd Polishing slurry and polishing method
JP2003313542A (ja) * 2002-04-22 2003-11-06 Jsr Corp 化学機械研磨用水系分散体
US7005382B2 (en) * 2002-10-31 2006-02-28 Jsr Corporation Aqueous dispersion for chemical mechanical polishing, chemical mechanical polishing process, production process of semiconductor device and material for preparing an aqueous dispersion for chemical mechanical polishing
US6953532B2 (en) * 2003-03-06 2005-10-11 Cabot Microelectronics Corporation Method of polishing a lanthanide substrate
JP2004349426A (ja) * 2003-05-21 2004-12-09 Jsr Corp Sti用化学機械研磨方法
JP4637464B2 (ja) * 2003-07-01 2011-02-23 Jsr株式会社 化学機械研磨用水系分散体
US20050022456A1 (en) * 2003-07-30 2005-02-03 Babu S. V. Polishing slurry and method for chemical-mechanical polishing of copper
DE10360464A1 (de) * 2003-12-22 2005-07-14 Wacker-Chemie Gmbh Dispersion die mindestens 2 Arten von Partikeln enthält
US7470295B2 (en) * 2004-03-12 2008-12-30 K.C. Tech Co., Ltd. Polishing slurry, method of producing same, and method of polishing substrate
TWI283008B (en) * 2004-05-11 2007-06-21 K C Tech Co Ltd Slurry for CMP and method of producing the same
US7303993B2 (en) * 2004-07-01 2007-12-04 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing compositions and methods relating thereto
US20070218811A1 (en) * 2004-09-27 2007-09-20 Hitachi Chemical Co., Ltd. Cmp polishing slurry and method of polishing substrate
US7086935B2 (en) * 2004-11-24 2006-08-08 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Cellulose-containing polishing compositions and methods relating thereto
JP5147185B2 (ja) * 2005-01-24 2013-02-20 昭和電工株式会社 研磨組成物及び研磨方法
DE602006004624D1 (de) * 2005-02-23 2009-02-26 Jsr Corp Chemisch-mechanisches Polierverfahren
US20110045741A1 (en) * 2005-04-28 2011-02-24 Techno Semichem Co., Ltd. Auto-Stopping Abrasive Composition for Polishing High Step Height Oxide Layer
JP2006339594A (ja) 2005-06-06 2006-12-14 Seimi Chem Co Ltd 半導体用研磨剤
JP5090920B2 (ja) * 2005-10-14 2012-12-05 エルジー・ケム・リミテッド Cmpスラリー用酸化セリウム粉末の製造方法及びこれを用いたcmp用スラリー組成物の製造方法
KR100880107B1 (ko) * 2006-01-25 2009-01-21 주식회사 엘지화학 Cmp 슬러리 및 이를 이용한 반도체 웨이퍼의 연마 방법
JP2007214155A (ja) * 2006-02-07 2007-08-23 Fujifilm Corp バリア用研磨液及び化学的機械的研磨方法
JP5080012B2 (ja) * 2006-02-24 2012-11-21 富士フイルム株式会社 金属用研磨液
US20090094901A1 (en) 2006-04-24 2009-04-16 Hitachi Chemical Co. Ltd. CMP Polishing Liquid and Polishing Method
SG136886A1 (en) * 2006-04-28 2007-11-29 Asahi Glass Co Ltd Method for producing glass substrate for magnetic disk, and magnetic disk
US7297633B1 (en) * 2006-06-05 2007-11-20 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Compositions for chemical mechanical polishing silica and silicon nitride having improved endpoint detection
JP2008181955A (ja) * 2007-01-23 2008-08-07 Fujifilm Corp 金属用研磨液及びそれを用いた研磨方法
US20100087065A1 (en) * 2007-01-31 2010-04-08 Advanced Technology Materials, Inc. Stabilization of polymer-silica dispersions for chemical mechanical polishing slurry applications
EP2131389A4 (en) * 2007-03-26 2011-06-22 Jsr Corp Aqueous dispersion for chemical-mechanical polishing and method for chemical-mechanical polishing for a semiconductor assembly
JP5121273B2 (ja) * 2007-03-29 2013-01-16 富士フイルム株式会社 金属用研磨液及び研磨方法
TWI419218B (zh) 2007-07-05 2013-12-11 Hitachi Chemical Co Ltd 金屬膜用研磨液以及研磨方法
KR101396853B1 (ko) * 2007-07-06 2014-05-20 삼성전자주식회사 실리콘 질화물 연마용 슬러리 조성물, 이를 이용한 실리콘질화막의 연마 방법 및 반도체 장치의 제조 방법
JP5178121B2 (ja) * 2007-09-28 2013-04-10 富士フイルム株式会社 研磨液及び研磨方法
KR101562416B1 (ko) * 2008-02-06 2015-10-21 제이에스알 가부시끼가이샤 화학 기계 연마용 수계 분산체 및 화학 기계 연마 방법
KR101256551B1 (ko) * 2008-03-06 2013-04-19 주식회사 엘지화학 Cmp 슬러리 및 이를 이용한 연마 방법
JP2009278061A (ja) * 2008-04-16 2009-11-26 Hitachi Chem Co Ltd Cmp用研磨液及び研磨方法
JP5319968B2 (ja) * 2008-06-18 2013-10-16 株式会社Adeka Cmp用研磨組成物
JP5397386B2 (ja) * 2008-12-11 2014-01-22 日立化成株式会社 Cmp用研磨液及びこれを用いた研磨方法
WO2010143579A1 (ja) * 2009-06-09 2010-12-16 日立化成工業株式会社 研磨剤、研磨剤セット及び基板の研磨方法
EP2489714B1 (en) * 2009-10-13 2015-08-12 LG Chem, Ltd. Slurry composition for cmp, and polishing method
TWI472601B (zh) * 2009-12-31 2015-02-11 Cheil Ind Inc 化學機械拋光漿體組成物及使用該組成物之拋光方法
US8435896B2 (en) * 2011-03-03 2013-05-07 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Stable, concentratable chemical mechanical polishing composition and methods relating thereto
CN104755580A (zh) * 2012-11-02 2015-07-01 福吉米株式会社 研磨用组合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199595A (ja) * 2004-09-28 2010-09-09 Hitachi Chem Co Ltd Cmp研磨剤及び基板の研磨方法
JP2009231795A (ja) * 2008-02-27 2009-10-08 Hitachi Chem Co Ltd 研磨液
JP2010161201A (ja) * 2009-01-08 2010-07-22 Jsr Corp 化学機械研磨用水系分散体およびそれを用いた化学機械研磨方法、化学機械研磨用水系分散体の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103680525A (zh) * 2012-09-06 2014-03-26 旭硝子株式会社 信息记录介质用玻璃基板的制造方法及磁盘的制造方法
CN105229098A (zh) * 2013-05-15 2016-01-06 巴斯夫欧洲公司 包含n,n,n',n'-四(2-羟基丙基)乙二胺或甲磺酸的化学机械抛光组合物
CN105229098B (zh) * 2013-05-15 2017-08-11 巴斯夫欧洲公司 包含n,n,n',n'‑四(2‑羟基丙基)乙二胺或甲磺酸的化学机械抛光组合物

Also Published As

Publication number Publication date
JP6269733B2 (ja) 2018-01-31
US20130260558A1 (en) 2013-10-03
KR20140041388A (ko) 2014-04-04
JP2016183346A (ja) 2016-10-20
JP2012146974A (ja) 2012-08-02
JP2012146976A (ja) 2012-08-02
CN106433480A (zh) 2017-02-22
JP5510574B2 (ja) 2014-06-04
KR101886464B1 (ko) 2018-08-07
JP5333571B2 (ja) 2013-11-06
JP2012146970A (ja) 2012-08-02
CN103155112A (zh) 2013-06-12
JP2013149987A (ja) 2013-08-01
JP2012146971A (ja) 2012-08-02
KR101389235B1 (ko) 2014-04-24
KR20140039143A (ko) 2014-04-01
CN103155112B (zh) 2016-10-12
US9564337B2 (en) 2017-02-07
JP2013149988A (ja) 2013-08-01
TWI437087B (zh) 2014-05-11
TW201229222A (en) 2012-07-16
US20170133237A1 (en) 2017-05-11
JP2012146972A (ja) 2012-08-02
TW201350567A (zh) 2013-12-16
JP2012146975A (ja) 2012-08-02
SG190765A1 (en) 2013-07-31
JP5510575B2 (ja) 2014-06-04
JP2012146973A (ja) 2012-08-02

Similar Documents

Publication Publication Date Title
JP6269733B2 (ja) 研磨液及びこの研磨液を用いた基板の研磨方法
KR102399744B1 (ko) 연마액, 연마액 세트 및 연마 방법
JP6582567B2 (ja) スラリー及びその製造方法、並びに、研磨方法
JP6708951B2 (ja) 研磨液及び研磨方法
JP2012186339A (ja) 研磨液及びこの研磨液を用いた基板の研磨方法
JP2015224276A (ja) 研磨液及びこの研磨液を用いた基板の研磨方法
JP2015008212A (ja) 研磨液及びこの研磨液を用いた基板の研磨方法
JP2001007060A (ja) Cmp研磨剤及び基板の研磨方法
JP2013045944A (ja) 基板の研磨方法
JP2017075226A (ja) 研磨液の製造方法、研磨液及び研磨方法
JP2014027146A (ja) 研磨液及びこの研磨液を用いた基板の研磨方法
JP2015209485A (ja) 研磨液の製造方法及び研磨液、並びに研磨方法
JP2017011162A (ja) 研磨液の製造方法、研磨液及び研磨方法
JP2015137290A (ja) 研磨液の製造方法及び研磨液、並びに研磨方法
JP2015023122A (ja) 研磨液及びその製造方法、並びに研磨方法
JP2017152440A (ja) 研磨液及び研磨方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180048658.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851052

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13884883

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137013602

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851052

Country of ref document: EP

Kind code of ref document: A1