JP2014027146A - 研磨液及びこの研磨液を用いた基板の研磨方法 - Google Patents

研磨液及びこの研磨液を用いた基板の研磨方法 Download PDF

Info

Publication number
JP2014027146A
JP2014027146A JP2012166995A JP2012166995A JP2014027146A JP 2014027146 A JP2014027146 A JP 2014027146A JP 2012166995 A JP2012166995 A JP 2012166995A JP 2012166995 A JP2012166995 A JP 2012166995A JP 2014027146 A JP2014027146 A JP 2014027146A
Authority
JP
Japan
Prior art keywords
acid
polishing
film
polishing liquid
cerium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012166995A
Other languages
English (en)
Inventor
Shigeru Yoshikawa
茂 吉川
Takaaki Tanaka
孝明 田中
Munehiro Ota
宗宏 太田
Takaaki Matsumoto
貴彬 松本
Takahiro Yoshikawa
貴浩 吉川
Takashi Shinoda
隆 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012166995A priority Critical patent/JP2014027146A/ja
Publication of JP2014027146A publication Critical patent/JP2014027146A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

【課題】基板の表面に形成された被研磨膜を研磨するCMP技術において、被研磨膜の研磨速度を向上させ、更に研磨後の平坦性を向上させることが可能な研磨液及びこの研磨液を用いた基板の研磨方法を提供する。
【解決手段】酸化セリウム粒子、pH緩衝液、カルボン酸基又はカルボン酸塩基を有する高分子化合物B及び水を含むpH4.8〜5.2のCMP用の研磨液であって、前記pH緩衝液は、緩衝液の原液pHと3倍希釈後のpH変化量が0.2以下であり、pKaが4〜6の値をもつ酸Aを含む緩衝液であって、高分子化合物Bの含有量が、研磨液全質量に対して0.02質量%以上であり、酸Aと高分子化合物Bの含有量の合計は研磨液全質量に対して0.6質量%以下である、研磨液。
【選択図】図1

Description

本発明は、研磨液及びこの研磨液を用いた基板の研磨方法に関する。より詳細には、本発明は、半導体素子製造技術である、基板表面の平坦化工程、特に、層間絶縁膜、BPSG膜(ボロン、リンをドープした二酸化珪素膜)の平坦化工程、シャロートレンチ分離(STI)の形成工程等において使用される、研磨液及びこの研磨液を用いた基板の研磨方法に関する。
現在のULSI(Ultra Large Scale Integration:超々大規模集積回路)半導体素子製造工程では、半導体素子の高密度・微細化のための加工技術が研究開発されている。その加工技術の一つであるCMP(ケミカルメカニカルポリッシング:化学機械研磨)技術は、半導体素子製造工程において、層間絶縁膜の平坦化、STI形成、プラグ及び埋め込み金属配線形成等を行う際に、必須の技術となってきている。
従来、半導体素子製造工程において、酸化珪素膜等の無機絶縁膜はプラズマ−CVD(化学気相成長)、低圧−CVD等の方法で形成されている。この無機絶縁膜を平坦化するための化学機械研磨液として、フュームドシリカ系の研磨液を用いることが一般的に検討されている。フュームドシリカ系の研磨液は、四塩化珪素を熱分解する等の方法で粒成長させて得られた粒子が配合されたスラリのpHを調整することによって製造される。但し、この様なフュームドシリカ系の研磨液は、研磨速度が低いという技術課題がある。
また、デザインルール0.25μm以降の世代では、集積回路内の素子分離にSTIが用いられている。STIでは、基板上に成膜した余分な酸化珪素膜を取り除くためにCMP技術が使用される。この場合、任意の深さにて研磨を停止させるために、酸化珪素膜の下に研磨速度の低いストッパ膜が形成される。ストッパ膜には、窒化珪素膜等が使用される。余分な酸化珪素膜を効率的に取り除くとともに、その後の研磨の進行を充分に抑制するには、酸化珪素膜とストッパ膜との研磨速度比が大きいことが望ましい。しかし、従来のコロイダルシリカ系の研磨液は、酸化珪素膜とストッパ膜との研磨速度比が3程度と小さく、STI用としては実用に耐える特性を有していない。
一方、フォトマスクやレンズ等のガラス表面に対する研磨液として、酸化セリウム粒子を含む酸化セリウム研磨液が用いられている。酸化セリウム粒子は、シリカ粒子やアルミナ粒子に比べ硬度が低く、研磨に際し研磨表面に傷が入りにくいことから、仕上げ鏡面研磨に有用である。また、酸化セリウム研磨液は、フュームドシリカ系やコロイダルシリカ系等のシリカ研磨液に比べ、研磨速度が速い利点がある。
酸化セリウム研磨液として、下記特許文献1には、高純度酸化セリウム砥粒を用いた半導体用CMP研磨液が記載されている。また、下記特許文献2には、酸化セリウム研磨液の研磨速度を制御し、グローバルな平坦性を向上させるために添加剤を加える技術が記載されている。
特開平10−106994号公報 特許3278532号公報
しかしながら、配線やSTIのデザインルールの微細化の進展に伴い、上記のような酸化セリウム研磨液に対して更なる平坦性の向上(例えば、絶縁膜のディッシング量の低減)が求められている。また、半導体デバイスの生産の更なる精度向上も求められており、例えば、トレンチ密度の異なる部分における絶縁膜の残膜厚差が小さいことや、ストッパ膜の過剰研磨の量が少ないことが求められている。更に、同時に研磨プロセスの尤度が大きいことも、精度の高い半導体デバイス生産には、重要なことである。
本発明は、上記実情に鑑みてなされたものであり、基板の表面に形成された被研磨膜を研磨するCMP技術において、被研磨膜の研磨速度を向上させ、更に研磨後の平坦性を向上させることが可能な研磨液及びこの研磨液を用いた基板の研磨方法を提供することを目的とする。
本発明は、酸化セリウム粒子、pH緩衝液、カルボン酸基又はカルボン酸塩基を有する高分子化合物B及び水を含むpH4.8〜5.2のCMP用の研磨液であって、
前記pH緩衝液は、緩衝液の原液pHと3倍希釈後のpH変化量が0.2以下であり、pKaが4〜6の値をもつ酸Aを含む緩衝液であって、
高分子化合物Bの含有量が、研磨液全質量に対して0.02質量%以上であり、酸Aと高分子化合物Bの含有量の合計は研磨液全質量に対して0.8質量%以下である、研磨液を提供する。
本発明の研磨液では、基板の表面に形成された被研磨膜(例えば、層間絶縁膜、BPSG膜、STI膜)を研磨するCMP技術において、被研磨膜の研磨速度を向上させ、かつ研磨後の平坦性を向上させることができる。
本発明の研磨液は、酸化セリウム粒子及び水を含む第1の液と、pH緩衝液、高分子化合物B及び水を含む第2の液と、から構成される二液式研磨液として保存しておいてもよい。これにより、研磨液を使用する直前まで酸化セリウム粒子の分散安定性をより良好に保つことができるため、より効果的な研磨速度及び平坦性を得ることが可能である。
なお、本発明の研磨液は、上記第1の液が、分散剤を更に含むことが好ましい。これにより、酸化セリウム粒子の分散安定性を更に良好に保つことができる。
本発明は、また、基板表面に形成された被研磨膜を研磨定盤の研磨布に押圧した状態で、本発明の研磨液を被研磨膜と研磨布との間に供給しながら、基板と研磨定盤とを相対的に動かして被研磨膜を研磨する、基板の研磨方法を提供する。本発明の研磨液を使用するこのような研磨方法によれば、被研磨膜の研磨速度を向上させ、更に研磨後の平坦性を向上させることが可能である。
本発明によれば、基板の表面に形成された被研磨膜(例えば、STI膜)を研磨するCMP技術において、被研磨膜の研磨速度を向上させ、更に研磨後の表面平坦性を向上させることが可能な研磨液及びこの研磨液を用いた基板の研磨方法を提供することができる。
研磨特性の評価基板を示す模式断面図である。
以下、本発明の実施形態について詳細に説明する。
[研磨液]
本実施形態に係る研磨液は、酸化セリウム粒子と、分散剤と、pH緩衝液と、高分子化合物Bと、水とを含有するCMP用の研磨液である。以下、本実施形態に係る研磨液に含まれる各成分について詳細に説明する。
(酸化セリウム粒子)
酸化セリウム粒子としては、特に制限はなく、公知のものを使用することができる。一般に酸化セリウムは、炭酸塩、硝酸塩、硫酸塩、しゅう酸塩のセリウム化合物を酸化することによって得られる。酸化セリウム粒子を作製する方法としては、焼成又は過酸化水素等による酸化法が挙げられる。
TEOS−CVD法等で形成される酸化珪素膜の研磨に酸化セリウム粒子を使用する場合、酸化セリウム粒子の結晶子径(結晶子の直径)が大きく、かつ結晶歪みが少ない程、即ち結晶性が良い程、高速研磨が可能であるが、被研磨膜に研磨傷が入りやすい傾向がある。このような観点から、酸化セリウム粒子は、2個以上の結晶子から構成され、結晶粒界を有する粒子が好ましく、結晶子径が5〜300nmである粒子がより好ましい。
酸化セリウム粒子中のアルカリ金属及びハロゲン類の含有率は、半導体素子の製造に係る研磨に好適に用いられることから、10ppm以下であることが好ましい。
酸化セリウム粒子の平均粒径は、10〜500nmであることが好ましく、20〜400nmであることがより好ましく、50〜300nmであることが更に好ましい。酸化セリウム粒子の平均粒径が10nm以上であれば、良好な研磨速度が得られる傾向があり、500nm以下であれば、被研磨膜に傷がつきにくくなる傾向がある。
ここで、酸化セリウム粒子の平均粒径は、レーザ回折式粒度分布計(例えば、株式会社堀場製作所製、商品名:LA−920、相対屈折率:1.600、吸収:0.000、光源:He−Neレーザ及びWランプ)で測定したD50の値(体積分布のメジアン径、累積中央値)を意味する。平均粒径の測定には、適切な濃度(例えば、He−Neレーザに対する測定時透過率(H)が60〜70%となる濃度)に研磨液を希釈したサンプルを用いる。なお、酸化セリウム研磨液が、後述するように酸化セリウム粒子を水に分散させた酸化セリウムスラリと、添加剤を水に溶解させた添加液とに分けて保存されている場合は、酸化セリウムスラリを適切な濃度に希釈して測定することができる。
酸化セリウム粒子の含有量は、研磨液全質量基準で0.1〜20質量%であることが好ましく、0.1〜5質量%であることがより好ましく、0.2〜1.5質量%であることが更に好ましい。酸化セリウム粒子の含有量が0.1質量%以上であれば、良好な研磨速度が得られる傾向があり、20質量%以下であれば、粒子の凝集が抑制されて被研磨膜に傷がつきにくくなる傾向がある。
(pH緩衝液)
本実施形態に係る研磨液は、pH緩衝液として緩衝液の原液pHと6倍希釈後のpH変化量が0.2以下であり、pKaが4〜6の値をもつ酸Aを含有する。これにより、研磨終了後の被研磨膜(例えば、酸化珪素膜)の平坦性を向上させることができる。より詳細には、凹凸を有する被研磨面を研磨した場合に、一部が過剰に研磨されて皿のように凹む現象、いわゆるディッシング(Dishing)が生じることを抑制することができる。この効果は、pH緩衝液と酸化セリウム粒子とを併用することにより、より効率的に得られる。
pH緩衝液は前記酸Aを含み、酸Aは水溶性の有機化合物であることが好ましい。
前記酸Aとしては、
酢酸、プロピオン酸、酪酸、吉草酸、シクロヘキサンカルボン酸、フェニル酢酸、安息香酸、o−トルイル酸、m−トルイル酸、p−トルイル酸、o−メトキシ安息香酸、m−メトキシ安息香酸、p−メトキシ安息香酸、アクリル酸、メタクリル酸、クロトン酸、ペンテン酸、ヘキセン酸、ヘプテン酸、オクテン酸、ノネン酸、デセン酸、ウンデセン酸、ドデセン酸、トリデセン酸、テトラデセン酸、ペンタデセン酸、ヘキサデセン酸、ヘプタデセン酸、イソ酪酸、イソ吉草酸、ケイ皮酸、キナルジン酸、ニコチン酸、2−ナフトエ酸、ピコリン酸、ビニル酢酸、フェニル酢酸、レブリン酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,9−ノナンジカルボン酸、1,10−デカンジカルボン酸、1,11−ウンデカンジカルボン酸、1,12−ドデカンジカルボン酸、1,13−トリデカンジカルボン酸、1,14−テトラデカンジカルボン酸、1,15−ペンタデカンジカルボン酸、1,16−ヘキサデカンジカルボン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、メサコン酸、キノリン酸、キニン酸、ナフタル酸、フタル酸、イソフタル酸、テレフタル酸、3−ヒドロキシプロピオン酸、2−ヒドロキシ酪酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、3−ヒドロキシ吉草酸、5−ヒドロキシ吉草酸、キナ酸、キヌレン酸、アコニット酸、アスコルビン酸、アセチルサリチル酸、アセチルリンゴ酸、アセチレンジカルボン酸、アセトキシコハク酸、アセト酢酸、3−オキソグルタル酸、アトロパ酸、アトロラクチン酸、アントラキノンカルボン酸、アントラセンカルボン酸、イソカプロン酸、イソカンホロン酸、イソクロトン酸、2−エチル−2−ヒドロキシ酪酸、エチルマロン酸、エトキシ酢酸、オキシ二酢酸、2−オキソ酪酸、カンホロン酸、グリシド酸、グリセリン酸、グルカル酸、グルコン酸、クロコン酸、シクロブタンカルボン酸、シクロヘキサンジカルボン酸、ジフェニル酢酸、ジ−O−ベンゾイル酒石酸、ジメチルコハク酸、ジメトキシフタル酸、タルトロン酸、タンニン酸、チオフェンカルボン酸、チグリン酸、デソキサル酸、テトラヒドロキシコハク酸、テトラメチルコハク酸、テトロン酸、デヒドロアセト酸、テレビン酸、トロパ酸、バニリン酸、パラコン酸、ヒドロキシイソフタル酸、ヒドロキシケイ皮酸、ヒドロキシナフトエ酸、o−ヒドロキシフェニル酢酸、m−ヒドロキシフェニル酢酸、p−ヒドロキシフェニル酢酸、3−ヒドロキシ−3−フェニルプロピオン酸、ピバル酸、ピリジンジカルボン酸、ピリジントリカルボン酸、α−フェニルケイ皮酸、フェニルグリシド酸、フェニルコハク酸、フェニル酢酸、フェニル乳酸、プロピオル酸、ソルビン酸、2,4−ヘキサジエン二酸、2−ベンジリデンプロピオン酸、3−ベンジリデンプロピオン酸、ベンジリデンマロン酸、ベンジル酸、ベンゼントリカルボン酸、1,2−ベンゼンジ酢酸、ベンゾイルオキシ酢酸、ベンゾイルオキシプロピオン酸、ベンゾイルギ酸、ベンゾイル酢酸、O−ベンゾイル乳酸、3−ベンゾイルプロピオン酸、没食子酸、メソシュウ酸、5−メチルイソフタル酸、2−メチルクロトン酸、α−メチルケイ皮酸、メチルコハク酸、メチルマロン酸、2−メチル酪酸、o−メトキシケイ皮酸、p−メトキシケイ皮酸、メルカプトコハク酸、O−ラクトイル乳酸、リンゴ酸、ロイコン酸、ロジゾン酸、ロゾール酸、α−ケトグルタル酸、L−アルコルビン酸、イズロン酸、ガラクツロン酸、グルクロン酸、ピログルタミン酸、エチレンジアミン四酢酸、シアン化三酢酸、アスパラギン酸、グルタミン酸、N´−ヒドロキシエチル−N,N,N´−トリ酢酸及びニトリロトリ酢酸等のカルボン酸;メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ブタンスルホン酸、ペンタンスルホン酸、ヘキサンスルホン酸、ヘプタンスルホン酸、オクタンスルホン酸、ノナンスルホン酸、デカンスルホン酸、ウンデカンスルホン酸、ドデカンスルホン酸、トリデカンスルホン酸、テトラデカンスルホン酸、ペンタデカンスルホン酸、ヘキサデカンスルホン酸、ヘプタデカンスルホン酸、オクタデカンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、トルエンスルホン酸、ヒドロキシエタンスルホン酸、ヒドロキシフェノールスルホン酸及びアントラセンスルホン酸等のスルホン酸;デシルホスホン酸及びフェニルホスホン酸等のホスホン酸、が好ましい。更に、上記のカルボン酸、スルホン酸及びホスホン酸については、これらの主鎖のプロトンを1つ又は2つ以上、F、Cl、Br、I、OH、CN及びNO等の原子又は原子団で置換した誘導体であってもよい。これらは1種類を単独で又は2種類以上を組み合わせて使用することができる。
pH緩衝液中の酸Aの含有量は、酸Aと高分子化合物Bの含有量の合計で研磨液全質量に対して0.8質量%以下であれば、特に制限はない。
酸Aと高分子化合物Bの含有量の合計が0.8質量%以下であれば、酸化セリウム粒子の凝集が抑制される傾向がある。
pH緩衝液中の酸Aは、室温(25℃)における酸解離定数pKaが、4〜7であることが好ましく、4〜6であることがより好ましい。酸又はその塩のpKaが4〜6であれば、研磨液中で少なくともその一部以上がイオンとなって水素イオンを放出し、所望するpH領域にpHを保つことができる。
(高分子化合物B)
本実施形態に係る研磨液は、カルボン酸基又はカルボン酸塩基を有する高分子化合物Bを含む。ここで、カルボン酸基とは、−COOHで表される官能基であり、カルボン酸塩基とは、−COOXで表される官能基である(Xは塩基由来の陽イオンであり、例えば、アンモニウムイオン、ナトリウムイオン及びカリウムイオンが挙げられる)。特に、高分子化合物Bとしてカルボン酸基又はカルボン酸塩基を有する水溶性有機高分子及び/又はその塩を含有することが好ましい。これにより、研磨終了後の被研磨膜(例えば、酸化珪素膜)の平坦性を向上させることができる。より詳細には、凹凸を有する被研磨面を研磨した場合に、一部が過剰に研磨されて皿のように凹む現象、いわゆるディッシングが生じることを抑制することができる。この効果は、カルボン酸基又はカルボン酸塩基を有する水溶性有機高分子及び/又はその塩と、pH緩衝液と、酸化セリウム粒子と、を併用することにより、より効率的に得られる。
高分子化合物B(カルボン酸基又はカルボン酸塩基を有する水溶性有機高分子)の具体例としては、アクリル酸、メタクリル酸、マレイン酸等のカルボン酸基を有するモノマの単独重合体や、当該重合体のカルボン酸基の部分がアンモニウム塩等である単独重合体が挙げられる。また、カルボン酸塩基を有するモノマと、カルボン酸のアルキルエステル等の誘導体との共重合体も好ましい。具体的には、ポリアクリル酸、又はポリアクリル酸のカルボン酸基の一部が、カルボン酸アンモニウム塩基に置換されたポリマ(以下、ポリアクリル酸アンモニウムと称する)等が挙げられる。
高分子化合物Bの含有量は、研磨液全質量基準で0.02〜0.50質量%であることが好ましく、0.02〜0.30質量%であることがより好ましく、0.03〜0.20質量%であることが更に好ましい。高分子化合物Bの含有量が0.02質量%以上であれば、研磨終了後の被研磨膜(例えば、酸化珪素膜)の平坦性を向上させることができる傾向がある。一方、含有量が0.50質量%以下であれば、酸化セリウム粒子の凝集が抑制される傾向がある。
高分子化合物Bの重量平均分子量は、特に制限はないが、1000〜100000であることが好ましく、1000〜10000であることがより好ましい。高分子化合物Bの分子量が100000を超えると、被研磨膜の研磨速度が充分に得られない傾向があり、また、酸化セリウム粒子の凝集が起こりやすいという傾向がある。一方、高分子化合物Bの分子量が1000未満であると、平坦性向上効果が得にくいという傾向がある。なお、重量平均分子量は、GPC(Gel Permeation Chromatography:ゲル浸透クロマトグラフィー)で測定し、標準ポリオキシエチレン換算した値である。
(水)
水としては、特に制限されないが、脱イオン水、イオン交換水及び超純水等が好ましい。水の含有量は、上記各含有成分の含有量の残部でよく、研磨液中に含有されていれば特に限定されない。なお、研磨液は、必要に応じて水以外の溶媒、例えば、エタノール、アセトン等の極性溶媒等を更に含有してもよい。
(分散剤)
本実施形態に係る研磨液には、酸化セリウム粒子を分散させるための分散剤を含有させることができる。分散剤としては、水溶性陰イオン性分散剤、水溶性非イオン性分散剤、水溶性陽イオン性分散剤及び水溶性両性分散剤等が挙げられ、中でも、水溶性陰イオン性分散剤が好ましい。これらは一種類を単独で又は二種類以上を組み合わせて使用することができる。なお、高分子化合物Bとして例示された上記化合物(例えば、ポリアクリル酸アンモニウム)を分散剤として使用することもできる。
水溶性陰イオン性分散剤としては、共重合成分としてアクリル酸を含む高分子及びその塩が好ましく、当該高分子の塩がより好ましい。共重合成分としてアクリル酸を含む高分子及びその塩としては、例えば、ポリアクリル酸及びそのアンモニウム塩、アクリル酸とメタクリル酸との共重合体及びそのアンモニウム塩、並びに、アクリル酸アミドとアクリル酸との共重合体及びそのアンモニウム塩が挙げられる。
その他の水溶性陰イオン性分散剤としては、例えば、ラウリル硫酸トリエタノールアミン、ラウリル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン及び特殊ポリカルボン酸型高分子分散剤が挙げられる。
また、水溶性非イオン性分散剤としては、例えば、ポリエチレングリコールモノラウレート、ポリエチレングリコールモノステアレート、ポリエチレングリコールジステアレート、ポリエチレングリコールモノオレエート、ポリオキシエチレンアルキルアミン、ポリオキシエチレン硬化ヒマシ油、2−ヒドロキシエチルメタクリレート及びアルキルアルカノールアミドが挙げられる。
水溶性陽イオン性分散剤としては、例えば、ポリビニルピロリドン、ココナットアミンアセテート及びステアリルアミンアセテートが挙げられる。
水溶性両性分散剤としては、例えば、ラウリルベタイン、ステアリルベタイン、ラウリルジメチルアミンオキサイド及び2−アルキル−N−カルボキシメチル−N−ヒドロキシエチルイミダゾリニウムベタインが挙げられる。
分散剤の含有量は、酸化セリウム粒子の分散性を向上させて沈降を抑制し、被研磨膜の研磨傷を更に減らす観点から、研磨液全質量基準で0.001〜10質量%の範囲が好ましい。
分散剤の重量平均分子量は、特に制限はないが、100〜150000であることが好ましく、1000〜20000であることがより好ましい。分散剤の分子量が100以上であれば、酸化珪素膜又は窒化珪素膜等の被研磨膜を研磨するときに、良好な研磨速度が得られやすい傾向がある。分散剤の分子量が150000以下であれば、研磨液の保存安定性が低下しにくい傾向がある。なお、重量平均分子量は、GPCで測定し、標準ポリオキシエチレン換算した値である。
本実施形態に係る研磨液を半導体素子の製造における研磨に使用する場合には、分散剤中のナトリウムイオン等のアルカリ金属、ハロゲン及びイオウの含有率は、10ppm以下であることが好ましい。
[その他の添加剤]
本実施形態に係る研磨液は、pH緩衝液、並びにカルボン酸基又はカルボン酸塩基を有する水溶性有機高分子及び/又はその塩とは別の添加剤を使用することができる。例えば、−COOM基、−Ph−OM基、−SOM基及び−PO基(式中、MはH、NH、Na及びKから選択されるいずれか一種であり、Phは置換基を有していても良いフェニル基を示す)からなる群より選択される少なくとも一つの基を有している有機酸;アルギン酸、ペクチン酸、カルボキシメチルセルロース、寒天、カードラン及びプルラン等の多糖類;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及びポリグリオキシル酸等のポリカルボン酸及びその塩;ポリビニルアルコール、ポリビニルピロリドン及びポリアクロレイン等のビニル系ポリマ等、アルコール化合物、ジオール化合物が挙げられる。
前記その他の添加剤の含有量は、研磨液全質量基準で0.01〜5質量%であることが好ましい。
[研磨液の調製・保存方法]
本実施形態に係る研磨液は、例えば、酸化セリウム粒子、水及び分散剤を配合して酸化セリウム粒子を分散させた後に、更にpH緩衝液及び高分子化合物Bを添加することによって得られる。なお、本実施形態に係る研磨液は、酸化セリウム粒子、分散剤、pH緩衝液、高分子化合物B、水及び任意に水溶性高分子を含む一液式研磨液として保存してもよく、酸化セリウム粒子、分散剤及び水を含む酸化セリウムスラリ(第1の液)と、pH緩衝液、高分子化合物B、水及び任意に水溶性高分子を含む添加液(第2の液)と、から構成される二液式研磨液として保存してもよい。
なお、二液式研磨液の場合は、pH緩衝液及び高分子化合物B以外の添加剤は、酸化セリウムスラリと添加液のいずれに含まれてもよいが、酸化セリウム粒子の分散安定性に影響がない点で、添加液に含まれることが好ましい。
酸化セリウムスラリと添加液とを分けた二液式研磨液として保存する場合、これら二液の配合を任意に変えることにより平坦化特性と研磨速度の調整が可能となる。二液式研磨液を用いて研磨する場合、酸化セリウムスラリ及び添加液をそれぞれ別の配管で送液し、これらの配管を供給配管出口の直前で合流させて両液を混合して研磨定盤上に供給する方法や、研磨直前に酸化セリウムスラリと添加液とを混合する方法を用いることができる。
本実施形態に係る研磨液は、所望のpHに調整して研磨に供する。pH調整剤としては特に制限はないが、例えば、硝酸、硫酸、塩酸、リン酸、ホウ酸及び酢酸等の酸、並びに水酸化ナトリウム、アンモニア水、水酸化カリウム及び水酸化カルシウム等の塩基が挙げられる。研磨液が半導体研磨に使用される場合には、アンモニア水、酸成分が好適に使用される。pH調整剤としては、予めアンモニアで部分的に中和された水溶性高分子のアンモニウム塩を使用することができる。
なお、室温(25℃)における研磨液のpHは4〜7であるが、4〜6.5であることが好ましく、4.5〜6であることがより好ましく、4.8〜5.2であることが更に好ましい。pHが4.8以上であることにより研磨液の保存安定性が向上する傾向があり、被研磨膜の傷の発生数が減少する傾向がある。また、pHが5.2以下であることにより、平坦性の向上効果を充分に発揮することができる。研磨液のpHは、pHメータ(例えば、横河電機株式会社製のModel PH81(商品名))で測定することができる。例えば、標準緩衝液(フタル酸塩pH緩衝剤pH:4.21(25℃)、中性リン酸塩pH緩衝剤pH:6.86(25℃))を用いて2点校正した後、電極を研磨液に入れて、25℃で2分間以上経過して安定した後の値を測定することで、研磨液のpHを測定することができる。
[研磨方法]
本実施形態に係る基板の研磨方法は、基板表面に形成された被研磨膜を研磨定盤の研磨布に押圧した状態で、上記研磨液を被研磨膜と研磨布との間に供給しながら、基板と研磨定盤とを相対的に動かして被研磨膜を研磨する。
基板としては、半導体素子製造に係る基板、例えば、回路素子及び配線パターンが形成された段階の半導体基板や、回路素子が形成された段階の半導体基板等の半導体基板上に無機絶縁膜が形成された基板が挙げられる。そして、被研磨膜としては、例えば、酸化珪素膜、窒化珪素膜及び酸化珪素膜の複合膜等の無機絶縁膜が挙げられる。このような半導体基板上に形成された無機絶縁膜を、本実施形態に係る研磨液で研磨することによって、無機絶縁膜表面の凹凸を解消し、半導体基板全面にわたって平滑な面とすることができる。また、本実施形態に係る研磨液は、シャロートレンチ分離にも使用できる。
以下、無機絶縁膜が形成された半導体基板の場合を例に挙げて、基板の研磨方法を更に詳細に説明する。
研磨装置としては、被研磨膜を有する半導体基板等の基板を保持するホルダーと、回転数を変更可能なモータ等が取り付けてあり、研磨布(パッド)を貼り付け可能な研磨定盤と、を有する一般的な研磨装置を使用することができる。研磨装置としては、例えば、株式会社荏原製作所製の研磨装置、型番:EPO−111、AMAT社製、商品名:MIRRA、Reflexion(「MIRRA」、「Reflexion」は登録商標)等を使用できる。
研磨布としては、一般的な不織布、発泡ポリウレタン及び多孔質フッ素樹脂等を特に制限なく使用できる。また、研磨布には、研磨液が溜まるような溝加工が施されていることが好ましい。
研磨条件に制限はないが、定盤の回転速度は、半導体基板が飛び出さないように200回転/分以下の低回転が好ましく、半導体基板にかける圧力(加工荷重)は、研磨後に傷が発生しないように100kPa以下が好ましい。研磨している間は、研磨布に研磨液をポンプ等で連続的に供給する。この供給量に制限はないが、研磨布の表面が常に研磨液で覆われていることが好ましい。
研磨終了後の半導体基板は、流水中で良く洗浄後、スピンドライヤ等を用いて半導体基板上に付着した水滴を払い落として、乾燥させることが好ましい。
このように被研磨膜である無機絶縁膜を研磨液で研磨することによって、表面の凹凸を解消し、半導体基板全面にわたって平滑な面が得られる。平坦化されたシャロートレンチを形成した後は、無機絶縁膜の上にアルミニウム配線を形成し、その配線間及び配線上に再度無機絶縁膜を形成後、研磨液を用いて当該無機絶縁膜を研磨して平滑な面を得る。この工程を所定数繰り返すことにより、所望の層数を有する半導体基板を製造することができる。
本実施形態に係る研磨液により研磨される無機絶縁膜としては、例えば、酸化珪素膜及び窒化珪素膜が挙げられる。酸化珪素膜は、リン及びホウ素等の元素がドープされていても良い。無機絶縁膜の作製方法としては、低圧CVD法、プラズマCVD法等が挙げられる。
低圧CVD法による酸化珪素膜形成は、Si源としてモノシラン:SiH、酸素源として酸素:Oを用いる。このSiH−O系酸化反応を、400℃以下の低温で行うことにより酸化珪素膜が得られる。場合によっては、CVDにより得られた酸化珪素膜は、1000℃又はそれ以下の温度で熱処理される。高温リフローによる表面平坦化を図るために、酸化珪素膜にリン:Pをドープするときには、SiH−O−PH系反応ガスを用いることが好ましい。
プラズマCVD法は、通常の熱平衡下では高温を必要とする化学反応が低温でできる利点を有する。プラズマ発生法には、容量結合型と誘導結合型の2つが挙げられる。反応ガスとしては、Si源としてSiH、酸素源としてNOを用いたSiH−NO系ガスとテトラエトキシシラン(TEOS)をSi源に用いたTEOS−O系ガス(TEOS−プラズマCVD法)が挙げられる。基板温度は、250〜400℃、反応圧力は、67〜400Paが好ましい。
低圧CVD法による窒化珪素膜形成は、Si源としてジクロルシラン:SiHCl、窒素源としてアンモニア:NHを用いる。このSiHCl−NH系酸化反応を、900℃の高温で行わせることにより窒化珪素膜が得られる。プラズマCVD法による窒化珪素膜形成は、反応ガスとしては、Si源としてSiH、窒素源としてNHを用いたSiH−NH系ガスが挙げられる。基板温度は、300〜400℃であることが好ましい。
本実施形態に係る研磨液及び基板の研磨方法は、半導体基板に形成された無機絶縁膜だけでなく、各種半導体装置の製造プロセス等にも適用することができる。本実施形態に係る研磨液及び基板の研磨方法は、例えば、所定の配線を有する配線板に形成された酸化珪素膜、ガラス及び窒化珪素等の無機絶縁膜、ポリシリコン、Al、Cu、Ti、TiN、W、Ta及びTaN等を主として含有する膜、フォトマスク・レンズ・プリズム等の光学ガラス、ITO(酸化インジウムスズ)等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバーの端面、シンチレータ等の光学用単結晶、固体レーザ単結晶、青色レーザLD(レーザダイオード)用サファイヤ基板、SiC、GaP及びGaAs等の半導体単結晶、磁気ディスク用ガラス基板、並びに磁気ヘッド等を研磨することにも適用することができる。
以下、実施例により本発明を説明するが、本発明はこれらの実施例に制限されるものではない。
(酸化セリウム粒子の作製)
市販の炭酸セリウム水和物40kgをアルミナ製容器に入れ、830℃、空気中で2時間焼成することにより黄白色の粉末を20kg得た。この粉末の相同定をX線回折法で行ったところ酸化セリウムであることを確認した。得られた酸化セリウム粉末20kgを、ジェットミルを用いて乾式粉砕し、粉末状(粒子状)の酸化セリウムを得た。
(実施例1)
前記で作製した酸化セリウム粒子200.0gと、脱イオン水795.0gとを混合し、分散剤としてポリアクリル酸アンモニウム水溶液(重量平均分子量:8000、40質量%)5gを添加して、攪拌しながら超音波分散を行い、酸化セリウム分散液を得た。超音波分散は、超音波周波数400kHz、分散時間20分間で行った。
その後、1リットル容器(高さ:170mm)に1kgの酸化セリウム分散液を入れて静置し、沈降分級を行なった。分級時間15時間後、水面からの深さ130mmより上の上澄みをポンプでくみ上げた。得られた上澄みの酸化セリウム分散液を、次いで固形分濃度が5質量%になるように、脱イオン水で希釈して酸化セリウムスラリを得た。
酸化セリウムスラリ中における酸化セリウム粒子の平均粒径(D50)を測定するため、He−Neレーザに対する測定時透過率(H)が60〜70%になるように前記スラリを希釈して、測定サンプルとした。この測定サンプルをレーザ回折式粒度分布計LA−920(株式会社堀場製作所製、商品名)を用い、相対屈折率:1.600、吸収:0.000として測定したところ、D50の値は150nmであった。
前記の酸化セリウムスラリ400gに、高分子化合物Bとしてポリアクリル酸水溶液(重量平均分子量:4000、40質量%)10.5gと脱イオン水500g及びその他の添加剤としてp−トルエンスルホン酸一水和物0.5g、アンモニア水(25質量%)を加えて、pH5.0(25℃)に調整した。更にpH緩衝液として酢酸(10質量%)とアンモニア水の混合液(pH5.0(25℃))を20g加えた後、脱イオン水を用いて全量を1000gとし、酸化セリウム研磨液原液(酸化セリウム固形分:2.0質量%)を作製した。
前記の酸化セリウム研磨液原液1000gに脱イオン水5000gを加えて、全量を6000gとし、酸化セリウム研磨液(酸化セリウム固形分:0.33質量%)を作製した。横河電機株式会社製のpHメータ、商品名:Model PH81を用い、標準緩衝液(フタル酸塩pH緩衝剤pH:4.21(25℃)、中性リン酸塩pH緩衝剤pH:6.86(25℃))を用いて2点校正した後、電極を作製した研磨液に入れて、25℃で2分間以上経過して安定した後の値を測定することで、研磨液のpHを測定した。
また、前記と同様に測定サンプルを調製して、研磨液中の粒子の平均粒径をレーザ回折式粒度分布計で測定した結果、D50の値は150nmであった。
(絶縁膜の研磨)
研磨試験ウエハとして、SEMATECH社製の商品名:パタンウエハ764(直径:300mm)を用いた。この研磨試験ウエハとこれを用いた研磨特性の評価方法を、図1を用いて説明する。
図1(a)は、研磨試験ウエハの一部分を拡大した模式断面図である。ウエハ1の表面には複数の溝が形成されていて、ウエハ1の凸部表面には厚さ150nmの窒化珪素膜2が形成されている。溝の深さ(凸部の表面から凹部の底面までの段差)は500nmである。以下、凸部をアクティブ部、凹部をトレンチ部という。なお、図1には明示されていないが、ウエハ1には、トレンチ部/アクティブ部の断面幅が100μm/100μmの領域が形成されている。
図1(b)は、研磨試験ウエハの一部分を拡大した模式断面図である。研磨試験ウエハは、アクティブ部の表面からの酸化珪素膜3の厚さが600nmとなるように、プラズマTEOS法によってアクティブ部及びトレンチ部に酸化珪素膜3が形成されている。研磨試験では、研磨試験ウエハの酸化珪素膜3を研磨して平坦化を行う。
図1(c)は、酸化珪素膜3を研磨した後の研磨試験ウエハの一部分を拡大した模式断面図である。アクティブ部の窒化珪素膜2表面で研磨を終了し、このときの研磨に要した時間を研磨時間とし、トレンチ部の深さ4からトレンチ部内の酸化珪素膜3の厚さ5を引いた値をディッシング量6とする。なお、研磨時間は短いほうが良く、ディッシング量6は小さい方が良い。
このような研磨試験ウエハの研磨には研磨装置(AMAT社製、商品名:Reflexion)を用いた。基板取り付け用の吸着パッドを貼り付けたホルダーに研磨試験ウエハをセットした。研磨装置の直径600mmの研磨定盤に、多孔質ウレタン樹脂製の研磨布(溝形状:パーフォレートタイプ、Rohm and Haas社製、型番:IC1010)を貼り付けた。更に、被研磨膜である絶縁膜(酸化珪素被膜)面を下にして前記ホルダーを研磨定盤上に載せ、加工荷重を210gf/cm(20.6kPa)に設定した。
前記研磨定盤上に前記酸化セリウム研磨液を250ミリリットル/分の速度で滴下しながら、研磨定盤と研磨試験ウエハとをそれぞれ90回転/分で作動させて、研磨試験ウエハを研磨した。トレンチ部/アクティブ部の断面幅が100μm/100μmの領域のアクティブ部の窒化珪素膜が表面に露出したときの研磨時間を研磨終了時間とした。ただし、平坦性の評価は、その時間から20%多い時間(例えば、研磨終了時間が100秒とすると、その時点から追加で20秒間)更に研磨したウエハについて行った。過剰に研磨することで、評価する項目の値に差が出やすく、評価がしやすいことと、また、過剰に研磨しても数字が良い(特性が良い)ということは、研磨プロセスの面からみてもプロセスの尤度があるということにつながり、有利であるので、その証明もできることからである。研磨後の研磨試験ウエハは、純水で良く洗浄後、乾燥した。
平坦性の評価項目として、トレンチ部/アクティブ部の断面幅が100μm/100μmの領域のトレンチ部のディッシング(Dishing)量を、触針式段差計(型番:P16、KLA−tencor社製)を用いて測定した。
(実施例2〜12及び比較例1〜8)
研磨液原液のpH及び研磨液のpH、pH緩衝液及び高分子添加剤Bを表1〜4に示すものへ変更した以外は、実施例1と同様にして酸化セリウム研磨液を作製し、絶縁膜の研磨を行った。結果を同表に示す。表1〜4から、本発明により提供される研磨液によりディッシングの低減が達成されることが明らかとなった。
Figure 2014027146
Figure 2014027146
Figure 2014027146
Figure 2014027146
1…ウエハ、2…窒化珪素膜、3…酸化珪素膜、4…トレンチ部の深さ、5…研磨後のトレンチ部の酸化珪素膜の厚さ、6…ディッシング量。

Claims (4)

  1. 酸化セリウム粒子、pH緩衝液、カルボン酸基又はカルボン酸塩基を有する高分子化合物B及び水を含むpH4.8〜5.2のCMP用の研磨液であって、前記pH緩衝液は、緩衝液の原液pHと3倍希釈後のpH変化量が0.2以下であり、pKaが4〜6の値をもつ酸Aを含む緩衝液であって、高分子化合物Bの含有量が、研磨液全質量に対して0.02質量%以上であり、酸Aと高分子化合物Bの含有量の合計は研磨液全質量に対して0.8質量%以下である、研磨液。
  2. 前記酸化セリウム粒子及び前記水を含む第1の液と、前記pH緩衝液、前記高分子化合物B及び前記水を含む第2の液と、から構成される二液式研磨液として保存される、請求項1に記載の研磨液。
  3. 前記第1の液が、分散剤を更に含む、請求項2に記載の研磨液。
  4. 基板表面に形成された被研磨膜を研磨定盤の研磨布に押圧した状態で、請求項1〜3のいずれか一項に記載の研磨液を前記被研磨膜と前記研磨布との間に供給しながら、前記基板と前記研磨定盤とを相対的に動かして前記被研磨膜を研磨する、基板の研磨方法。
JP2012166995A 2012-07-27 2012-07-27 研磨液及びこの研磨液を用いた基板の研磨方法 Pending JP2014027146A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012166995A JP2014027146A (ja) 2012-07-27 2012-07-27 研磨液及びこの研磨液を用いた基板の研磨方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012166995A JP2014027146A (ja) 2012-07-27 2012-07-27 研磨液及びこの研磨液を用いた基板の研磨方法

Publications (1)

Publication Number Publication Date
JP2014027146A true JP2014027146A (ja) 2014-02-06

Family

ID=50200526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012166995A Pending JP2014027146A (ja) 2012-07-27 2012-07-27 研磨液及びこの研磨液を用いた基板の研磨方法

Country Status (1)

Country Link
JP (1) JP2014027146A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029123A (ja) * 2014-07-25 2016-03-03 旭硝子株式会社 研磨剤と研磨方法、および研磨用添加液
JP2016146466A (ja) * 2015-02-04 2016-08-12 旭硝子株式会社 研磨剤と研磨方法、および研磨用添加液

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029123A (ja) * 2014-07-25 2016-03-03 旭硝子株式会社 研磨剤と研磨方法、および研磨用添加液
TWI664276B (zh) * 2014-07-25 2019-07-01 日商Agc股份有限公司 研磨劑、研磨方法及研磨用添加液
JP2016146466A (ja) * 2015-02-04 2016-08-12 旭硝子株式会社 研磨剤と研磨方法、および研磨用添加液
TWI688645B (zh) * 2015-02-04 2020-03-21 日商Agc股份有限公司 研磨劑與研磨方法、及研磨用添加液

Similar Documents

Publication Publication Date Title
JP6269733B2 (ja) 研磨液及びこの研磨液を用いた基板の研磨方法
KR102399744B1 (ko) 연마액, 연마액 세트 및 연마 방법
JP6582567B2 (ja) スラリー及びその製造方法、並びに、研磨方法
JP2012186339A (ja) 研磨液及びこの研磨液を用いた基板の研磨方法
JP2010095650A (ja) 研磨剤組成物及びこの研磨剤組成物を用いた基板の研磨方法
JP2015224276A (ja) 研磨液及びこの研磨液を用いた基板の研磨方法
JP2015008212A (ja) 研磨液及びこの研磨液を用いた基板の研磨方法
JP6708951B2 (ja) 研磨液及び研磨方法
JP2001007060A (ja) Cmp研磨剤及び基板の研磨方法
JP2014027146A (ja) 研磨液及びこの研磨液を用いた基板の研磨方法
JP2013045944A (ja) 基板の研磨方法
JP2017075226A (ja) 研磨液の製造方法、研磨液及び研磨方法
JP2006179678A (ja) 半導体絶縁膜用cmp研磨剤及び基板の研磨方法
JP2015209485A (ja) 研磨液の製造方法及び研磨液、並びに研磨方法
JP2017011162A (ja) 研磨液の製造方法、研磨液及び研磨方法
JP2015137290A (ja) 研磨液の製造方法及び研磨液、並びに研磨方法
JP6620590B2 (ja) 研磨液及び研磨方法
JP2015023122A (ja) 研磨液及びその製造方法、並びに研磨方法
JP2017152577A (ja) 研磨液及び研磨方法