WO2012086447A1 - 電極集電体用アルミニウム合金箔及びその製造方法 - Google Patents
電極集電体用アルミニウム合金箔及びその製造方法 Download PDFInfo
- Publication number
- WO2012086447A1 WO2012086447A1 PCT/JP2011/078721 JP2011078721W WO2012086447A1 WO 2012086447 A1 WO2012086447 A1 WO 2012086447A1 JP 2011078721 W JP2011078721 W JP 2011078721W WO 2012086447 A1 WO2012086447 A1 WO 2012086447A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum alloy
- alloy foil
- strength
- hours
- active material
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
- H01M4/662—Alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an electrode current collector used for a secondary battery, an electric double layer capacitor, a lithium ion capacitor and the like, and more particularly to an aluminum alloy foil used for an electrode material of a lithium ion secondary battery. Furthermore, it is related with the aluminum alloy foil used for the electrode material for positive electrodes of a lithium ion secondary battery.
- a lithium ion secondary battery with high energy density is used as a power source for portable electronic devices such as mobile phones and notebook computers.
- the electrode material of the lithium ion secondary battery includes a positive electrode plate, a separator, and a negative electrode plate.
- As the positive electrode material an aluminum alloy foil having the characteristics that it has excellent electrical conductivity, does not affect the electric efficiency of the secondary battery, and generates little heat is used as a support, and generally JIS 1085 or JIS 3003 aluminum alloy is used. Yes.
- An active material mainly composed of a lithium-containing metal oxide such as LiCoO 2 is applied to the surface of the aluminum alloy foil.
- an active material having a thickness of about 100 ⁇ m is applied to both sides of an aluminum alloy foil of about 20 ⁇ m, and drying is performed to remove the solvent in the active material.
- compression processing is performed by a press machine. (Hereinafter, this process is referred to as press working.) After the positive electrode plate manufactured in this way is laminated with the separator and the negative electrode plate, it is wound and molded for storage in the case, and then stored in the case. Is done.
- the aluminum alloy foil used for the positive electrode material of the lithium ion secondary battery is required to have high strength because of problems such as occurrence of breakage during application of the active material and breakage at the bent portion during winding. .
- a heat treatment of about 100 ° C. to 180 ° C. is performed. If the strength after the drying process is low, intermediate elongation is likely to occur during press working. Wrinkles are generated, and the adhesiveness between the active material and the aluminum alloy foil is reduced, and breakage at the time of slitting easily occurs.
- the adhesion between the active material and the surface of the aluminum alloy foil is lowered, there is a problem in that peeling progresses during repeated use of charge and discharge and the capacity of the battery is reduced.
- the electrical conductivity is a physical property value representing the ease of passing electricity in the substance, and indicates that the higher the electrical conductivity, the easier it is for electricity to pass.
- Lithium ion secondary batteries used in automobiles, power tools, and the like are required to have larger output characteristics than lithium ion secondary batteries such as mobile phones and laptop computers used for consumer use.
- the electrical conductivity is low, when a large current flows, the internal resistance of the battery increases, which causes a problem that the output voltage of the battery decreases.
- An aluminum alloy foil having an Al purity of 99% or more is used for a lithium ion alloy foil for a secondary battery that requires high conductivity.
- an aluminum alloy foil having an Al purity of 99% or more is difficult to improve strength because the amount of elements contained is small. That is, since there are few solid solution elements and fine precipitates that can suppress the movement of dislocations during the heat treatment, the strength is greatly reduced.
- an electrode current collector material particularly an electrode material for a lithium ion secondary battery, is required to have an aluminum alloy foil having high strength after final cold rolling and high strength after heating in the drying process while maintaining high electrical conductivity. It has been.
- Patent Document 1 proposes an aluminum alloy foil that is used for a battery current collector and has a tensile strength of 98 MPa or more. However, there is no disclosure about the strength after the drying step in the manufacturing process of the lithium ion secondary battery positive electrode material.
- Patent Document 2 proposes an aluminum alloy foil for a lithium ion secondary battery electrode current collector that has a tensile strength of 160 MPa or more. However, the strength after heat treatment assuming a drying process is low, and it is not sufficient to prevent wrinkles during winding and breakage during slitting due to medium elongation during press working.
- Patent Document 3 discloses a method for preventing peeling from an active material without increasing plasticity during press working by increasing the strength. However, since it is an alloy to which Mn, Cu, and Mg are added as main elements, high electrical conductivity cannot be satisfied.
- An object of the present invention is to provide an aluminum alloy foil for an electrode current collector that has high conductivity and high strength after a drying step after application of an active material.
- the present inventors examined aluminum alloy foil used for the positive electrode material of a lithium ion secondary battery, regulated the components to an appropriate range, and increased the homogenization treatment of the ingot in the manufacturing process.
- the inventors have found that by controlling the solid solution precipitation state of the elements, high strength can be maintained even after the heat treatment in the drying step after the application of the active material, while maintaining high electrical conductivity.
- Fe 0.03 to 0.1 mass% (hereinafter, mass% is simply referred to as%)
- Si 0.01 to 0.1%
- Cu 0.0. Containing 0001-0.01%, consisting of the balance Al and inevitable impurities
- the tensile strength after the final cold rolling is 180 MPa or more
- the 0.2% proof stress is 160 MPa or more
- the conductivity is 60% IACS or more
- the aluminum alloy foil after the final cold rolling is subjected to any heat treatment at 120 ° C. for 24 hours, 140 ° C. for 3 hours, and 160 ° C. for 15 minutes
- the tensile strength after the heat treatment is 170 MPa or more
- An aluminum alloy foil for an electrode current collector characterized by having a 2% proof stress of 150 MPa or more.
- a second invention according to claim 2 is the method for producing an aluminum alloy foil for an electrode current collector according to claim 1, wherein the homogenization treatment of the aluminum alloy ingot is held at 550 to 620 ° C. for 1 to 20 hours.
- the strength after the drying process after application of the active material is high, so that no intermediate elongation occurs during press working, preventing the active material from peeling or breaking during slitting. It is possible to provide an aluminum alloy foil for an electrode current collector, including an aluminum alloy foil for a lithium ion battery.
- composition of the aluminum alloy foil for a lithium ion battery according to the present invention contains Fe: 0.03-0.1%, Si: 0.01-0.1%, Cu: 0.0001-0.01%. And the balance Al and inevitable impurities.
- Si is an element that improves the strength when added, and is contained in an amount of 0.01 to 0.1%. If the amount of Si added is less than 0.01%, it hardly contributes to strength improvement. In addition, the Al bullion used normally contains Si as an impurity, and high purity bullion is used to regulate to less than 0.01%. is there. On the other hand, if the amount of Si added exceeds 0.1%, it is difficult to maintain high conductivity, which is not preferable. A more preferable Si content is 0.02 to 0.08%.
- Fe is an element that improves the strength when added, and is contained in an amount of 0.03 to 0.1%. If the amount of Fe added is less than 0.03%, the strength is not improved. On the other hand, if the amount of Fe added exceeds 0.1%, it is difficult to maintain high conductivity, which is not preferable. A more preferable Fe content is 0.04 to 0.08%.
- Cu is an element that improves the strength when added, and is contained in an amount of 0.0001 to 0.01%. If the amount of Cu added is less than 0.0001%, it hardly contributes to strength improvement. In addition, high-purity bullion is used, which is economically difficult. On the other hand, if the amount of Cu added exceeds 0.01%, it is difficult to maintain high conductivity, which is not preferable. A more preferable Cu content is 0.0005 to 0.008%.
- this material contains inevitable impurities such as Cr, Ni, Zn, Mn, Mg, Ti, B, V, and Zr. These inevitable impurities are preferably 0.02% or less individually, and the total amount is preferably 0.15% or less.
- the base plate tensile strength after the final cold rolling is 180 MPa or more, and the 0.2% proof stress is 160 MPa or more. If the tensile strength is less than 180 MPa and the 0.2% proof stress is less than 160 MPa, the strength is insufficient, and breakage and cracks are likely to occur due to the tension applied during application of the active material. In addition, it also causes problems such as medium elongation, which adversely affects productivity.
- the manufacturing process of the positive electrode plate includes a drying process after applying the active material for the purpose of removing the solvent in the active material.
- heat treatment is performed at a temperature of about 100 to 180 ° C.
- This heat treatment may soften the aluminum alloy foil and change its mechanical properties, so the mechanical properties of the aluminum alloy foil after the heat treatment become important.
- dislocations are activated and easily moved by heat energy from the outside, and the strength decreases during the recovery process. In order to prevent a decrease in strength during the recovery process during heat treatment, it is effective to suppress the movement of dislocations by solid solution elements and precipitates in the aluminum alloy.
- the effect due to the amount of Fe solid solution is large. That is, by increasing the homogenization temperature of the ingot, a large amount of Fe added in a small amount is dissolved, and at the time of hot rolling, a high amount of solid solution is obtained without precipitating these dissolved Fe as much as possible. By maintaining the strength, a decrease in strength after the heat treatment can be suppressed.
- the homogenization conditions are controlled so that the tensile strength after heat treatment at 120 to 160 ° C. for 15 minutes to 24 hours is 170 MPa or more and the 0.2% proof stress is 150 MPa or more. If the tensile strength after heat treatment at 120 to 160 ° C. for 15 minutes to 24 hours is less than 170 MPa and the 0.2% proof stress is less than 150 MPa, medium elongation tends to occur during the pressing process after the drying process. Since wrinkles are generated and the active material is easily peeled off or broken when slitting, it is not preferable.
- the conductivity is 60% IACS or higher.
- the conductivity indicates the solid solution state of the solute element.
- the electrode collector of the present application is used for a lithium ion secondary battery, if the electrical conductivity is less than 60% IACS, the output characteristics deteriorate when used at a high current value such that the discharge rate exceeds 5 C. This is not preferable.
- 1 C is a current value at which discharge is completed in one hour after a constant current discharge is performed on a cell having a nominal capacity value.
- 5C is a condition indicating a current value that can be discharged for 1/5 hour.
- an aluminum alloy ingot having the above alloy composition is produced by the following steps.
- An aluminum alloy having the above composition can be obtained by melt casting by a conventional method and then obtaining an ingot, and is produced by a semi-continuous casting method or a continuous casting method.
- the cast aluminum alloy ingot is homogenized at 550 to 620 ° C. for 1 to 20 hours.
- the homogenization temperature is less than 550 ° C. or less than 1 hour, elements such as Si and Fe are not sufficiently dissolved, the amount of the solid solution is insufficient, and the strength and strength after heating are not preferable. .
- the temperature exceeds 620 ° C., the ingot is locally melted, or a very small amount of hydrogen gas mixed during casting comes out to the surface, which is not preferable because the surface of the material tends to swell. Further, if the homogenization time exceeds 20 hours, it is not preferable from the viewpoint of productivity and cost.
- Hot rolling After the homogenization treatment, hot rolling, cold rolling and foil rolling are performed to obtain an aluminum alloy foil having a foil thickness of 6 to 30 ⁇ m.
- Hot rolling starts at a temperature of 500 ° C. or higher after the homogenization treatment is completed. If the starting temperature of hot rolling is less than 500 ° C., the amount of precipitation of elements such as Si and Fe increases, and it becomes difficult to secure a solid solution amount for improving the strength. In particular, the amount of Fe dissolved in the solid has a great influence in order to maintain high strength. Since Fe is likely to precipitate as an Al 3 Fe, Al—Fe—Si based intermetallic compound in the temperature range of 350 to 500 ° C., it is necessary to shorten the time required in this temperature range as much as possible.
- the required time in the temperature range of 350 to 500 ° C. in the hot rolling is preferably within 20 minutes.
- the end temperature of hot rolling is 255 to 300 ° C.
- the end temperature during hot rolling can be determined by changing the line speed and adjusting the processing heat generation and cooling conditions.
- the hot-rolled aluminum plate is wound on the outlet side of the hot rolling mill to be cooled as a coil.
- the end temperature of the hot rolling exceeds 300 ° C., recrystallization of aluminum inside the coil proceeds during cooling, so the accumulated strain decreases and the strength decreases.
- a more preferable temperature range is 255 to 285 ° C.
- an aluminum alloy foil having a desired plate thickness can be obtained without performing intermediate annealing.
- Fe dissolved in the homogenization treatment can be maintained until after the final cold rolling, and therefore after heat treatment at higher strength and 120 to 160 ° C. for 15 minutes to 24 hours. Can be obtained.
- the plate thickness is 0.4 to 1.3 mm, and when using a batch furnace, holding is performed at 300 to 500 ° C. for 1 to 5 hours.
- a continuous annealing furnace is used, the same effect as the annealing of the batch furnace can be obtained by holding at 300 to 500 ° C. within 2 minutes.
- the thickness of the aluminum alloy foil after final cold rolling is 6-30 ⁇ m. When the thickness is less than 6 ⁇ m, pinholes are easily generated during foil rolling, which is not preferable. If it exceeds 30 ⁇ m, the volume and weight of the electrode current collector occupying the same volume will increase, and the volume and weight of the active material will decrease. In the case of a lithium ion secondary battery, this leads to a decrease in battery capacity, which is not preferable.
- Example / Comparative Example with Intermediate Annealing An aluminum alloy having the composition shown in Table 1 was melt cast by a semi-continuous casting method to produce an ingot having a thickness of 500 mm. Next, after this ingot was chamfered, homogenization treatment was performed under the conditions shown in Table 1, and after the homogenization treatment, hot rolling was performed to obtain a plate thickness of 3.0 mm. Thereafter, the sheet thickness was 0.8 mm by cold rolling, intermediate annealing was performed at 440 ° C. for 3 hours, and further cold rolling and foil rolling were performed to obtain an aluminum alloy foil having a foil thickness of 12 ⁇ m.
- the positive electrode material of the lithium ion secondary battery was manufactured with each aluminum alloy foil.
- PVDF serving as a binder was added to an active material mainly composed of LiCoO 2 to form a positive electrode slurry.
- a positive electrode slurry was applied to both surfaces of the aluminum alloy foil having a width of 30 mm, dried at 120 ° C. for 24 hours, 140 ° C. for 3 hours and 160 ° C. for 15 minutes, and then a roller press machine. To increase the density of the active material.
- ⁇ Tensile strength> The tensile strength of the aluminum alloy foil cut in the rolling direction was measured using an Instron type tensile tester AG-10kNX manufactured by Shimadzu Corporation. The measurement conditions were a test piece size of 10 mm ⁇ 100 mm, a distance between chucks of 50 mm, and a crosshead speed of 10 mm / min.
- the aluminum alloy foil after heat treatment at 120 ° C. for 24 hours, 140 ° C. for 3 hours, and 160 ° C. for 15 minutes is cut out in the rolling direction and has the same tensile strength as above. It was measured.
- 180 MPa or more was accepted and less than 180 MPa was rejected.
- the tensile strength after heat treatment at 120 ° C. for 24 hours, 140 ° C. for 3 hours, and 160 ° C. for 15 minutes was accepted as 170 MPa or more, and rejected as less than 170 MPa.
- ⁇ Conductivity> The electrical conductivity was determined by measuring the electrical resistivity value by the four probe method and converting it to electrical conductivity. More than 60% IACS was accepted and less than 60% IACS was rejected.
- Examples 1-1 to 1-12 there was no occurrence of breakage or active material peeling in the active material application process, and the electrical conductivity was high, and good evaluation results were obtained. Further, from comparison between Examples 1-7 and 1-8, it was found that the strength of the aluminum alloy foil was further increased by setting the hot rolling end temperature to 285 ° C. or lower. In Comparative Example 1-1, the conductivity was not sufficient due to a large amount of Si. In Comparative Example 1-2, since the Fe amount is small, the strength and strength after heat treatment at 120 ° C. for 24 hours, 140 ° C. for 3 hours, and 160 ° C. for 15 minutes are insufficient, and in the active material coating process Cutting and peeling of the active material occurred.
- Comparative Example 1-3 the conductivity was not sufficient due to the large amount of Fe. In Comparative Example 1-4, the conductivity was not sufficient due to the large amount of Cu. In Comparative Example 1-5, since the homogenization temperature was low, the solid solution amount decreased and the strength and strength after heat treatment at 120 ° C. for 24 hours, 140 ° C. for 3 hours, and 160 ° C. for 15 minutes. Was insufficient, and cutting and active material peeling occurred in the active material application process. In Comparative Example 1-6, since the retention time during the homogenization treatment was short, the amount of solid solution decreased, and the strength and heat treatment were performed at 120 ° C. for 24 hours, 140 ° C. for 3 hours, and 160 ° C. for 15 minutes.
- Examples and Comparative Examples without Intermediate Annealing Aluminum alloys having the compositions shown in Table 1 were melt cast by a semi-continuous casting method to produce an ingot having a thickness of 500 mm. Next, after this ingot was chamfered, homogenization treatment was performed under the conditions shown in Table 1, and after the homogenization treatment, hot rolling was performed to obtain a plate thickness of 3.0 mm. Furthermore, without carrying out the intermediate annealing, cold rolling and foil rolling were continuously performed to obtain an aluminum alloy foil having a foil thickness of 12 ⁇ m. And the positive electrode material of the lithium ion secondary battery was manufactured in each aluminum alloy foil. PVDF serving as a binder was added to an active material mainly composed of LiCoO 2 to form a positive electrode slurry.
- the positive electrode slurry was applied to both sides of an aluminum alloy foil having a width of 30 mm, dried at 120 ° C. for 24 hours, 140 ° C. for 3 hours, and 160 ° C. for 15 minutes, and then compressed by a roller press. Processing was performed to increase the density of the active material.
- Examples 2-1 to 2-12 there was no occurrence of breakage or active material peeling in the active material coating process, and the electrical conductivity was high, and good evaluation results were obtained. Further, from comparison between Examples 2-7 and 2-8, it was found that the strength of the aluminum alloy foil was further increased by setting the hot rolling end temperature to 285 ° C. or lower. In Comparative Example 2-1, the conductivity was not sufficient due to the large amount of Si. In Comparative Example 2-2, due to the small amount of Fe, the strength and strength after the heat treatment of 120 ° C. for 24 hours, 140 ° C. for 3 hours, and 160 ° C. for 15 hours were insufficient. And active material peeling occurred. In Comparative Example 2-3, the conductivity was not sufficient due to the large amount of Fe.
- Comparative Example 2-4 the conductivity was not sufficient due to the large amount of Cu.
- Comparative Example 2-5 since the homogenization temperature was low, the solid solution amount decreased and the strength and strength after heat treatment at 120 ° C. for 24 hours, 140 ° C. for 3 hours, and 160 ° C. for 15 minutes. Was insufficient, and cutting and active material peeling occurred in the active material application process.
- Comparative Example 2-6 since the holding time during the homogenization treatment was short, the amount of solid solution decreased, and the strength and heat treatment were performed at 120 ° C. for 24 hours, 140 ° C. for 3 hours, and 160 ° C. for 15 minutes. Later strength was insufficient, and breakage and peeling of the active material occurred in the active material application process.
- Comparative Example 2-7 since the hot rolling start temperature was low, the amount of Fe solid solution decreased, and the strength and heat treatment were performed at 120 ° C. for 24 hours, 140 ° C. for 3 hours, and 160 ° C. for 15 minutes. Later strength was insufficient, and breakage and peeling of the active material occurred in the active material application process.
- Comparative Example 2-8 the end temperature of hot rolling was high, so the aluminum alloy sheet after hot rolling was recrystallized, and the strength and strength were 120 ° C. for 24 hours, 140 ° C. for 3 hours, and 160 ° C. for 15 minutes. The strength after the heat treatment was insufficient, and cutting in the active material application process and peeling of the active material occurred.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
特許文献2には、リチウムイオン二次電池電極集電体用で、引張強度が160MPa以上である、アルミニウム合金箔が提案されている。しかし、乾燥工程を想定した加熱処理後の強度は低く、プレス加工時の中伸びによる、捲回時の捲きしわやスリット時の破断を防止するのに十分ではない。
特許文献3には、高強度化することでプレス加工時において塑性変形をせず、活物質との剥離を防止する方法が示されている。しかし、主要元素としてMn、Cu、Mgを添加した合金であるため、高い導電率を満足することはできない。
本発明に係るリチウムイオン電池用アルミニウム合金箔の組成は、Fe:0.03~0.1%、Si:0.01~0.1%、Cu:0.0001~0.01%を含有し、残部Al及び不可避的不純物からなる。
Fe、Si、Cuのみが主に添加されているアルミニウム合金では、鋳塊の均質化処理温度を高温化し、微量に添加された各元素を多く固溶させることで、転位の移動が抑制されて、より高強度を確保することができる。さらに、固溶量が増加することで、加工硬化性も上がるために、冷間圧延と箔圧延時による強度増加量も大きくなり、アルミニウム合金箔の強度を増加させることができる。
正極板の製造工程には、活物質中の溶媒を除去する目的で活物質塗布後に乾燥工程がある。この乾燥工程では100~180℃程度の温度の熱処理が行われる。この熱処理により、アルミニウム合金箔は軟化して機械的特性が変化する場合があるため、熱処理後のアルミニウム合金箔の機械的特性が重要となる。100~180℃の熱処理時には、外部からの熱エネルギーにより、転位が活性化されて移動し易くなり、回復過程で強度が低下する。熱処理時の回復過程での強度低下を防ぐには、アルミニウム合金中の固溶元素や析出物によって、転位の移動を抑制することが有効である。特に、Fe、Si、Cuのみが主に添加されているアルミニウム合金では、Fe固溶量による効果が大きい。つまり、鋳塊の均質化処理温度を高温化させることで、微量に添加されたFeを多く固溶させ、熱間圧延時にはこれらの固溶したFeをできるだけ析出させずに、高い固溶量を維持することで、熱処理後の強度低下を抑制することができる。
導電率は60%IACS以上とする。導電率は溶質元素の固溶状態を示す。本願電極集電体をリチウムイオン二次電池に用いる場合、導電率が60%IACS未満では放電レートが5Cを超えるような高い電流値で使用する際に、出力特性が低下するため好ましくない。なお、1Cとは公称容量値の容量を有するセルを定電流放電して、1時間で放電終了となる電流値のことである。すなわち、5Cでは1/5時間放電できる電流値を示す条件である。
本発明では上記合金組成のアルミニウム合金鋳塊を以下の工程で製造する。
前記組成を有するアルミニウム合金は、常法により溶解鋳造後、鋳塊を得ることができ、半連続鋳造法や連続鋳造法により製造される。鋳造したアルミニウム合金鋳塊は、550~620℃で1~20時間の均質化処理を行う。
熱間圧延の終了温度は、255~300℃とする。熱間圧延時の終了温度は、ライン速度を変化させて、加工発熱や冷却条件を調整することによって、決定することができる。なお、熱間圧延されたアルミニウム板は、熱間圧延機の出側で巻き取られてコイルとなり冷却される。
熱間圧延の終了温度を255℃未満とするには、加工発熱の発生を抑制するためにライン速度を大きく低下させることが必要となり、生産性が低下してしまうため好ましくない。熱間圧延の終了温度が300℃を超えると、冷却中にコイル内部のアルミニウムの再結晶が進行するために、蓄積されたひずみが減少し強度が低下してしまう。より好ましい温度域は、255~285℃である。
表1に示す組成のアルミニウム合金を半連続鋳造法により溶解鋳造し、厚さ500mmの鋳塊を作製した。次に、この鋳塊を面削後、表1に示す条件で均質化処理を行い、均質化処理後には熱間圧延を行い、板厚を3.0mmとした。その後、冷間圧延により板厚0.8mmとして、440℃で3時間の中間焼鈍を行い、さらに冷間圧延と箔圧延を行い、箔厚12μmのアルミニウム合金箔を得た。
なお、表2及び表3において、実施例1-1~1-12は、それぞれ、表1の実施例1~12に対応し、比較例1-1~1-8は、それぞれ、表1の比較例1~8に対応する。
圧延方向に切り出したアルミニウム合金箔の引張強さを、島津製作所製インストロン型引張試験機AG-10kNXを使用して測定した。測定条件は、試験片サイズを10mm×100mm、チャック間距離50mm、クロスヘッド速度10mm/分とした。また、乾燥工程を想定し、120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後のアルミニウム合金箔についても、圧延方向に切り出し、上記と同じく引張強さを測定した。引張強さは、180MPa以上を合格とし、180MPa未満を不合格とした。120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の引張強さは、170MPa以上を合格とし、170MPa未満を不合格とした。
上記と同じく、引張試験を実施して、応力/ひずみ曲線から0.2%耐力を求めた。0.2%耐力は、160MPa以上を合格とし、160MPa未満を不合格とした。120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の0.2%耐力は、150MPa以上を合格とし、150MPa未満を不合格とした。
導電率は、四端子法にて電気比抵抗値を測定し、導電率に換算して求めた。60%IACS以上を合格とし、60%IACS未満を不合格とした。
活物質塗布工程において塗布した正極材に、切れが発生したか否かを目視で観察した。切れが発生しなかった場合を合格とし、発生した場合を不合格とした。
活物質剥離の有無は、目視で観察を行った。剥離が発生しなかった場合を合格とし、少なくとも一部発生した場合を不合格とした。
比較例1-1では、Si量が多いために、導電率が十分でなかった。
比較例1-2では、Fe量が少ないために、強度及び120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
比較例1-3では、Fe量が多いために、導電率が十分でなかった。
比較例1-4では、Cu量が多いために、導電率が十分でなかった。
比較例1-5では、均質化処理温度が低いために、固溶量が低下して強度及び120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
比較例1-6では、均質化処理時の保持時間が短いために、固溶量が低下して強度及び120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
比較例1-7では、熱間圧延の開始温度が低いために、Fe固溶量が低下して強度及び120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
比較例1-8では、熱間圧延の終了温度が高いために、熱間圧延後のアルミニウム合金板が再結晶し強度及び120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
表1に示す組成のアルミニウム合金を半連続鋳造法により溶解鋳造し、厚さ500mmの鋳塊を作製した。次に、この鋳塊を面削後、表1に示す条件で均質化処理を行い、均質化処理後には熱間圧延を行い、板厚を3.0mmとした。さらに、中間焼鈍を実施せずに、冷間圧延と箔圧延を連続で行い、箔厚12μmのアルミニウム合金箔を得た。
そして、各アルミニウム合金箔においてリチウムイオン二次電池の正極材を製造した。LiCoO2を主体とする活物質に、バインダーとなるPVDFを加えて正極スラリーとした。正極スラリーを、幅30mmとしたアルミニウム合金箔の両面に塗布し、120℃で24時間、140℃で3時間、160℃で15分の3条件にて加熱し乾燥した後、ローラープレス機により圧縮加工を施し、活物質の密度を増加させた。
さらに、各正極材材料について、活物質塗布工程における切れ発生の有無、活物質剥離の有無を評価した。結果を表5に示す。なお、各種評価結果は、「1.中間焼鈍有りの実施例・比較例」と同様の判定基準とした。
なお、表4及び表5において、実施例2-1~2-12は、それぞれ、表1の実施例1~12に対応し、比較例2-1~2-8は、それぞれ、表1の比較例1~8に対応する。
比較例2-1では、Si量が多いために、導電率が十分でなかった。
比較例2-2では、Fe量が少ないために、強度及び120℃で24時間、140℃で3時間、160℃で15の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
比較例2-3では、Fe量が多いために、導電率が十分でなかった。
比較例2-4では、Cu量が多いために、導電率が十分でなかった。
比較例2-5では、均質化処理温度が低いために、固溶量が低下して強度及び120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
比較例2-6では、均質化処理時の保持時間が短いために、固溶量が低下して強度及び120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
比較例2-7では、熱間圧延の開始温度が低いために、Fe固溶量が低下して強度及び120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
比較例2-8では、熱間圧延の終了温度が高いために、熱間圧延後のアルミニウム合金板が再結晶し強度及び120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
Claims (2)
- Fe:0.03~0.1mass%(以下mass%を単に%と記す。)、Si:0.01~0.1%、Cu:0.0001~0.01%を含有し、残部Alと不可避的不純物から成り、最終冷間圧延後のアルミニウム合金箔の引張強さが180MPa以上、0.2%耐力が160MPa以上、導電率が60%IACS以上で、かつ前記最終冷間圧延後のアルミニウム合金箔に対して120℃で24時間、140℃で3時間、160℃で15分間の何れの熱処理を行った場合でも熱処理後の引張強さが170MPa以上、0.2%耐力が150MPa以上であることを特徴とする電極集電体用アルミニウム合金箔。
- 請求項1に記載の電極集電体用アルミニウム合金箔の製造方法において、アルミニウム合金鋳塊の均質化処理を550~620℃で1~20時間保持し、開始温度が500℃以上、終了温度が255~300℃で熱間圧延することを特徴とする電極集電体用アルミニウム合金箔の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011800559142A CN103262317A (zh) | 2010-12-20 | 2011-12-12 | 电极集电体用铝合金箔及其制造方法 |
US13/995,880 US10367204B2 (en) | 2010-12-20 | 2011-12-12 | Aluminum alloy foil for electrode current collectors and manufacturing method thereof |
EP11850633.6A EP2658017B1 (en) | 2010-12-20 | 2011-12-12 | Aluminum alloy foil for electrode current collectors and manufacturing method thereof |
KR1020137014607A KR20130143075A (ko) | 2010-12-20 | 2011-12-12 | 전극 집전체용 알루미늄 합금호일 및 제조 방법 |
JP2012549726A JP5798128B2 (ja) | 2010-12-20 | 2011-12-12 | 電極集電体用アルミニウム合金箔及びその製造方法 |
US15/331,605 US20170040617A1 (en) | 2010-12-20 | 2016-10-21 | Aluminum alloy foil for electrode current collectors and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010283581 | 2010-12-20 | ||
JP2010-283581 | 2010-12-20 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/995,880 A-371-Of-International US10367204B2 (en) | 2010-12-20 | 2011-12-12 | Aluminum alloy foil for electrode current collectors and manufacturing method thereof |
US15/331,605 Division US20170040617A1 (en) | 2010-12-20 | 2016-10-21 | Aluminum alloy foil for electrode current collectors and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012086447A1 true WO2012086447A1 (ja) | 2012-06-28 |
Family
ID=46313726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/078721 WO2012086447A1 (ja) | 2010-12-20 | 2011-12-12 | 電極集電体用アルミニウム合金箔及びその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (2) | US10367204B2 (ja) |
EP (1) | EP2658017B1 (ja) |
JP (1) | JP5798128B2 (ja) |
KR (1) | KR20130143075A (ja) |
CN (1) | CN103262317A (ja) |
TW (1) | TWI460283B (ja) |
WO (1) | WO2012086447A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103958711A (zh) * | 2012-10-11 | 2014-07-30 | 株式会社Uacj | 母线用板状导电体及由其形成的母线 |
WO2014157010A1 (ja) * | 2013-03-29 | 2014-10-02 | 株式会社Uacj | 集電体、電極構造体、非水電解質電池又は蓄電部品 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6516680B2 (ja) * | 2013-10-25 | 2019-05-22 | 株式会社Uacj | 電極集電体用アルミニウム合金箔及びその製造方法 |
JP6396067B2 (ja) | 2014-04-10 | 2018-09-26 | 株式会社Uacj | バスバー用アルミニウム合金板及びその製造方法 |
CN108630944A (zh) * | 2017-03-24 | 2018-10-09 | 银隆新能源股份有限公司 | 一种锂离子动力电池用铝箔集流体的制备方法 |
CN112941396B (zh) * | 2019-07-29 | 2022-05-17 | 南京工业大学 | 高熵合金纳米框架及其制备方法 |
DE102019125679A1 (de) | 2019-09-24 | 2021-03-25 | Ford Global Technologies Llc | Verfahren zum Herstellen eines Bauteils |
DE102019125680B4 (de) * | 2019-09-24 | 2023-01-12 | Ford Global Technologies Llc | Verfahren zur Herstellung eines Bauteils |
US11394092B1 (en) * | 2021-05-13 | 2022-07-19 | Beta Air, Llc | Crash safe battery pack for mediating risks of electrical short circuits during impact |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58221265A (ja) * | 1982-06-15 | 1983-12-22 | Nippon Light Metal Co Ltd | 電解コンデンサ陽極用アルミニウム箔地材の製造方法 |
JPH01215959A (ja) * | 1988-02-24 | 1989-08-29 | Kobe Steel Ltd | 電解コンデンサ陰極用アルミニウム箔の製造方法 |
JPH04247855A (ja) * | 1991-01-23 | 1992-09-03 | Nippon Foil Mfg Co Ltd | 電解コンデンサ陽極用アルミニウム箔の製造方法 |
JPH08260117A (ja) * | 1995-03-23 | 1996-10-08 | Furukawa Electric Co Ltd:The | 電解コンデンサ陰極用アルミニウム合金箔地の製造方法 |
JPH09125214A (ja) * | 1995-10-30 | 1997-05-13 | Furukawa Electric Co Ltd:The | 電解コンデンサ陰極用アルミニウム合金箔地の製造方法 |
JPH11199992A (ja) * | 1998-01-19 | 1999-07-27 | Furukawa Electric Co Ltd:The | 電解コンデンサ陰極用アルミニウム軟質箔の製造方法 |
JP2009019248A (ja) * | 2007-07-13 | 2009-01-29 | Sumitomo Light Metal Ind Ltd | 電解コンデンサ電極用アルミニウム箔材 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1197032A (ja) | 1997-09-18 | 1999-04-09 | Nippon Foil Mfg Co Ltd | 二次電池用アルミニウム箔製集電体 |
JP3444769B2 (ja) | 1997-11-25 | 2003-09-08 | 東洋アルミニウム株式会社 | 集電体用アルミニウム箔とその製造方法、集電体、二次電池および電気二重層コンデンサ |
CN1121506C (zh) | 2001-09-06 | 2003-09-17 | 北京南辰秀普金属材料研究所 | 电解电容器高压阳极用铝箔的生产工艺 |
KR100560492B1 (ko) | 2004-02-25 | 2006-03-13 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극 전류 집전체 및 이를 포함하는리튬 이차 전지 |
CN1807673B (zh) * | 2005-12-17 | 2010-04-21 | 乳源东阳光精箔有限公司 | 一种电解电容器高压阳极用铝箔的制造方法 |
JP4021921B1 (ja) * | 2006-10-11 | 2007-12-12 | 三菱アルミニウム株式会社 | 電解コンデンサ電極用アルミニウム箔及びその製造方法 |
CN1975949B (zh) * | 2006-11-27 | 2010-12-01 | 乳源东阳光精箔有限公司 | 一种电解电容器低压阳极用铝箔及其制造方法 |
JP5083799B2 (ja) | 2006-12-15 | 2012-11-28 | 三菱アルミニウム株式会社 | 耐折り曲げ性に優れたリチウムイオン電池電極材用アルミニウム合金箔およびその製造方法 |
JP4740896B2 (ja) * | 2007-05-24 | 2011-08-03 | 富士フイルム株式会社 | 平版印刷版用アルミニウム合金板の製造方法 |
JP5324911B2 (ja) | 2008-12-26 | 2013-10-23 | 住友軽金属工業株式会社 | リチウムイオン電池電極集電体用アルミニウム合金箔 |
KR101115913B1 (ko) | 2009-04-28 | 2012-02-10 | 엘에스엠트론 주식회사 | 리튬 이차전지의 집전체용 동박 |
JP2012224927A (ja) * | 2011-04-21 | 2012-11-15 | Mitsubishi Alum Co Ltd | リチウムイオン電池正極集電体用アルミニウム合金箔及びその製造方法 |
-
2011
- 2011-12-12 KR KR1020137014607A patent/KR20130143075A/ko active IP Right Grant
- 2011-12-12 US US13/995,880 patent/US10367204B2/en not_active Expired - Fee Related
- 2011-12-12 EP EP11850633.6A patent/EP2658017B1/en not_active Not-in-force
- 2011-12-12 JP JP2012549726A patent/JP5798128B2/ja active Active
- 2011-12-12 WO PCT/JP2011/078721 patent/WO2012086447A1/ja active Application Filing
- 2011-12-12 CN CN2011800559142A patent/CN103262317A/zh active Pending
- 2011-12-14 TW TW100146104A patent/TWI460283B/zh not_active IP Right Cessation
-
2016
- 2016-10-21 US US15/331,605 patent/US20170040617A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58221265A (ja) * | 1982-06-15 | 1983-12-22 | Nippon Light Metal Co Ltd | 電解コンデンサ陽極用アルミニウム箔地材の製造方法 |
JPH01215959A (ja) * | 1988-02-24 | 1989-08-29 | Kobe Steel Ltd | 電解コンデンサ陰極用アルミニウム箔の製造方法 |
JPH04247855A (ja) * | 1991-01-23 | 1992-09-03 | Nippon Foil Mfg Co Ltd | 電解コンデンサ陽極用アルミニウム箔の製造方法 |
JPH08260117A (ja) * | 1995-03-23 | 1996-10-08 | Furukawa Electric Co Ltd:The | 電解コンデンサ陰極用アルミニウム合金箔地の製造方法 |
JPH09125214A (ja) * | 1995-10-30 | 1997-05-13 | Furukawa Electric Co Ltd:The | 電解コンデンサ陰極用アルミニウム合金箔地の製造方法 |
JPH11199992A (ja) * | 1998-01-19 | 1999-07-27 | Furukawa Electric Co Ltd:The | 電解コンデンサ陰極用アルミニウム軟質箔の製造方法 |
JP2009019248A (ja) * | 2007-07-13 | 2009-01-29 | Sumitomo Light Metal Ind Ltd | 電解コンデンサ電極用アルミニウム箔材 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103958711A (zh) * | 2012-10-11 | 2014-07-30 | 株式会社Uacj | 母线用板状导电体及由其形成的母线 |
US9362014B2 (en) | 2012-10-11 | 2016-06-07 | Uacj Corporation | Plate-like electric conductor for a busbar and the busbar formed therefrom |
CN103958711B (zh) * | 2012-10-11 | 2016-09-21 | 株式会社Uacj | 母线用板状导电体及由其形成的母线 |
WO2014157010A1 (ja) * | 2013-03-29 | 2014-10-02 | 株式会社Uacj | 集電体、電極構造体、非水電解質電池又は蓄電部品 |
JPWO2014157010A1 (ja) * | 2013-03-29 | 2017-02-16 | 株式会社Uacj | 集電体、電極構造体、非水電解質電池又は蓄電部品 |
Also Published As
Publication number | Publication date |
---|---|
US10367204B2 (en) | 2019-07-30 |
US20170040617A1 (en) | 2017-02-09 |
TW201229246A (en) | 2012-07-16 |
KR20130143075A (ko) | 2013-12-30 |
JPWO2012086447A1 (ja) | 2014-05-22 |
EP2658017B1 (en) | 2018-08-01 |
JP5798128B2 (ja) | 2015-10-21 |
EP2658017A4 (en) | 2016-12-21 |
CN103262317A (zh) | 2013-08-21 |
US20130269842A1 (en) | 2013-10-17 |
EP2658017A1 (en) | 2013-10-30 |
TWI460283B (zh) | 2014-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5856076B2 (ja) | 電極集電体用アルミニウム合金箔及びその製造方法 | |
JP5798128B2 (ja) | 電極集電体用アルミニウム合金箔及びその製造方法 | |
JP6174012B2 (ja) | 電極集電体用アルミニウム合金箔、その製造方法及びリチウムイオン二次電池 | |
JP5816285B2 (ja) | 電極集電体用アルミニウム合金箔及びその製造方法 | |
JP5791719B2 (ja) | 電極集電体用アルミニウム合金箔及びその製造方法 | |
JP6220773B2 (ja) | 電極集電体用アルミニウム合金箔の製造方法 | |
KR20160075604A (ko) | 전극 집전체용 알루미늄 합금박 및 그 제조방법 | |
JP5495649B2 (ja) | リチウムイオン二次電池用アルミニウム合金箔及びその製造方法 | |
WO2013176038A1 (ja) | 電極集電体用アルミニウム合金箔、その製造方法及び電極材 | |
JP5791720B2 (ja) | 電極集電体用アルミニウム合金箔及びその製造方法 | |
JP2014114480A (ja) | 電極集電体用アルミニウム合金箔及びその製造方法 | |
JP5830100B2 (ja) | 電極集電体用アルミニウム合金箔及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11850633 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137014607 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2012549726 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13995880 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |