WO2012079391A1 - 复合材料、用其制作的高频电路基板及其制作方法 - Google Patents

复合材料、用其制作的高频电路基板及其制作方法 Download PDF

Info

Publication number
WO2012079391A1
WO2012079391A1 PCT/CN2011/079189 CN2011079189W WO2012079391A1 WO 2012079391 A1 WO2012079391 A1 WO 2012079391A1 CN 2011079189 W CN2011079189 W CN 2011079189W WO 2012079391 A1 WO2012079391 A1 WO 2012079391A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
dielectric constant
circuit substrate
less
frequency circuit
Prior art date
Application number
PCT/CN2011/079189
Other languages
English (en)
French (fr)
Inventor
苏民社
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Publication of WO2012079391A1 publication Critical patent/WO2012079391A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/07Parts immersed or impregnated in a matrix
    • B32B2305/076Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/068Ultra high molecular weight polyethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0145Polyester, e.g. polyethylene terephthalate [PET], polyethylene naphthalate [PEN]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0158Polyalkene or polyolefin, e.g. polyethylene [PE], polypropylene [PP]

Definitions

  • the present invention relates to a composite material, a high-frequency circuit substrate produced therefrom, and a method of fabricating the same, and, in particular, to a thermosetting dielectric composite material, a high-frequency circuit substrate produced therefrom, and a method of fabricating the same. Background technique
  • a widely used satellite antenna has a dielectric constant of less than 2.6 and a dielectric loss tangent of less than 0.002.
  • the dielectric constant of the high-frequency circuit substrate except for the PTFE resin copper-clad laminate can be 2.6 or less, and the dielectric constant of other copper-clad laminate materials based on thermosetting resins (such as cyanate ester, PPO, etc.) is above 2.6. .
  • thermosetting resins such as cyanate ester, PPO, etc.
  • the reinforcing materials used in these copper clad laminates are mostly glass fibers.
  • the dielectric constant of glass fiber can be as low as 3.7 (Q glass), and it is affected by the large dielectric constant of glass fiber.
  • the dielectric constant of copper-clad board made of other resins is difficult to achieve 2.6 or less.
  • European Patent (Application No. W097/38564) uses a tetramer of butadiene and butadiene and divinylbenzene as a main resin with a low dielectric constant, and a circuit board made of glass fiber cloth as a reinforcing material.
  • the electrical constant is greater than 3.
  • Chinese patent CN1597770 uses a olefin having a plurality of styrene groups as a crosslinking component, and a circuit board made of glass cloth has a dielectric constant of more than 2.6.
  • the circuit board is made of a reinforcing material, but the dielectric constant of the circuit board cannot be made 2.6 or less.
  • An object of the present invention is to provide a composite material which uses ultrahigh molecular weight polyethylene fibers having a dielectric constant of less than 2.4 as a reinforcing material to reduce the dielectric constant of a high frequency circuit substrate.
  • Another object of the present invention is to provide a high-frequency circuit substrate produced by using the above composite material, which has a low dielectric constant and dielectric loss tangent, and is excellent in heat resistance.
  • a further object of the present invention is to provide a method for fabricating a high-frequency circuit substrate produced by using the above composite material, which is made of a resin having a dielectric constant of less than 2.6 and an ultrahigh molecular weight polyethylene fiber having a dielectric constant of less than 2.4, and is convenient for process operation. .
  • the present invention provides a composite material comprising:
  • the unsaturated resin containing a polymerizable carbon-carbon double bond having a dielectric constant of less than 2.6 is butadiene, styrene, isoprene, methyl styrene, ethyl styrene, divinyl benzene. , acrylate, acrylonitrile and N-phenylmaleimide, homopolymer or copolymer of N-vinylphenylmaleimide, substituted polyphenylene ether and alicyclic structure
  • One or more of the polyolefins are mixed.
  • the unsaturated resin containing a polymerizable carbon-carbon double bond having a dielectric constant of less than 2.6 is preferably a polymerization containing butadiene or isoprene having a methyl group content of more than 60% in the molecule at the first and second positions. And the copolymers obtained from them.
  • the ultrahigh molecular weight polyethylene fiber is a woven fabric or a non-woven fabric, and is pretreated at 80 to 120 ° C for at least 10 minutes before use.
  • a ceramic powder filler selected from the group consisting of crystalline silica, molten amorphous silica, fused spherical silica, titanium dioxide, barium titanate, barium titanate, boron nitride, aluminum nitride, One or more of silicon carbide and aluminum oxide.
  • the flame retardant is decabromodiphenyl ether, decabromodiphenylethane, ethylene bistetrabromophthalimide, tris(2,6-dimethylphenyl)phosphine, 10-( 2 , 5-dihydroxyphenyl) - 9 , 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 2,6-di(2,6-dimethylphenyl) Phosphonobenzene or 10-phenyl-9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide.
  • curing initiators capable of generating free radicals.
  • the present invention provides a high-frequency circuit substrate fabricated using the above composite material, comprising: a plurality of prepregs laminated on each other and copper foils respectively pressed on both sides thereof, the plurality of layers being semi-cured
  • the sheets are each made of the composite material.
  • the present invention provides a method of fabricating a high frequency circuit substrate as described above, comprising the steps of:
  • Step 1 First, the ultrahigh molecular weight polyethylene fiber having a dielectric constant of less than 2.4 is pretreated at 80 to 120 ° C for at least 10 minutes;
  • Step 2 mixing an unsaturated resin containing a polymerizable carbon-carbon double bond having a dielectric constant of less than 2.6, a ceramic powder filler, a flame retardant, and a curing initiator, diluting to a suitable viscosity with a solvent, stirring and mixing,
  • the filler is uniformly dispersed in the resin to obtain a glue solution, and the above-mentioned glue is impregnated with the above-mentioned treated ultra-high molecular weight polyethylene fiber, and controlled to a suitable thickness, and then the solvent is removed to form a prepreg, and the solvent is removed at a temperature not higher than 120 ° C ;
  • Step 3 laminating the above-mentioned prepreg sheets, pressing a copper foil on the upper and lower sides, and putting them into a press for curing to obtain the high-frequency circuit substrate, the curing temperature is 150-300 ° C, and the curing pressure is 25 -70 Kg/cm 2 .
  • an ultrahigh molecular weight polyethylene fiber having a dielectric constant of less than 2.4 is used as a reinforcing material to reduce a dielectric constant of a high frequency circuit substrate;
  • a high-frequency circuit substrate is prepared by using a resin having a dielectric constant of less than 2.6 (such as an unsaturated olefin) and an ultrahigh molecular weight polyethylene fiber having a dielectric constant of less than 2.4, and the dielectric constant can be less than 2.6;
  • the high-frequency circuit substrate fabricated by using the composite material of the present invention is easy to be metallized in the subsequent PCB processing;
  • the composite material of the present invention makes the prepreg easy to manufacture, and the high frequency circuit substrate produced by the same has low dielectric constant and dielectric loss tangent, good heat resistance, and easy processing of the circuit board (PCB), so the composite material of the present invention A circuit board suitable for making high frequency electronic devices.
  • the composite material of the present invention comprises:
  • Examples of the unsaturated resin containing a polymerizable carbon-carbon double bond of the present invention include: butadiene, styrene, isoprene, methyl styrene, ethyl styrene, divinyl a homopolymer or copolymer of benzene, acrylate, acrylonitrile and N-phenylmaleimide, N-ethyl phenyl phenyl maleimide, a polyphenylene ether which may have a substituent, and an alicyclic ring
  • the polyolefin of the structure or the like is not limited thereto, and these unsaturated resins may be used singly or in combination of a plurality of these unsaturated resins.
  • the above resin material is preferably a molecule for ensuring a dielectric constant of less than 2.6. A resin having no or less polar groups in the structure.
  • Typical examples of such unsaturated polymers include butadiene- or isoprene-containing polymers and copolymers obtained therefrom, such as polybutadiene resins, styrene-butadiene resins, and the like.
  • Dielectric constant is less than
  • the unsaturated resin containing a polymerizable carbon-carbon double bond of 2.6 is preferably a butadiene- or isoprene-containing polymer having a vinyl content of more than 60% added at the 1, 2 position in the molecule and copolymerization obtained therefrom Further, a butadiene- or isoprene-containing polymer having a vinyl group content of 1 or 2 in the molecule of 70 or more and a copolymer obtained therefrom are more preferable.
  • the high vinyl content resin provides a large amount of unsaturated vinyl groups required for curing cross-linking, improves crosslink density at the time of curing, and provides excellent high temperature resistance to circuit board materials.
  • the above resin material is preferably a resin having a number average molecular weight of less than 100,000, more preferably a resin having a molecular weight of from 1,000 to 50,000, in order to ensure permeability during immersion and process operability.
  • lipids such as Ricon 104H (Sartomer), Ricon 100 (Sartomer) resin and thermoplastic elastomer SBS.
  • ultra high molecular weight polyethylene fibers are selected as reinforcing materials.
  • the ultrahigh molecular weight polyethylene fibers are selected from the group consisting of a number average molecular weight of more than 1,000,000 and preferably a number average molecular weight of more than 1.5 million.
  • Ultrahigh molecular weight polyethylene has good electrical insulation properties, a dielectric constant of 2.3 (10 GHz), and a dielectric loss tangent of 0.0005, which provides a lower dielectric constant for the substrate.
  • Ultra-high molecular weight polyethylene fibers can be selected from woven or non-woven fabrics.
  • ultrahigh molecular weight polyethylene fibers have a high temperature shrinkage property, which is disadvantageous to the dimensional stability of the circuit board. Therefore, the inventors have studied this and found that when the ultrahigh molecular weight polyethylene fiber is pretreated at 80 to 120 ° C for at least 10 to 60 minutes, it is optimally treated for about 30 minutes, and the shrinkage of the ultrahigh molecular weight polyethylene fiber. Will be greatly reduced.
  • the inventors have also found that when a ceramic powder filler having a volume percentage of the composite material of 20 to 4% is added to the composite material of the present invention, the dimensional stability of the circuit substrate can be further improved.
  • a ceramic powder filler can also be added to the composite material, and the powder filler serves the purpose of improving dimensional stability, lowering CTE, and the like.
  • the ceramic powder filler used in the invention accounts for 20-40% by volume, preferably 20 ⁇ 35V%, of the composite material.
  • the ceramic powder filler includes crystalline silica, amorphous silica, spherical silica, titanium dioxide, barium titanate, barium titanate, boron nitride, aluminum nitride, silicon carbide, aluminum oxide, etc.
  • the filler may be used singly or in combination.
  • the optimum filler is a silica of a molten type, and the median diameter of the filler is 0.5-15 ⁇ m, and the median diameter of the filler is preferably 1-10 ⁇ ⁇ .
  • the filler located in the particle size section has good dispersibility in the resin liquid.
  • Silica fillers such as CE44I (CE minerals), FB-35 (Denka), and 525 (Sibelco) can be used.
  • the surface of the filler can be treated with a coupling agent.
  • a flame retardant can also be added to the composite material to achieve the desired flame retardant properties.
  • the flame retardant of the present invention may be a bromine-containing flame retardant or a phosphorus-containing flame retardant, and the flame retardant used is preferably not reduced in dielectric properties, and a preferred bromine-containing flame retardant such as decabromodiphenyl ether.
  • preferred phosphorus-containing flame retardant such as tris(2,6-dimethylphenyl)phosphine, 10- (2, 5 -dihydroxyphenyl)-9, 10-dihydro-9-oxa-10-phosphinophen-10-oxide, 2,6-bis(2,6-dimethylphenyl)phosphinobenzene or 10 -Phenyl-9, 10-dihydro
  • a curing initiator can also be added to the composite to increase the extent and rate of the curing reaction.
  • the curing initiator acts to accelerate the reaction, and when the composition of the present invention is heated, the curing initiator decomposes to generate a radical, which causes crosslinking of the molecular chain of the polymer.
  • the amount of curing initiator is approximately 1-3 parts of the total composition of the composite (calculated based on the total weight of the composite).
  • Preferred curing initiators are: organic peroxides, dicumyl peroxide, benzoic acid peroxide Tert-butyl ester, 2, 5-bis(2-ethylhexanoylperoxy)-2,5-dimethylhexane, or 2,5-dimethyl-2,5-dibutyl-tert-butylhexyne -3 and so on.
  • the high-frequency circuit substrate produced by using the above composite material of the present invention comprises: a plurality of prepregs laminated on each other and copper foils respectively pressed on both sides thereof, the plurality of prepregs being made of the composite material.
  • the method for manufacturing the high-frequency circuit substrate includes the following steps:
  • Step 1 First, the ultrahigh molecular weight polyethylene fiber having a dielectric constant of less than 2.4 is pretreated at 80 to 120 ° C for at least 10 minutes;
  • Step 2 mixing an unsaturated resin containing a polymerizable carbon-carbon double bond having a dielectric constant of less than 2.6, a ceramic powder filler, a flame retardant, and a curing initiator, diluting to a suitable viscosity with a solvent, stirring and mixing,
  • the filler is uniformly dispersed in the resin to obtain a glue solution, and the above-mentioned glue is impregnated with the above-mentioned treated ultra-high molecular weight polyethylene fiber, and controlled to a suitable thickness, and then the solvent is removed to form a prepreg, and the solvent is removed at a temperature not higher than 120 ° C ;
  • Step 3 laminating the above-mentioned prepreg sheets, pressing a copper foil on the upper and lower sides, and putting them into a press to cure the high-frequency circuit substrate.
  • the curing temperature of the step is 150-300 ° C, curing
  • the pressure is 25-70 Kg/cm 2 .
  • dielectric properties of the above-described high-frequency circuit substrate that is, dielectric constant and dielectric loss tangent, high-frequency performance, and heat resistance are further described and described in the following embodiments.
  • composition of the composite material selected in the examples of the present invention is as follows:
  • the ultra-high molecular weight polyethylene fiber cloth (HUMWPE) was treated at 80-140 ° C for 30 minutes, and then mixed with the compounding agent shown in Table 2 (modulated to a suitable viscosity with a solvent), treated with The ultra-high molecular weight polyethylene fiber cloth is impregnated with the above glue, and then dried to remove the solvent to prepare a prepreg. Eight prepregs have been laminated, and the loz (ounces) thickness of copper foil is pressed on both sides, and cured in a press for 1 hour. The curing pressure is 50 Kg/cm 2 and the curing temperature is 200 °. C, made of a circuit board, physical property data as shown in Table 2.
  • the production process is the same as in the first embodiment, and the ratio of the composite material and the physical property data thereof are shown in Table 2.
  • the production process was the same as that in Example 1.
  • the 7628 glass fiber cloth was used to replace the ultra-high molecular weight polyethylene fiber cloth.
  • the material ratio and physical property data are shown in Table 2.
  • the circuit substrate materials produced in Example 1 and Example 2 have low dielectric constant and dielectric loss tangent, high frequency performance, and a dielectric constant of less than 2.6.
  • the glass fiber was used as the reinforcing material, and the dielectric constant was high.
  • the high-frequency circuit substrate of the present invention has more excellent dielectric properties, i.e., has a lower dielectric constant and dielectric loss tangent, and has high frequency performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

复合材料、 用其制作的高频电路基板及其制作方法 技术领域
本发明涉及一种复合材料、 用其制作的高频电路基板及其制作方法, 尤其涉及一种热固性介电复合材料、 用其制作的高频电路基板及其制作方 法。 背景技术
近年来, 随着信息通讯设备高性能化、 高功能化以及网络化的发展, 为了高速传输及处理大容量信息, 操作信号趋向于高频化, 电子产品的使 用频率持续走高, 要求基板材料的介电常数越来越低, 介电损耗越来越 小。 例如, 广泛使用的卫星天线, 介电常数要求小于 2.6 为好, 介质损耗 角正切小于 0.002为好。
目前, 高频电路基板除过 PTFE树脂覆铜板的介电常数可以做到 2.6 以下外, 其它以热固性树脂 (如氰酸酯、 PPO 等)为基体的覆铜板材料的介 电常数都在 2.6以上。 这一方面是因为 PTFE的介电常数为小于 2.1 , 是所 有树脂中最小的, 其它的树脂的介电常数都在 2.5 以上; 另一方面是由于 这些覆铜板使用的增强材料大都是玻璃纤维, 但是玻璃纤维的介电常数最 低可以做到 3.7(Q玻璃), 受玻璃纤维介电常数大的影响, 除 PTFE夕卜, 其 它树脂制作的覆铜板的介电常数很难做到 2.6以下。
然而, 因为氟树脂的高耐化学性和高耐氧化性, 在进行 PCB 的 Desmear 时, 4艮难被高锰酸钾等药水溶蚀, 因此 PTFE覆铜板 4艮难采用通 用的工艺进行孔金属化, 需要采用特殊的工艺 (如钠-萘溶液处理)进行加 工, 而这些工艺操作危险性很大, 成品率不高, 而且又增加了 PTFE PCB的成本。
针对 PTFE覆铜板的缺点, 本领域的研究人员一直寻找其它替代途 径。
欧洲专利 (申请号为 W097/38564 )采用介电常数很低的苯乙烯与丁 二烯和二乙烯基苯的四聚物作为主体树脂, 以玻璃纤维布作为增强材料制 成的电路基板, 介电常数大于 3。 中国专利 CN1597770采用含有多个苯乙 烯基的烯烃作为交联成分, 采用玻璃布制作的电路基板, 介电常数大于 2.6。
以上专利中, 都是采用具有良好加工性能的树脂材料, 以玻璃纤维作 为增强材料制作电路基板, 但是无法将电路基板的介电常数做到 2.6 以 下。 发明内容
本发明的目的在于提供一种复合材料, 采用介电常数小于 2.4 的超高 分子量聚乙烯纤维作为增强材料, 能够降低高频电路基板的介电常数。
本发明的另一目的在于提供使用上述复合材料制作的高频电路基板, 介电常数和介质损耗角正切低, 耐热性好。
本发明的再一目的在于提供使用上述复合材料制作的高频电路基板的 制作方法, 采用介电常数小于 2.6 的树脂及介电常数小于 2.4 的超高分子 量聚乙烯纤维制作而成, 工艺操作方便。
为实现上述目的, 本发明提供一种复合材料, 其包括:
( 1 )介电常数小于 2.6的含有可聚合的碳-碳双键的不饱和树脂;
( 2 )介电常数小于 2.4的超高分子量聚乙烯纤维。
其中, 所述介电常数小于 2.6的含有可聚合的碳-碳双键的不饱和树脂 为丁二烯、 苯乙烯、 异戊二烯、 甲基苯乙烯、 乙基苯乙烯、 二乙烯基苯、 丙烯酸酯、 丙烯腈及 N-苯基马来酰亚胺、 N-乙烯基苯基马来酰亚胺的均聚 物或共聚物、 有取代基的聚苯醚及有脂环式结构的聚烯烃中的一种或多种 混合。
所述介电常数小于 2.6的含有可聚合的碳-碳双键的不饱和树脂优选分 子中 1 , 2位加成的乙婦基含量大于 60%的含丁二烯或异戊二烯的聚合物 以及由它们得到的共聚物。
所述超高分子量聚乙烯纤维为纺织布或无纺布, 使用前需在 80~120 °C 下预处理至少 10分钟。
还包括陶瓷粉末填料, 陶瓷粉末填料选自结晶型二氧化硅、 熔融无定 型的二氧化硅、 熔融球型二氧化硅、 二氧化钛、 钛酸锶、 钛酸钡、 氮化 硼、 氮化铝、 碳化硅、 氧化铝中的一种或多种。
进一步包括阻燃剂, 阻燃剂为十溴二苯醚、 十溴二苯乙烷、 乙撑双四 溴邻苯二甲酰亚胺、 三 (2 , 6-二甲基苯基)膦、 10- ( 2 , 5-二羟基苯基) - 9 , 10-二氢 -9-氧杂 -10-膦菲 -10-氧化物、 2 , 6-二(2 , 6-二甲基苯基) 膦基 苯或 10-苯基 -9, 10-二氢 -9-氧杂 -10-膦菲 -10-氧化物。
进一步包括能产生自由基的固化引发剂。
同时, 本发明提供一种使用上述复合材料制作的高频电路基板, 包 括: 数层相互叠合的半固化片及分别压覆于其两侧的铜箔, 该数层半固化 片均由所述复合材料制作。
进一步, 本发明还提供制作如上述的高频电路基板的方法, 包括下述 步骤:
步骤一、 首先将介电常数小于 2.4的超高分子量聚乙烯纤维在 80~120 °C下预处理至少 10分钟;
步骤二、 将介电常数小于 2.6 的含有可聚合的碳 -碳双键的不饱和树 脂、 陶瓷粉末填料、 阻燃剂和固化引发剂混合, 用溶剂稀释至适当的粘 度, 搅拌混合均勾, 使填料均一的分散在树脂中, 制得胶液, 用上述处理 后的超高分子量聚乙烯纤维浸渍上述胶液, 并控制到合适的厚度, 然后除 去溶剂形成半固化片, 除去溶剂的温度不高于 120°C ;
步骤三、 将上述的半固化片数张相叠合, 上下各压覆一张铜箔, 放进 压机进行固化制得所述高频电路基板, 固化温度为 150-300°C , 固化压力 为 25-70 Kg/cm2
本发明的有益效果: 首先, 采用介电常数小于 2.4 的超高分子量聚乙 烯纤维作为增强材料, 能够降低高频电路基板的介电常数;
其次, 采用介电常数小于 2.6 的树脂 (如不饱和烯烃等)结合介电常 数小于 2.4 的超高分子量聚乙烯纤维制作高频电路基板, 其介电常数可小 于 2.6;
其次, 采用本发明的复合材料制作的高频电路基板, 在后续的 PCB加 工中, 容易孔金属化;
总之, 本发明的复合材料使得半固化片制作容易, 用其制作的高频电 路基板, 介电常数和介质损耗角正切低, 耐热性好, 电路板(PCB )加工 容易, 因此本发明的复合材料适合于制作高频电子设备的电路基板。 具体实施方式
本发明的复合材料, 包括:
( 1 )介电常数小于 2.6的含有可聚合的碳-碳双键的不饱和树脂;
( 2 )介电常数小于 2.4的超高分子量聚乙烯纤维。
作为本发明的含有可聚合的碳-碳双键的不饱和树脂的实例, 可以列举 的有: 丁二烯、 苯乙烯、 异戊二烯、 甲基苯乙烯、 乙基苯乙烯、 二乙烯基 苯、 丙烯酸酯、 丙烯腈及 N-苯基马来酰亚胺、 N-乙婦基苯基马来酰亚胺的 均聚物或共聚物、 可以有取代基的聚苯醚及有脂环式结构的聚烯烃等, 但 不限于这些, 这些不饱和树脂可以单独一种使用, 也可以将这些不饱和树 脂多种混合使用。 上述的树脂材料, 为保证介电常数小于 2.6, 优选分子 结构中不含或少含极性的基团的树脂。
这些不饱和聚合物的典型例子包括含丁二烯或异戊二烯的聚合物以及 由它们得到的共聚物, 例如聚丁二烯树脂、 丁苯树脂等。 介电常数小于
2.6的含有可聚合的碳 -碳双键的不饱和树脂优选分子中 1 , 2位加成的乙烯 基含量大于 60%的含丁二烯或异戊二烯的聚合物以及由它们得到的共聚 物, 更优选分子中 1 , 2位加成的乙烯基含量大于或等于 70%的含丁二烯 或异戊二烯的聚合物以及由它们得到的共聚物。 高乙烯基含量的树脂可提 供固化交联时所需要的大量不饱和乙烯基, 可提高固化时的交联密度, 提 供给电路基板材料优良的耐高温性。
上述的树脂材料, 为了保证浸渍时的浸透性以及工艺可操作性, 优选 数均分子量小于 100000的树脂, 更优选分子量为 1000~50000的树脂。 可 列举的才对脂如 Ricon 104H ( Sartomer公司) 、 Ricon 100 ( Sartomer公司) 树脂以及热塑性弹性体 SBS。
根据本发明, 选用超高分子量聚乙烯纤维 (UHMWPE)作为增强材料。 超高分子量聚乙烯纤维选自数均分子量大于 100万, 优选数均分子量大于 150 万。 超高分子量聚乙烯具有很好的电绝缘性能, 介电常数 2.3 ( 10GHz ) , 介质损耗角正切 0.0005, 其能提供给基板较低的介电常数。 超高分子量聚乙烯纤维可以选用机织布或无纺布。
发明者发现, 超高分子量聚乙烯纤维的高温收缩性较大, 这对电路基 板的尺寸稳定性不利。 因此, 发明者对此进行了研究, 发现当超高分子量 聚乙烯纤维在 80~120°C预处理至少 10~60 分钟后, 最优处理 30 分钟左 右, 超高分子量的聚乙烯纤维的收缩性将大大降低。
发明者还发现, 当在本发明的复合材料中加入占复合材料体积百分含 量 20~4(^%的陶瓷粉末填料时, 可进一步改善电路基板的尺寸稳定性。
因此根据本发明, 还可以在复合材料中加入陶瓷粉末填料, 粉末填料 起着改善尺寸稳定性、 降低 CTE等目的。 本发明所使用的陶瓷粉末填料, 占复合材料体积百分含量 20~40V%, 优选 20~35V%。 该陶瓷粉末填料包 括结晶型二氧化硅、 无定型的二氧化硅、 球型二氧化硅、 二氧化钛、 钛酸 锶、 钛酸钡、 氮化硼、 氮化铝、 碳化硅、 氧化铝等, 以上填料可以单独使 用或混合使用, 其中, 最佳填料是熔融型的二氧化硅, 填料的粒径中度值 为 0.5-15 μ ιη, 优选填料的粒径中度值为 1-10 μ ιη, 位于该粒径段的填料 在树脂液中具有良好的分散性。 可采用的二氧化硅填料如 CE44I ( CE minerals公司 ) 、 FB-35 ( Denka公司 ) 、 525 ( Sibelco公司 ) 。 为达到更 好的性能, 填料的表面可以使用偶联剂进行处理。 根据本发明, 还可以在复合材料中加入阻燃剂来达到需要的阻燃性 能。 本发明的阻燃剂可以采用含溴阻燃剂或含磷阻燃剂, 所采用的阻燃剂 以不降低介电性能为佳, 较佳的含溴阻燃剂如十溴二苯醚、 十溴二苯乙烷 或乙撑双四溴邻苯二甲酰亚胺等; 较佳的含磷阻燃剂如三(2, 6-二甲基苯 基)膦、 10- ( 2, 5-二羟基苯基) -9, 10-二氢 -9-氧杂 -10-膦菲 -10-氧化物、 2 , 6-二(2 , 6-二甲基苯基) 膦基苯或 10-苯基 -9 , 10-二氢 -9-氧杂 -10-膦 菲 -10-氧化物等。
根据本发明, 还可以在复合材料中加入固化引发剂来提升固化反应的 程度和速率。 在本发明的复合材料中, 固化引发剂起到加速反应的作用, 当本发明的组合物被加热时, 固化引发剂分解产生自由基, 引发聚合物的 分子链发生交联。 固化引发剂的用量大致占复合材料总组成的 1-3 份(按 复合材料总重量份计算) , 较佳的固化引发剂如: 有机过氧化物、 过氧化 二异丙苯、 过氧化苯甲酸叔丁酯、 2, 5-二(2-乙基己酰过氧) -2, 5-二甲 基己烷、 或 2, 5-二甲基 -2, 5双过氧化叔丁基己炔 -3等。
本发明的使用上述复合材料制作的高频电路基板, 包括: 数层相互叠 合的半固化片及分别压覆于其两侧的铜箔, 该数层半固化片均由所述复合 材料制作。
上述该高频电路基板的制作方法, 包括下述步骤:
步骤一、 首先将介电常数小于 2.4的超高分子量聚乙烯纤维在 80~120 °C下预处理至少 10分钟;
步骤二、 将介电常数小于 2.6 的含有可聚合的碳 -碳双键的不饱和树 脂、 陶瓷粉末填料、 阻燃剂和固化引发剂混合, 用溶剂稀释至适当的粘 度, 搅拌混合均勾, 使填料均一的分散在树脂中, 制得胶液, 用上述处理 后的超高分子量聚乙烯纤维浸渍上述胶液, 并控制到合适的厚度, 然后除 去溶剂形成半固化片, 除去溶剂的温度不高于 120°C ;
步骤三、 将上述的半固化片数张相叠合, 上下各压覆一张铜箔, 放进 压机进行固化制得所述高频电路基板, 本步骤的固化温度为 150-300°C , 固化压力为 25-70 Kg/cm2
针对上述制成的高频电路基板的介电性能, 即介电常数和介质损耗角 正切、 高频性能及耐热性能, 如下述实施例进一步给予详加说明与描述。
本发明实施例所选取的复合材料的组成物如下表 1 :
表 1
制造厂商 产品名称或牌号 材料内容
Sartomer Ricon 100 苯乙烯与丁二烯的共聚物树脂, Mn=4500; 1,2-乙烯 =70%
苯乙烯与丁二烯的嵌段共聚
JSR TE2000
Sibelco 525 熔融型硅 粉
Albemarle SAYTEX8010 十溴二苯乙烷 上海高桥 DCP 过氧化二异丙苯 上海瑞斯 UHMWPE 基重 188g/m2 上海宏和 7628 基重 210g/m2 实施例 1
将超高分子量的聚乙烯纤维布 (HUMWPE)在 80~140°C处理 30分钟, 然后用表 2 中所示的配比混制胶液(用溶剂调制到合适的粘度) , 用处理 过的超高分子量的聚乙烯纤维布浸渍以上胶液, 然后烘干去掉溶剂后制得 半固化片。 将八张已制成的半固化片相叠合, 在其两侧压覆 loz (盎司)厚度 的铜箔, 在压机中进行 1 小时固化, 固化压力为 50 Kg/cm2, 固化温度为 200 °C , 制成电路基板, 物性数据如表 2所示。
实施例 2
制作工艺和实施例 1 相同, 改变复合材料的配比及其物性数据如表 2 所示。
比较例
制作工艺和实施例 1 相同, 用 7628玻璃纤维布替代超高分子量的聚 乙烯纤维布, 材料配比及其物性数据如表 2。
表 2.各实施例及比较例的材料配比及其物性数据
材料 实施例 1 实施例 2 比较例 1
Ricon 100 55.6 50.4 55.6
TE2000 29.4 24.6 29.4
525 85 120 85
DCP 4 4 4
SAYTEX8010 32 35 32
UHMWPE 135 135 0
7628玻璃纤维布 0 0 137 介电常数( 10GHZ ) 2.47 2.52 3.95
介质损耗角正切 0.0006 0.0005 0.0026 ( 10GHZ )
耐浸焊性 288 °C ,
> 120 > 120 > 120
(秒) 物性分析
从表 2的物性数据结果可以看出, 实施例 1和实施例 2制作的电路基 板材料介电常数和介质损耗角正切低, 高频性能很好, 介电常数小于 2.6。 而比较例 1中因使用玻璃纤维作为增强材料, 介电常数较高。
如上所述, 本发明的高频电路基板拥有更加优异的介电性能, 即具有 较低的介电常数和介质损耗角正切, 高频性能很好。
以上实施例, 并非对本发明的组合物作任何限制, 凡是依据本发明的 饰 仍 于本发明技术方、案 范围内。 、 。 5

Claims

权 利 要 求
1、 一种复合材料, 包括:
( 1 )介电常数小于 2.6的含有可聚合的碳-碳双键的不饱和树脂; ( 2 )介电常数小于 2.4的超高分子量聚乙烯纤维。
2、 如权利要求 1所述的复合材料, 其中, 所述介电常数小于 2.6的含 有可聚合的碳 -碳双键的不饱和树脂为丁二烯、 苯乙烯、 异戊二烯、 甲基苯 乙烯、 乙基苯乙烯、 二乙烯基苯、 丙烯酸酯、 丙烯腈及 N-苯基马来酰亚 胺、 N-乙烯基苯基马来酰亚胺的均聚物或共聚物、 有取代基的聚苯醚及有 脂环式结构的聚烯烃中的一种或多种混合。
3、 如权利要求 2所述的复合材料, 其中, 所述介电常数小于 2.6的含 有可聚合的碳 -碳双键的不饱和树脂优选分子中 1 , 2位加成的乙烯基含量 大于 60%的含丁二烯或异戊二烯的聚合物以及由它们得到的共聚物。
4、 如权利要求 1 所述的复合材料, 其中, 所述超高分子量聚乙烯纤 维为纺织布或无纺布, 使用前需在 80~120°C下预处理至少 10分钟。
5、 如权利要求 1 所述的复合材料, 其中, 还包括陶瓷粉末填料, 陶 瓷粉末填料选自结晶型二氧化硅、 熔融无定型的二氧化硅、 熔融球型二氧 化硅、 二氧化钛、 钛酸锶、 钛酸钡、 氮化硼、 氮化铝、 碳化硅、 氧化铝中 的一种或多种。
6、 如权利要求 1 所述的复合材料, 其中, 进一步包括阻燃剂, 阻燃 剂为十溴二苯醚、 十溴二苯乙烷、 乙撑双四溴邻苯二甲酰亚胺、 三 (2, 6- 二甲基苯基)膦、 10- ( 2, 5-二羟基苯基) -9, 10-二氢 -9-氧杂 -10-膦菲 -10- 氧化物、 2, 6-二(2, 6-二甲基苯基) 膦基苯或 10-苯基 -9, 10-二氢 -9-氧 杂 -10-膦菲 -10-氧化物。
7、 如权利要求 1 所述的复合材料, 其中, 进一步包括能产生自由基 的固化引发剂。
8、 一种使用如权利要求 1 所述的复合材料制作的高频电路基板, 包 括: 数层相互叠合的半固化片及分别压覆于其两侧的铜箔, 该数层半固化 片均由所述复合材料制作。
9、 一种制作如权利要求 8 所述的高频电路基板的方法, 包括下述步 骤:
步骤一、 首先将介电常数小于 2.4的超高分子量聚乙烯纤维在 80~120 °C下预处理至少 10分钟; 步骤二、 将介电常数小于 2.6 的含有可聚合的碳 -碳双键的不饱和树 脂、 陶瓷粉末填料、 阻燃剂和固化引发剂混合, 用溶剂稀释至适当的粘 度, 搅拌混合均勾, 使填料均一的分散在树脂中, 制得胶液, 用上述处理 后的超高分子量聚乙烯纤维浸渍上述胶液, 并控制到合适的厚度, 然后除 去溶剂形成半固化片, 除去溶剂的温度不高于 120°C ;
步骤三、 将上述的半固化片数张相叠合, 上下各压覆一张铜箔, 放进 压机进行固化制得所述高频电路基板, 固化温度为 150-300°C , 固化压力 为 25-70 Kg/cm2
PCT/CN2011/079189 2010-12-18 2011-08-31 复合材料、用其制作的高频电路基板及其制作方法 WO2012079391A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201010594647 CN102070854A (zh) 2010-12-18 2010-12-18 复合材料、用其制作的高频电路基板及其制作方法
CN201010594647.3 2010-12-18

Publications (1)

Publication Number Publication Date
WO2012079391A1 true WO2012079391A1 (zh) 2012-06-21

Family

ID=44029624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079189 WO2012079391A1 (zh) 2010-12-18 2011-08-31 复合材料、用其制作的高频电路基板及其制作方法

Country Status (2)

Country Link
CN (1) CN102070854A (zh)
WO (1) WO2012079391A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104994683A (zh) * 2015-07-14 2015-10-21 泰州市博泰电子有限公司 一种ppo合金微波高频电路板的制作方法
CN112959761A (zh) * 2021-02-10 2021-06-15 浙江沪通模具有限公司 一种高强度的低介电常数低介质损耗复合材料及制备方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102070854A (zh) * 2010-12-18 2011-05-25 广东生益科技股份有限公司 复合材料、用其制作的高频电路基板及其制作方法
JP5901066B2 (ja) * 2012-04-27 2016-04-06 三井金属鉱業株式会社 樹脂組成物、樹脂層付金属箔、金属張積層板及びプリント配線板
KR102173448B1 (ko) 2013-05-06 2020-11-04 주식회사 클랩 유기 전자 응용품 내의 유전체로서의 가용성 시클릭 이미드 함유 중합체
CN104744891A (zh) * 2013-12-27 2015-07-01 台燿科技股份有限公司 半固化片及其应用
CN104300227A (zh) * 2014-09-25 2015-01-21 东南大学 多波束馈电结构
CN105130274B (zh) * 2015-07-15 2017-07-21 中国电子科技集团公司第四十六研究所 一种高热稳定性的微波复合介质基板及其制备方法
CN105130423B (zh) * 2015-07-15 2017-05-24 中国电子科技集团公司第四十六研究所 一种基于钛酸钡类陶瓷粉的微波复合介质基板的制备工艺
CN108004772A (zh) * 2017-11-23 2018-05-08 陕西生益科技有限公司 一种覆铜板用半固化片及其应用
US20210054168A1 (en) * 2018-04-27 2021-02-25 The Hong Kong Polytechnic University Multilayer and flexible capacitors with metal-ion doped tio2 colossal permittivity material/polymer composites
CN108909091B (zh) * 2018-05-17 2020-10-20 常州中英科技股份有限公司 一种可交联的全氟烷氧基乙烯基醚共聚物及其制备的半固化片和热固型含氟树脂基覆铜板
CN108752827B (zh) * 2018-05-17 2021-06-01 常州中英科技股份有限公司 一种高导热的可交联树脂组合物及其制备的半固化片和热固型覆铜板
CN112011181A (zh) * 2019-05-31 2020-12-01 台光电子材料(昆山)有限公司 一种树脂组合物及其制品
CN112793254A (zh) * 2021-01-28 2021-05-14 山东瑞利泰阳新材料科技有限公司 一种碳氢树脂与氧化硅纤维网格布复合材料及制备方法
CN113896916A (zh) * 2021-09-07 2022-01-07 江苏诺德新材料股份有限公司 一种基于高Tg超高分子量聚乙烯纤维布的半固化片及覆铜板的制备方法
CN113930062A (zh) * 2021-10-11 2022-01-14 宁波甬强科技有限公司 半固化片及其制作方法、和覆铜板的制作方法
CN117510938A (zh) * 2022-07-27 2024-02-06 华为技术有限公司 一种半固化片、基板、印刷电路板及相关制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160472A (en) * 1984-10-24 1992-11-03 Zachariades Anagnostis E Method of producing composite structures of ultra-high-molecular-weight polymers, such as ultra-high-molecular-weight polyethylene products
CN1299318A (zh) * 1997-12-01 2001-06-13 波雷坦合成物有限公司 印制电路板和天线的基材用超高分子量聚乙烯复合材料
CN101328277A (zh) * 2008-07-28 2008-12-24 广东生益科技股份有限公司 一种复合材料、用其制作的高频电路基板及制作方法
CN101364669A (zh) * 2008-09-25 2009-02-11 东华大学 超高分子量聚乙烯增强的雷达罩、其制备方法及应用
CN101511580A (zh) * 2006-09-12 2009-08-19 霍尼韦尔国际公司 具有改进的柔韧性的高性能防弹复合材料及其制造方法
CN101544841A (zh) * 2009-04-10 2009-09-30 广东生益科技股份有限公司 复合材料及用其制作的高频电路基板
CN101643565A (zh) * 2009-08-24 2010-02-10 广东生益科技股份有限公司 复合材料、用其制作的高频电路基板及其制作方法
CN101673599A (zh) * 2009-08-25 2010-03-17 浙江顺天复合材料有限公司 一种用于电缆的带光栅光纤的复合型材及其制备方法
CN102070854A (zh) * 2010-12-18 2011-05-25 广东生益科技股份有限公司 复合材料、用其制作的高频电路基板及其制作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8057887B2 (en) * 2005-08-17 2011-11-15 Rampart Fibers, LLC Composite materials including high modulus polyolefin fibers

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160472A (en) * 1984-10-24 1992-11-03 Zachariades Anagnostis E Method of producing composite structures of ultra-high-molecular-weight polymers, such as ultra-high-molecular-weight polyethylene products
CN1299318A (zh) * 1997-12-01 2001-06-13 波雷坦合成物有限公司 印制电路板和天线的基材用超高分子量聚乙烯复合材料
CN101511580A (zh) * 2006-09-12 2009-08-19 霍尼韦尔国际公司 具有改进的柔韧性的高性能防弹复合材料及其制造方法
CN101328277A (zh) * 2008-07-28 2008-12-24 广东生益科技股份有限公司 一种复合材料、用其制作的高频电路基板及制作方法
CN101364669A (zh) * 2008-09-25 2009-02-11 东华大学 超高分子量聚乙烯增强的雷达罩、其制备方法及应用
CN101544841A (zh) * 2009-04-10 2009-09-30 广东生益科技股份有限公司 复合材料及用其制作的高频电路基板
CN101643565A (zh) * 2009-08-24 2010-02-10 广东生益科技股份有限公司 复合材料、用其制作的高频电路基板及其制作方法
CN101673599A (zh) * 2009-08-25 2010-03-17 浙江顺天复合材料有限公司 一种用于电缆的带光栅光纤的复合型材及其制备方法
CN102070854A (zh) * 2010-12-18 2011-05-25 广东生益科技股份有限公司 复合材料、用其制作的高频电路基板及其制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104994683A (zh) * 2015-07-14 2015-10-21 泰州市博泰电子有限公司 一种ppo合金微波高频电路板的制作方法
CN112959761A (zh) * 2021-02-10 2021-06-15 浙江沪通模具有限公司 一种高强度的低介电常数低介质损耗复合材料及制备方法

Also Published As

Publication number Publication date
CN102070854A (zh) 2011-05-25

Similar Documents

Publication Publication Date Title
WO2012079391A1 (zh) 复合材料、用其制作的高频电路基板及其制作方法
EP2150094B1 (en) Composite material, high-frequency circuit substrate made therefrom and making method thereof
WO2012006776A1 (zh) 复合材料、用其制作的高频电路基板及其制作方法
US10584222B2 (en) Resin composition and pre-preg and laminate using the composition
KR101781280B1 (ko) 할로겐 비함유 수지 조성물 및 그 용도
AU2010200472B2 (en) Composite Material, High-Frequency Circuit Substrate Made Therefrom and Making Method Thereof
JP5138267B2 (ja) プリプレグ、それを用いた多層基配線板及び電子部品
CN111154197A (zh) 一种碳氢树脂组合物及其制备方法与应用
WO2014023095A1 (zh) 聚苯醚树脂组合物及使用其制作的半固化片与覆铜箔层压板
JP2018504511A (ja) 高周波用熱硬化性樹脂組成物及びこれを用いたプリプレグ、積層シート、並びに印刷回路基板
CN109476902B (zh) 有机绝缘体、覆金属层叠板和布线基板
CN113773632B (zh) 一种含可固化聚苯醚树脂的组合物及其应用
WO2014036712A1 (zh) 复合材料、用其制作的高频电路基板及其制作方法
WO2019024255A1 (zh) 一种热固性树脂组合物及使用其制作的半固化片与覆金属箔层压板
JP2000311518A (ja) 有機絶縁材用組成物、有機絶縁材、封止材および回路基板
CN117120536A (zh) 树脂组合物、预浸料、带树脂的膜、带树脂的金属箔、覆金属箔层压板、以及布线板
JP2000313818A (ja) 架橋樹脂粒子、有機絶縁材用組成物、有機絶縁材、封止材、および回路基板
EP3733399B1 (en) Block copolymer composition, prepregs, and laminates made therefrom
US20230045848A1 (en) Thermosetting resin composition and prepreg, laminate and printed circuit board using same
CN116640404A (zh) 一种高介电、高导热、低损耗的电子树脂及其应用
WO2022244726A1 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
CN114230787B (zh) 改性苯并噁嗪预聚物及其制备方法、树脂组合物及其固化产物和电子产品组件
JP2000315845A (ja) 回路基板
US11732123B2 (en) Thermosetting resin composition, and prepreg, laminate and printed circuit board using same
TW202037668A (zh) 熱固性樹脂組成物及包含其之印刷電路板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/09/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11849781

Country of ref document: EP

Kind code of ref document: A1