WO2012070477A1 - 熱線遮蔽材 - Google Patents

熱線遮蔽材 Download PDF

Info

Publication number
WO2012070477A1
WO2012070477A1 PCT/JP2011/076619 JP2011076619W WO2012070477A1 WO 2012070477 A1 WO2012070477 A1 WO 2012070477A1 JP 2011076619 W JP2011076619 W JP 2011076619W WO 2012070477 A1 WO2012070477 A1 WO 2012070477A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat ray
ray shielding
silver tabular
silver
tabular grains
Prior art date
Application number
PCT/JP2011/076619
Other languages
English (en)
French (fr)
Inventor
鎌田 晃
清都 尚治
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201180055944.3A priority Critical patent/CN103221850B/zh
Publication of WO2012070477A1 publication Critical patent/WO2012070477A1/ja
Priority to US13/898,871 priority patent/US20130260139A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/465Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase having a specific shape
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/476Tin oxide or doped tin oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/479Metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof

Definitions

  • the present invention relates to a heat ray shielding material that is excellent in visible light transmittance, radio wave transmittance, and light resistance, can shield near infrared rays in a wide band, and has a high near infrared shielding rate.
  • heat ray shielding materials for automobiles and building windows have been developed as an energy-saving measure for reducing carbon dioxide.
  • a metal Ag thin film is generally used as a heat ray reflecting material because of its high reflectance, but it reflects not only visible light and heat rays but also radio waves, so that it has visible light permeability and radio wave permeability. low it has been a problem.
  • Low-E glass for example, manufactured by Asahi Glass Co., Ltd.
  • Ag and ZnO multilayer film is widely used in buildings to increase visible light transmission, but Low-E glass is a metal on the glass surface. Since the Ag thin film is formed, there is a problem that radio wave permeability is low.
  • a glass with island-shaped Ag particles imparted with radio wave permeability has been proposed.
  • a glass in which granular Ag is formed by annealing an Ag thin film formed by vapor deposition see Patent Document 1.
  • granular Ag is formed by annealing, so it is difficult to control the particle size, shape, area ratio, etc., control of the reflection wavelength, band, etc. of the heat ray, improvement of visible light transmittance, etc. There was a problem that it was difficult.
  • tin-doped indium oxide (ITO) particles used for the transparent electrode have a shielding rate of 1,200 nm or more of 90% or more and a visible transmittance of 90%.
  • ITO indium oxide
  • near infrared rays having a high heat energy in the wavelength range of 800 nm to 1,200 nm cannot be shielded.
  • a heat ray shielding film having a heat ray shielding layer containing ITO particles and a heat ray shielding layer containing an organic heat ray shielding material, a diimonium-based material and an ultraviolet absorbing material has been proposed (see Patent Document 7).
  • Patent Document 7 there is a problem that the visible light transmittance is 60%, which is insufficient.
  • the diimonium-based material has insufficient light resistance, and even if it contains an ultraviolet absorbing material in the same layer, the film itself deteriorates due to heat generation due to heat absorption, ultraviolet rays contained in sunlight, etc. There was a problem that would soon drop.
  • JP 2007-108536 JP JP 2007-178915 JP JP 2007-138249 A JP 2007-138250 JP JP 2007-154292 JP JP 2008-020525 JP
  • an object of the present invention is to provide a heat ray shielding material that is excellent in visible light transmission, radio wave transmission, and light resistance, can shield near infrared rays over a wide band, and has a high near infrared shielding rate.
  • Means for solving the problems are as follows. That is, ⁇ 1> A heat ray shielding material having a heat ray shielding layer containing silver tabular grains and metal oxide particles. ⁇ 2> The heat ray shielding material according to ⁇ 1>, wherein the metal oxide particles are tin-doped indium oxide particles. ⁇ 3> The heat ray shielding material according to any one of ⁇ 1> to ⁇ 2>, wherein the silver tabular grains have 60% by number or more of substantially hexagonal or substantially disc-shaped silver tabular grains. ⁇ 4> The heat ray shielding material according to any one of ⁇ 1> to ⁇ 3>, wherein the coefficient of variation in the particle size distribution of the tabular silver grains is 30% or less.
  • ⁇ 5> Any one of ⁇ 1> to ⁇ 4>, wherein the silver tabular grains have an average grain size of 40 nm to 400 nm, and the silver tabular grains have an aspect ratio (average grain diameter / average grain thickness) of 5 to 100. It is a heat ray shielding material described in the above.
  • ⁇ 6> The heat ray shielding material according to any one of ⁇ 1> to ⁇ 5>, wherein the content of the silver tabular grains in the heat ray shielding layer is 0.02 g / m 2 to 0.20 g / m 2 .
  • ⁇ 7> The heat ray shielding material according to any one of ⁇ 1> to ⁇ 6>, wherein the content of the metal oxide particles in the heat ray shielding layer is 1.0 g / m 2 to 4.0 g / m 2. . ⁇ 8>
  • . ⁇ 9> The heat ray shielding layer according to any one of ⁇ 1> to ⁇ 8>, wherein the tabular silver particles and the metal oxide particles are mixed and dispersed in a binder.
  • the heat ray shielding layer is formed by laminating a silver tabular grain-containing layer containing silver tabular grains and a metal oxide-containing layer containing a metal oxide. It is a shielding material.
  • the present invention it is possible to solve the above-mentioned problems and achieve the above-mentioned object, and is excellent in visible light transmission, radio wave transmission, and light resistance, can block near infrared rays in a wide band, and blocks near infrared rays.
  • a heat ray shielding material having a high rate can be provided.
  • FIG. 1 is a schematic view showing an example of the heat ray shielding material of the present invention.
  • FIG. 2 is a schematic view showing another example of the heat ray shielding material of the present invention.
  • FIG. 3A is a schematic perspective view showing an example of the shape of a tabular grain contained in the heat ray shielding material of the present invention, and shows a substantially disc-shaped tabular grain.
  • FIG. 3B is a schematic perspective view showing an example of the shape of a tabular grain contained in the heat ray shielding material of the present invention, and shows a substantially hexagonal tabular grain.
  • FIG. 1 is a schematic view showing an example of the heat ray shielding material of the present invention.
  • FIG. 2 is a schematic view showing another example of the heat ray shielding material of the present invention.
  • FIG. 3A is a schematic perspective view showing an example of the shape of a tabular grain contained in the heat ray shielding material of the present invention, and shows a substantially disc-shaped tabular grain.
  • FIG. 4A is a schematic cross-sectional view showing the presence state of a heat ray shielding layer in which silver tabular grains and metal oxide particles are mixed and dispersed in the heat ray shielding material of the present invention.
  • FIG. 4B is a schematic cross-sectional view showing the presence state of a silver tabular grain-containing layer containing silver tabular grains and a metal oxide particle-containing layer containing metal oxide grains in the heat ray shielding material of the present invention.
  • FIG. 4A is a schematic cross-sectional view showing the presence state of a heat ray shielding layer in which silver tabular grains and metal oxide particles are mixed and dispersed in the heat ray shielding material of the present invention.
  • FIG. 4B is a schematic cross-sectional view showing the presence state of a silver tabular grain-containing layer containing silver tabular grains and a metal oxide particle-containing layer containing metal oxide grains in the heat ray shielding material of the present invention.
  • FIG. 4C is a schematic cross-sectional view showing the presence state of a silver tabular grain-containing layer containing silver tabular grains and a metal oxide particle-containing layer containing metal oxide grains in the heat ray shielding material of the present invention, It is a figure explaining the angle ((theta)) which the plane of this and the plane of a silver tabular grain make.
  • FIG. 5 is an SEM photograph of the heat ray shielding material obtained in Example 1 and is observed at 20,000 times.
  • FIG. 6 is a graph showing the spectrum of the heat ray shielding material obtained in Example 1.
  • the heat ray shielding material of the present invention has a heat ray shielding layer containing at least silver tabular grains and metal oxide particles, and has other layers such as a substrate as necessary.
  • the layer configuration of the heat ray shielding material includes a base material 11, and a heat ray shielding layer 12 in which silver tabular grains and metal oxide particles are mixed and dispersed on the base material, 2, the aspect which has the base material 11 and the heat ray shielding layer 12 by which the silver tabular grain content layer 13 and the metal oxide content layer 14 were laminated
  • the shape, structure, size, etc. of the heat ray shielding layer are not particularly limited and can be appropriately selected depending on the purpose.
  • the shape may be a flat plate, and the structure may be a simple structure. It may be a layered structure or a laminated structure, and the size can be appropriately selected according to the application.
  • the heat ray shielding layer as the first embodiment, the silver tabular grains and the metal oxide particles are mixed and dispersed in a binder, and as the second embodiment, the silver tabular grain-containing layer, the metal An aspect in which an oxide-containing layer is laminated is exemplified, and any aspect can be preferably used.
  • the heat ray shielding layer contains at least silver tabular grains, metal oxide grains, and a binder, and further contains other components as necessary.
  • the heat ray shielding layer in the first embodiment may have a single layer structure in which the silver tabular grains and the metal oxide particles are mixed and dispersed in a binder, or may have a multilayer structure. From the viewpoint of productivity, a single layer structure is preferable.
  • the heat ray shielding layer is formed on the surface of the substrate having either a flat or curved shape. It is preferable at the point which can form, and it is more preferable at the point which can form the said heat ray shielding layer on the base-material surface which has the shape of a curved surface.
  • the heat ray shielding layer is formed by laminating at least a silver tabular grain-containing layer and a metal oxide particle-containing layer.
  • the silver tabular grain-containing layer contains at least silver tabular grains and a binder, and further contains other components as necessary.
  • the metal oxide-containing layer contains at least metal oxide particles and a binder, and further contains other components as necessary.
  • the orientation of the silver tabular grains in the silver tabular grain-containing layer may be a plane orientation (reflection type) or a random orientation (absorption type) as described later.
  • Both the first and second embodiments are preferable in that the heat ray shielding layer can be formed together with a flexible binder, and thus the obtained heat ray shielding material can be applied to a curved surface.
  • the thickness of the heat ray shielding layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.01 ⁇ m to 10 ⁇ m.
  • the silver tabular grains are not particularly limited in shape and can be appropriately selected according to the purpose, and are substantially triangular tabular, substantially hexagonal tabular, and substantially disc-shaped silver with these corners removed. At least one of tabular grains is preferable.
  • the silver tabular grain material is not particularly limited as long as it contains at least silver, and can be appropriately selected according to the purpose. However, gold, aluminum, copper, rhodium having a high heat ray (near infrared) shielding rate, It may further contain a metal such as nickel or platinum.
  • any of 1st and 2nd embodiment 0.01 g / m 2 to 1.00 g / m 2 is preferable, and 0.02 g / m 2 to 0.20 g / m 2 is more preferable.
  • the content is less than 0.01 g / m 2 , the heat ray shielding may be insufficient, and when it exceeds 1.00 g / m 2 , the visible transmittance may decrease.
  • content in the said heat ray shielding layer of the said silver tabular grain can be computed as follows, for example. From the observation of the super foil section TEM image and the surface SEM image of the heat ray shielding layer, the number of silver tabular grains, the average particle diameter and the average thickness in a certain area are measured. Alternatively, regarding the average thickness, the silver tabular grains used in the heat ray shielding layer are applied to a glass plate in a dispersion state without adding a binder, and the surface is further measured by an atomic force microscope. Accurate average thickness can be measured.
  • the mass (g) of the tabular silver grains calculated based on the number of tabular grains thus measured, the average grain diameter and the average thickness, and the specific gravity of the tabular silver grains is divided by the constant area (m 2 ). This can be calculated. Further, the silver tabular grains in a certain area of the heat ray shielding layer are eluted in methanol, and the mass (g) of the silver tabular grains measured by fluorescent X-ray measurement is divided by the constant area (m 2 ). You can also
  • the silver tabular grain is not particularly limited as long as it is a grain composed of two main planes (see FIGS. 3A and 3B), and can be appropriately selected according to the purpose. And a substantially triangular shape.
  • a substantially hexagonal shape or a substantially disc shape is particularly preferable in terms of high visible light transmittance.
  • the substantially disk shape is not particularly limited as long as it has no corners and is round when the silver tabular grains are observed from above the main plane with a transmission electron microscope (TEM), and is appropriately selected according to the purpose. be able to.
  • the substantially hexagonal shape is not particularly limited as long as it is a substantially hexagonal shape when the silver tabular grains are observed from above the main plane with a transmission electron microscope (TEM), and can be appropriately selected according to the purpose.
  • the hexagonal corner may be sharp or blunt.
  • the ratio of the substantially hexagonal to substantially disc-shaped silver tabular grains is preferably 60% by number or more, more preferably 65% by number or more, and particularly preferably 70% by number or more based on the total number of silver tabular grains. If the proportion of the silver tabular grains is less than 60% by number, the visible light transmittance may be lowered.
  • the average particle diameter (average equivalent circle diameter) of the silver tabular grains is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 40 nm to 400 nm, more preferably 60 nm to 350 nm.
  • the average particle diameter (average equivalent circle diameter) is less than 40 nm, the contribution of absorption of the silver tabular grains becomes larger than the reflection, so that sufficient heat ray shielding ability may not be obtained. (Scattering) may increase and the transparency of the substrate may be impaired.
  • the average particle diameter means an average value of main plane diameters (maximum lengths) of 200 tabular grains arbitrarily selected from images obtained by observing grains with a TEM. To do. Two or more kinds of silver tabular grains having different average particle diameters (average equivalent circle diameters) can be contained in the heat ray shielding layer. In this case, the peak of the average particle diameter (average equivalent circle diameter) of the silver tabular grains is present. You may have two or more, ie, two average particle diameters (average circle equivalent diameter).
  • the coefficient of variation in the particle size distribution of the silver tabular grains is preferably 30% or less, and more preferably 10% or less. If the coefficient of variation exceeds 30%, the heat ray shielding wavelength region in the heat ray shielding material may become broad.
  • the coefficient of variation in the particle size distribution of the silver tabular grains is, for example, plotting the distribution range of the particle diameters of the 200 silver tabular grains used for calculating the average value obtained as described above, and the standard deviation of the particle size distribution. The average plane diameter (maximum length) obtained as described above is divided by the average value (average particle diameter (average equivalent circle diameter)) (%).
  • the aspect ratio of the silver tabular grains is not particularly limited and may be appropriately selected depending on the intended purpose. However, since the shielding rate in the infrared light region having a wavelength of 780 nm to 2,000 nm increases, 2 to 200 is preferable, and 5 to 100 is more preferable. When the aspect ratio is less than 2, the shielding wavelength becomes smaller than 780 nm, and when it exceeds 200, the shielding wavelength becomes longer than 2,300 nm, and sufficient heat ray shielding ability may not be obtained.
  • the aspect ratio means a value obtained by dividing the average particle diameter (average equivalent circle diameter) of the tabular silver grains by the average grain thickness of the tabular silver grains.
  • the average grain thickness corresponds to the distance between main planes of the tabular silver grains, and is, for example, as shown in FIGS. 3A and 3B and can be measured by an atomic force microscope (AFM).
  • the method for measuring the average particle thickness by the AFM is not particularly limited and can be appropriately selected depending on the purpose.For example, a particle dispersion containing silver tabular grains is dropped onto a glass substrate and dried. Examples include a method of measuring the thickness of one silver tabular grain.
  • the method for producing the silver tabular grains is not particularly limited as long as it can synthesize a substantially hexagonal shape or a substantially disc shape, and can be appropriately selected according to the purpose.
  • a chemical reduction method or a photochemical reduction method And a liquid phase method such as an electrochemical reduction method.
  • a liquid phase method such as a chemical reduction method or a photochemical reduction method is particularly preferable in terms of shape and size controllability.
  • the tabular silver tabular grains having a hexagonal shape or a triangular shape may be obtained by dulling the corners of the tabular silver tabular grains.
  • metal grains for example, Ag
  • the silver tabular grains may be subjected to further treatment in order to impart desired characteristics.
  • the further treatment is not particularly limited and may be appropriately selected depending on the purpose.
  • the formation of a high refractive index shell layer the addition of various additives such as a dispersant and an antioxidant may be included. Can be mentioned.
  • the silver tabular grains may be coated with a high refractive index material having high visible light region transparency.
  • the high refractive index material is not particularly limited and may be appropriately selected depending on the purpose, for example, TiO x, BaTiO 3, ZnO, etc. SnO 2, ZrO 2, NbO x and the like.
  • an SiO 2 or polymer shell layer is appropriately formed, The metal oxide layer may be formed on the shell layer.
  • TiO x is used as the material for the high refractive index metal oxide layer, since TiO x has photocatalytic activity, there is a concern of deteriorating the matrix in which the silver tabular grains are dispersed. After forming a TiO x layer on the tabular grains, an SiO 2 layer may be appropriately formed.
  • the silver tabular grains may adsorb an antioxidant such as mercaptotetrazole or ascorbic acid in order to prevent oxidation of metals such as silver constituting the silver tabular grains.
  • an oxidation sacrificial layer such as Ni may be formed on the surface of the silver tabular grain. Further, it may be covered with a metal oxide film such as SiO 2 for the purpose of blocking oxygen.
  • the silver tabular grains are, for example, low molecular weight dispersants and high molecular weight dispersants containing at least one of N elements such as quaternary ammonium salts and amines, S elements, and P elements.
  • the dispersing agent may be added.
  • the silver tabular grain may have its main plane randomly oriented with respect to one surface of the heat ray shielding layer (the surface of the substrate when the heat ray shielding material has a substrate), It may be plane-oriented within a predetermined range.
  • the former random orientation type mainly functions as an infrared absorption type and is preferable in that the heat ray shielding layer or the silver tabular grain-containing layer can be easily formed.
  • the latter plane orientation type mainly functions as an infrared reflection type. However, it is preferable in terms of more excellent heat shielding performance, and any of them can be suitably used.
  • the silver tabular grains are preferably plane-oriented in a predetermined range.
  • the silver tabular grains are not particularly limited and may be appropriately selected depending on the intended purpose. However, in terms of increasing the heat ray shielding rate, one surface of the heat ray shielding layer (the heat ray shielding material is used as shown in FIG. 4C described later). When it has a base material, it is preferable that it is unevenly distributed substantially horizontally with respect to the base material surface).
  • the plane orientation the main plane of the silver tabular grains and one surface of the heat ray shielding layer (the surface of the substrate when the heat ray shielding material has a substrate) are substantially parallel within a predetermined range. As long as it is an embodiment, there is no particular limitation, and it can be appropriately selected according to the purpose.
  • the angle of the plane orientation is preferably 0 ° to ⁇ 30 °, more preferably 0 ° to ⁇ 20 °.
  • FIGS. 4A to 4C are schematic cross-sectional views showing the presence of the heat ray shielding layer containing silver tabular grains in the heat ray shielding material of the present invention.
  • FIG. 4A shows the presence state of the heat ray shielding layer 12 in which the silver tabular grains 1 and the metal oxide grains 2 are mixed and dispersed.
  • FIG. 4B is a diagram showing a state in which the silver tabular grains are randomly oriented in the silver tabular grain-containing layer 13 including the silver tabular grains 1 and the metal oxide particle-containing layer 14 including the metal oxide grains 2.
  • FIG. 4A shows the presence state of the heat ray shielding layer 12 in which the silver tabular grains 1 and the metal oxide grains 2 are mixed and dispersed.
  • FIG. 4B is a diagram showing a state in which the silver tabular grains are randomly oriented in the silver tabular grain-containing layer 13 including the silver tabular grains 1 and the metal oxide particle-containing layer 14 including the metal oxide grains 2.
  • FIG. 4A shows the presence state of the heat ray
  • FIG. 4C is a diagram showing a state in which the silver tabular grains are plane-oriented in the silver tabular grain-containing layer 13 including the silver tabular grains 1 and the metal oxide particle-containing layer 14 including the metal oxide grains 2, It is a figure explaining the angle ( ⁇ (theta)) which the plane of the shielding layer 12 and the plane of the silver tabular grain 1 make.
  • the angle ( ⁇ ⁇ ) formed by the plane of the heat ray shielding layer 12 and the main plane or extension of the main plane of the silver tabular grain 1 corresponds to a predetermined range in the plane orientation. That is, the plane orientation refers to a state where the angle ( ⁇ ⁇ ) shown in FIG. 4C is small when a cross section of the heat ray shielding material is observed.
  • the state where ⁇ is 0 ° is a plane of the heat ray shielding layer 12.
  • the main plane of the silver tabular grain 1 are in a parallel state.
  • the plane orientation angle ⁇ of the main plane of the silver tabular grain 1 with respect to the surface of the heat ray shielding layer 12 exceeds ⁇ 30 °, that is, the silver tabular grain 1 is randomly oriented.
  • the absorptance of a predetermined wavelength (for example, from the visible light region long wavelength side to the near infrared light region) of the heat ray shielding material increases.
  • the heat ray shielding material is prepared by using a microtome, a focused ion beam (FIB) or the like to produce a cross-section sample or a cross-section sample of the heat ray shielding material, and this is used for various microscopes (for example, a field emission scanning electron microscope). (FE-SEM) etc.) and a method of evaluating from an image obtained by observation.
  • FIB focused ion beam
  • FE-SEM field emission scanning electron microscope
  • the main plane of the silver tabular grain with respect to one surface of the heat ray shielding layer in the sample (or the substrate surface when the heat ray shielding material has a substrate)
  • it is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include observation using an FE-SEM, TEM, optical microscope, and the like.
  • observation may be performed by FE-SEM
  • observation may be performed by TEM.
  • TEM When evaluating by FE-SEM, it is preferable to have a spatial resolution with which the shape and plane orientation angle of silver tabular grains ( ⁇ ⁇ in FIG. 4C) can be clearly determined.
  • the plasmon resonance wavelength ⁇ of the metal constituting the silver tabular grain in the heat ray shielding layer is not particularly limited and can be appropriately selected according to the purpose. However, from the viewpoint of imparting heat ray shielding performance, 400 nm to 2,500 nm. In view of reducing the haze (scattering property) in the visible light region, it is more preferably 700 nm to 2,500 nm.
  • polyvinyl acetal type resins such as polyvinyl butyral (PVB) resin; Polyvinyl alcohol (PVA) type resin; Vinyl resins; Polyester resins such as polyethylene terephthalate (PET); Polyurethane resins; Ethylene-vinyl acetate copolymers (EVA); Polyamide resins; Epoxy resins; Acrylic resins such as polyacrylate resins and polymethyl methacrylate resins Resins; polycarbonate resins; natural polymers such as gelatin and cellulose; inorganic substances such as silicon dioxide and aluminum oxide.
  • the refractive index (n) of the medium is preferably 1.4 to 1.7.
  • the area ratio can be measured, for example, by performing image processing on an image obtained by SEM observation of the heat ray shielding material from above or an image obtained by AFM (Atomic Force Microscope) observation.
  • the average inter-grain distance between the silver tabular grains adjacent in the horizontal direction in the heat ray shielding layer is preferably non-uniform (random). If it is not random, that is, if it is uniform, diffraction occurs and moire is observed, which is not preferable as an optical film.
  • the horizontal average grain distance of the silver tabular grains means an average value of the grain distances between two adjacent grains.
  • the average inter-grain distance is random as follows: “When taking a two-dimensional autocorrelation of luminance values when binarizing an SEM image containing 100 or more silver tabular grains, other than the origin. It has no significant local maximum.
  • the silver tabular grains are arranged in the form of a heat ray shielding layer containing silver tabular grains and a metal oxide as shown in FIGS. 4A to 4C.
  • the tabular grains and the metal oxide grains may be arranged in the form of a heat ray shielding layer in which the mixture is dispersed, and as shown in FIGS. 4B and 4C, the silver tabular grain-containing layer and the metal oxide grains containing the silver tabular grains It may be arranged in the form of a heat ray shielding layer laminated with a metal oxide particle content layer containing. As shown in FIGS.
  • the silver tabular grain-containing layer may be composed of a single layer, for example, a plurality of silver tabular grain-containing layers each including silver tabular grains having different aspect ratios. It may be configured. When comprised with a several silver tabular grain content layer, it becomes possible to provide the shielding performance according to the wavelength range which wants to provide thermal insulation performance.
  • tin dope indium oxide (henceforth "ITO")
  • a tin dope antimony oxide (henceforth).
  • ATO tin dope antimony oxide
  • ITO, ATO, and zinc oxide are more preferable, and infrared rays having a wavelength of 1,200 nm or more are 90% in that they have excellent heat ray absorption ability and can produce heat ray shielding materials having a wide range of heat ray absorption ability when combined with silver tabular grains.
  • ITO is preferable in that it has a visible light transmittance of 90% or more.
  • the volume average particle size of the primary particles of the metal oxide particles is preferably 0.1 ⁇ m or less in order not to reduce the visible light transmittance.
  • limiting in particular as a shape of the said metal oxide particle According to the objective, it can select suitably, For example, spherical shape, needle shape, plate shape, etc. are mentioned.
  • 0.1 g / m 2 to 20 g / m 2 is preferable, 0.5 g / m 2 to 10 g / m 2 is more preferable, and 1.0 g / m 2 to 4.0 g / m 2 is more preferable. If the content is less than 0.1 g / m 2 , the amount of solar radiation felt on the skin may increase, and if it exceeds 20 g / m 2 , the visible light transmittance may deteriorate.
  • the content of the metal oxide particles in the heat ray shielding layer is, for example, from the observation of the super foil section TEM image and the surface SEM image of the heat ray shielding layer, the number of metal oxide particles and the average particle diameter in a certain area. And the mass (g) calculated on the basis of the number and average particle diameter and the specific gravity of the metal oxide particles is divided by the constant area (m 2 ).
  • metal oxide fine particles in a certain area of the heat ray shielding layer are eluted in methanol, and the mass (g) of the metal oxide fine particles measured by fluorescent X-ray measurement is divided by the constant area (m 2 ). It can also be calculated.
  • polyvinyl acetal type resins such as polyvinyl butyral (PVB) resin; Polyvinyl alcohol (PVA) type resin; Polyvinyl chloride type resin; Polyester resins such as polyethylene terephthalate (PET); polyurethane resins; ethylene-vinyl acetate copolymers (EVA); polyamide resins; epoxy resins; acrylic resins such as polyacrylate resins and polymethyl methacrylate resins; And natural polymers such as gelatin and cellulose.
  • polyvinyl butyral (PVB) resin and ethylene-vinyl acetate copolymer (EVA) are particularly preferable.
  • ingredients for the heat ray shielding layer, various additives, for example, a solvent, a surfactant, an antioxidant, an antisulfurizing agent, a corrosion inhibitor, an infrared absorber, an ultraviolet absorber, a colorant, viscosity adjustment, as necessary. Agents, preservatives and the like.
  • the shape, structure, size, material and the like of the substrate are not particularly limited and can be appropriately selected depending on the purpose. Examples of the shape include a flat plate shape, and the like.
  • the structure may be a single layer structure or a laminated structure, and the size may be appropriately selected according to the size of the heat ray shielding material.
  • the material for the substrate is not particularly limited and may be appropriately selected depending on the intended purpose.
  • polyethylene terephthalate (PET), polyethylene-2,6-naphthalate (PEN), polycarbonate, polyimide (PI) examples thereof include polyethylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, and styrene-acrylonitrile copolymer. These may be used individually by 1 type and may use 2 or more types together.
  • PET polyethylene terephthalate
  • the surface of the base material is preferably subjected to a surface activation treatment in order to improve adhesion with the heat ray shielding layer thereon. Examples of the surface activation treatment include glow discharge treatment and corona discharge treatment.
  • the base material may be appropriately synthesized or a commercially available product may be used. There is no restriction
  • the said silver tabular grain and the said metal oxide particle are in the said binder by the apply
  • examples thereof include a method of forming a mixed and dispersed heat ray shielding layer and a method of forming a heat ray shielding layer in which the silver tabular grain-containing layer and the metal oxide particle layer are laminated on the surface of the substrate.
  • the dispersion liquid which contains the said silver tabular grain and the said binder at least on a base material For example, the dispersion liquid which contains the said silver tabular grain and the said binder at least on a base material.
  • a method of plane orientation using electrostatic interaction may be used.
  • the surface of the silver tabular grain is negatively charged (for example, dispersed in a negatively charged medium such as citric acid)
  • the surface of the base material is positively charged (for example, an amino group).
  • the surface of the base material may be modified by, for example, modifying the surface of the substrate by electrostatically increasing the surface orientation.
  • the surface of the silver tabular grains is hydrophilic
  • the surface of the base material is formed with a hydrophilic / hydrophobic sea-island structure by block copolymer or ⁇ contact stamp method, etc. You may control orientation and the distance between the grains of a silver tabular grain.
  • stimulate plane orientation after apply
  • the dispersion liquid which contains at least the said metal oxide particle and the said binder on a base material.
  • coating this by a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, etc. are mentioned.
  • a commercial item can be used. Examples of the commercially available product include ITO hard coat coating solution EI-1 (manufactured by Mitsubishi Materials Corporation).
  • the method for forming a heat ray shielding layer (mixed dispersion layer) in which the silver tabular grains and the metal oxide particles are mixed and dispersed in the binder is not particularly limited and can be appropriately selected according to the purpose.
  • a method of applying a dispersion liquid containing at least the silver tabular grains, the metal oxide particles, and the binder on a substrate with a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, etc. Is mentioned.
  • the visible light transmittance of the heat ray shielding material of the present invention is preferably 60% or more, and more preferably 65% or more. When the visible light transmittance is less than 60%, for example, when used as glass for automobiles or glass for buildings, the outside may be difficult to see.
  • the average transmittance of the heat ray shielding material of the present invention at 780 nm to 2,000 nm is preferably 30% or less, more preferably 20% or less, from the viewpoint that the efficiency of the heat ray shielding rate can be increased.
  • the heat ray shielding material of the present invention has a visible light transmittance of 65% or more and an average transmittance of 20% or less at a wavelength of 780 nm to 2,000 nm.
  • the “visible light transmittance” is a value obtained by measuring each sample by the method described in JIS-R3106: 1998 “Testing method of transmittance, reflectance, emissivity, and solar radiation acquisition rate of plate glass”. It is an average value of values obtained by correcting the transmittance of each wavelength measured from 380 nm to 780 nm by the spectral visibility of each wavelength.
  • the “average transmittance” in the near infrared is an average value of the transmittance of each wavelength measured for each sample in a predetermined near infrared wavelength range (for example, 780 nm to 2,000 nm).
  • the haze of the heat ray shielding material of the present invention is preferably 20% or less, more preferably 10% or less, and particularly preferably 3% or less. When the haze exceeds 20%, for example, when used as glass for automobiles or glass for buildings, the outside may become difficult to see or may be unfavorable for safety.
  • the heat ray shielding material of the present invention is not particularly limited as long as it is an embodiment used for selectively reflecting or absorbing heat rays (near infrared rays), and may be appropriately selected according to the purpose.
  • Examples thereof include glass or film, glass or film for building materials, and agricultural film. Among these, from the point of an energy saving effect, it is preferable that they are glass or film for vehicles, and glass or film for building materials.
  • heat rays mean near infrared rays (780 nm to 2,500 nm) contained in sunlight by about 50%.
  • the method for producing the glass is not particularly limited and may be appropriately selected depending on the purpose. Further, an adhesive layer is formed on the heat ray shielding material produced as described above, and glass for vehicles such as automobiles or the like. It can be used by being laminated to glass for building materials or sandwiched between PVB intermediate film and EVA intermediate film used for laminated glass. Further, only the heat ray shielding layer containing the silver tabular grains and the metal oxide particles may be transferred to a PVB intermediate film, an EVA intermediate film, etc., and used with the substrate peeled off.
  • silver tabular grain dispersion liquid a it was confirmed that silver hexagonal tabular grains having an average equivalent-circle diameter of 210 nm (hereinafter referred to as Ag hexagonal tabular grains) were formed. Moreover, when the thickness of the hexagonal tabular grains was measured with an atomic force microscope (Nanocute II, manufactured by Seiko Instruments Inc.), it was found that tabular grains having an average of 18 nm and an aspect ratio of 11.7 were produced. . Next, about the obtained silver tabular grain and the heat ray shielding material, various characteristics were evaluated as follows. The results are shown in Table 1.
  • the shape uniformity of the Ag tabular grains is defined as 200 grains arbitrarily extracted from the observed SEM image, A being substantially hexagonal or substantially disc shaped grains, and B being irregularly shaped grains such as teardrops. Image analysis was performed to determine the ratio (number%) of the number of particles corresponding to A. Similarly, the particle diameter of 100 particles corresponding to A is measured with a digital caliper, the average value is defined as the average particle diameter (average equivalent circle diameter), and the standard deviation of the particle size distribution is the average particle diameter (average equivalent circle diameter). ) To obtain the coefficient of variation (%).
  • the obtained dispersion containing tabular silver particles is dropped on a glass substrate and dried, and the thickness of one tabular silver particle is measured using an atomic force microscope (AFM) (Nanocute II, manufactured by Seiko Instruments Inc.). It was measured.
  • the measurement conditions using the AFM were a self-sensing sensor, DFM mode, a measurement range of 5 ⁇ m, a scanning speed of 180 seconds / frame, and a data point of 256 ⁇ 256.
  • the aspect ratio was calculated by dividing the average particle diameter (average equivalent circle diameter) by the average grain thickness from the average grain diameter (average equivalent circle diameter) and average grain thickness of the obtained silver tabular grains.
  • Production Example 3 In Production Example 1, 87.1 mL of ion-exchanged water was not added, the addition amount of the seed crystal solution was changed to 127.6 mL, and instead of adding 72 mL of 0.83 mol / L NaOH aqueous solution, 0. A silver tabular grain dispersion liquid c was prepared in the same manner as in Production Example 1 except that 72 mL of a 08 mol / L NaOH aqueous solution was added.
  • Production Example 4 In Production Example 3, except that 132.7 mL of 2.5 mmol / L sodium citrate aqueous solution was not added and the amount of the seed crystal solution was changed to 255.2 mL, the same as in Production Example 3, A silver tabular grain dispersion liquid d was prepared.
  • Production Example 6 In Production Example 1, the amount of the seed crystal solution was changed from 42.4 mL to 21.2 mL, and 21.2 mL of ion-exchanged water was added. Produced.
  • Example 1 Preparation of tabular grain plane orientation layer- 0.75 mL of 1N NaOH is added to 16 mL of the tabular silver particle dispersion e of Production Example 5 and 24 mL of ion-exchanged water is added.
  • the centrifugal separator (Kokusan, H-200N, Amble Rotor BN) is 5,000 rpm, Centrifugation was performed for 5 minutes to precipitate Ag hexagonal tabular grains. The supernatant liquid after centrifugation was discarded, 5 mL of water was added, and the precipitated Ag hexagonal tabular grains were redispersed.
  • thermal barrier film 1 is sandwiched from both surfaces by a polyvinyl butyral film for automobiles (manufactured by Solusia) having a thickness of 0.38 mm, and further sandwiched by 2 mm thick glass plates from both surfaces of the laminate (each size in the plane direction is 50 mm square) did). In that state, it was temporarily pressure-bonded through a roll laminator having a metal roll heated at 60 ° C. The temporarily pressure-bonded sample was put in an autoclave and subjected to main pressure bonding under the conditions of 130 ° C., 30 minutes, and 13 atm to obtain the heat shielding glass 1 of Example 1.
  • the SEM image obtained by observing with a scanning electron microscope (SEM) is binarized, and the area A of the base material when the thermal insulation film is viewed from above (with respect to the thermal insulation film)
  • the area ratio [(B / A) ⁇ 100] which is the ratio of the total area B of the silver tabular grains to the total projected area A) of the thermal barrier film when viewed from the vertical direction, was determined.
  • the transmission spectrum of the obtained thermal barrier film was evaluated according to JIS which is an evaluation standard for automotive glass.
  • the transmission spectrum was evaluated using an ultraviolet-visible-near infrared spectrometer (manufactured by JASCO Corporation, V-670).
  • the incident light passed through a 45 ° polarizing plate and was made incident light that can be regarded as non-polarized light.
  • 6 is a graph showing the spectral spectrum of the shielding film 1 obtained in Example 1.
  • the visible light transmittance is a value measured for each sample by the method described in JIS-R3106: 1998 “Testing method of transmittance, reflectance, emissivity, and solar radiation acquisition rate of plate glass”, and measured from 380 nm to 780 nm.
  • the initial near-infrared transmittance is an average value of transmittance at each wavelength when each sample is measured from 780 nm to 2,000 nm.
  • -Light resistance- Light resistance is the value of the light resistance of the shielding performance as a percentage of the ratio of the initial near-infrared transmittance to the near-infrared transmittance after the test when a certain light resistance test is imposed on each sample. did. The line that should be good was 90% or more.
  • the constant light resistance test is a test in which exposure is performed at 180 W / m, 63 ° C., 30% RH, 1,000 hours using a sunshine weather meter (Suga Test Instruments, Xenon lamp irradiation).
  • the content of the silver tabular grains in the heat ray shielding layer and the content of the ITO particles in the heat ray shielding layer are obtained by eluting the silver tabular grains and ITO particles in a fixed area of the heat ray shielding layer (coating film) into methanol, and fluorescent X-rays.
  • the mass of each of the silver tabular grains and the ITO grains was measured by measurement, and the mass was calculated by dividing each mass by the constant area.
  • Example 2 Provide of thermal barrier film and thermal barrier glass-
  • Example 1 instead of using the silver tabular grain dispersion e of Production Example 5, the heat shielding of Example 2 was performed in the same manner as in Example 1 except that the silver tabular grain dispersion b of Production Example 2 was used. A film 2 and a thermal barrier glass 2 were produced.
  • Example 3 Preparation of silver tabular grain random orientation layer- 0.75 mL of 1N NaOH is added to 16 mL of silver tabular grain dispersions c, d and f of Production Examples 3, 4 and 6, respectively, 24 mL of ion-exchanged water is added, and a centrifuge (Hokusan, H-200N, Centrifugation was performed at 5,000 rpm for 5 minutes with an amble rotor BN) to precipitate Ag hexagonal tabular grains. The supernatant liquid after centrifugation was discarded, 5 mL of water was added, and the precipitated Ag hexagonal tabular grains were redispersed.
  • a centrifuge Hokusan, H-200N, Centrifugation was performed at 5,000 rpm for 5 minutes with an amble rotor BN
  • aqueous solution containing 10% by weight of gelatin was added to these three dispersions and then mixed to prepare a coating solution.
  • This coating solution was applied to a wire coating bar No. 14 (manufactured by RD Webster NY) was applied onto a PET film and dried to obtain a PET film in which Ag hexagonal tabular grains were randomly oriented in the vicinity of the surface.
  • the silver tabular grain random orientation layer was produced by the above.
  • Example 1 Provides thermal barrier film and thermal barrier glass- In Example 1, it replaced with the silver tabular grain plane orientation layer, and obtained the thermal insulation film 3 and the thermal insulation glass 3 of Example 3 like Example 1 except having used the silver tabular grain random orientation layer. .
  • Example 4 Provide of thermal barrier film and thermal barrier glass-
  • Example 3 instead of using the silver tabular grain dispersions c, d, and f of Production Examples 3, 4, and 6, Example except that the silver tabular grain dispersions a and e of Production Examples 1 and 5 were used.
  • Example 3 In the same manner as in Example 3, the thermal barrier film 4 and the thermal barrier glass 4 of Example 4 were produced.
  • Example 5 Mixed dispersion
  • a silver tabular grain random alignment layer is prepared using a B4 size large glass plate instead of the PET film, and the silver tabular random alignment layer is scraped off from the glass surface using a single-blade razor. This is performed for 10 sheets, and the silver flat plate-containing powder is collected.
  • an ITO hard coat coating solution manufactured by Mitsubishi Materials Corporation, EI-1 was dried on another B4 size large glass plate so that the layer thickness after drying was 1.5 ⁇ m. 10 (manufactured by RD Webster NY Co.), and the obtained ITO particle-containing layer is scraped off from the glass surface using a single blade razor. This is performed for 10 sheets, and the ITO particle-containing powder is collected.
  • the above-mentioned silver flat plate-containing powder and ITO particle-containing powder are heated to 150 ° C. and mixed to form a pellet.
  • To 10 parts by mass of the pellet 90 parts by mass of ethanol is added and dissolved to obtain a coating solution.
  • the wire coating bar No. 1 was coated on a PET film so that the layer thickness after drying was 1.5 ⁇ m. 10 (RDS Webster NY Co., Ltd.) was applied to obtain a thermal barrier film 5 of Example 5.
  • Example 1 the heat shielding glass 5 of Example 5 was obtained in the same manner as in Example 1 except that the heat shielding film 5 was used in place of the heat shielding film 1.
  • the wire coating bar no. 10 (RDS Webster NY Co., Ltd.) coated on a 50 ⁇ m thick PET film (A4300, manufactured by Toyobo Co., Ltd.) and dried at 100 ° C. for 3 minutes to contain a diimonium organic pigment A PET film containing the layer was obtained.
  • the wire coating bar No. is applied so that the layer thickness after drying of the ITO hard coat coating solution (Mitsubishi Materials Co., Ltd., EI-1) is 1.5 ⁇ m on the reverse side of the PET film on the side coated with the diimonium-based material.
  • the heat shield film A of Comparative Example 1 corresponds to the heat ray shield film described in JP-A-2008-20525.
  • Example 1 -Production of thermal barrier glass- In Example 1, it replaced with the heat insulation film 1, and except having used the heat insulation film A, it carried out similarly to Example 1, and obtained the heat insulation glass A of the comparative example 1.
  • FIG. 1 shows that in Example 1, it replaced with the heat insulation film 1, and except having used the heat insulation film A, it carried out similarly to Example 1, and obtained the heat insulation glass A of the comparative example 1.
  • thermo barrier film- Wire coating bar No. (Comparative Example 2: ITO single dispersion layer) -Production of thermal barrier film- Wire coating bar No. was applied to the surface of a 50 ⁇ thick PET film (A4300, manufactured by Toyobo Co., Ltd.) so that the ITO hard coat coating solution (EI-1 manufactured by Mitsubishi Materials Corporation) would have a layer thickness of 1.5 ⁇ m after drying. . 10 (manufactured by R.D.S Webster NY) was used to obtain a thermal barrier film B of Comparative Example 2.
  • heat-insulating glass B of Comparative Example 2 was obtained in the same manner as Example 1 except that heat-insulating film B was used instead of heat-insulating film 1.
  • Example 3 Silver tabular grain single dispersion layer
  • the heat-shielding film and the shielding glass produced by the production method of the present invention have a high visible light transmittance of 65% or more while maintaining the radio wave permeability, exhibiting high light resistance,
  • the near infrared ray of 780 nm to 2,000 nm could be shielded in a wide band, and the average transmittance in the near infrared ray was 20% or less.
  • the heat ray shielding material of the present invention is excellent in visible light transmittance, radio wave permeability, and light resistance, can shield near infrared rays in a wide band, and has a high near infrared shielding rate.
  • glass for vehicles such as automobiles and buses It can be suitably used as various members that are required to prevent transmission of heat rays, such as glass for building materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

【課題】可視光線透過性、電波透過性、及び耐光性に優れ、近赤外線を広帯域に遮蔽でき、近赤外線の遮蔽率が高い熱線遮蔽材の提供。 【解決手段】銀平板粒子と、金属酸化物粒子とを含む熱線遮蔽層を有する熱線遮蔽材である。前記金属酸化物粒子が、錫ドープ酸化インジウム粒子である態様、前記熱線遮蔽層が、銀平板粒子と金属酸化物粒子とがバインダー内に混合分散された態様、前記熱線遮蔽層が、銀平板粒子を含む銀平板粒子含有層と、金属酸化物を含む金属酸化物含有層とが積層された態様などが好ましい。

Description

熱線遮蔽材
 本発明は、可視光線透過性、電波透過性、及び耐光性に優れ、近赤外線を広帯域に遮蔽でき、近赤外線の遮蔽率が高い熱線遮蔽材に関する。
 近年、二酸化炭素削減のための省エネルギー施策の一つとして、自動車や建物の窓に対する熱線遮蔽性付与材料が開発されている。例えば、金属Ag薄膜は、その反射率の高さから、熱線反射材として一般に使用されているが、可視光や熱線だけでなく電波も反射してしまうため、可視光透過性及び電波透過性が低いことが問題となっていた。可視光透過性を上げるために、Ag及びZnO多層膜を利用したLow-Eガラス(例えば、旭硝子株式会社製)は、広く建物に採用されているが、Low-Eガラスは、ガラス表面に金属Ag薄膜が形成されているため、電波透過性が低いという問題があった。
 前記課題を解決するため、例えば、電波透過性を付与した島状Ag粒子付きガラスが提案されている。蒸着により製膜したAg薄膜をアニールすることにより、粒状Agを形成したガラスが提案されている(特許文献1参照)。しかし、この提案では、アニールにより粒状Agを形成しているため、粒子サイズ、形状、面積率などを制御することが難しく、熱線の反射波長、帯域等の制御、可視光透過率の向上などが難しいという問題があった。
 また、赤外線遮蔽フィルタとして、Ag平板粒子を用いたフィルタが提案されている(特許文献2~6参照)。しかし、これらの提案は、いずれもプラズマディスプレイパネルに用いることを意図したものであり、また、赤外域の波長光の吸収能を向上させるために体積の小さな粒子を用いており、熱線を遮蔽する材料(熱線を反射する材料)としてAg平板粒子を用いるものではなかった。
 一方、透明電極に用いられる錫ドープ酸化インジウム(ITO)粒子は、1,200nm以上の遮蔽率90%以上、かつ可視透過率90%を確保している。しかし、熱エネルギーの高い800nm~1,200nmの波長範囲の近赤外線を遮蔽できないという問題があった。
 また、ITO粒子を含む熱線遮断層と、有機系熱線遮蔽物質であるジイモニウム系物質及び紫外線吸収物質を含む熱線遮断層とを有する熱線遮蔽フィルムが提案されている(特許文献7参照)。しかし、可視光透過率が60%であり不十分であるという問題があった。また、ジイモニウム系物質については耐光性が不十分であり、紫外線吸収物質を同一層に含んでいてもなお、熱線吸収によるフィルム自体の発熱、太陽光に含まれる紫外線などにより劣化し、熱線遮蔽効果がすぐに低下してしまうという問題があった。
特許第3454422号公報 特開2007-108536号公報 特開2007-178915号公報 特開2007-138249号公報 特開2007-138250号公報 特開2007-154292号公報 特開2008-020525号公報
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、可視光線透過性、電波透過性、及び耐光性に優れ、近赤外線を広帯域に遮蔽でき、近赤外線の遮蔽率が高い熱線遮蔽材を提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 銀平板粒子と、金属酸化物粒子とを含む熱線遮蔽層を有することを特徴とする熱線遮蔽材である。
 <2> 金属酸化物粒子が、錫ドープ酸化インジウム粒子である前記<1>に記載の熱線遮蔽材である。
 <3> 銀平板粒子が、略六角形状乃至略円盤形状の銀平板粒子を60個数%以上有する前記<1>から<2>のいずれかに記載の熱線遮蔽材である。
 <4> 銀平板粒子の粒度分布における変動係数が、30%以下である前記<1>から<3>のいずれかに記載の熱線遮蔽材である。
 <5> 銀平板粒子の平均粒子径が、40nm~400nmであり、銀平板粒子のアスペクト比(平均粒子径/平均粒子厚み)が、5~100である前記<1>から<4>のいずれかに記載の熱線遮蔽材である。
 <6> 銀平板粒子の熱線遮蔽層における含有量が、0.02g/m~0.20g/mである前記<1>から<5>のいずれかに記載の熱線遮蔽材である。
 <7> 金属酸化物粒子の熱線遮蔽層における含有量が、1.0g/m~4.0g/mである前記<1>から<6>のいずれかに記載の熱線遮蔽材である。
 <8> 可視光透過率が65%以上であり、かつ波長780nm~2,000nmにおける平均透過率が20%以下である前記<1>から<7>のいずれかに記載の熱線遮蔽材である。
 <9> 熱線遮蔽層が、銀平板粒子と金属酸化物粒子とがバインダー内に混合分散された前記<1>から<8>のいずれかに記載の熱線遮蔽材である。
 <10> 熱線遮蔽層が、銀平板粒子を含む銀平板粒子含有層と、金属酸化物を含む金属酸化物含有層とが積層された前記<1>から<8>のいずれかに記載の熱線遮蔽材である。
 本発明によると、従来における前記諸問題を解決し、前記目的を達成することができ、可視光線透過性、電波透過性、及び耐光性に優れ、近赤外線を広帯域に遮蔽でき、近赤外線の遮蔽率が高い熱線遮蔽材を提供することができる。
図1は、本発明の熱線遮蔽材の一例を示す概略図である。 図2は、本発明の熱線遮蔽材の他の一例を示す概略図である。 図3Aは、本発明の熱線遮蔽材に含まれる平板粒子の形状の一例を示した概略斜視図であって、略円盤形状の平板粒子を示す。 図3Bは、本発明の熱線遮蔽材に含まれる平板粒子の形状の一例を示した概略斜視図であって、略六角形状の平板粒子を示す。 図4Aは、本発明の熱線遮蔽材において、銀平板粒子と金属酸化物粒子とが混合分散された熱線遮蔽層の存在状態を示した概略断面図である。 図4Bは、本発明の熱線遮蔽材において、銀平板粒子を含む銀平板粒子含有層及び金属酸化物粒子を含む金属酸化物粒子含有層の存在状態を示した概略断面図である。 図4Cは、本発明の熱線遮蔽材において、銀平板粒子を含む銀平板粒子含有層及び金属酸化物粒子を含む金属酸化物粒子含有層の存在状態を示した概略断面図であって、基材の平面と銀平板粒子の平面とのなす角度(θ)を説明する図である。 図5は、実施例1で得られた熱線遮蔽材のSEM写真であって、20,000倍で観察したものを示す。 図6は、実施例1で得られた熱線遮蔽材の分光スペクトルを示すグラフである。
(熱線遮蔽材)
 本発明の熱線遮蔽材は、少なくとも銀平板粒子と、金属酸化物粒子とを含む熱線遮蔽層を有してなり、必要に応じて、基材などのその他の層を有する。
 前記熱線遮蔽材の層構成としては、図1に示すように、基材11と、該基材上に銀平板粒子と金属酸化物粒子とが混合分散された熱線遮蔽層12を有する態様、図2に示すように、基材11と、該基材上に銀平板粒子含有層13及び金属酸化物含有層14が積層された熱線遮蔽層12とを有する態様などが挙げられる。
<熱線遮蔽層>
 前記熱線遮蔽層は、その形状、構造、大きさなどについては特に制限はなく、目的に応じて適宜選択することができ、例えば、前記形状としては平板状などが挙げられ、前記構造としては単層構造であってもよいし、積層構造であってもよく、前記大きさとしては用途等に応じて適宜選択することができる。
 前記熱線遮蔽層としては、第一の実施形態として、前記銀平板粒子と前記金属酸化物粒子とがバインダー内に混合分散された態様、第二の実施形態として、銀平板粒子含有層と、金属酸化物含有層とが積層された態様などが挙げられ、いずれの態様も好ましく用いることができる。
 第一の実施形態では、前記熱線遮蔽層は、少なくとも銀平板粒子と、金属酸化物粒子と、バインダーとを含有してなり、更に必要に応じてその他の成分を含有する。
 第一の実施形態における前記熱線遮蔽層は、前記銀平板粒子と前記金属酸化物粒子とがバインダー内に混合分散された単層構造であってもよく、複層構造であってもよいが、生産性の点で、単層構造であることが好ましい。また、前記銀平板粒子と前記金属酸化物粒子とが、バインダー内に混合分散された混合液を塗布することにより、平面及び曲面のいずれの形状を有する基材表面上においても前記熱線遮蔽層を形成することができる点で好ましく、曲面の形状を有する基材表面上に前記熱線遮蔽層を形成することができる点でより好ましい。
 第二の実施形態では、前記熱線遮蔽層は、少なくとも銀平板粒子含有層と、金属酸化物粒子含有層とを積層してなる。前記銀平板粒子含有層は、少なくとも銀平板粒子と、バインダーとを含有してなり、更に必要に応じてその他の成分を含有する。前記金属酸化物含有層は、少なくとも金属酸化物粒子と、バインダーとを含有してなり、更に必要に応じてその他の成分を含有する。
 前記銀平板粒子の前記銀平板粒子含有層における配向としては、後述するように面配向(反射型)であってもよく、ランダム配向(吸収型)であってもよい。
 第一及び第二のいずれの実施形態においても、柔軟なバインダーと共に前記熱線遮蔽層を形成することができ、よって、得られた前記熱線遮蔽材を曲面に適用できる点で好ましい。
 前記熱線遮蔽層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、0.01μm~10μmが好ましい。
-銀平板粒子-
 前記銀平板粒子としては、形状などについては特に制限はなく、目的に応じて適宜選択することができるが、略三角平板状、略六角平板状、及びこれらの角が取れた略円盤状の銀平板粒子の少なくともいずれかが好ましい。
 前記銀平板粒子の材料としては、少なくとも銀を含む限り、特に制限はなく、目的に応じて適宜選択することができるが、熱線(近赤外線)の遮蔽率が高い金、アルミニウム、銅、ロジウム、ニッケル、白金等の金属などを更に含んでいてもよい。
 前記銀平板粒子の前記熱線遮蔽層における含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、第一及び第二のいずれの実施形態においても、0.01g/m~1.00g/mが好ましく、0.02g/m~0.20g/mがより好ましい。
 前記含有量が、0.01g/m未満であると、熱線遮蔽が不十分になることがあり、1.00g/mを超えると、可視透過率が落ちることがある。一方、前記含有量が、0.02g/m~0.20g/mであると、十分な熱線遮蔽と可視透過率の点で有利である。
 なお、前記銀平板粒子の前記熱線遮蔽層における含有量は、例えば、以下のようにして算出することができる。前記熱線遮蔽層の超箔切片TEM像及び表面SEM像の観察から、一定面積における銀平板粒子の個数、平均粒子径及び平均厚みを測定する。或いは、平均厚みに関しては、当該熱線遮蔽層に使用している銀平板粒子をバインダー添加無しで分散液状態にてガラス板に塗布し、その表面を原子間力顕微鏡にて測定することにより、更に正確な平均厚みを測定することができる。このようにして測定した銀平板粒子の個数、平均粒子径及び平均厚みと、銀平板粒子の比重とに基づいて算出した銀平板粒子の質量(g)を、前記一定面積(m)で除することにより算出することができる。また、前記熱線遮蔽層の一定面積における銀平板粒子をメタノールに溶出させ、蛍光X線測定により測定した銀平板粒子の質量(g)を、前記一定面積(m)で除することにより算出することもできる。
 前記銀平板粒子としては、2つの主平面からなる粒子(図3A及び図3B参照)であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、略六角形状、略円盤形状、略三角形状などが挙げられる。これらの中でも、可視光透過率が高い点で、略六角形状乃至略円盤形状が特に好ましい。
 前記略円盤形状としては、透過型電子顕微鏡(TEM)で銀平板粒子を主平面の上方から観察した際に、角が無く、丸い形状であれば特に制限はなく、目的に応じて適宜選択することができる。
 前記略六角形状としては、透過型電子顕微鏡(TEM)で銀平板粒子を主平面の上方から観察した際に、略六角形状であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、六角形状の角が鋭角のものでも、鈍っているものでもよい。
 前記略六角形状乃至略円盤形状の銀平板粒子の割合としては、銀平板粒子の全個数に対して、60個数%以上が好ましく、65個数%以上がより好ましく、70個数%以上が特に好ましい。前記銀平板粒子の割合が、60個数%未満であると、可視光線透過率が低くなってしまうことがある。
[平均粒子径(平均円相当径)及び平均粒子径(平均円相当径)の粒度分布]
 前記銀平板粒子の平均粒子径(平均円相当径)としては、特に制限はなく、目的に応じて適宜選択することができるが、40nm~400nmが好ましく、60nm~350nmがより好ましい。前記平均粒子径(平均円相当径)が、40nm未満であると、銀平板粒子の吸収の寄与が反射より大きくなるため十分な熱線遮蔽能が得られなくなることがあり、400nmを超えると、ヘイズ(散乱)が大きくなり、基材の透明性が損なわれてしまうことがある。
 ここで、前記平均粒子径(平均円相当径)とは、TEMで粒子を観察して得た像から任意に選んだ200個の平板粒子の主平面直径(最大長さ)の平均値を意味する。
 前記熱線遮蔽層中に平均粒子径(平均円相当径)が異なる2種以上の銀平板粒子を含有することができ、この場合、銀平板粒子の平均粒子径(平均円相当径)のピークが2つ以上、即ち2つの平均粒子径(平均円相当径)を有していてもよい。
 本発明の熱線遮蔽材において、銀平板粒子の粒度分布における変動係数としては、30%以下が好ましく、10%以下がより好ましい。前記変動係数が、30%を超えると、熱線遮蔽材における熱線の遮蔽波長域がブロードになってしまうことがある。
 ここで、前記銀平板粒子の粒度分布における変動係数は、例えば、前記の通り得た平均値の算出に用いた200個の銀平板粒子の粒子径の分布範囲をプロットし、粒度分布の標準偏差を求め、前記の通り得た主平面直径(最大長さ)の平均値(平均粒子径(平均円相当径))で割った値(%)である。
[アスペクト比]
 前記銀平板粒子のアスペクト比としては、特に制限はなく、目的に応じて適宜選択することができるが、波長780nm~2,000nmの赤外光領域での遮蔽率が高くなる点から、2~200が好ましく、5~100がより好ましい。前記アスペクト比が、2未満であると、遮蔽波長が780nmより小さくなり、200を超えると、遮蔽波長が2,300nmより長くなり、十分な熱線遮蔽能が得られないことがある。
 前記アスペクト比は、銀平板粒子の平均粒子径(平均円相当径)を銀平板粒子の平均粒子厚みで除算した値を意味する。平均粒子厚みは、銀平板粒子の主平面間距離に相当し、例えば、図3A及び図3Bに示す通りであり、原子間力顕微鏡(AFM)により測定することができる。
 前記AFMによる平均粒子厚みの測定方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラス基板に銀平板粒子を含有する粒子分散液を滴下し、乾燥させて、銀平板粒子1個の厚みを測定する方法などが挙げられる。
-銀平板粒子の製造方法-
 前記銀平板粒子の製造方法としては、略六角形状乃至略円盤形状を合成し得るものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、化学還元法、光化学還元法、電気化学還元法等の液相法などが挙げられる。これらの中でも、形状とサイズ制御性の点で、化学還元法、光化学還元法などの液相法が特に好ましい。六角形乃至三角形状の銀平板粒子を合成後、例えば硝酸、亜硫酸ナトリウム、Br、Cl等のハロゲンイオンなどの銀を溶解する溶解種によるエッチング処理、又は加熱によるエージング処理を行うことにより、六角形乃至三角形状の銀平板粒子の角を鈍らせて、略六角形状乃至略円盤形状の銀平板粒子を得てもよい。
 なお、前記銀平板粒子の製造方法としては、前記の他、予めフイルムやガラスなどの透明基材の表面に種晶を固定後、平板状に金属粒子(例えばAg)を結晶成長させてもよい。
 前記銀平板粒子は、所望の特性を付与するために、更なる処理を施してもよい。前記更なる処理としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、高屈折率シェル層の形成、分散剤、酸化防止剤等の各種添加剤を添加することなどが挙げられる。
--高屈折率シェル層の形成--
 前記銀平板粒子は、可視光域透明性を更に高めるために、可視光域透明性が高い高屈率材料で被覆されてもよい。
 前記高屈折率材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、TiO、BaTiO、ZnO、SnO、ZrO、NbOなどが挙げられる。
 前記被覆する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、Langmuir、2000年、16巻、p.2731-2735に報告されているようにテトラブトキシチタンを加水分解することにより銀平板粒子の表面にTiO層を形成する方法であってもよい。
 また、前記銀平板粒子に直接高屈折率金属酸化物層シェルを形成することが困難な場合は、前記の通り銀平板粒子を合成した後、適宜SiOやポリマーのシェル層を形成し、更に、このシェル層上に前記金属酸化物層を形成してもよい。TiOを高屈折率金属酸化物層の材料として用いる場合には、TiOが光触媒活性を有することから、銀平板粒子を分散するマトリクスを劣化させてしまう懸念があるため、目的に応じて銀平板粒子にTiO層を形成した後、適宜SiO層を形成してもよい。
--各種添加物の添加--
 前記銀平板粒子は、該銀平板粒子を構成する銀などの金属の酸化を防止するために、メルカプトテトラゾール、アスコルビン酸等の酸化防止剤を吸着していてもよい。また、酸化防止を目的として、Ni等の酸化犠牲層が銀平板粒子の表面に形成されていてもよい。また、酸素を遮断することを目的として、SiOなどの金属酸化物膜で被覆されていてもよい。
 前記銀平板粒子は、分散性付与を目的として、例えば、4級アンモニウム塩、アミン類等のN元素、S元素、及びP元素の少なくともいずれかを含む低分子量分散剤、高分子量分散剤などの分散剤を添加してもよい。
[面配向]
 前記熱線遮蔽材において、銀平板粒子は、その主平面が熱線遮蔽層の一方の表面(熱線遮蔽材が基材を有する場合は、基材表面)に対してランダムに配向していてもよく、所定の範囲で面配向していてもよい。前者のランダム配向型は、主に赤外線吸収型として機能し、簡便に前記熱線遮蔽層乃至前記銀平板粒子含有層を形成できる点で好ましく、後者の面配向型は、主に赤外線反射型として機能し、より遮熱性能に優れる点で好ましく、いずれも好適に用いることができる。前記銀平板粒子含有層において、前記銀平板粒子は、所定の範囲で面配向することが好ましい。
 前記銀平板粒子は、特に制限はなく、目的に応じて適宜選択することができるが、熱線遮蔽率を高める点で、後述する図4Cのように熱線遮蔽層の一方の表面(熱線遮蔽材が基材を有する場合は、基材表面)に対して略水平に偏在していることが好ましい。
 前記面配向としては、銀平板粒子の主平面と、熱線遮蔽層の一方の表面(熱線遮蔽材が基材を有する場合は、基材表面)とが、所定の範囲内で略平行になっている態様であれば、特に制限はなく、目的に応じて適宜選択することができ、面配向の角度は、0°~±30°が好ましく、0°~±20°がより好ましい。
 ここで、図4A~図4Cは、本発明の熱線遮蔽材において、銀平板粒子を含む熱線遮蔽層の存在状態を示した概略断面図である。図4Aは、銀平板粒子1と金属酸化物粒子2とが混合分散された熱線遮蔽層12の存在状態を示す。図4Bは、銀平板粒子1を含む銀平板粒子含有層13及び金属酸化物粒子2を含む金属酸化物粒子含有層14において、銀平板粒子がランダム配向する存在状態を示した図である。図4Cは、銀平板粒子1を含む銀平板粒子含有層13及び金属酸化物粒子2を含む金属酸化物粒子含有層14において、銀平板粒子が面配向する存在状態を示した図であり、熱線遮蔽層12の平面と銀平板粒子1の平面とのなす角度(±θ)を説明する図である。
 図4Cにおいて、熱線遮蔽層12の平面と、銀平板粒子1の主平面乃至主平面の延長線とのなす角度(±θ)は、前記の面配向における所定の範囲に対応する。即ち、面配向とは、熱線遮蔽材の断面を観察した際、図4Cに示す角度(±θ)が小さい状態をいい、特に、θが0°である状態とは、熱線遮蔽層12の平面と銀平板粒子1の主平面とが平行である状態を示す。図4A及び図4Bのように、熱線遮蔽層12の表面に対する銀平板粒子1の主平面の面配向の角度θが±30°を超えると、即ち、銀平板粒子1がランダム配向していると、熱線遮蔽材の所定の波長(例えば、可視光域長波長側から近赤外光領域)の吸収率が上昇する。
[面配向の評価]
 前記熱線遮蔽層の一方の表面(熱線遮蔽材が基材を有する場合は、基材表面)対して銀平板粒子の主平面が面配向しているかどうかの評価としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、適当な断面切片を作製し、この切片における熱線遮蔽層の一方の表面(熱線遮蔽材が基材を有する場合は、基材表面)及び銀平板粒子を観察して評価する方法であってもよい。具体的には、熱線遮蔽材を、ミクロトーム、集束イオンビーム(FIB)等を用いて熱線遮蔽材の断面サンプル乃至断面切片サンプルを作製し、これを、各種顕微鏡(例えば、電界放射型走査電子顕微鏡(FE-SEM)等)を用いて観察して得た画像から評価する方法などが挙げられる。
 前記熱線遮蔽材において、銀平板粒子を被覆するバインダーが水で膨潤する場合は、液体窒素で凍結した状態の試料を、ミクロトームに装着されたダイヤモンドカッター切断することで、前記断面サンプル乃至断面切片サンプルを作製してもよい。また、熱線遮蔽材において銀平板粒子を被覆するバインダーが水で膨潤しない場合は、前記断面サンプル乃至断面切片サンプルを作製してもよい。
 前記の通り作製した断面サンプル乃至断面切片サンプルの観察としては、サンプルにおいて熱線遮蔽層の一方の表面(熱線遮蔽材が基材を有する場合は、基材表面)に対して銀平板粒子の主平面が面配向しているかどうかを確認し得るものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、FE-SEM、TEM、光学顕微鏡などを用いた観察が挙げられる。前記断面サンプルの場合は、FE-SEMにより、前記断面切片サンプルの場合は、TEMにより観察を行ってもよい。FE-SEMで評価する場合は、銀平板粒子の形状と面配向角度(図4Cの±θ)が明瞭に判断できる空間分解能を有することが好ましい。
 前記熱線遮蔽層における銀平板粒子を構成する金属のプラズモン共鳴波長λは、特に制限はなく、目的に応じて適宜選択することができるが、熱線遮蔽性能を付与する点で、400nm~2,500nmであることが好ましく、可視光域のヘイズ(散乱性)を低くする点から、700nm~2,500nmであることがより好ましい。
 前記熱線遮蔽層における媒質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリビニルブチラール(PVB)樹脂等のポリビニルアセタール系樹脂;ポリビニルアルコール(PVA)系樹脂;ポリ塩化ビニル系樹脂;ポリエチレンテレフタレート(PET)等のポリエステル系樹脂;ポリウレタン系樹脂;エチレン-酢酸ビニル共重合体(EVA);ポリアミド系樹脂;エポキシ系樹脂;ポリアクリレート樹脂、ポリメチルメタクリレート樹脂等のアクリル系樹脂;ポリカーボネート樹脂;ゼラチン、セルロース等の天然高分子;二酸化珪素、酸化アルミニウム等の無機物などが挙げられる。
 前記媒質の屈折率(n)としては、1.4~1.7が好ましい。
[銀平板粒子の面積率]
 前記熱線遮蔽材を上から見た時の基材の面積Aに対する銀平板粒子の面積の合計値Bの割合である面積率〔(B/A)×100〕としては、15%以上が好ましく、20%以上がより好ましい。前記面積率が、15%未満であると、熱線の最大遮蔽率が低下してしまい、遮熱効果が十分に得られないことがある。
 ここで、前記面積率は、例えば熱線遮蔽材を上からSEM観察で得られた画像や、AFM(原子間力顕微鏡)観察で得られた画像を画像処理することにより測定することができる。
[銀平板粒子の平均粒子間距離]
 前記熱線遮蔽層における水平方向に隣接する前記銀平板粒子の平均粒子間距離としては、不均一(ランダム)であることが好ましい。ランダムでない場合、即ち、均一であると回折が起こり、モアレが観察されるようになるので光学フィルムとして好ましくない。
 ここで、前記銀平板粒子の水平方向の平均粒子間距離とは、隣り合う2つの粒子の粒子間距離の平均値を意味する。また、前記平均粒子間距離がランダムであるとは、「100個以上の銀平板粒子が含まれるSEM画像を二値化した際の輝度値の2次元自己相関を取ったときに、原点以外に有意な極大点を持たない」ことを意味する。
[熱線遮蔽層の層構成]
 本発明の熱線遮蔽材において、銀平板粒子は、図4A~図4Cに示すように、銀平板粒子と金属酸化物とを含む熱線遮蔽層の形態で配置され、図4Aに示すように、銀平板粒子と金属酸化物粒子とが混合分散された熱線遮蔽層の形態で配置されてもよく、図4B及び図4Cに示すように、銀平板粒子を含む銀平板粒子含有層と金属酸化物粒子を含む金属酸化物粒子含有層とが積層された熱線遮蔽層の形態で配置されてもよい。
 前記銀平板粒子含有層としては、図4B及び図4Cに示すように、単層で構成されてもよく、例えば、異なるアスペクト比を有する銀平板粒子をそれぞれ含む、複数の銀平板粒子含有層で構成されてもよい。複数の銀平板粒子含有層で構成される場合、遮熱性能を付与したい波長帯域に応じた遮蔽性能を付与することが可能となる。
-金属酸化物粒子-
 前記金属酸化物粒子の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、錫ドープ酸化インジウム(以下、「ITO」と略記する。)、錫ドープ酸化アンチモン(以下、「ATO」と略記する。)、酸化亜鉛、酸化チタン、酸化インジウム、酸化錫、酸化アンチモン、ガラスセラミックスなどが挙げられる。これらの中でも、熱線吸収能力に優れ、銀平板粒子と組み合わせることにより幅広い熱線吸収能を有する熱線遮蔽材が製造できる点で、ITO、ATO、酸化亜鉛がより好ましく、1,200nm以上の赤外線を90%以上遮蔽し、可視光透過率が90%以上である点で、ITOが特に好ましい。
 前記金属酸化物粒子の一次粒子の体積平均粒径としては、可視光透過率を低下させないため、0.1μm以下が好ましい。
 前記金属酸化物粒子の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、球状、針状、板状などが挙げられる。
 前記金属酸化物粒子の前記熱線遮蔽層における含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、第一及び第二のいずれの実施形態においても、0.1g/m~20g/mが好ましく、0.5g/m~10g/mがより好ましく、1.0g/m~4.0g/mがより好ましい。
 前記含有量が、0.1g/m未満であると、肌に感じる日射量が上昇することがあり、20g/mを超えると、可視光透過率が悪化することがある。一方、前記含有量が、1.0g/m~4.0g/mであると、上記2点を回避できる点で有利である。
 なお、前記金属酸化物粒子の前記熱線遮蔽層における含有量は、例えば、前記熱線遮蔽層の超箔切片TEM像及び表面SEM像の観察から、一定面積における金属酸化物粒子の個数及び平均粒子径を測定し、該個数及び平均粒子径と、金属酸化物粒子の比重とに基づいて算出した質量(g)を、前記一定面積(m)で除することにより算出することができる。また、前記熱線遮蔽層の一定面積における金属酸化物微粒子をメタノールに溶出させ、蛍光X線測定により測定した金属酸化物微粒子の質量(g)を、前記一定面積(m)で除することにより算出することもできる。
-バインダー-
 前記バインダーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリビニルブチラール(PVB)樹脂等のポリビニルアセタール系樹脂;ポリビニルアルコール(PVA)系樹脂;ポリ塩化ビニル系樹脂;ポリエチレンテレフタレート(PET)等のポリエステル系樹脂;ポリウレタン系樹脂;エチレン-酢酸ビニル共重合体(EVA);ポリアミド系樹脂;エポキシ系樹脂;ポリアクリレート樹脂、ポリメチルメタクリレート樹脂等のアクリル系樹脂;ポリカーボネート樹脂;ゼラチン、セルロース等の天然高分子などが挙げられる。これらの中でも、ポリビニルブチラール(PVB)樹脂、エチレン-酢酸ビニル共重合体(EVA)が特に好ましい。
-その他の成分-
 前記熱線遮蔽層には、必要に応じて、各種の添加剤、例えば、溶媒、界面活性剤、酸化防止剤、硫化防止剤、腐食防止剤、赤外線吸収剤、紫外線吸収剤、着色剤、粘度調整剤、防腐剤などを含有することができる。
<基材>
 前記基材としては、その形状、構造、大きさ、材料などについては、特に制限はなく、目的に応じて適宜選択することができ、前記形状としては、例えば、平板状などが挙げられ、前記構造としては、単層構造であってもよいし、積層構造であってもよく、前記大きさとしては、前記熱線遮蔽材の大きさなどに応じて適宜選択することができる。
 前記基材の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエチレンテレフタレート(PET)、ポリエチレン-2,6-ナフタレート(PEN)、ポリカーボネート、ポリイミド(PI)、ポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、スチレン-アクリロニトリル共重合体などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、機械的強度、熱に対する寸法安定性などの点からポリエチレンテレフタレート(PET)が特に好ましい。
 前記基材の表面には、その上の熱線遮蔽層との密着性を向上させるため、表面活性化処理を行うことが好ましい。前記表面活性化処理としては、例えば、グロー放電処理、コロナ放電処理などが挙げられる。
 前記基材は、適宜合成したものであってもよいし、市販品を使用してもよい。
 前記基材の厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、10μm以上が好ましく、50μm以上がより好ましい。
[熱線遮蔽材の製造方法]
 本発明の熱線遮蔽材の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、塗布方法により、前記銀平板粒子と前記金属酸化物粒子とが前記バインダー内に混合分散された熱線遮蔽層を形成する方法、前記基材の表面に前記銀平板粒子含有層と、前記金属酸化物粒子層とが積層された熱線遮蔽層を形成する方法などが挙げられる。
-銀平板粒子含有層の形成方法-
 前記銀平板粒子含有層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、基材上に、少なくとも前記銀平板粒子と、前記バインダーとを含む分散液を、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する方法、LB膜法、自己組織化法、スプレー塗布法等により面配向させる方法などが挙げられる。
 また、銀平板粒子の基材表面への吸着性や面配向性を高めるために、静電的な相互作用を利用して、面配向させる方法であってもよい。具体的には、銀平板粒子の表面が負に帯電している場合(例えば、クエン酸等の負帯電性の媒質に分散した状態)は、基材の表面を正に帯電(例えば、アミノ基等で基材表面を修飾)させておき、静電的に面配向性を高めることにより、面配向させる方法であってもよい。また、銀平板粒子の表面が親水性である場合は、基材の表面をブロックコポリマーやμコンタクトスタンプ法などにより、親疎水の海島構造を形成しておき、親疎水性相互作用を利用して面配向性と銀平板粒子の粒子間距離とを制御してもよい。
 なお、面配向を促進するために、銀平板粒子を塗布後、カレンダーローラー、ラミローラー等の圧着ローラーを通すことにより促進させてもよい。
-金属酸化物粒子層の形成方法-
 前記金属酸化物粒子層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、基材上に、少なくとも前記金属酸化物粒子と、前記バインダーとを含む分散液を、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する方法などが挙げられる。
 前記金属酸化物粒子を含む分散液としては、特に制限はなく、目的に応じて適宜選択することができ、市販品を用いることができる。該市販品としては、例えば、ITOハードコート塗布液EI-1(三菱マテリアル株式会社製)などが挙げられる。
-混合分散層の形成方法-
 前記銀平板粒子と前記金属酸化物粒子とが前記バインダー内に混合分散された熱線遮蔽層(混合分散層)の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、基材上に、少なくとも前記銀平板粒子と、前記金属酸化物粒子と、前記バインダーとを含む分散液を、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する方法などが挙げられる。
 本発明の熱線遮蔽材の可視光線透過率としては、60%以上が好ましく、65%以上がより好ましい。前記可視光線透過率が、60%未満であると、例えば自動車用ガラスや建物用ガラスとして用いた時に、外部が見にくくなることがある。
 本発明の熱線遮蔽材の780nm~2,000nmにおける平均透過率としては、熱線遮蔽率の効率を上げることができる点で、30%以下が好ましく、20%以下がより好ましい。
 これらの中でも、本発明の熱線遮蔽材は、可視光透過率が65%以上であり、かつ波長780nm~2,000nmにおける平均透過率が20%以下であることが特に好ましい。
 ここで、「可視光透過率」とは、各サンプルをJIS-R3106:1998「板ガラス類の透過率・反射率・放射率・日射取得率の試験方法」に記載の方法で測定した値であり、380nmから780nmまで測定した各波長の透過率を、各波長の分光視感度により補正した値の平均値である。
 また、近赤外における「平均透過率」とは、各サンプルを所定の近赤外波長範囲(例えば、780nm~2,000nm)において測定した各波長の透過率の平均値である。
 本発明の熱線遮蔽材のヘイズとしては、20%以下が好ましく、10%以下がより好ましく、3%以下が特に好ましい。前記ヘイズが20%を超えると、例えば自動車用ガラスや建物用ガラスとして用いた時に、外部が見にくくなったり、安全上好ましくないことがある。
[熱線遮蔽材の使用態様]
 本発明の熱線遮蔽材は、熱線(近赤外線)を選択的に反射乃至吸収するために使用される態様であれば、特に制限はなく、目的に応じて適宜選択すればよく、例えば、乗り物用ガラス乃至フィルム、建材用ガラス乃至フィルム、農業用フィルムなどが挙げられる。これらの中でも、省エネルギー効果の点で、乗り物用ガラス乃至フィルム、建材用ガラス乃至フィルムであることが好ましい。
 なお、本発明において、熱線(近赤外線)とは、太陽光に約50%含まれる近赤外線(780nm~2,500nm)を意味する。
 前記ガラスの製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、前記のようにして製造した熱線遮蔽材に、更に接着層を形成し、自動車等の乗り物用ガラスや建材用ガラスに貼合せたり、合せガラスに用いるPVB中間膜、EVA中間膜等に挟み込んで用いることができる。また、前記銀平板粒子と、前記金属酸化物粒子とを含む前記熱線遮蔽層のみをPVB中間膜、EVA中間膜等に転写し、基材を剥離除去した状態で使用してもよい。
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
(製造例1)
-銀平板粒子の合成-
--平板核粒子の合成工程--
 2.5mmol/Lのクエン酸ナトリウム水溶液50mLに0.5g/Lのポリスチレンスルホン酸水溶液を2.5mL添加し、35℃まで加熱した。この溶液に10mmol/Lの水素化ほう素ナトリウム水溶液を3mL添加し、0.5mmol/Lの硝酸銀水溶液50mLを20mL/minで攪拌しながら添加した。この溶液を30分間攪拌し、種溶液を作製した。
--平板粒子の第1成長工程--
 次に、2.5mmol/Lのクエン酸ナトリウム水溶液132.7mLにイオン交換水87.1mLを添加し、35℃まで加熱した。この溶液に10mmol/Lのアスコルビン酸水溶液を2mL添加し、前記種溶液を42.4mL添加し、0.5mmol/Lの硝酸銀水溶液79.6mLを10mL/minで攪拌しながら添加した。
--平板粒子の第2成長工程--
 次に、上記溶液を30分間攪拌した後、0.35mol/Lのヒドロキノンスルホン酸カリウム水溶液を71.1mL添加し、7質量%ゼラチン水溶液を200g添加した。この溶液に、0.25mol/Lの亜硫酸ナトリウム水溶液107mLと0.47mol/Lの硝酸銀水溶液107mLを混合してできた白色沈殿物混合液を添加した。前記白色沈殿物混合液を添加した後すぐに0.83mol/LのNaOH水溶液72mLを添加した。このときpHが10を超えないように添加速度を調節しながらNaOH水溶液を添加した。これを300分間攪拌し、銀平板粒子分散液aを得た。
 この銀平板粒子分散液a中には、平均円相当径210nmの銀の六角平板粒子(以下、Ag六角平板粒子と称する)が生成していることを確認した。また、原子間力顕微鏡(NanocuteII、セイコーインスツル社製)で、六角平板粒子の厚みを測定したところ、平均18nmであり、アスペクト比が11.7の平板粒子が生成していることが分かった。
 次に、得られた銀平板粒子及び熱線遮蔽材について、以下のようにして諸特性を評価した。結果を表1に示す。
<<銀平板粒子の評価>>
-平板粒子の割合、平均粒子径(平均円相当径)、変動係数-
 Ag平板粒子の形状均一性は、観察したSEM画像から任意に抽出した200個の粒子の形状を、略六角形状又は略円盤形状の粒子をA、涙型などの不定形形状の粒子をBとして画像解析を行い、Aに該当する粒子個数の割合(個数%)を求めた。
 また同様にAに該当する粒子100個の粒子径をデジタルノギスで測定し、その平均値を平均粒子径(平均円相当径)とし、粒径分布の標準偏差を平均粒子径(平均円相当径)で割った変動係数(%)を求めた。
-平均粒子厚み-
 得られた銀平板粒子を含む分散液を、ガラス基板上に滴下して乾燥し、銀平板粒子1個の厚みを、原子間力顕微鏡(AFM)(NanocuteII、セイコーインスツル社製)を用いて測定した。なお、AFMを用いた測定条件としては、自己検知型センサー、DFMモード、測定範囲は5μm、走査速度は180秒間/1フレーム、データ点数は256×256とした。
-アスペクト比-
 得られた銀平板粒子の平均粒子径(平均円相当径)及び平均粒子厚みから、平均粒子径(平均円相当径)を平均粒子厚みで除算して、アスペクト比を算出した。
-透過スペクトル-
 得られた銀平板粒子分散液の透過スペクトルは、銀平板粒子分散液を水で40倍に希釈し、光路長1mmの石英セルに入れ、紫外可視近赤外分光機(日本分光株式会社製、V-670)を用いて評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(製造例2)
 製造例1において、0.83mol/LのNaOH水溶液72mLを添加する代わりに、イオン交換水72mLを添加した以外は、製造例1と同様にして、銀平板粒子分散液bを作製した。
(製造例3)
 製造例1において、イオン交換水87.1mLを添加しないこと、前記種晶溶液の添加量を127.6mLに変えたこと、及び0.83mol/LのNaOH水溶液72mLを添加する代わりに、0.08mol/LのNaOH水溶液72mLを添加した以外は、製造例1と同様にして、銀平板粒子分散液cを作製した。
(製造例4)
 製造例3において、2.5mmol/Lのクエン酸ナトリウム水溶液132.7mLを添加しないこと、及び、前記種晶溶液の添加量を255.2mLに変えた以外は、製造例3と同様にして、銀平板粒子分散液dを作製した。
(製造例5)
 製造例4において、0.08mol/LのNaOH水溶液72mLを添加する代わりに、イオン交換水72mLを添加した以外は、製造例4と同様にして、銀平板粒子分散液eを作製した。
(製造例6)
 製造例1において、前記種晶溶液の添加量を42.4mLから21.2mLに変え、イオン交換水21.2mLを添加した以外は、製造例1と同様にして、銀平板粒子分散液fを作製した。
(実施例1)
-銀平板粒子面配向層の作製-
 製造例5の銀平板粒子分散液e 16mLに1NのNaOHを0.75mL添加し、イオン交換水24mL添加し、遠心分離器(コクサン社製、H-200N、アンブルローターBN)で5,000rpm、5分間、遠心分離を行い、Ag六角平板粒子を沈殿させた。遠心分離後の上澄み液を捨て、水を5mL添加し、沈殿したAg六角平板粒子を再分散させた。この分散液に2質量%の下記構造式(1)で表される化合物の水メタノール溶液(水:メタノール=1:1(質量比))を1.6mL添加し塗布液を作製した。この塗布液をワイヤー塗布バーNo.14(R.D.S Webster N.Y.社製)を用いて50μm厚のPETフィルム(A4300、東洋紡績株式会社製)上に塗布し、乾燥させて、表面にAg六角平板粒子が固定されたフィルムを得た。以上により、銀平板粒子面配向層を作製した。
 得られたPETフィルムに厚み20nmになるようにカーボン薄膜を蒸着した後、SEM観察(日立製作所製、FE-SEM、S-4300、2kV、2万倍)を行った。結果を図5に示す。PETフィルム上にAg六角平板粒子が凝集なく固定されており、以下のようにして測定したAg六角平板粒子の基材表面に占める面積率は、45%であることが分かった。また、以下のようにして測定した前記銀平板粒子の前記銀平板粒子面配向層における含有量は、0.04g/mであることが分かった。
-遮熱フィルムの作製-
 次に、上記PETフィルムの銀平板塗布面とは裏側の面に、ITOハードコート塗布液(三菱マテリアル株式会社製、EI-1)を乾燥後の層厚み1.5μmとなるようワイヤー塗布バーNo.10(R.D.S Webster N.Y.社製)を用いて塗布し、遮熱フィルム1を得た。なお、以下のようにして測定した前記ITO粒子の前記金属酸化物粒子含有層における含有量は、3.0g/mであることが分かった。
Figure JPOXMLDOC01-appb-C000003
-遮熱ガラスの作製-
 該遮熱フィルム1を厚み0.38mmの自動車用ポリビニルブチラールフィルム(ソルーシア社製)にて両面から挟み、更にその積層物の両面から2mm厚のガラス板で挟み込む(各々面方向サイズは50mm角とした)。その状態において60℃加熱された金属ロールを有するロールラミネーターに通して仮圧着した。仮圧着したサンプルをオートクレーブに入れ、130℃、30分、13気圧の条件にて本圧着して、実施例1の遮熱ガラス1を得た。
<<遮熱フィルムの評価>>
 得られた遮熱フィルムについて、以下のようにして諸特性を評価した。各評価の結果を表2に示す。
-面積率-
 得られた遮熱フィルムについて、走査型電子顕微鏡(SEM)で観察して得たSEM画像を2値化し、遮熱フィルムを上から見た時の基材の面積A(遮熱フィルムに対して垂直方向から見たときの前記遮熱フィルムの全投影面積A)に対する銀平板粒子の面積の合計値Bの割合である面積率〔(B/A)×100〕を求めた。
-電波透過性-
 該遮熱フィルムについて東京都立産業技術センターにてKEC法を用いて測定した。シールド効果5dB以下が電波透過性ありと判断した。
<<遮熱ガラスの評価>>
 次に、得られた遮熱ガラスについて、以下のようにして諸特性を評価した。各評価の結果を表2に示す。
-可視光透過スペクトル-
 得られた遮熱フィルムの透過スペクトルは、自動車用ガラスの評価規格であるJISに準じて評価した。
 透過スペクトルは、紫外可視近赤外分光機(日本分光株式会社製、V-670)を用いて評価した。入射光は45°偏光板を通し、無偏光と見なせる入射光とした。
 図6は、実施例1で得られた遮蔽フィルム1の分光スペクトルを示すグラフである。
-可視光線透過率・初期近赤外透過率-
 可視光線透過率は、各サンプルをJIS-R3106:1998「板ガラス類の透過率・反射率・放射率・日射取得率の試験方法」に記載の方法で測定した値であり、380nmから780nmまで測定した各波長の透過率を、各波長の分光視感度により補正した値の平均値である。初期近赤外透過率は、各サンプルを780nmから2,000nmまで測定した各波長の透過率の平均値である。
-耐光性-
 耐光性は、各サンプルに一定の耐光性テストを課したときに、テスト後の近赤外透過率に対する初期近赤外透過率の割合を百分率で表した値をもって遮蔽性能の耐光性の値とした。良好とすべきラインは90%以上とした。一定の耐光性テストとは、サンシャインウェザーメーター(スガ試験機社製、キセノンランプ照射)にて180W/m、63℃、30%RH、1,000時間、暴露するテストである。
-ヘイズの測定-
 ヘイズメーター(NDH-5000、日本電色工業株式会社製)を用いて、前記の通りに得た遮熱フィルムのヘイズ(%)を測定した。前記遮熱フィルムを評価した結果、ヘイズは0.8%であった。
-銀平板粒子及びITO粒子の含有量の測定-
 前記銀平板粒子の熱線遮蔽層における含有量及び前記ITO粒子の熱線遮蔽層における含有量は、熱線遮蔽層(塗布膜)の一定面積における銀平板粒子及びITO粒子をメタノールに溶出させ、蛍光X線測定により銀平板粒子及びITO粒子の各々の質量を測定し、該各々の質量を前記一定面積で除することにより算出した。
(実施例2)
-遮熱フィルム及び遮熱ガラスの作製-
 実施例1において製造例5の銀平板粒子分散液eを使用する代わりに、製造例2の銀平板粒子分散液bを使用した以外は、実施例1と同様にして、実施例2の遮熱フィルム2及び遮熱ガラス2を作製した。
(実施例3)
-銀平板粒子ランダム配向層の作製-
 製造例3、4及び6の銀平板粒子分散液c、d及びf各々16mLに1NのNaOHを0.75mL添加し、イオン交換水24mL添加し、遠心分離器(コクサン社製、H-200N、アンブルローターBN)で5,000rpm、5分間、遠心分離を行い、Ag六角平板粒子を沈殿させた。遠心分離後の上澄み液を捨て、水を5mL添加し、沈殿したAg六角平板粒子を再分散させた。この3つの分散液にゼラチン10質量%の水溶液を1.6mLずつ添加した後混ぜ合わせ、塗布液を作製した。この塗布液をワイヤー塗布バーNo.14(R.D.S Webster N.Y.社製)を用いてPETフィルム上に塗布し、乾燥させて、表面近傍にAg六角平板粒子がランダムに配向したPETフィルムを得た。以上により、銀平板粒子ランダム配向層を作製した。
-遮熱フィルム及び遮熱ガラスの作製-
 実施例1において、銀平板粒子面配向層に代えて銀平板粒子ランダム配向層を用いた以外は、実施例1と同様にして、実施例3の遮熱フィルム3及び遮熱ガラス3を得た。
(実施例4)
-遮熱フィルム及び遮熱ガラスの作製-
 実施例3において製造例3、4及び6の銀平板粒子分散液c、d及びfを使用する代わりに、製造例1及び5の銀平板粒子分散液a及びeを使用した以外は、実施例3と同様にして、実施例4の遮熱フィルム4及び遮熱ガラス4を作製した。
(実施例5:混合分散)
-遮熱フィルムの作製-
 実施例3において、PETフィルムの替わりにB4サイズ大ガラス板を用いて銀平板粒子ランダム配向層を作製し、片刃カミソリを使ってガラス面から銀平板ランダム配向層を掻き落とす。これを10枚分行ない、銀平板含有粉を集めておく。また、別のB4サイズ大ガラス板にITOハードコート塗布液(三菱マテリアル株式会社製、EI-1)を乾燥後の層厚み1.5μmとなるようワイヤー塗布バーNo.10(R.D.S Webster N.Y.社製)を用いて塗布し、得られたITO粒子含有層を片刃カミソリを使ってガラス面から掻き落とす。これを10枚分行ない、ITO粒子含有粉を集める。
 上記の銀平板含有粉とITO粒子含有粉とを150℃に加熱して混合し、ペレット状態にしておく。このペレット10質量部に対して、エタノール90質量部を加えて溶かし、塗布液とする。この塗布液を用いて、PETフィルム上に乾燥後の層厚み1.5μmとなるようワイヤー塗布バーNo.10(R.D.S Webster N.Y.社製)を用いて塗布し実施例5の遮熱フィルム5を得た。
-遮熱ガラスの作製-
 実施例1において、遮熱フィルム1に代えて遮熱フィルム5を用いた以外は、実施例1と同様にして、実施例5の遮熱ガラス5を得た。
(比較例1:ジイモニウム系有機顔料含有層及びITO含有層)
-遮熱フィルムの作製-
 まず、以下の手順で、有機系熱線遮蔽物質であるジイモニウム系有機顔料を含有する層を含むPETフィルムを得た。
 メチルエチルケトン20質量部、トルエン20質量部、アクリル樹脂(LP-45M、綜研化学株式会社製)50質量部、ジイモニウム系有機顔料(N,N,N,N-テトラキス(p-ジブチルアミノフェニル)1,4ベンゼンイミニウム ジテトラオキシクロラート;IRG023、日本化薬株式会社製)5質量部、紫外線吸収剤2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール(ケミソーブ79、ケミプロ化成株式会社製)5質量部を攪拌混合し、塗布液とする。この塗布液を用いて、乾燥後の層厚み2.5μmとなるようにワイヤー塗布バーNo.10(R.D.S Webster N.Y.社製)で50μm厚のPETフィルム(A4300、東洋紡績株式会社製)上に塗布し、100℃で3分間乾燥することにより、ジイモニウム系有機顔料含有層を含むPETフィルムを得た。
 次に該PETフィルムのジイモニウム系物質塗布面とは裏側の面に、ITOハードコート塗布液(三菱マテリアル株式会社製、EI-1)を乾燥後の層厚み1.5μmとなるようワイヤー塗布バーNo.10(R.D.S Webster N.Y.社製)を用いて塗布し、比較例1の遮熱フィルムAを得た。
 なお、比較例1の遮熱フィルムAは、特開2008-20525号公報に記載の熱線遮蔽フィルムに該当する。
-遮熱ガラスの作製-
 実施例1において、遮熱フィルム1に代えて遮熱フィルムAを用いた以外は、実施例1と同様にして、比較例1の遮熱ガラスAを得た。
(比較例2:ITO単独分散層)
-遮熱フィルムの作製-
 50μ厚のPETフィルム(A4300、東洋紡績株式会社製)の表面に、ITOハードコート塗布液(三菱マテリアル株式会社製、EI-1)を乾燥後の層厚み1.5μmとなるようワイヤー塗布バーNo.10(R.D.S Webster N.Y.社製)を用いて塗布し、比較例2の遮熱フィルムBを得た。
-遮熱ガラスの作製-
 実施例1において、遮熱フィルム1に代えて遮熱フィルムBを用いた以外は、実施例1と同様にして、比較例2の遮熱ガラスBを得た。
(比較例3:銀平板粒子単独分散層)
-遮熱フィルム及び遮熱ガラスの作製-
 実施例1において、ITOハードコート塗布液を塗らない以外は、実施例1と同様にして、比較例3の遮熱フィルムC及び遮熱ガラスCを作製した。
 次に、実施例2~5、及び比較例1~3の遮熱フィルム2~5及びA~C、遮熱ガラス2~5及びA~Cについて、実施例1と同様にして、諸特性を評価した。ただし、実施例3~5、比較例1及び2については、面積率の測定が不可能なので行なっていない。結果を表2に示す。
 表2から分かるように、本発明の製造方法で製造した遮熱フィルム及び遮蔽ガラスは、電波透過性を維持しつつ、65%以上の高い可視光線透過性を有し、高い耐光性を示し、780nm~2,000nmの近赤外線を広帯域に遮蔽でき、かつ該近赤外線における平均透過率が20%以下であった。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本発明の熱線遮蔽材は、可視光線透過性、電波透過性、及び耐光性に優れ、近赤外線を広帯域に遮蔽でき、近赤外線の遮蔽率が高いので、例えば、自動車、バス等の乗り物用ガラス、建材用ガラスなど、熱線の透過を防止することの求められる種々の部材として好適に利用可能である。
   1   銀平板粒子
   2   金属酸化物粒子
  10   熱線遮蔽材
  11   基材
  12   熱線遮蔽層
  13   銀平板粒子含有層
  14   金属酸化物粒子層

Claims (10)

  1.  銀平板粒子と、金属酸化物粒子とを含む熱線遮蔽層を有することを特徴とする熱線遮蔽材。
  2.  金属酸化物粒子が、錫ドープ酸化インジウム粒子である請求項1に記載の熱線遮蔽材。
  3.  銀平板粒子が、略六角形状乃至略円盤形状の銀平板粒子を60個数%以上有する請求項1から2のいずれかに記載の熱線遮蔽材。
  4.  銀平板粒子の粒度分布における変動係数が、30%以下である請求項1から3のいずれかに記載の熱線遮蔽材。
  5.  銀平板粒子の平均粒子径が、40nm~400nmであり、銀平板粒子のアスペクト比(平均粒子径/平均粒子厚み)が、5~100である請求項1から4のいずれかに記載の熱線遮蔽材。
  6.  銀平板粒子の熱線遮蔽層における含有量が、0.02g/m~0.20g/mである請求項1から5のいずれかに記載の熱線遮蔽材。
  7.  金属酸化物粒子の熱線遮蔽層における含有量が、1.0g/m~4.0g/mである請求項1から6のいずれかに記載の熱線遮蔽材。
  8.  可視光透過率が65%以上であり、かつ波長780nm~2,000nmにおける平均透過率が20%以下である請求項1から7のいずれかに記載の熱線遮蔽材。
  9.  熱線遮蔽層が、銀平板粒子と金属酸化物粒子とがバインダー内に混合分散された請求項1から8のいずれかに記載の熱線遮蔽材。
  10.  熱線遮蔽層が、銀平板粒子を含む銀平板粒子含有層と、金属酸化物を含む金属酸化物含有層とが積層された請求項1から8のいずれかに記載の熱線遮蔽材。
PCT/JP2011/076619 2010-11-22 2011-11-18 熱線遮蔽材 WO2012070477A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180055944.3A CN103221850B (zh) 2010-11-22 2011-11-18 热射线屏蔽材料
US13/898,871 US20130260139A1 (en) 2010-11-22 2013-05-21 Heat-ray shielding material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-260493 2010-11-22
JP2010260493 2010-11-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/898,871 Continuation US20130260139A1 (en) 2010-11-22 2013-05-21 Heat-ray shielding material

Publications (1)

Publication Number Publication Date
WO2012070477A1 true WO2012070477A1 (ja) 2012-05-31

Family

ID=46145821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076619 WO2012070477A1 (ja) 2010-11-22 2011-11-18 熱線遮蔽材

Country Status (3)

Country Link
US (1) US20130260139A1 (ja)
CN (1) CN103221850B (ja)
WO (1) WO2012070477A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169603A1 (ja) * 2011-06-10 2012-12-13 旭硝子株式会社 光学膜および合わせガラス
WO2014038457A1 (ja) * 2012-09-05 2014-03-13 富士フイルム株式会社 赤外線遮蔽フィルム
JP2014048515A (ja) * 2012-08-31 2014-03-17 Fujifilm Corp 熱線遮蔽材、合わせガラス、自動車用ガラス
WO2014050581A1 (ja) * 2012-09-28 2014-04-03 富士フイルム株式会社 金属平板粒子分散液、金属平板粒子分散液の製造方法および熱線遮蔽材
WO2014156528A1 (ja) * 2013-03-25 2014-10-02 富士フイルム株式会社 熱線遮蔽材ならびに熱線遮蔽材を用いた窓ガラス、合わせガラス用中間膜および合わせガラス
CN104823296B (zh) * 2012-11-09 2017-05-17 Oled工厂有限责任公司 具有改进的内部外耦合的发光器件和提供该器件的方法
JP2018171908A (ja) * 2017-03-31 2018-11-08 日東電工株式会社 熱線透過抑制透光性基材、透光性基材ユニット

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076098A1 (ja) * 2013-11-19 2015-05-28 日本碍子株式会社 断熱膜、および断熱膜構造
DE102012012566B3 (de) * 2012-06-23 2013-12-05 Audi Ag Verbundscheibe für einen Kraftwagen und Kraftwagen mit einer solchen Verbundscheibe.
JP6562841B2 (ja) * 2014-01-31 2019-08-21 日本碍子株式会社 多孔質板状フィラー
JP6448558B2 (ja) * 2014-02-10 2019-01-09 日本碍子株式会社 多孔質板状フィラー集合体及びその製造方法、並びに多孔質板状フィラー集合体を含む断熱膜
DE102014203744A1 (de) * 2014-02-28 2015-09-03 Siemens Aktiengesellschaft Leitfähiges Glimmschutzpapier, insbesondere für den Außenglimmschutz
DE102014203740A1 (de) 2014-02-28 2015-09-03 Siemens Aktiengesellschaft Glimmschutzsystem, insbesondere Außenglimmschutzsystem für eine elektrische Maschine
EP3135737B1 (en) * 2014-04-23 2019-12-04 NGK Insulators, Ltd. Porous plate-shaped filler, method for producing same, and heat insulation film
KR101959712B1 (ko) 2014-09-15 2019-03-19 생-고뱅 퍼포먼스 플라스틱스 코포레이션 적외선 흡수층을 포함하는 광학 필름
JPWO2016052740A1 (ja) 2014-10-03 2017-07-20 コニカミノルタ株式会社 光学フィルム及び光学フィルムの製造方法
KR101588630B1 (ko) * 2014-10-17 2016-01-27 (주)대한솔루션 열 차단 기능을 가진 자동차용 헤드라이닝 및 그 제조방법
EP3221142A4 (en) 2014-11-21 2018-08-29 Saint-Gobain Performance Plastics Corporation Infra-red control optical film
CN104608441B (zh) * 2015-01-13 2016-05-11 武汉理工大学 一种岛状结构金属膜层镀膜玻璃及其制备方法
KR102078532B1 (ko) * 2016-01-22 2020-02-19 니뽄 도쿠슈 도교 가부시키가이샤 파장 변환 부재 및 발광 장치
KR20180120155A (ko) * 2016-02-29 2018-11-05 데이진 필름 솔루션스 가부시키가이샤 농업 하우스, 이 농업 하우스를 사용한 식물의 재배 방법 및 열선 반사 필름 구조체
CN108699369B (zh) * 2016-02-29 2021-09-07 富士胶片株式会社 油墨组合物、油墨组、图像形成方法及印刷品
WO2017149918A1 (ja) * 2016-02-29 2017-09-08 富士フイルム株式会社 インク組成物及び画像形成方法
WO2018180221A1 (ja) 2017-03-28 2018-10-04 富士フイルム株式会社 高屈折率膜、及び、光学干渉膜
CN114516622B (zh) * 2022-01-20 2023-02-28 国网河北省电力有限公司电力科学研究院 制备纳米氮化硼-银的系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004050643A (ja) * 2002-07-19 2004-02-19 Sumitomo Metal Mining Co Ltd 薄膜積層体
JP2005129576A (ja) * 2003-10-21 2005-05-19 Bridgestone Corp 電磁波シールド部材及びpdpフィルタ
JP2006110808A (ja) * 2004-10-13 2006-04-27 Central Glass Co Ltd 電波透過性波長選択板
JP2007108536A (ja) * 2005-10-14 2007-04-26 Fujifilm Corp 赤外線遮蔽フィルタ
JP2007178915A (ja) * 2005-12-28 2007-07-12 Fujifilm Corp 金属微粒子分散物及び赤外線遮蔽フィルター
JP2011241357A (ja) * 2010-05-21 2011-12-01 Mitsubishi Chemicals Corp 熱線反射積層体及び熱線反射層形成用塗布液
WO2011152147A1 (ja) * 2010-06-03 2011-12-08 富士フイルム株式会社 熱線遮蔽材

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7625420B1 (en) * 1997-02-24 2009-12-01 Cabot Corporation Copper powders methods for producing powders and devices fabricated from same
GB0226997D0 (en) * 2002-11-19 2002-12-24 Welding Inst Heat resistant product
US7297179B2 (en) * 2002-09-30 2007-11-20 Fujifilm Corporation Method of producing metal particles, and metal oxide obtained from the particles
EP1865027B2 (en) * 2005-03-28 2017-07-12 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and hot radiation shielding molded product
EP1980391A4 (en) * 2006-02-02 2010-09-08 Mitsubishi Plastics Inc HEAT PROTECTION SHEET
CN100480747C (zh) * 2006-04-26 2009-04-22 胜华科技股份有限公司 彩色滤光片
JP5570305B2 (ja) * 2009-11-06 2014-08-13 富士フイルム株式会社 熱線遮蔽材

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004050643A (ja) * 2002-07-19 2004-02-19 Sumitomo Metal Mining Co Ltd 薄膜積層体
JP2005129576A (ja) * 2003-10-21 2005-05-19 Bridgestone Corp 電磁波シールド部材及びpdpフィルタ
JP2006110808A (ja) * 2004-10-13 2006-04-27 Central Glass Co Ltd 電波透過性波長選択板
JP2007108536A (ja) * 2005-10-14 2007-04-26 Fujifilm Corp 赤外線遮蔽フィルタ
JP2007178915A (ja) * 2005-12-28 2007-07-12 Fujifilm Corp 金属微粒子分散物及び赤外線遮蔽フィルター
JP2011241357A (ja) * 2010-05-21 2011-12-01 Mitsubishi Chemicals Corp 熱線反射積層体及び熱線反射層形成用塗布液
WO2011152147A1 (ja) * 2010-06-03 2011-12-08 富士フイルム株式会社 熱線遮蔽材
JP2011253093A (ja) * 2010-06-03 2011-12-15 Fujifilm Corp 熱線遮蔽材

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169603A1 (ja) * 2011-06-10 2012-12-13 旭硝子株式会社 光学膜および合わせガラス
JP2014048515A (ja) * 2012-08-31 2014-03-17 Fujifilm Corp 熱線遮蔽材、合わせガラス、自動車用ガラス
WO2014038457A1 (ja) * 2012-09-05 2014-03-13 富士フイルム株式会社 赤外線遮蔽フィルム
JP2014066987A (ja) * 2012-09-05 2014-04-17 Fujifilm Corp 赤外線遮蔽フィルム
WO2014050581A1 (ja) * 2012-09-28 2014-04-03 富士フイルム株式会社 金属平板粒子分散液、金属平板粒子分散液の製造方法および熱線遮蔽材
CN104823296B (zh) * 2012-11-09 2017-05-17 Oled工厂有限责任公司 具有改进的内部外耦合的发光器件和提供该器件的方法
WO2014156528A1 (ja) * 2013-03-25 2014-10-02 富士フイルム株式会社 熱線遮蔽材ならびに熱線遮蔽材を用いた窓ガラス、合わせガラス用中間膜および合わせガラス
JP2018171908A (ja) * 2017-03-31 2018-11-08 日東電工株式会社 熱線透過抑制透光性基材、透光性基材ユニット
US11933997B2 (en) 2017-03-31 2024-03-19 Nitto Denko Corporation Heat-ray-transmission-controllable, light-transmissive base material and light-transmissive base material unit

Also Published As

Publication number Publication date
CN103221850B (zh) 2015-05-13
CN103221850A (zh) 2013-07-24
US20130260139A1 (en) 2013-10-03

Similar Documents

Publication Publication Date Title
WO2012070477A1 (ja) 熱線遮蔽材
JP5570305B2 (ja) 熱線遮蔽材
JP5703156B2 (ja) 熱線遮蔽材
JP5518580B2 (ja) 熱線遮蔽材
JP5636208B2 (ja) 熱線遮蔽用金属平板状粒子含有組成物
JP5570306B2 (ja) 熱線遮蔽材
WO2013137373A1 (ja) 赤外線遮蔽フィルム
JP5599639B2 (ja) 転写用フィルム、合わせガラス及びその製造方法
JP5833518B2 (ja) 熱線遮蔽材
WO2013035802A1 (ja) 熱線遮蔽材
WO2012157655A1 (ja) 熱線遮蔽材、貼合せ構造体及び合わせガラス
WO2013047771A1 (ja) 熱線遮蔽材
WO2012132500A1 (ja) 熱線遮蔽材
WO2012066841A1 (ja) 熱線遮蔽材
JP5833516B2 (ja) 遠赤外線遮蔽材
JP5922919B2 (ja) 熱線遮蔽材および貼合せ構造体
WO2013039215A1 (ja) 熱線遮蔽材
JP6063846B2 (ja) 電磁波透過性積層体
JP5878050B2 (ja) 熱線遮蔽材
JP2017128046A (ja) 光学反射フィルム
JP2014048515A (ja) 熱線遮蔽材、合わせガラス、自動車用ガラス
JP2013210573A (ja) 熱線遮蔽材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11842595

Country of ref document: EP

Kind code of ref document: A1