WO2012169603A1 - 光学膜および合わせガラス - Google Patents

光学膜および合わせガラス Download PDF

Info

Publication number
WO2012169603A1
WO2012169603A1 PCT/JP2012/064726 JP2012064726W WO2012169603A1 WO 2012169603 A1 WO2012169603 A1 WO 2012169603A1 JP 2012064726 W JP2012064726 W JP 2012064726W WO 2012169603 A1 WO2012169603 A1 WO 2012169603A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optical film
laminated glass
transmittance
infrared
Prior art date
Application number
PCT/JP2012/064726
Other languages
English (en)
French (fr)
Inventor
崇平 見矢木
時彦 青木
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2012169603A1 publication Critical patent/WO2012169603A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10082Properties of the bulk of a glass sheet
    • B32B17/1011Properties of the bulk of a glass sheet having predetermined tint or excitation purity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/10201Dielectric coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10614Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
    • B32B17/10633Infrared radiation absorbing or reflecting agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10651Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising colorants, e.g. dyes or pigments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10816Making laminated safety glass or glazing; Apparatus therefor by pressing
    • B32B17/10825Isostatic pressing, i.e. using non rigid pressure-exerting members against rigid parts
    • B32B17/10834Isostatic pressing, i.e. using non rigid pressure-exerting members against rigid parts using a fluid
    • B32B17/10844Isostatic pressing, i.e. using non rigid pressure-exerting members against rigid parts using a fluid using a membrane between the layered product and the fluid
    • B32B17/10853Isostatic pressing, i.e. using non rigid pressure-exerting members against rigid parts using a fluid using a membrane between the layered product and the fluid the membrane being bag-shaped
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/226Glass filters
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/48Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase having a specific function
    • C03C2217/485Pigments

Definitions

  • the present invention relates to an optical film and a laminated glass using the same.
  • an infrared shielding glass is known as a laminated glass used for a windshield of a vehicle or the like.
  • the infrared shielding glass is provided with an infrared reflecting film and an infrared absorbing layer for shielding infrared rays in sunlight between a pair of glass substrates, and can reduce indoor temperature rise and cooling load.
  • an infrared reflecting film As an infrared reflecting film, a high refractive index dielectric layer and a low refractive index dielectric layer are alternately laminated to reflect infrared rays by interference action, and a metal layer is sandwiched between a pair of oxide layers Known (see, for example, Patent Documents 1 and 2). Moreover, as an infrared absorption layer, a plastic film in which infrared shielding particles are dispersed and a resin film in which infrared shielding particles are dispersed are known (for example, see Patent Document 3).
  • infrared shielding glass is used for the vehicle glass.
  • the infrared shielding glass is required to have a low total solar transmittance.
  • the infrared shielding glasses those having an infrared reflection film having a metal layer can sufficiently reduce the total solar transmittance because of the high infrared shielding performance of the infrared reflection film.
  • it since it has a metal layer, it does not have radio wave transmission.
  • the infrared reflective film is composed of a high refractive index dielectric layer and a low refractive index dielectric layer, it has radio wave transparency, but the infrared reflection performance of the infrared reflective film is low, so the total solar transmittance is sufficient. It cannot be lowered.
  • by increasing the total number of high refractive index dielectric layers and low refractive index dielectric layers to about 40 layers, it is possible to improve the infrared shielding performance and lower the total solar transmittance, Productivity decreases with the increase.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an optical film that can reduce the total solar transmittance while suppressing a decrease in radio wave transmittance and visible light transmittance. Another object of the present invention is to provide a laminated glass having the above optical film.
  • the optical film of the present invention is characterized in that the ratio of the arithmetic average value of the extinction coefficient in the range of 650 to 780 nm to the arithmetic average value of the extinction coefficient in the range of 450 to 600 nm is 7 or more.
  • the laminated glass of the present invention has an infrared reflection film between a pair of transparent substrates and an arithmetic average value of extinction coefficients in the range of 650 to 780 nm with respect to an arithmetic average value of extinction coefficients in the range of 450 to 600 nm. And an optical film having a ratio of 7 or more.
  • the term “to” indicating the above numerical range is used in the sense that the numerical values described before and after it are used as the lower limit value and the upper limit value, and unless otherwise specified, “to” is the same hereinafter. Used with meaning.
  • the laminated glass of the present invention the arithmetic average value (k 650-780 ) of the extinction coefficient in the range of 650 to 780 nm to the arithmetic average value (k 450-600 ) of the extinction coefficient in the range of 450 to 600 nm.
  • dye (diimonium type).
  • the optical film of the present invention has a ratio of the arithmetic average value (k 650-780 ) of the extinction coefficient in the range of 650 to 780 nm to the arithmetic average value (k 450-600 ) of the extinction coefficient in the range of 450 to 600 nm. (K 650-780 / k 450-600 ) is 7 or more.
  • the ratio (k 650-780 ) of the arithmetic average value (k 650-780 ) of the extinction coefficient in the range of 650 to 780 nm to the arithmetic average value (k 450-600 ) of the extinction coefficient in the range of 450 to 600 nm / K 450-600 ) is also simply referred to as the extinction coefficient ratio.
  • the extinction coefficient k is calculated as follows. Measurement of transmittance and reflectance of an optical film coated on a substrate having a known optical constant (refractive index and extinction coefficient) using a spectrophotometer (for example, Hitachi High-Technologies Corporation, trade name: U4100) To do. Subsequently, the refractive index n and extinction coefficient k of the optical film are calculated using the transmittance and reflectance measured using analysis software (for example, JA Woollam Japan Co., Ltd., trade name: WVASE32) as target values. To do. In the calculation, a change in the polarization state measured using a spectroscopic ellipsometer (for example, JA Woollam Japan Co., Ltd., trade name: M-2000) may be added as a target value.
  • a spectroscopic ellipsometer for example, JA Woollam Japan Co., Ltd., trade name: M-2000
  • the optical film of the present invention by setting the extinction coefficient ratio to 7 or more, it is possible to reduce the total solar transmittance while suppressing a decrease in the visible light transmittance.
  • the contribution of each region of the ultraviolet wavelength region (300 to 370 nm), the visible wavelength region (380 to 780 nm), and the infrared wavelength region (790 to 2500 nm) to the total solar transmittance is 3% in the ultraviolet wavelength region and visible.
  • the optical wavelength region is 55%, and the infrared wavelength region is 42%.
  • the reduction of the total solar transmittance is performed mainly in the infrared wavelength region.
  • the optical film of the present invention shields the wavelength that contributes to the reduction of the total solar transmittance and hardly contributes to the improvement of the visible light transmittance among the visible light wavelength region having a large contribution to the total solar transmittance.
  • the total solar transmittance is reduced while suppressing the decrease in the visible light transmittance.
  • ISO 9045 describes the weight coefficient for each wavelength with respect to the total solar transmittance, and the weight coefficient does not change significantly in the visible light wavelength region.
  • JIS R3106 describes the weighting coefficient for each wavelength with respect to the visible light transmittance, and the weighting coefficient increases at the substantially central portion of the visible light wavelength region and decreases at both sides thereof. As can be seen from these, there is a portion in the visible light wavelength region that contributes to the reduction of the total solar transmittance but does not contribute to the improvement of the visible light transmittance.
  • the optical film of the present invention has a ratio of the arithmetic average value (k 650-780 ) of the extinction coefficient in the range of 650 to 780 nm to the arithmetic average value (k 450-600 ) of the extinction coefficient in the range of 450 to 600 nm.
  • the total solar transmittance can be sufficiently reduced by using the optical film of the present invention in combination with the infrared reflective film that cannot sufficiently reduce the total solar transmittance.
  • an infrared reflective film a film in which a high refractive index dielectric layer and a low refractive index dielectric layer are alternately laminated can be mentioned. And since such an infrared reflective film has radio wave permeability, it is possible to realize a film having radio wave permeability and having a sufficiently reduced total solar radiation transmittance.
  • the optical film of the present invention is not particularly limited as long as it has a film shape, and examples thereof include a thin film or a thick film that is a laminated film laminated on a transparent substrate or the like, and a film or sheet.
  • a film-like or sheet-like thing the intermediate film for bonding the base material in an infrared reflective film, and a pair of transparent substrate in a laminated glass is mentioned, for example.
  • the optical film of the present invention may be formed by a dry method, for example, a physical vapor deposition method such as a sputtering method, or may be formed by a wet method.
  • the extinction coefficient ratio may be 7 or more, but is preferably 10 or more, and more preferably 15 or more, from the viewpoint of reducing the total solar transmittance while further suppressing the decrease in visible light transmittance.
  • the sheet resistance value of the optical film may be 1 k ⁇ / ⁇ or more, the preferable sheet resistance value is 500 k ⁇ / ⁇ or more, the more preferable sheet resistance value is 1 M ⁇ / ⁇ or more, and further preferably 1 G ⁇ / ⁇ or more. . If the sheet resistance value of the optical film is 1 k ⁇ / ⁇ or more, radio wave transmission can be secured. Since the larger the sheet resistance value is, the better the upper limit value is not particularly limited.
  • the optical film of the present invention is composed of, for example, a transparent matrix and a visible light absorbing material dispersedly contained in the transparent matrix.
  • the visible light absorbing material is not particularly limited as long as a predetermined extinction coefficient ratio can be obtained when an optical film is used, and examples thereof include Ag fine particles, KCuPO 4 particles, organic dyes, and inorganic pigments.
  • Ag fine particles, KCuPO 4 particles and organic dyes are preferable, and from the viewpoint of durability, Ag fine particles and KCuPO 4 particles are more preferable.
  • the extinction coefficient ratio of the optical film can be set to 7 to 100.
  • the extinction coefficient ratio of the optical film can be set to 7 to 100.
  • the transparent matrix only needs to have transparency, and can be appropriately selected from inorganic materials and organic materials in accordance with the type of visible light absorbing material and the method of forming the optical film.
  • FIG. 1 is a schematic cross-sectional view showing an example of an optical film having Ag fine particles.
  • an optical film having Ag fine particles is referred to as an Ag film.
  • the Ag film 1 is formed as a thin film on the transparent substrate 2.
  • the transparent substrate 2 examples include resin films made of polycarbonate, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polyethylene naphthalate, polyimide, polyethersulfone, polyarylate, nylon, cycloolefin polymer, and the like.
  • the thickness of the resin film is preferably from 5 to 200 ⁇ m, more preferably from 20 to 100 ⁇ m, from the viewpoints of flexibility and durability.
  • the resin film may be subjected to surface treatment such as easy adhesion treatment, plasma treatment, and corona treatment as necessary.
  • the resin film may be provided with a functional film such as an infrared reflecting film.
  • the transparent substrate 2 examples include inorganic transparent glass plates such as a clear glass plate (transparent glass plate), a green glass plate, and a UV green glass plate.
  • the UV green glass contains 68 to 74% by mass of SiO 2 , 0.3 to 1.0% by mass of Fe 2 O 3 , and 0.05 to 0.5% by mass of FeO.
  • An ultraviolet absorbing green glass having an ultraviolet transmittance of 350% or less at 350 nm and a minimum transmittance in the region of 550 to 1700 nm.
  • the thickness of the glass plate is not necessarily limited, but is preferably 1 to 4 mm, more preferably 1.8 to 2.5 mm.
  • the glass plate may be provided with a coating that imparts a water repellent function, a hydrophilic function, an antifogging function, and the like.
  • the glass plate may be provided with a functional film such as an infrared reflecting film.
  • the Ag film 1 has, for example, a transparent matrix 11 and Ag fine particles 12 dispersedly contained in the transparent matrix 11.
  • the Ag fine particles 12 are formed, for example, dispersed on the surface of the transparent substrate 2.
  • the cross-sectional shape of the Ag fine particles 12 is not necessarily limited, but is, for example, a thin plate shape.
  • the transparent matrix 11 may be any material as long as it has transparency, but usually an inorganic material such as a metal oxide, metal nitride, or metal oxynitride is preferable.
  • An oxide such as aluminum, a nitride, or the like is preferable.
  • the Ag film 1 is formed, for example, by forming Ag fine particles 12 on the transparent substrate 2 and then forming the transparent matrix 11 so as to fill the gaps between the Ag fine particles 12 and to cover the Ag fine particles 12.
  • the transparent matrix 11 and the Ag fine particles 12 are formed by, for example, a sputtering method.
  • the Ag fine particles 12 can be easily formed by heating the transparent substrate 2 or setting the vacuum degree of the vacuum chamber to 0.5 to 10 Pa.
  • the transparent matrix 11 and the Ag fine particles 12 can be formed by using an arc plasma thin film forming apparatus, a nanocluster thin film forming apparatus, or the like other than the sputtering method.
  • the average particle size of the Ag fine particles 12 is preferably 10 to 200 nm.
  • the average particle diameter of the Ag fine particles 12 means the average particle diameter of the Ag fine particles 12 when the Ag film 1 is viewed in plan. By setting the average particle size to 10 nm or more, the total solar transmittance can be effectively reduced. On the other hand, when the average particle size is 200 nm or less, an excessive decrease in visible light transmittance can be suppressed.
  • the average particle diameter of the Ag fine particles 12 is more preferably 25 to 150 nm, and further preferably 50 to 100 nm.
  • the average particle diameter is a number average value of the number of the maximum diameter of 100 arbitrary Ag fine particles 12 measured using a scanning electron microscope (SEM).
  • the filling rate of the Ag fine particles 12 in the Ag film 1 is preferably 10 to 80%.
  • the filling rate of the Ag fine particles 12 is a ratio of the area filled with the Ag fine particles 12 to the total area of the Ag film 1 when the Ag film 1 is viewed in plan (filled area / total area).
  • the filling rate is more preferably 20 to 70%, further preferably 30 to 60%.
  • the average thickness of the Ag fine particles 12 is preferably 5 to 25 nm.
  • the average thickness of the Ag fine particles 12 is an average length of the Ag fine particles 12 in the thickness direction of the Ag film 1 when the Ag film 1 is viewed in cross section.
  • the average thickness is more preferably 5 to 20 nm, and further preferably 5 to 15 nm.
  • the average thickness is the number average value of the number of the 100 maximum Ag fine particles 12 measured using a scanning electron microscope (SEM).
  • FIG. 2 is a schematic cross-sectional view showing an example of an optical film having KCuPO 4 particles.
  • an optical film having KCuPO 4 particles is referred to as a KCuPO 4 film.
  • the KCuPO 4 film 3 includes, for example, a transparent matrix 31 and KCuPO 4 particles 32 dispersedly contained in the transparent matrix 31.
  • the KCuPO 4 film 3 is, for example, in the form of a film or a sheet alone, but may be formed as a thick laminated film on the transparent substrate 2 as shown in FIG.
  • an organic material is usually preferable.
  • the organic material include polycarbonate, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polyethylene naphthalate, polyimide, polyether sulfone, polyarylate, nylon, cycloolefin polymer, and the like.
  • plasticized polyvinyl acetal resin plasticized polyvinyl chloride resin, plasticized saturated polyester resin, polyurethane resin, plasticized polyurethane resin, ethylene -Vinyl acetate copolymer resin, ethylene-ethyl acrylate copolymer resin and the like.
  • a plasticized polyvinyl acetal resin is excellent in balance of various properties such as transparency, weather resistance, strength, adhesion, penetration resistance, impact energy absorption, moisture resistance, heat insulation, and sound insulation. Is preferred. “Plasticization” in the plasticized polyvinyl acetal resin means that it is plasticized by adding a plasticizer. The same applies to other plasticized resins.
  • the polyvinyl acetal-based resin is not particularly limited, but a polyvinyl formal resin obtained by reacting polyvinyl alcohol (hereinafter referred to as “PVA” if necessary) and formaldehyde, PVA and acetaldehyde are reacted.
  • PVA polyvinyl alcohol
  • Narrowly defined polyvinyl acetal resin, polyvinyl butyral resin obtained by reacting PVA with n-butyraldehyde (hereinafter referred to as “PVB” if necessary), etc. are preferred, and transparency, weather resistance, strength, PVB is preferable because it is excellent in the balance of various properties such as adhesion, penetration resistance, impact energy absorption, moisture resistance, heat insulation, and sound insulation.
  • PVB polyvinyl acetal resins may be used alone or in combination of two or more.
  • the PVA used for synthesizing the polyvinyl acetal resin is not particularly limited, but preferably has an average degree of polymerization of 200 to 5000, more preferably 500 to 3000.
  • the polyvinyl acetal resin is not particularly limited, but preferably has a degree of acetalization of 40 to 85 mol%, more preferably 50 to 75 mol%.
  • the polyvinyl acetal resin preferably has a residual acetyl group content of 30 mol% or less, more preferably 0.5 to 24 mol%.
  • the plasticizer is not particularly limited, and examples thereof include organic acid ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, organic phosphoric acids, and organic phosphorous acids.
  • organic acid ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, organic phosphoric acids, and organic phosphorous acids.
  • a phosphoric acid plasticizer or the like can be used.
  • the film-like or sheet-like KCuPO 4 film 3 can be produced, for example, by forming a composition comprising a mixture containing at least a matrix component to be the transparent matrix 31 and KCuPO 4 particles 32 into a film or sheet. . Further, the KCuPO 4 film 3 as the laminated film is formed by applying a coating liquid made of a mixture containing at least a matrix component, KCuPO 4 particles 32, and an organic solvent to the surface of the transparent substrate 2 and the like, and drying the coating liquid. Can be formed.
  • the average particle diameter of the KCuPO 4 particles 32 is preferably 20 to 200 nm. By setting the average particle size to 20 nm or more, the crystallites can sufficiently maintain the crystal structure, and as a result, sufficient absorption characteristics can be expressed and the total solar transmittance can be effectively reduced. On the other hand, by setting the average particle size to 200 nm or less, the haze is lowered and an excessive decrease in visible light transmittance can be suppressed.
  • the average particle diameter of the KCuPO 4 particles 32 is more preferably 20 to 150 nm, and further preferably 20 to 100 nm. The average particle size is measured with a dynamic light scattering particle size distribution measuring device for a particle size measurement dispersion in which particles are dispersed in a dispersion medium.
  • the content of KCuPO 4 particles 32 in KCuPO 4 film 3, i.e. the ratio of KCuPO 4 particles 32 with respect to the total amount of the transparent matrix 31 and KCuPO 4 particles 32 varies depending on the kind of the transparent matrix 31, 5 to 70 wt% Is preferred.
  • the content of the KCuPO 4 particles 32 is more preferably 10 to 50% by mass, and further preferably 20 to 40% by mass.
  • the thickness of the KCuPO 4 film 3 varies depending on the ratio of the KCuPO 4 particles 32 to the total amount with the transparent matrix 31, but is preferably 0.1 to 200 ⁇ m. By setting the thickness to 0.1 ⁇ m or more, the total solar transmittance can be effectively reduced. On the other hand, when the thickness is 200 ⁇ m or less, an excessive decrease in visible light transmittance can be suppressed.
  • the thickness is more preferably 1 to 150 ⁇ m, still more preferably 10 to 100 ⁇ m.
  • the film-like or sheet-like KCuPO 4 film 3 is formed by forming a composition comprising a mixture containing at least the matrix component to be the transparent matrix 31 and the KCuPO 4 particles 32 into a film or sheet. Can be manufactured. Further, the KCuPO 4 film 3 as the laminated film can be formed, for example, by applying a coating liquid composed of a mixture of a matrix component, KCuPO 4 particles 32 and an organic solvent on the surface of a transparent substrate or the like and drying it.
  • Organic solvents include aromatics such as toluene and xylene; amides such as N-methyl-2-pyrrolidone, dimethylformamide and dimethylacetamide; ketones such as methyl ethyl ketone, methyl isobutyl ketone and acetone; methanol, ethanol, i- Examples thereof include alcohols such as propyl alcohol; hydrocarbons such as hexane; and tetrahydrofuran. These organic solvents may be used alone, or may be appropriately mixed and used as necessary.
  • Examples of the coating method include dip coating, spray coating, spinner coating, bead coating, wire bar coating, blade coating, roller coating, curtain coating, slit die coater, gravure coater, Coating methods such as slit reverse coater method, micro gravure method and comma coater method can be adopted.
  • the optical film of the present invention may have an organic dye or an inorganic pigment as long as a predetermined extinction coefficient ratio can be obtained.
  • an optical film having an organic dye and an inorganic pigment is referred to as a coloring film.
  • the coloring film can be basically configured in the same manner as the KCuPO 4 film 3 except that the KCuPO 4 particles in the KCuPO 4 film 3 are changed to organic dyes or inorganic pigments.
  • the manufacturing method can be basically the same manufacturing method as the KCuPO 4 film 3.
  • Organic dyes and inorganic pigments may be used alone or in combination. Note that the KCuPO 4 particles, may be used in combination with at least one selected from organic dyes and inorganic pigments.
  • organic dyes examples include diimonium dyes, anthraquinone dyes, aminium dyes, cyanine dyes, merocyanine dyes, croconium dyes, squalium dyes, azurenium dyes, polymethine dyes, naphthoquinone dyes, pyrylium dyes.
  • Dyes phthalocyanine dyes, naphthalocyanine dyes, naphtholactam dyes, azo dyes, condensed azo dyes, indigo dyes, perinone dyes, perylene dyes, dioxazine dyes, quinacridone dyes, isoindolinone dyes, Examples include quinophthalone dyes, pyrrole dyes, thioindigo dyes, metal complex dyes, dithiol metal complex dyes, indolephenol dyes, triallylmethane dyes, and the like.
  • inorganic pigments include cobalt dyes, iron dyes, chromium dyes, titanium dyes, vanadium dyes, zirconium dyes, molybdenum dyes, ruthenium dyes, platinum dyes, and ITO (Indium Tin Oxide). ) Dyes, ATO (Antimony Tin Oxide) dyes, and the like.
  • the content of the organic dye in the coloring film is preferably 0.1 to 70% by mass.
  • the content of the inorganic pigment in the coloring film is preferably 1 to 50% by mass.
  • the total content of both in the coloring film is preferably 1.1 to 70% by mass.
  • the thickness of the coloring film is preferably 0.1 to 200 ⁇ m. By setting the thickness to 0.1 ⁇ m or more, the total solar transmittance can be effectively reduced. On the other hand, when the thickness is 200 ⁇ m or less, an excessive decrease in visible light transmittance can be suppressed.
  • the thickness is more preferably 1 to 150 ⁇ m, still more preferably 10 to 125 ⁇ m.
  • the optical film of the present invention may be used as a part of a known functional film such as an infrared reflection film.
  • a functional film such as an infrared reflecting film can be provided on the surface.
  • a functional film such as an infrared reflecting film can be provided on the surface of the transparent substrate or the optical film, or between the transparent substrate and the optical film.
  • the infrared reflective film a film in which high refractive index dielectric layers and low refractive index dielectric layers are alternately laminated is preferable.
  • the infrared reflecting film may be made of an inorganic material or a resin material.
  • Such an infrared reflecting film does not necessarily have sufficient infrared shielding performance as compared with an infrared reflecting film having a metal layer, and it alone cannot sufficiently reduce the total solar transmittance, but it can be used together with the optical film of the present invention. The total solar transmittance can be sufficiently reduced.
  • the refractive index of the high refractive index dielectric layer is preferably 1.9 or more, more preferably 1.9 to 2.9.
  • the constituent material of such a high refractive index dielectric layer include high refractive index materials such as tantalum oxide, titanium oxide, zirconium oxide, and hafnium oxide.
  • the refractive index of the low refractive index dielectric layer is preferably 1.5 or less, more preferably 1.2 to 1.5.
  • Examples of the constituent material of such a low refractive index dielectric layer include low refractive index materials such as silicon oxide and magnesium fluoride.
  • the total number of high refractive index dielectric layers and low refractive index dielectric layers is preferably 3 to 11 layers, more preferably 5 to 9 layers, from the viewpoints of infrared reflection characteristics, productivity, cost, and the like.
  • Such an infrared reflective film can be formed by applying a known film forming method, for example, a magnetron sputtering method, an electron beam vapor deposition method, a vacuum vapor deposition method, a chemical vapor deposition method, or the like.
  • the infrared reflecting film is made of a resin material
  • a copolymer of acid, a copolymer of styrene and methyl methacrylate, or the like can be selected and used.
  • the laminated glass of the present invention is disposed between a pair of transparent substrates, an infrared reflecting film disposed between the pair of transparent substrates, and a pair of transparent substrates, and has an extinction coefficient in the range of 450 to 600 nm. And an optical film in which the ratio of the arithmetic average value of the extinction coefficient in the range of 650 to 780 nm to the arithmetic average value is 7 or more.
  • the left side is the outside, that is, the outside of the vehicle if it is an automobile
  • the right side is the inside, that is, the inside of the vehicle or the indoor side.
  • “Substrate” means a transparent substrate
  • “(optical film)” means the optical film of the present invention.
  • the intermediate film bonded to the inner transparent substrate preferably contains infrared shielding particles.
  • the laminated glass of (1), (2) and (3) does not have an infrared reflecting film.
  • an infrared reflecting film and a thin film-like optical film are sequentially formed on one transparent substrate to form a material laminate, which is bonded to the other transparent substrate by an intermediate film.
  • an infrared reflecting film is formed on one transparent substrate to form a material laminate, and this is bonded to the other transparent substrate by an optical film as an intermediate film.
  • an infrared reflecting film including an optical film is formed on one transparent substrate to form a material laminate, which is bonded to the other transparent substrate by an intermediate film.
  • Each of the laminated glasses (4) to (9) has an infrared reflecting film, and the infrared reflecting film is bonded between a pair of transparent substrates with a pair of intermediate films.
  • an infrared reflecting film is formed on the outer main surface of a resin film including an optical film to form an infrared reflecting film.
  • an infrared reflecting film is formed on the outer main surface of the resin film, and a thin film optical film is formed on the inner main surface to form an infrared reflecting film.
  • an optical film is included in an intermediate film on which an inner transparent substrate is bonded separately from the infrared reflective film.
  • an infrared reflecting film is formed on the inner main surface of the film-like optical film to form an infrared reflecting film.
  • a thin film-like optical film and an infrared reflective film are formed in this order on the inner main surface of the resin film to form an infrared reflective film.
  • an infrared reflecting film including an optical film is formed on the outer main surface of the resin film, thereby forming an infrared reflecting film.
  • Each of the laminated glasses (10) to (13) has an infrared reflecting film made of a resin material, and an infrared reflecting film made of a resin material is bonded between a pair of transparent substrates by a pair of intermediate films.
  • the laminated glass of (10) includes an optical film in the infrared reflecting film.
  • a thin film-like optical film is formed on the inner main surface of the infrared reflective film.
  • a thin film-like optical film is formed on the outer main surface of the infrared reflective film.
  • an optical film is included in an intermediate film on which an inner transparent substrate is bonded separately from the infrared reflective film.
  • the transparent substrate in the laminated glass examples include inorganic transparent glass plates such as a clear glass plate, a green glass plate, and a UV green glass plate.
  • the thickness of the glass plate is not necessarily limited, but is preferably 1 to 4 mm, more preferably 1.8 to 2.5 mm.
  • the glass plate may be provided with a coating that imparts a water repellent function, a hydrophilic function, an antifogging function, and the like.
  • the resin film examples include those made of polycarbonate, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polyethylene naphthalate, polyimide, polyether sulfone, polyarylate, nylon, cycloolefin polymer, and the like.
  • the thickness of the resin film is preferably from 5 to 200 ⁇ m, more preferably from 20 to 100 ⁇ m, from the viewpoints of flexibility and durability.
  • the resin film may be subjected to surface treatment such as easy adhesion treatment, plasma treatment, and corona treatment.
  • plasticized polyvinyl acetal resin plasticized polyvinyl chloride resin, plasticized saturated polyester resin, polyurethane resin, plasticized polyurethane resin, ethylene-vinyl acetate copolymer resin, ethylene-ethyl acrylate What consists of copolymer type resin etc. is preferable.
  • a plasticized polyvinyl acetal resin is excellent in balance of various properties such as transparency, weather resistance, strength, adhesion, penetration resistance, impact energy absorption, moisture resistance, heat insulation, and sound insulation. Is preferred. “Plasticization” in the plasticized polyvinyl acetal resin means that it is plasticized by adding a plasticizer. The same applies to other plasticized resins.
  • the polyvinyl acetal-based resin is not particularly limited, but a polyvinyl formal resin obtained by reacting polyvinyl alcohol (hereinafter referred to as “PVA” if necessary) and formaldehyde, PVA and acetaldehyde are reacted.
  • PVA polyvinyl alcohol
  • Narrowly defined polyvinyl acetal resin, polyvinyl butyral resin obtained by reacting PVA with n-butyraldehyde (hereinafter referred to as “PVB” if necessary), etc. are preferred, and transparency, weather resistance, strength, PVB is preferable because it is excellent in the balance of various properties such as adhesion, penetration resistance, impact energy absorption, moisture resistance, heat insulation, and sound insulation.
  • PVB polyvinyl acetal resins may be used alone or in combination of two or more.
  • the PVA used for synthesizing the polyvinyl acetal resin is not particularly limited, but preferably has an average degree of polymerization of 200 to 5000, more preferably 500 to 3000.
  • the polyvinyl acetal resin is not particularly limited, but preferably has a degree of acetalization of 40 to 85 mol%, more preferably 50 to 75 mol%.
  • the polyvinyl acetal resin preferably has a residual acetyl group content of 30 mol% or less, more preferably 0.5 to 24 mol%.
  • the plasticizer is not particularly limited, and examples thereof include organic acid ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, organic phosphoric acids, and organic phosphorous acids.
  • organic acid ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, organic phosphoric acids, and organic phosphorous acids.
  • a phosphoric acid plasticizer or the like can be used.
  • the interlayer film can contain infrared shielding particles.
  • infrared shielding particles include rhenium, hafnium, niobium, tin, titanium, silicon, zinc, zirconium, iron, aluminum, chromium, cobalt, cerium, indium, nickel, silver, copper, platinum, manganese, tantalum, tungsten, Metals such as vanadium, molybdenum, and cesium, oxides, nitrides, sulfides, or silicon compounds thereof, or inorganic fine particles doped with a dopant such as antimony, fluorine, or tin can be used.
  • tin oxide fine particles doped with antimony (ATO fine particles) or indium oxide fine particles doped with tin (ITO fine particles), particularly ITO fine particles can be suitably used.
  • ITO fine particles When using ITO fine particles, it is preferable to use those having an average primary particle size of 100 nm or less. When the average particle diameter of the ITO fine particles exceeds 100 nm, the transparency of the intermediate film may be insufficient.
  • the content of ITO fine particles is preferably 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the resin component. When the content of the ITO fine particles is less than 0.1 parts by mass, sufficient infrared shielding ability cannot be provided, and when it exceeds 3.0 parts by mass, the visible light transmittance may be insufficient. .
  • the laminated glass of the present invention can be produced in the same manner as a conventional laminated glass except that an optical film having a predetermined extinction coefficient ratio is provided. That is, a film that does not have an infrared reflecting film can be manufactured by placing an intermediate film between a pair of transparent substrates and performing pre-bonding and main-bonding. In this case, an optical film is formed on the transparent substrate, or an optical film is used as the intermediate film.
  • an infrared reflective film can be manufactured by arrange
  • an optical film is formed on the surface of the transparent substrate or the base material of the infrared reflective film, or the optical film is used as the base material or intermediate film of the infrared reflective film.
  • the laminated glass of the present invention can be suitably used for automobiles, railways, ships and the like.
  • the laminated glass preferably has a total solar transmittance (Tts) defined by ISO 13837 of 50% or less, and more preferably 45% or less.
  • the total solar transmittance (Tts) is usually preferably 40% or more from the balance with other characteristics.
  • the visible light transmittance Tv defined by JIS R3106 is preferably 70% or more.
  • Example 1 [Average particle diameter, thickness and filling rate of Ag fine particles]
  • an Ag target and a TiO 2 target were installed as sputtering targets.
  • the vacuum chamber was evacuated to 1.3 ⁇ 10 ⁇ 3 Pa or less, and a sputtering gas composed of argon gas was introduced so that the pressure in the vacuum chamber was 6.0 ⁇ 10 ⁇ 1 Pa.
  • an Ag target was sputtered using an RF power source to form Ag fine particles on the SiO 2 plate.
  • the Ag fine particles were observed with an SEM (Hitachi High-Technologies SU-70), and the average particle diameter, thickness, and filling rate of the Ag fine particles were determined. The results are shown in Table 1.
  • an Ag target and a TiO 2 target were installed as sputtering targets.
  • the vacuum chamber was evacuated to 1.3 ⁇ 10 ⁇ 3 Pa or less, and a sputtering gas composed of argon gas was introduced so that the pressure in the vacuum chamber was 6.0 ⁇ 10 ⁇ 1 Pa.
  • an Ag target was sputtered using an RF power source to form Ag fine particles on the surface of a soda lime glass plate (clear glass plate).
  • a TiO 2 target was sputtered to form a TiO 2 layer on the Ag fine particles to obtain an optical film.
  • FIG. 3 shows the transmittance and reflectance spectra of the optical film in the wavelength range of 380 to 780 nm.
  • FIG. 4 shows the chromatic dispersion of the refractive index and extinction coefficient.
  • the arithmetic average value ratio k 650-780 / k 450-600 of the extinction coefficient of the optical film was 17.1.
  • the thickness of the optical film was measured by a stylus type step meter, it was confirmed to be 10 nm.
  • the sheet resistance value of the soda-lime glass plate having an optical film was measured with a two-probe resistance meter (trade name: Hiresta IP, manufactured by Mitsubishi Yuka Co., Ltd.), it was confirmed to be 1 M ⁇ / ⁇ or more.
  • a three-layer optical film was formed on the soda lime glass plate having the infrared reflection film in the same manner as the optical film described above. Subsequently, a soda-lime glass plate having this optical film and a UV green glass plate having an ultraviolet absorbing ability (manufactured by Asahi Glass Co., Ltd., hereinafter referred to as “UVFL”) are dispersed as PVB (infrared shielding particles containing ITO fine particles). Polyvinyl butyral) was laminated to form a material laminate. Thereafter, the material laminate is put in a vacuum bag, heated at 120 ° C.
  • the pre-compression body is placed in an autoclave.
  • the pressure was 1.3 MPa, and heat-pressed for 60 minutes to obtain a laminated glass.
  • the PVB intermediate film the one having a thickness of 0.76 mm containing 0.2% by mass of ITO fine particles used in Cool Veil (registered trademark, manufactured by Asahi Glass Co., Ltd.) with respect to the PVB intermediate film is used. It was.
  • a laminated glass was produced in the same manner as in Example 1 except that an optical film was not formed using a soda lime glass plate having this infrared reflecting film. That is, a soda lime glass plate having an infrared reflecting film and a UV green glass plate are overlapped with an intermediate film made of PVB containing dispersed ITO fine particles as infrared shielding particles used in Example 1, and the same as in Example 1. Thus, a laminated glass was produced.
  • the laminated glass of Example 1 in which the optical film having Ag fine particles was formed had a Tv decrease of 7.2% compared to the configuration without the optical film, compared with the Tts.
  • the decrease is 8.0%, and the total solar transmittance can be reduced while suppressing the decrease in the visible light transmittance.
  • Example 2 [Preparation of optical film, refractive index, extinction coefficient]
  • dipotassium hydrogen phosphate made by Junsei Kagaku
  • 5 mass% copper sulfate pentahydrate made by Junsei Chemical
  • aqueous solution is added with stirring and stirred at room temperature for 5 hours or more.
  • a light blue reaction solution was obtained.
  • the light blue reaction solution was subjected to solid-liquid separation using a desktop centrifuge to obtain a light blue precipitate.
  • the light blue sediment was dispersed in acetone, subjected to ultrasonic treatment, and then subjected to solid-liquid separation using a desktop centrifuge.
  • the obtained precipitate was dried at 150 ° C.
  • the obtained raw material slurry was introduced into the thermal plasma in the plasma torch, and the resulting product was cooled in the chamber to obtain dark green particles. .
  • the obtained dark green particles were transferred to a flat plate and heat-treated in the atmosphere at 500 ° C. for 5 minutes using an infrared image furnace to obtain light blue-green KCuPO 4 particles (average particle size 92 nm).
  • KCuPO 4 particles and a polyester resin (Osaka Gas Chemical Co., Ltd., OKP4HT) 25% by mass cyclohexanone solution in such a proportion that the solid content is 31% by mass of the KCuPO 4 particles and 69% by mass of the polyester resin.
  • the mixture was mixed and stirred with a rotation / revolution mixer to obtain a coating solution.
  • This coating solution was applied onto a PET film having a thickness of 100 ⁇ m with a Mayer bar so that the thickness after drying was 11 ⁇ m, and then dried at 100 ° C. for 1 minute to form an optical film.
  • FIG. 5 shows the transmittance and reflectance spectra of the optical film in the wavelength range of 380 to 780 nm.
  • FIG. 6 shows the wavelength dispersion of the refractive index and extinction coefficient.
  • the arithmetic average value ratio k 650-780 / k 450-600 of the extinction coefficient of the optical film was 50.8.
  • the thickness of the optical film was measured by a cross-sectional SEM, it was confirmed to be 11 ⁇ m.
  • the sheet resistance value of the soda-lime glass plate having an optical film was measured with a two-probe resistance meter (trade name: Hiresta IP, manufactured by Mitsubishi Yuka Co., Ltd.), it was confirmed to be 1 G ⁇ / ⁇ or more.
  • an infrared reflective film was formed by forming an infrared reflective film on one surface of a resin film. That is, as a resin film, a PET film (manufactured by Toyobo Co., Ltd., trade name: Cosmo Shine A4100, thickness 50 ⁇ m) on which only one surface was subjected to easy adhesion treatment was prepared. This PET film is put into a vacuum chamber, and a TiO 2 layer that becomes a high-refractive index dielectric layer and a SiO 2 that becomes a low-refractive index dielectric layer by a magnetron sputtering method on the main surface that is not subjected to the easy adhesion treatment. Seven layers were laminated alternately to form an infrared reflecting film, and an infrared reflecting film was obtained.
  • a PET film manufactured by Toyobo Co., Ltd., trade name: Cosmo Shine A4100, thickness 50 ⁇ m
  • This PET film is put into a vacuum chamber, and a TiO 2
  • each SiO 2 layer is introduced with a mixed gas in which 27 vol% oxygen gas is mixed with argon gas using a Si target, while a frequency of 20 kHz and a power density of 3.8 W / cm 2 at a pressure of 0.3 Pa. It was formed by performing pulse sputtering with an inversion pulse width of 5 ⁇ sec.
  • each TiO 2 layer and SiO 2 layer is adjusted by changing the film formation time, and the TiO 2 layer (100 nm) / SiO 2 layer (182 nm) / TiO 2 layer (100 nm) / SiO 2 layer (182 nm) / TiO 2 layer (100 nm) / SiO 2 layer (30 nm) / TiO 2 layer (10 nm).
  • the film was dried at 100 ° C. for 1 minute to obtain a composite film which is an infrared reflective film having an optical film.
  • a .76 mm intermediate film and a 2 mm thick UV green glass plate were laminated in this order to form a material laminate.
  • the material laminate is put in a vacuum bag, heated at 120 ° C. for 30 minutes while degassing so that the internal pressure becomes about 100 kPa or less, and then the pre-compression body is placed in an autoclave.
  • the pre-compression body was placed in an autoclave.
  • the pressure was 1.3 MPa
  • Example 2 In the same manner as in Example 2, an infrared reflective film was produced. And the laminated glass was produced like Example 2 except not forming an optical film. That is, a clear glass plate having a thickness of 2 mm, an intermediate film having a thickness of 0.76 mm made of PVB not containing infrared shielding particles, an infrared reflecting film, and a thickness of PVB containing the infrared shielding particles used in Example 1 was 0. A .76 mm intermediate film and a 2 mm thick UV green glass plate were laminated in this order to form a material laminate. Thereafter, the material laminate is put in a vacuum bag, heated at 120 ° C.
  • the laminated glass of Example 2 in which the optical film having KCuPO 4 particles was formed had a Tv decrease of 7.2% compared to the configuration without the optical film, compared with Tts. Is 9.8%, and it is possible to reduce the total solar transmittance while suppressing the reduction of the visible light transmittance.
  • Example 3 [Preparation of optical film, refractive index, extinction coefficient]
  • Main agent manufactured by DIC, trade name: BZ-1161
  • curing agent manufactured by DIC, trade name: A-9585
  • solvent manufactured by Kanto Chemical Co., trade name: MIBK (special grade)
  • FIG. 7 shows the transmittance and reflectance spectra of the optical film in the wavelength range of 380 to 780 nm.
  • FIG. 8 shows the wavelength dispersion of the refractive index and extinction coefficient.
  • the arithmetic average value ratio k 650-780 / k 450-600 of the extinction coefficient of the optical film was 7.8.
  • the thickness of the optical film was measured with a stylus type step meter, it was confirmed to be 12 ⁇ m.
  • the sheet resistance value of the soda-lime glass plate having an optical film was measured with a two-probe resistance meter (trade name: Hiresta IP, manufactured by Mitsubishi Yuka Co., Ltd.), it was confirmed to be 1 G ⁇ / ⁇ or more.
  • the film was dried at 100 ° C. for 1 minute to obtain a composite film which is an infrared reflective film having an optical film.
  • the laminated glass of Example 3 in which the optical film having the diimonium dye was formed had a decrease in Tv of 4 compared to the configuration without the optical film.
  • the decrease in Tts with respect to 0.3% is 7.5%, and the total solar transmittance can be reduced while suppressing the decrease in visible light transmittance.
  • this ripened liquid is vacuum dried to evaporate the solvent, and then the powder obtained by heat treatment at 200 ° C. for 1 hour is dry-pulverized to obtain about Cs 0.33 WO 3 fine particles.
  • Cs 0.33 WO 3 microparticles coated with 5 wt% Al 2 O 3 and about twice the weight of SiO 2 were obtained.
  • the coating solution was formed on a 100 ⁇ m-thick PET film prepared as a substrate using a Mayer bar. And after drying for 1 minute at 70 degreeC and evaporating a solvent, an ultraviolet-ray was irradiated using the high pressure mercury lamp, the film
  • FIG. 9 shows the transmittance and reflectance spectra of the optical film in the wavelength range of 380 to 780 nm.
  • FIG. 10 shows the wavelength dispersion of the refractive index and the extinction coefficient.
  • the arithmetic average value ratio k 650-780 / k 450-600 of the extinction coefficient of the optical film was 5.3.
  • the thickness of the optical film was measured by a cross-sectional SEM, it was confirmed to be 8 ⁇ m.
  • the sheet resistance value of the PET film having an optical film was measured by a two-probe resistance meter (trade name: Hiresta IP, manufactured by Mitsubishi Yuka Kabushiki Kaisha), it was confirmed to be 1 G ⁇ / ⁇ or more.
  • the film was cured by irradiating with ultraviolet rays using a high-pressure mercury lamp to obtain a composite film that was an infrared reflective film having an optical film.
  • a .76 mm intermediate film and a 2 mm thick UV green glass plate were laminated in this order to form a material laminate.
  • the material laminate is put in a vacuum bag, heated at 120 ° C. for 30 minutes while degassing so that the internal pressure becomes about 100 kPa or less, and then the pre-compression body is placed in an autoclave.
  • the pressure was 1.3 MPa, and heated and pressed for 60 minutes to obtain a laminated glass.
  • Example 4 [Preparation of optical film, refractive index, extinction coefficient]
  • Acrylic resin solution (Nippon Shokubai Co., Ltd., trade name: Hals Hybrid IR-G205, solid content 30%, solvent ethyl acetate, toluene) 226.3 g, phthalocyanine dye as an absorbing dye (trade name: NIR43V, manufactured by Yamada Chemical Co., Ltd.) ) 1.40 g (2% by mass with respect to 100% by mass of resin and pigment) and 172.3 g of a solvent (trade name: cyclopentanone, manufactured by Tokyo Chemical Industry Co., Ltd.) were mixed to prepare a coating solution.
  • This coating solution was applied onto a 100 ⁇ m thick PET film by spin coating so that the thickness after drying was 4 ⁇ m, and then dried at 100 ° C. for 10 minutes to form an optical film.
  • FIG. 11 shows the transmittance and reflectance spectra of the optical film in the wavelength range of 380 to 780 nm.
  • FIG. 12 shows the chromatic dispersion of the refractive index and extinction coefficient.
  • the arithmetic average value ratio k 650-780 / k 450-600 of the extinction coefficient of the optical film was 32.7.
  • the thickness of the optical film was measured with a stylus type step meter, it was confirmed to be 2 ⁇ m.
  • the sheet resistance value of the soda-lime glass plate having an optical film was measured with a two-probe resistance meter (trade name: Hiresta IP, manufactured by Mitsubishi Yuka Co., Ltd.), it was confirmed to be 1 G ⁇ / ⁇ or more.
  • an infrared reflective film was produced on one side of a resin film (PET film) in the same manner as in Example 2. Furthermore, after applying the coating liquid described above to the thickness of 4 ⁇ m after drying by spin coating on the easy adhesion treatment side of the infrared reflective film, that is, the main surface side where the infrared reflective film is not formed, The film was dried at 100 ° C. for 10 minutes to obtain a composite film that was an infrared reflective film having an optical film.
  • Example 2 2 mm thick clear glass plate, 0.76 mm thick intermediate film made of PVB not containing infrared shielding particles, infrared reflective film (composite film), thickness made of PVB containing infrared shielding particles used in Example 1
  • An interlayer film having a thickness of 0.76 mm and a UV green glass plate having a thickness of 2 mm were superposed in this order to form a material laminate.
  • the heat ray reflective film was arrange
  • the laminated glass of Example 4 in which the optical film having the phthalocyanine dye was formed had a decrease in Tv of 6 compared to the configuration without the optical film.
  • the decrease in Tts is 9.1% with respect to 0.1%, and the total solar transmittance can be reduced while suppressing the decrease in visible light transmittance.
  • the optical film which can reduce a total solar transmittance can be provided, suppressing the fall of visible light transmittance, and it is useful as an object for laminated glasses.

Abstract

 可視光透過率の低下を抑制しつつ全日射透過率を低減できる光学膜を提供する。 波長450~600nmの範囲における消衰係数の相加平均値に対する波長650~780nmの範囲における消衰係数の相加平均値の比が7以上であることを特徴とする合わせガラス用の光学膜。

Description

光学膜および合わせガラス
 本発明は、光学膜およびこれを用いた合わせガラスに関する。
 従来、車両等のフロントガラスに使用する合わせガラスとして、赤外線遮蔽ガラスが知られている。赤外線遮蔽ガラスは、1対のガラス基板間に太陽光線中の赤外線を遮蔽する赤外線反射膜や赤外線吸収層が設けられたものであり、室内の温度上昇や冷房負荷を低減できる。
 赤外線反射膜として、高屈折率誘電体層と低屈折率誘電体層とが交互に積層され、干渉作用によって赤外線を反射するもの、また1対の酸化物層によって金属層が挟持されたものが知られている(例えば、特許文献1、2参照)。また、赤外線吸収層として、赤外線遮蔽粒子が分散されたプラスチックフィルムや、赤外線遮蔽粒子が分散された樹脂膜が知られている(例えば、特許文献3参照)。
国際公開第2007/020791号パンフレット 日本特開平9-323374号公報 日本特開2010-222233号公報
 上記したように、車内の温度上昇や冷房負荷を低減するために、車輌用ガラスに赤外線遮蔽ガラスが使用されている。赤外線遮蔽ガラスには、全日射透過率が低いことが求められる。また、車輌用ガラスとして使用する場合、ガレージオープナーや携帯電話機等の電波を利用する機器を車内で使用できるように、電波透過性を有することが求められる。また、車輌用ガラスとして使用する場合、所定の可視光透過率を有することも求められる。
 赤外線遮蔽ガラスのうち、赤外線反射膜が金属層を有するものは、赤外線反射膜の赤外線遮蔽性能が高いために全日射透過率を十分に低くできる。しかし、金属層を有するために、電波透過性を有しない。一方、赤外線反射膜が高屈折率誘電体層と低屈折率誘電体層とからなるものについては、電波透過性を有するが、赤外線反射膜の赤外線遮蔽性能が低いために全日射透過率を十分に低くできない。なお、高屈折率誘電体層と低屈折率誘電体層とを合計して40層程度に増やすことで、赤外線遮蔽性能を向上させて全日射透過率を低くすることができるが、層数の増加によって生産性が低下する。
 本発明は、上記課題を解決するためになされたものであって、電波透過性や可視光透過率の低下を抑制しつつ全日射透過率を低減できる光学膜を提供することを目的とする。また、本発明は、上記した光学膜を有する合わせガラスを提供することを目的とする。
 本発明の光学膜は、450~600nmの範囲における消衰係数の相加平均値に対する650~780nmの範囲における消衰係数の相加平均値の比が7以上であることを特徴とする。
 本発明の合わせガラスは、1対の透明基板間に、赤外線反射膜と、450~600nmの範囲における消衰係数の相加平均値に対する650~780nmの範囲における消衰係数の相加平均値の比が7以上の光学膜とを有することを特徴とする。
 上記した数値範囲を示す「~」とは、その前後に記載された数値を下限値および上限値として含む意味で使用され、特段の定めがない限り、以下本明細書において「~」は、同様の意味をもって使用される。
 本発明の光学膜によれば、450~600nmの範囲における消衰係数の相加平均値(k450-600)に対する650~780nmの範囲における消衰係数の相加平均値(k650-780)の比を7以上とすることで、可視光透過率の低下を抑制しつつ全日射透過率を低減することができる。
 本発明の合わせガラスによれば、450~600nmの範囲における消衰係数の相加平均値(k450-600)に対する650~780nmの範囲における消衰係数の相加平均値(k650-780)の比が7以上の光学膜を設けることで、可視光透過率の低下を抑制しつつ全日射透過率を低減することができる。
Ag微粒子を有する光学膜の一例を示す模式的断面図。 KCuPO粒子を有する光学膜の一例を示す模式的断面図。 Ag微粒子を有する光学膜の透過率、反射率のスペクトルを示す図。 Ag微粒子を有する光学膜の屈折率、消衰係数を示す図。 KCuPO粒子を有する光学膜の透過率、反射率のスペクトルを示す図。 KCuPO粒子を有する光学膜の屈折率、消衰係数を示す図。 色素(ジイモニウム系)を有する光学膜の透過率、反射率のスペクトルを示す図。 色素(ジイモニウム系)を有する光学膜の屈折率、消衰係数を示す図。 Al/SiO被覆Cs0.33WO微粒子を有する光学膜の透過率、反射率のスペクトルを示す図。 Al/SiO被覆Cs0.33WO微粒子を有する光学膜の屈折率、消衰係数を示す図。 色素(フタロシアニン系)を有する光学膜の透過率、反射率のスペクトルを示す図。 色素(フタロシアニン系)を有する光学膜の屈折率、消衰係数を示す図。
 以下、本発明の光学膜および合わせガラスについて説明する。
 本発明の光学膜は、450~600nmの範囲における消衰係数の相加平均値(k450-600)に対する650~780nmの範囲における消衰係数の相加平均値(k650-780)の比(k650-780/k450-600)が7以上であることを特徴とする。以下、450~600nmの範囲における消衰係数の相加平均値(k450-600)に対する650~780nmの範囲における消衰係数の相加平均値(k650-780)の比(k650-780/k450-600)を単に消衰係数比とも記す。
 消衰係数は、次のように定義される。すなわち、物質が光を吸収する場合、透過光Iは、入射光強度I、光の侵入深さZを用いて、I=I-αzの関係式にしたがって減衰する。このとき、単位長さあたりの減衰を示すαを吸収係数と呼ぶ。一方、光と物質の相互作用を理論的に扱う場合には、光の電磁場の振動1回あたりの吸収量が基準となる。このため、物質による光の吸収を定義する量として消衰係数kが定義されている。消衰係数k、吸収係数α、波長λの間には、k=α×λ/4πという関係がある。
 消衰係数kは以下のようにして算出する。光学定数(屈折率及び消衰係数)が既知な基材上に塗布された光学膜の透過率および反射率を、分光光度計(例えば日立ハイテクノロジーズ社製、商品名:U4100)を用いて測定する。続いて、解析ソフト(例えば、ジェー・エー・ウーラムジャパン株式会社、商品名:WVASE32)を用いて測定した透過率および反射率を目標値として光学膜の屈折率nと消衰係数kを算出する。また、算出の際、分光エリプソメータ(例えば、ジェー・エー・ウーラムジャパン株式会社、商品名:M-2000)を用いて測定した偏光状態の変化を目標値として加えても良い。
 本発明の光学膜によれば、消衰係数比を7以上とすることで、可視光透過率の低下を抑制しつつ全日射透過率を低減できる。ここで、全日射透過率に対する紫外線波長領域(300~370nm)、可視光波長領域(380~780nm)、赤外線波長領域(790~2500nm)の各領域の寄与は、紫外線波長領域が3%、可視光波長領域が55%、赤外線波長領域が42%となっている。従来、全日射透過率の低減は、主として赤外線波長領域において行われている。
 本発明の光学膜は、全日射透過率に対する寄与の大きい可視光波長領域のうち、可視光透過率の向上にほとんど寄与せず、かつ全日射透過率の低減に寄与する波長を遮蔽することで、可視光透過率の低下を抑制しつつ全日射透過率を低減する。
 ISO 9045には、全日射透過率に対する波長毎の重価係数が記載されており、可視光波長領域においては重価係数は大きく変化しない。一方、JIS R3106には、可視光透過率に対する波長毎の重価係数が記載されており、重価係数は可視光波長領域の略中心部で大きくなり、その両側では小さくなる。これらのことからもわかるように、可視光波長領域には、全日射透過率の低減には寄与するが可視光透過率の向上には寄与しない部分が存在する。本発明の光学膜は、450~600nmの範囲における消衰係数の相加平均値(k450-600)に対する650~780nmの範囲における消衰係数の相加平均値(k650-780)の比(k650-780/k450-600)を7以上とすることで、上記部分を遮蔽し、可視光透過率の低下を抑制しつつ全日射透過率を低減できる。
 従って、全日射透過率を十分に低減できない赤外線反射膜に本発明の光学膜を併用することで、全日射透過率を十分に低減できる。このような赤外線反射膜としては、特に高屈折率誘電体層と低屈折率誘電体層とが交互に積層されたものが挙げられる。そして、このような赤外線反射膜は電波透過性を有することから、電波透過性を有し、かつ全日射透過率も十分に低減されたものを実現できる。
 本発明の光学膜は、膜状を有するものであればよく、例えば、透明基材等に積層される積層膜である薄膜もしくは厚膜、その他、フィルム状やシート状のものが挙げられる。フィルム状やシート状のものとしては、例えば、赤外線反射フィルムにおける基材や、合わせガラスにおける1対の透明基板を貼り合わせるための中間膜が挙げられる。また、本発明の光学膜は、乾式法、例えば、スパッタリング法等の物理蒸着法によって形成されたものであってもよいし、湿式法によって形成されたものであってもよい。
 消衰係数比は7以上であればよいが、より可視光透過率の低下を抑制しつつ全日射透過率を低下させる観点から、10以上が好ましく、15以上がより好ましい。
 光学膜のシート抵抗値は1kΩ/□以上であれば良く、好ましいシート抵抗値は500kΩ/□以上であり、より好ましいシート抵抗値は1MΩ/□以上であり、さらに1GΩ/□以上であること好ましい。光学膜のシート抵抗値は1kΩ/□以上であれば、電波透過性を確保できる。シート抵抗値は大きいほど良いことから、その上限値は特に限定されない。
 本発明の光学膜は、例えば、透明マトリックスと、この透明マトリックス中に分散含有される可視光吸収材とから構成される。可視光吸収材は、光学膜としたときに所定の消衰係数比が得られるものであれば特に限定されないが、例えば、Ag微粒子、KCuPO粒子、有機色素、無機顔料等が挙げられる。これらの中でも、消衰係数比の観点から、Ag微粒子、KCuPO粒子、有機色素が好ましく、耐久性の観点から、Ag微粒子、KCuPO粒子がより好ましい。Ag微粒子によれば、例えば、光学膜の消衰係数比を7~100にできる。また、KCuPO粒子によれば、例えば、光学膜の消衰係数比を7~100にできる。透明マトリックスは、透明性を有するものであればよく、可視光吸収材の種類や光学膜の形成方法に合わせて、無機材料および有機材料の中から適宜選択できる。
 図1は、Ag微粒子を有する光学膜の一例を示す模式的断面図である。以下、Ag微粒子を有する光学膜をAg膜と記す。Ag膜1は、例えば、透明基板2上に薄膜として形成される。
 透明基板2としては、例えば、ポリカーボネート、ポリメチルメタクリレート(PMMA)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリイミド、ポリエーテルスルフォン、ポリアリレート、ナイロン、シクロオレフィンポリマー等からなる樹脂フィルムが挙げられる。
 これらの中でも、比較的に高強度であり、耐久性に優れることから、ポリエチレンテレフタレート(PET)からなるものが好ましい。樹脂フィルムの厚さは、可撓性や耐久性等の観点から、5~200μmが好ましく、20~100μmがより好ましい。なお、樹脂フィルムには、必要に応じて、易接着処理、プラズマ処理、コロナ処理などの表面処理が施されていてもよい。また、樹脂フィルムには、赤外線反射膜等の機能膜が設けられていてもよい。
 また、透明基板2としては、クリアガラス板(透明ガラス板)、グリーンガラス板、UVグリーンガラス板等の無機透明ガラス板が挙げられる。なお、UVグリーンガラスは、SiOを68~74質量%、Feを0.3~1.0質量%、FeOを0.05~0.5質量%含有するものであって、波長350nmの紫外線透過率が1.5%以下、かつ550~1700nmの領域に透過率の極小値を有する紫外線吸収グリーンガラスを指す。ガラス板の厚さは、必ずしも限定されないが、1~4mmが好ましく、1.8~2.5mmがより好ましい。なお、ガラス板には、撥水機能、親水機能、防曇機能等を付与するコーティングが施されていてもよい。また、ガラス板には、赤外線反射膜等の機能膜が設けられていてもよい。
 Ag膜1は、例えば、透明マトリックス11と、この透明マトリックス11中に分散含有されるAg微粒子12とを有する。Ag微粒子12は、例えば、透明基板2の表面上に分散して形成される。Ag微粒子12の断面形状は、必ずしも限定されないが、例えば、薄板状とされる。また、透明マトリックス11は、透明性を有するものであればよいが、通常、金属酸化物、金属窒化物、金属酸窒化物等の無機材料が好ましく、例えば、タンタル、チタン、ジルコニウム、ハフニウム、ケイ素、アルミニウム等の酸化物、窒化物等が好ましい。
 Ag膜1は、例えば、透明基板2上にAg微粒子12を形成後、このAg微粒子12間の隙間を埋めるように、またAg微粒子12を被覆するように透明マトリックス11を形成することによって形成される。透明マトリックス11やAg微粒子12は、例えば、スパッタリング法により形成される。この際、例えば、透明基板2を加熱したり、真空槽の真空度を0.5~10Paにしたりすることで、容易にAg微粒子12を形成できる。また、透明マトリックス11やAg微粒子12は、スパッタリング法以外に、アークプラズマ薄膜形成装置、ナノクラスター薄膜形成装置等を用いて形成できる。
 Ag微粒子12の平均粒径は、10~200nmが好ましい。ここで、Ag微粒子12の平均粒径は、Ag膜1を平面視したときのAg微粒子12の平均粒径を意味する。平均粒径を10nm以上とすることで、全日射透過率を効果的に低減できる。一方、平均粒径を200nm以下とすることで、可視光透過率の過度な低下を抑制できる。Ag微粒子12の平均粒径は25~150nmがより好ましく、50~100nmがさらに好ましい。なお、平均粒径は、走査型電子顕微鏡(SEM)を用いて任意の100個のAg微粒子12の最大直径を測定し、その個数の数平均値とする。
 また、Ag膜1におけるAg微粒子12の充填率は、10~80%が好ましい。ここで、Ag微粒子12の充填率は、Ag膜1を平面視したときのAg膜1の全面積に対するAg微粒子12が充填された部分の面積の割合(充填面積/全面積)である。充填率を10%以上とすることで、全日射透過率を効果的に低減できる。一方、充填率を80%以下とすることで、可視光透過率の過度な低下を抑制できる。充填率は20~70%がより好ましく、30~60%がさらに好ましい。
 さらに、Ag微粒子12の平均厚みは、5~25nmが好ましい。ここで、Ag微粒子12の平均厚みは、Ag膜1を断面視したときのAg膜1の厚さ方向におけるAg微粒子12の平均長さである。平均厚みを5nm以上とすることで、全日射透過率を効果的に低減できる。一方、平均厚みを25nm以下とすることで、可視光透過率の過度な低下を抑制できる。平均厚みは5~20nmがより好ましく、5~15nmがさらに好ましい。なお、平均厚みは、走査型電子顕微鏡(SEM)を用いて任意の100個のAg微粒子12の最大厚みを測定し、その個数の数平均値とする。
 図2は、KCuPO粒子を有する光学膜の一例を示す模式的断面図である。以下、KCuPO粒子を有する光学膜をKCuPO膜と記す。KCuPO膜3は、例えば、透明マトリックス31と、この透明マトリックス31中に分散含有されるKCuPO粒子32とを有する。KCuPO膜3は、例えば、単独でフィルム状やシート状とされるが、図1に示したような透明基板2上に厚膜状の積層膜として形成されてもよい。
 透明マトリックス31としては、通常、有機材料が好ましい。有機材料としては、例えば、ポリカーボネート、ポリメチルメタクリレート(PMMA)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリイミド、ポリエーテルスルフォン、ポリアリレート、ナイロン、シクロオレフィンポリマー等が挙げられる。
 また、光学膜を形成する透明基板に粘着性を付与する場合、可塑化ポリビニルアセタール系樹脂、可塑化ポリ塩化ビニル系樹脂、可塑化飽和ポリエステル系樹脂、ポリウレタン系樹脂、可塑化ポリウレタン系樹脂、エチレン-酢酸ビニル共重合体系樹脂、エチレン-エチルアクリレート共重合体系樹脂等が挙げられる。
 これらの中でも、透明性、耐候性、強度、接着力、耐貫通性、衝撃エネルギー吸収性、耐湿性、遮熱性、および遮音性等の諸特性のバランスに優れることから、可塑化ポリビニルアセタール系樹脂が好ましい。上記可塑化ポリビニルアセタール系樹脂における「可塑化」とは、可塑剤の添加により可塑化されていることを意味する。その他の可塑化樹脂についても同様である。
 ポリビニルアセタール系樹脂としては、特に限定されるものではないが、ポリビニルアルコール(以下、必要に応じて「PVA」という)とホルムアルデヒドとを反応させて得られるポリビニルホルマール樹脂、PVAとアセトアルデヒドとを反応させて得られる狭義のポリビニルアセタール樹脂、PVAとn-ブチルアルデヒドとを反応させて得られるポリビニルブチラール樹脂(以下、必要に応じて「PVB」という)等が好ましく、特に透明性、耐候性、強度、接着力、耐貫通性、衝撃エネルギー吸収性、耐湿性、遮熱性、および遮音性等の諸特性のバランスに優れることから、PVBが好ましい。なお、これらのポリビニルアセタール系樹脂は、単独で用いてもよいし、2種類以上を併用してもよい。
 ポリビニルアセタール系樹脂の合成に用いるPVAは、特に限定されるものではないが、平均重合度が200~5000のものが好ましく、500~3000のものがより好ましい。上記ポリビニルアセタール系樹脂は、特に限定されるものではないが、アセタール化度が40~85モル%のものが好ましく、50~75モル%のものがより好ましい。上記ポリビニルアセタール系樹脂は、残存アセチル基量が30モル% 以下であるものが好ましく、0.5~24モル%のものがより好ましい。
 可塑剤は、特に限定されるものではなく、例えば一塩基性有機酸エステル系、多塩基性有機酸エステル系等の有機酸エステル系可塑剤や、有機リン酸系、有機亜リン酸系等のリン酸系可塑剤等を用いることができる。
 フィルム状やシート状のKCuPO膜3は、例えば、透明マトリックス31となるマトリックス成分と、KCuPO粒子32とを少なくとも含有する混合物からなる組成物をフィルム状またはシート状に成形することにより製造できる。また、積層膜としてのKCuPO膜3は、例えば、マトリックス成分、KCuPO粒子32、および有機溶剤を少なくとも含有する混合物からなる塗工液を透明基板2等の表面に塗布し、乾燥させることにより形成できる。
 KCuPO粒子32の平均粒径は、20~200nmが好ましい。平均粒径を20nm以上とすることで、結晶子が結晶構造を充分に維持でき、その結果、充分な吸収特性を発現でき全日射透過率を効果的に低減できる。一方、平均粒径を200nm以下とすることで、ヘイズが低くなり可視光透過率の過度な低下を抑制できる。KCuPO粒子32の平均粒径は20~150nmがより好ましく、20~100nmがさらに好ましい。なお、平均粒径は、粒子を分散媒に分散させた粒子径測定用分散液について、動的光散乱式粒度分布測定装置により測定する。
 KCuPO膜3におけるKCuPO粒子32の含有量、すなわち透明マトリックス31とKCuPO粒子32との合計量に対するKCuPO粒子32の割合は、透明マトリックス31の種類によっても異なるが、5~70質量%が好ましい。KCuPO粒子32の含有量を5質量%以上とすることで、全日射透過率を効果的に低減できる。一方、KCuPO粒子32の含有量を70質量%以下とすることで、可視光透過率の過度な低下を抑制できる。KCuPO粒子32の含有量は10~50質量%がより好ましく、20~40質量%がさらに好ましい。
 KCuPO膜3の厚みは、透明マトリックス31との合計量に対するKCuPO粒子32の割合によっても異なるが、0.1~200μmが好ましい。厚みを0.1μm以上とすることで、全日射透過率を効果的に低減できる。一方、厚みを200μm以下とすることで、可視光透過率の過度な低下を抑制できる。厚みは1~150μmがより好ましく、10~100μmがさらに好ましい。
 上記したように、フィルム状やシート状のKCuPO膜3は、透明マトリックス31となるマトリックス成分と、KCuPO粒子32とを少なくとも含有する混合物からなる組成物をフィルム状またはシート状に成形することにより製造できる。また、積層膜としてのKCuPO膜3は、例えば、マトリックス成分、KCuPO粒子32、および有機溶剤の混合物からなる塗工液を透明基板等の表面上に塗布し、乾燥させることにより形成できる。
 有機溶剤としては、トルエン、キシレン等の芳香族系;N-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等のアミド系;メチルエチルケトン、メチルイソブチルケトン、アセトン等のケトン系;メタノール、エタノール、i-プロピルアルコール等のアルコール系;ヘキサン等の炭化水素系;および、テトラヒドロフラン等が挙げられる。これらの有機溶剤は、単独で用いてもよく、必要に応じて適宜混合して用いてもよい。
 塗工方法としては、例えば、浸漬コーティング法、スプレーコーティング法、スピンナーコーティング法、ビードコーティング法、ワイヤーバーコーティング法、ブレードコーティング法、ローラーコーティング法、カーテンコーティング法、スリットダイコーター法、グラビアコーター法、スリットリバースコーター法、マイクログラビア法、コンマコーター法等のコーティング法を採用できる。
 本発明の光学膜としては、所定の消衰係数比を得られるものであれば有機色素や無機顔料等を有するものであってもよい。以下、有機色素、無機顔料を有する光学膜を着色性膜と記す。着色性膜は、KCuPO膜3におけるKCuPO粒子を有機色素または無機顔料に変更することを除き、基本的にKCuPO膜3と同様の構成とすることができる。また、その製造方法についても、基本的にKCuPO膜3と同様の製造方法とすることができる。有機色素、無機顔料は、単独で使用してもよいし、両者を併用してもよい。なお、KCuPO粒子と、有機色素および無機顔料から選ばれる少なくとも1種とを併用してもよい。
 有機色素としては、例えば、ジイモニウム系色素、アンスラキノン系色素、アミニウム系色素、シアニン系色素、メロシアニン系色素、クロコニウム系色素、スクアリウム系色素、アズレニウム系色素、ポリメチン系色素、ナフトキノン系色素、ピリリウム系色素、フタロシアニン系色素、ナフタロシアニン系色素、ナフトラクタム系色素、アゾ系色素、縮合アゾ系色素、インジゴ系色素、ペリノン系色素、ペリレン系色素、ジオキサジン系色素、キナクリドン系色素、イソインドリノン系色素、キノフタロン系色素、ピロール系色素、チオインジゴ系色素、金属錯体系色素、ジチオール系金属錯体系色素、インドールフェノール系色素、トリアリルメタン系色素等が例示される。また、無機顔料としては、例えば、コバルト系色素、鉄系色素、クロム系色素、チタン系色素、バナジウム系色素、ジルコニウム系色素、モリブデン系色素、ルテニウム系色素、白金系色素、ITO(Indium Tin Oxide)系色素、ATO(Antimony Tin Oxide)系色素等が例示される。
 有機色素を単独で使用する場合、着色性膜における有機色素の含有量は、0.1~70質量%が好ましい。また、無機顔料を単独で使用する場合、着色性膜における無機顔料の含有量は、1~50質量%が好ましい。両者を併用する場合、着色性膜における両者の合計した含有量は、1.1~70質量%が好ましい。
 また、着色性膜の厚みは、0.1~200μmが好ましい。厚みを0.1μm以上とすることで、全日射透過率を効果的に低減できる。一方、厚みを200μm以下とすることで、可視光透過率の過度な低下を抑制できる。厚みは1~150μmがより好ましく、10~125μmがさらに好ましい。
 本発明の光学膜は、薄膜の場合、赤外反射膜などの公知の機能膜の一部として用いても良い。また、光学膜がフィルム状やシート状の場合、表面に赤外線反射膜等の機能膜を設けることができる。一方、光学膜が透明基材に積層される場合、透明基材または光学膜の表面上、または透明基材と光学膜との間に赤外線反射膜等の機能膜を設けることができる。
 赤外線反射膜としては、高屈折率誘電体層と低屈折率誘電体層とが交互に積層されるものが好ましい。赤外線反射膜は、無機材料から成っても良く、樹脂材料から成っても良い。このような赤外線反射膜は金属層を有する赤外線反射膜に比べて必ずしも赤外線遮蔽性能が十分でなく、それのみでは全日射透過率を十分に低減できないが、本発明の光学膜と併用することで全日射透過率を十分に低減できる。
 赤外線反射膜が、無機材料から成る場合、高屈折率誘電体層の屈折率(波長550nmでの屈折率、以下同様)は、1.9以上が好ましく、1.9~2.9がより好ましい。このような高屈折率誘電体層の構成材料としては、例えば、酸化タンタル、酸化チタン、酸化ジルコニウム、酸化ハフニウム等の高屈折率材料が挙げられる。
 低屈折率誘電体層の屈折率は、1.5以下が好ましく、1.2~1.5がより好ましい。このような低屈折率誘電体層の構成材料としては、例えば、酸化ケイ素、フッ化マグネシウム等の低屈折率材料が挙げられる。
 高屈折率誘電体層と低屈折率誘電体層との合計層数は、赤外線反射特性、生産性、コスト等の観点から、3~11層が好ましく、5~9層がより好ましい。このような赤外線反射膜は、公知の成膜方法を適用して形成でき、例えばマグネトロンスパッタリング法、電子線蒸着法、真空蒸着法、化学蒸着法等を適用して形成することができる。
 赤外線反射膜が、樹脂材料から成る場合、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリメチルメタクリレート、ポリエチレン、ポリスチレン、ポリカーボネート、ナイロン、ポリエーテルスルフォン、ポリフッ化ビニリデンとポリメチルメタクリレートの混合物、エチレンと不飽和モノカルボン酸とのコポリマー、スチレンとメチルメタクリレートのコポリマー等から選んで用いることができる。
 次に、本発明の合わせガラスについて説明する。
 本発明の合わせガラスは、1対の透明基板と、これら1対の透明基板間に配置された赤外線反射膜と、1対の透明基板間に配置され、450~600nmの範囲における消衰係数の相加平均値に対する650~780nmの範囲における消衰係数の相加平均値の比が7以上である光学膜とを有する。
 以下に、合わせガラスの具体的な構成例を示す。
 なお、合わせガラスの構成は必ずしもこれらに限られない。
(1)基板/赤外線反射膜/薄膜(光学膜)/中間膜/基板
(2)基板/赤外線反射膜/中間膜(光学膜)/基板
(3)基板/赤外線反射膜(光学膜)/中間膜 /基板
(4)基板/中間膜/赤外線反射膜/樹脂フィルム(光学膜)/中間膜/基板
(5)基板/中間膜/赤外線反射膜/樹脂フィルム/薄膜(光学膜)/中間膜/基板
(6)基板/中間膜/赤外線反射膜/樹脂フィルム/中間膜(光学膜)/基板
(7)基板/中間膜/樹脂フィルム(光学膜)/赤外線反射膜/中間膜/基板
(8)基板/中間膜/樹脂フィルム/薄膜(光学膜)/赤外線反射膜/中間膜/基板
(9)基板/中間膜/赤外線反射膜(光学膜)/樹脂フィルム/中間膜/基板
(10)基板/中間膜/樹脂材料からなる赤外線反射膜(光学膜)/中間膜/基板
(11)基板/中間膜/樹脂材料からなる赤外線反射膜/薄膜(光学膜)/中間膜/基板
(12)基板/中間膜/薄膜(光学膜)/樹脂材料からなる赤外線反射膜/中間膜/基板
(13)基板/中間膜/樹脂材料からなる赤外線反射膜/中間膜(光学膜)/基板
 各構成は、いずれも左側が外側、すなわち自動車であれば、車外あるいは室外側であり、右側が内側、すなわち車内あるいは室内側となっている。また、「基板」は透明基板、「(光学膜)」は本発明の光学膜からなることを意味する。なお、内側の透明基板に貼り合わされる中間膜は、赤外線遮蔽粒子を含有するものが好ましい。
 (1)、(2)(3)の合わせガラスは、いずれも赤外線反射フィルムを有しないものである。(1)の合わせガラスは、一方の透明基板上に赤外線反射膜および薄膜状の光学膜が順に形成されて素材積層体とされ、これが中間膜によって他方の透明基板に貼り合わされている。(2)の合わせガラスは、一方の透明基板上に赤外線反射膜が形成されて素材積層体とされ、これが中間膜としての光学膜によって他方の透明基板に貼り合わされている。(3)の合わせガラスは、一方の透明基板上に光学膜を含んだ赤外線反射膜が形成されて素材積層体とされ、これが中間膜によって他方の透明基板に貼り合わされている。
 (4)~(9)の合わせガラスは、いずれも赤外線反射フィルムを有するものであり、1対の透明基板間に赤外線反射フィルムが1対の中間膜によって貼り合わされている。(4)の合わせガラスは、光学膜を含んだ樹脂フィルムの外側主面に赤外線反射膜が形成されて赤外線反射フィルムとされている。(5)の合わせガラスは、樹脂フィルムの外側主面に赤外線反射膜が形成され、内側主面に薄膜状の光学膜が形成されて赤外線反射フィルムとされている。(6)の合せガラスは、赤外反射フィルムとは別に内側の透明基板を貼り合わせる中間膜に光学膜が含まれている。(7)の合わせガラスは、フィルム状の光学膜の内側主面に赤外線反射膜が形成されて赤外線反射フィルムとされている。(8)の合わせガラスは、樹脂フィルムの内側主面に薄膜状の光学膜および赤外線反射膜が順に形成されて赤外線反射フィルムとされている。(9)の合わせガラスは、樹脂フィルムの外側主面に光学膜を含んだ赤外線反射膜が形成され、赤外線反射フィルムとされている。
 (10)~(13)の合わせガラスは、いずれも樹脂材料からなる赤外線反射膜を有するものであり、1対の透明基板間に樹脂材料からなる赤外線反射フィルムが1対の中間膜によって貼り合わされている。(10)の合わせガラスは、赤外線反射フィルム中に光学膜が含まれている。(11)の合わせガラスは、赤外線反射フィルムの内側主面に薄膜状の光学膜が形成されている。(12)の合わせガラスは、赤外線反射フィルムの外側主面に薄膜状の光学膜が形成されている。(13)の合せガラスは、赤外線反射フィルムとは別に内側の透明基板を貼り合わせる中間膜に光学膜が含まれている。
 合わせガラスにおける透明基板としては、例えば、クリアガラス板、グリーンガラス板、UVグリーンガラス板等の無機透明ガラス板が挙げられる。ガラス板の厚さは、必ずしも限定されないが、それぞれ1~4mmが好ましく、1.8~2.5mmがより好ましい。なお、ガラス板には、撥水機能、親水機能、防曇機能等を付与するコーティングが施されていてもよい。
 樹脂フィルムとしては、例えば、ポリカーボネート、ポリメチルメタクリレート(PMMA)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリイミド、ポリエーテルスルフォン、ポリアリレート、ナイロン、シクロオレフィンポリマー等からなるものが挙げられる。
 これらの中でも、比較的に高強度であり、耐久性に優れることから、ポリエチレンテレフタレート(PET)からなるものが好ましい。樹脂フィルムの厚さは、可撓性や耐久性等の観点から、5~200μmが好ましく、20~100μmがより好ましい。なお、樹脂フィルムには、易接着処理、プラズマ処理、コロナ処理などの表面処理が施されていてもよい。
 中間膜としては、可塑化ポリビニルアセタール系樹脂、可塑化ポリ塩化ビニル系樹脂、可塑化飽和ポリエステル系樹脂、ポリウレタン系樹脂、可塑化ポリウレタン系樹脂、エチレン-酢酸ビニル共重合体系樹脂、エチレン-エチルアクリレート共重合体系樹脂等からなるものが好ましい。
 これらの中でも、透明性、耐候性、強度、接着力、耐貫通性、衝撃エネルギー吸収性、耐湿性、遮熱性、および遮音性等の諸特性のバランスに優れることから、可塑化ポリビニルアセタール系樹脂が好ましい。上記可塑化ポリビニルアセタール系樹脂における「可塑化」とは、可塑剤の添加により可塑化されていることを意味する。その他の可塑化樹脂についても同様である。
 ポリビニルアセタール系樹脂としては、特に限定されるものではないが、ポリビニルアルコール(以下、必要に応じて「PVA」という)とホルムアルデヒドとを反応させて得られるポリビニルホルマール樹脂、PVAとアセトアルデヒドとを反応させて得られる狭義のポリビニルアセタール樹脂、PVAとn-ブチルアルデヒドとを反応させて得られるポリビニルブチラール樹脂(以下、必要に応じて「PVB」という)等が好ましく、特に透明性、耐候性、強度、接着力、耐貫通性、衝撃エネルギー吸収性、耐湿性、遮熱性、および遮音性等の諸特性のバランスに優れることから、PVBが好ましい。なお、これらのポリビニルアセタール系樹脂は、単独で用いてもよいし、2種類以上を併用してもよい。
 ポリビニルアセタール系樹脂の合成に用いるPVAは、特に限定されるものではないが、平均重合度が200~5000のものが好ましく、500~3000のものがより好ましい。上記ポリビニルアセタール系樹脂は、特に限定されるものではないが、アセタール化度が40~85モル%のものが好ましく、50~75モル%のものがより好ましい。上記ポリビニルアセタール系樹脂は、残存アセチル基量が30モル% 以下であるものが好ましく、0.5~24モル%のものがより好ましい。
 可塑剤は、特に限定されるものではなく、例えば一塩基性有機酸エステル系、多塩基性有機酸エステル系等の有機酸エステル系可塑剤や、有機リン酸系、有機亜リン酸系等のリン酸系可塑剤等を用いることができる。
 中間膜には、赤外線遮蔽粒子を含有させることができる。赤外線遮蔽粒子としては、例えば、レニウム、ハフニウム、ニオブ、スズ、チタン、ケイ素、亜鉛、ジルコニウム、鉄、アルミニウム、クロム、コバルト、セリウム、インジウム、ニッケル、銀、銅、白金、マンガン、タンタル、タングステン、バナジウム、モリブデン、セシウム等の金属、その酸化物、窒化物、硫化物、もしくは珪素化合物、またはこれらにアンチモン、フッ素、もしくはスズ等のドーパントをドープした無機系微粒子を用いることができる。これらの中でも、アンチモンがドープされた酸化スズ微粒子(ATO微粒子)、またはスズがドープされた酸化インジウム微粒子(ITO微粒子)、特にITO微粒子を好適に用いることができる。
 ITO微粒子を用いる場合、一次粒子の平均粒径が100nm以下のものを用いることが好ましい。ITO微粒子の平均粒径が100nmを超える場合、中間膜の透明性が不十分となるおそれがある。また、ITO微粒子の含有量は、樹脂成分100質量部に対して、0.1~3.0質量部が好ましい。ITO微粒子の含有量が0.1質量部未満の場合、必ずしも十分な赤外線遮蔽能を付与することができず、3.0質量部を超える場合、可視光透過率が不十分となるおそれがある。
 本発明の合わせガラスは、所定の消衰係数比を有する光学膜を設けることを除き、従来の合わせガラスと同様にして製造できる。すなわち、赤外線反射フィルムを有しないものについては、1対の透明基板間に中間膜を配置して、予備圧着、本圧着を行うことにより製造できる。この場合、透明基板に光学膜が形成されるか、中間膜に光学膜が用いられる。
 また、赤外線反射フィルムを有するものについては、1対の透明基板間に、1対の中間膜を介して赤外線反射フィルムを配置し、予備圧着、本圧着を行うことにより製造できる。この場合、透明基板や赤外線反射フィルムの基材等の表面に光学膜が形成されるか、赤外線反射フィルムの基材、中間膜として光学膜が用いられる。
 本発明の合わせガラスは、自動車、鉄道、船舶等に好適に用いることができる。合わせガラスは、ISO 13837により定められる全日射透過率(Tts)が50%以下であることが好ましく、45%以下がより好ましい。全日射透過率(Tts)は、その他の特性とのバランスから、通常、40%以上が好ましい。また、JIS R3106により定められる可視光透過率Tvは70%以上が好ましい。
(実施例1)
[Ag微粒子の平均粒径、厚み、充填率]
 真空槽内のカソード上に、スパッタリングターゲットとしてAgターゲットとTiOターゲットとを設置した。そして、真空槽を1.3×10-3Pa以下となるまで排気した後、アルゴンガスからなるスパッタガスを真空槽内の圧力が6.0×10-1Paになるよう導入した。その後、RF電源を用いてAgターゲットのスパッタリングを行い、SiO板上にAg微粒子を形成した。このAg微粒子をSEM(日立ハイテクノロージーズ SU-70)により観察し、Ag微粒子の平均粒径、厚み、充填率を求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[光学膜の作製、屈折率、消衰係数]
 真空槽内のカソード上に、スパッタリングターゲットとしてAgターゲットとTiOターゲットとを設置した。そして、真空槽を1.3×10-3Pa以下となるまで排気した後、アルゴンガスからなるスパッタガスを真空槽内の圧力が6.0×10-1Paになるよう導入した。その後、RF電源を用いてAgターゲットのスパッタリングを行い、ソーダライムガラス板(クリアガラス板)の表面にAg微粒子を形成した。続いてTiOターゲットのスパッタリングを行い、Ag微粒子の上にTiO層を形成して光学膜とした。
 この光学膜の透過率および反射率を分光光度計(日立ハイテクノロージーズ U-4100)により測定し、これらの値から屈折率および消衰係数を算出した。図3に、光学膜の波長380~780nmの範囲の透過率および反射率のスペクトルを示す。また、図4に、屈折率および消衰係数の波長分散を示す。なお、光学膜の消衰係数の相加平均値比k650-780/k450-600は、17.1であった。
 なお、光学膜の厚みを触針式段差計により測定したところ、10nmであることが確認された。また、光学膜を有するソーダライムガラス板のシート抵抗値を2探針抵抗計(三菱油化社製、商品名:ハイレスタIP)により測定したところ、1MΩ/□以上であることが確認された。
[合わせガラス]
 ソーダライムガラス板上に、スパッタリング法により高屈折率誘電体層となるTiO層と低屈折率誘電体層となるSiO層とを交互に、合わせて7層積層して赤外線反射膜を形成した。以下に、各層の幾何学的厚さを示す。
・ソーダライムガラス(2mm)/TiO層(100nm)/SiO層(182nm)/TiO層(100nm)/SiO層(182nm)/TiO層(100nm)/SiO層(30nm)/TiO層(10nm) 
 この赤外線反射膜を有するソーダライムガラス板に、上記した光学膜の形成と同様に3層の光学膜を形成した。続いて、この光学膜を有するソーダライムガラス板と、紫外線吸収能を有するUVグリーンガラス板(旭硝子社製、以下「UVFL」と記す)とを、赤外線遮蔽粒子としてITO微粒子を分散含有するPVB(ポリビニルブチラール)からなる中間膜により重ね合わせて素材積層体とした。その後、素材積層体を真空バッグに入れ、内部の圧力が約100kPa以下となるように脱気しつつ120℃で30分間加熱して予備圧着体とし、さらにこの予備圧着体をオートクレーブに入れ、温度を135℃、圧力を1.3MPaとして60分間の加熱加圧を行って合わせガラスとした。尚、上記PVB中間膜としては、クールベール(旭硝子社製、登録商標)に使用されているITO微粒子がPVB中間膜に対して0.2質量%含有した、厚さ0.76mmのものを用いた。
 この合わせガラスについて、分光光度計(日立ハイテクノロジーズ社製、商品名:U4100)により波長300~2500nmの範囲の透過率および反射率を測定し、JIS R3106の規定に従い可視光透過率Tv(%)を、ISO13837の規定に従い全日射透過率Tts(%)を求めた。また、450~600nmの透過率の相加平均値T450-600と650~780nmの透過率の相加平均値T650-780を求めた。結果を表2に示す。
  (比較例1)
 ソーダライムガラス板上に、スパッタリング法により高屈折率誘電体層となるTiO層と低屈折率誘電体層となるSiO層とを交互に、合わせて7層積層して赤外線反射膜を形成した。以下に、各層の幾何学的厚さを示す。
・ソーダライムガラス(2mm)/TiO層(100nm)/SiO層(182nm)/TiO層(100nm)/SiO層(182nm)/TiO層(100nm)/SiO層(30nm)/TiO層(10nm) 
 この赤外線反射膜を有するソーダライムガラス板を用いて、光学膜を形成しないこと以外は実施例1と同様にして合わせガラスを作製した。すなわち、赤外線反射膜を有するソーダライムガラス板と、UVグリーンガラス板とを、実施例1に使用した赤外線遮蔽粒子としてITO微粒子を分散含有するPVBからなる中間膜により重ね合わせ、実施例1と同様にして合わせガラスを作製した。
 この合わせガラスについて、分光光度計(日立ハイテクノロジーズ社製、商品名:U4100)により波長300~2500nmの範囲の透過率および反射率を測定し、JIS R3106の規定に従い可視光透過率Tv(%)を、ISO 13837の規定に従い全日射透過率Tts(%)を求めた。また、450~600nmの透過率の相加平均値T450-600と650~780nmの透過率の相加平均値T650-780を求めた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、Ag微粒子を有する光学膜が形成された実施例1の合わせガラスについては、光学膜がない構成と比較して、Tvの低下が7.2%に対してTtsの低下が8.0%であり、可視光透過率の低下を抑制しつつ全日射透過率を低減できる。
(実施例2)
[光学膜の作製、屈折率、消衰係数]
 52質量%リン酸水素二カリウム(純正化学製)水溶液の500gに、撹拌しながら、5質量%硫酸銅・五水和物(純正化学製)水溶液の500gを加え、5時間以上室温にて撹拌し、水色反応液を得た。水色反応液を、卓上遠心分離機を用いて固液分離し、水色沈降物を得た。水色沈降物をアセトン中に分散させ、超音波処理を行った後、卓上遠心分離機を用いて固液分離した。得られた沈降物を150℃で2時間乾燥した後、エタノールに分散させて、原料スラリーを得た。特開2005-170760号公報に記載された装置を用い、得られた原料スラリーをプラズマトーチ内の熱プラズマに導入し、得られた生成物をチャンバ内で冷却して暗緑色の粒子を得た。得られた暗緑色粒子を、平皿に移し、大気中で、赤外線イメージ炉を用いて500℃で5分間熱処理し、薄青緑色のKCuPO粒子(平均粒径92nm)を得た。
 KCuPO粒子と、ポリエステル系樹脂(大阪ガスケミカル社製、OKP4HT)の25質量%シクロヘキサノン溶液とを、固形分がKCuPO粒子の31質量%およびポリエステル系樹脂の69質量%となるような割合で混合し、自転・公転式ミキサーで撹拌して塗工液を得た。この塗工液を厚さ100μm厚のPETフィルム上に、メイヤーバーにて乾燥後の厚さが11μmとなるように塗布した後、100℃で1分間乾燥させて光学膜を形成した。
 この光学膜の透過率および反射率を分光光度計(日立ハイテクノロージーズ U-4100)により測定し、これらの値から屈折率および消衰係数を算出した。図5に、光学膜の波長380~780nmの範囲の透過率および反射率のスペクトルを示す。また、図6に、屈折率および消衰係数の波長分散を示す。なお、光学膜の消衰係数の相加平均値比k650-780/k450-600は、50.8であった。
 なお、光学膜の厚みを断面SEMにより測定したところ、11μmであることが確認された。また、光学膜を有するソーダライムガラス板のシート抵抗値を2探針抵抗計(三菱油化社製、商品名:ハイレスタIP)により測定したところ、1GΩ/□以上であることが確認された。
[合わせガラス]
 まず、樹脂フィルムの片面に赤外線反射膜を形成して赤外線反射フィルムを作製した。すなわち、樹脂フィルムとして、片面のみに易接着処理が施されたPETフィルム(東洋紡績社製、商品名:コスモシャイン A4100、厚さ50μm)を用意した。このPETフィルムを真空チャンバに投入し、その易接着処理が施されていない主面上に、マグネトロンスパッタリング法により高屈折率誘電体層となるTiO層と低屈折率誘電体層となるSiO層とを交互に、合わせて7層積層して赤外線反射膜とし、赤外線反射フィルムとした。
 なお、各TiO層は、TXOターゲット(AGCセラミック社製、商品名:TXO)を用いて、アルゴンガスに5体積%の酸素ガスを混合した混合ガスを導入しつつ、0.1Paの圧力で周波数20kHz、電力密度5.1W/cm、反転パルス幅5μsecのパルススパッタを行って形成した。また、各SiO層は、Siターゲットを用いてアルゴンガスに27体積%の酸素ガスを混合した混合ガスを導入しつつ、0.3Paの圧力で周波数20kHz、電力密度3.8W/cm、反転パルス幅5μsecのパルススパッタを行って形成した。各TiO層、SiO層の厚さは、成膜時間を変更することにより調整し、PETフィルム側から順にTiO層(100nm)/SiO層(182nm)/TiO層(100nm)/SiO層(182nm)/TiO層(100nm)/SiO層(30nm)/TiO層(10nm)とした。
 さらに、赤外線反射フィルムの易接着処理側、すなわち赤外線反射膜が形成されていない主面側に、上記した塗工液をメイヤーバーにて乾燥後の厚さが60μmとなるように塗布した後、100℃で1分間乾燥させ、光学膜を有する赤外線反射フィルムである複合フィルムを得た。
 次に、厚さ2mmのクリアガラス板、赤外線遮蔽粒子を含有しないPVBからなる厚さ0.76mmの中間膜、複合フィルム、実施例1に使用した赤外線遮蔽粒子を含有するPVBからなる厚さ0.76mmの中間膜、厚さ2mmのUVグリーンガラス板を、この順に重ね合わせて素材積層体とした。その後、素材積層体を真空バッグに入れ、内部の圧力が約100kPa以下となるように脱気しつつ120℃で30分間加熱して予備圧着体とし、さらにこの予備圧着体をオートクレーブに入れ、温度を135℃、圧力を1.3MPaとして60分間の加熱加圧を行って合わせガラスとした。
 この合わせガラスについて、分光光度計(日立ハイテクノロジーズ社製、商品名:U4100)により波長300~2500nmの範囲の透過率および反射率を測定し、JIS R3106の規定に従い可視光透過率Tv(%)を、ISO 13837の規定に従い全日射透過率Tts(%)を求めた。また、450~600nmの透過率の相加平均値T450-600と650~780nmの透過率の相加平均値T650-780を求めた。結果を表3に示す。
(比較例2)
 実施例2と同様にして、赤外線反射フィルムを作製した。そして、光学膜を形成しないこと以外は実施例2と同様にして合わせガラスを作製した。すなわち、厚さ2mmのクリアガラス板、赤外線遮蔽粒子を含有しないPVBからなる厚さ0.76mmの中間膜、赤外線反射フィルム、実施例1に使用した赤外線遮蔽粒子を含有するPVBからなる厚さ0.76mmの中間膜、厚さ2mmのUVグリーンガラス板を、この順に重ね合わせて素材積層体とした。その後、素材積層体を真空バッグに入れ、内部の圧力が約100kPa以下となるように脱気しつつ120℃で30分間加熱して予備圧着体とし、さらにこの予備圧着体をオートクレーブに入れ、温度を135℃、圧力を1.3MPaとして60分間の加熱加圧を行って合わせガラスとした
 この合わせガラスについて、分光光度計(日立ハイテクノロジーズ社製、商品名:U4100)により波長300~2500nmの範囲の透過率および反射率を測定し、JIS R3106の規定に従い可視光透過率Tv(%)を、ISO13837の規定に従い全日射透過率Tts(%)を求めた。また、450~600nmの透過率の相加平均値T450-600と650~780nmの透過率の相加平均値T650-780を求めた。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、KCuPO粒子を有する光学膜が形成された実施例2の合わせガラスについては、光学膜がない構成と比較して、Tvの低下が7.2%に対してTtsの低下が9.8%であり、可視光透過率の低下を抑制しつつ全日射透過率を低減できる。
(実施例3)
[光学膜の作製、屈折率、消衰係数]
 主剤(DIC社製、商品名:BZ-1161)20g、硬化剤(DIC社製、商品名:A-9585)5g、および溶剤(関東化学社製、商品名:MIBK(特級))33.8gを混合して樹脂溶液を調製した。また、吸収色素としてのジイモニウム系色素(日本化薬社製、商品名:KAYASORB IRG-068)0.1527g(樹脂100質量%に対して1質量%)をメチルイソブチルケトン11.66gとトルエン3.0gとの混合溶剤に溶解、分散させて色素溶液を調製した。そして、これら樹脂溶液と色素溶液とを混合して塗工液を調製した。この塗工液を厚さ100μm厚のPETフィルム上へ、メイヤーバーにて乾燥後の厚さが12μmとなるように塗布した後、100℃で1分間乾燥させて光学膜を形成した。
 この光学膜の透過率および反射率を分光光度計(日立ハイテクノロージーズ U-4100)により測定し、これらの値から屈折率および消衰係数を算出した。図7に、光学膜の波長380~780nmの範囲の透過率および反射率のスペクトルを示す。また、図8に、屈折率および消衰係数の波長分散を示す。なお、光学膜の消衰係数の相加平均値比k650-780/k450-600は、7.8であった。
 なお、光学膜の厚みを触針式段差計により測定したところ、12μmであることが確認された。また、光学膜を有するソーダライムガラス板のシート抵抗値を2探針抵抗計(三菱油化社製、商品名:ハイレスタIP)により測定したところ、1GΩ/□以上であることが確認された。
[合わせガラス]
 まず、樹脂フィルム(PETフィルム)の片面に実施例2と同様にして、赤外線反射フィルムを作製した。
 さらに、赤外線反射フィルムの易接着処理側、すなわち赤外線反射膜が形成されていない主面側に、上記した塗工液をメイヤーバーにて乾燥後の厚さが125μmとなるように塗布した後、100℃で1分間乾燥させ、光学膜を有する赤外線反射フィルムである複合フィルムを得た。
 厚さ2mmのクリアガラス板、赤外線遮蔽粒子を含有しないPVBからなる厚さ0.76mmの中間膜、赤外線反射フィルム(複合フィルム)、実施例1に使用した赤外線遮蔽粒子を含有するPVBからなる厚さ0.76mmの中間膜、厚さ2mmのUVグリーンガラス板を、この順に重ね合わせて素材積層体とした。なお、赤外線反射フィルムは、赤外線反射膜側が光線入射側となるように配置した。その後、素材積層体を真空バッグに入れ、内部の圧力が約100kPa以下となるように脱気しつつ120℃で30分間加熱して予備圧着体とし、さらにこの予備圧着体をオートクレーブに入れ、温度を135℃、圧力を1.3MPaとして60分間の加熱加圧を行って合わせガラスとした。
 この合わせガラスについて、分光光度計(日立ハイテクノロジーズ社製、商品名:U4100)により波長300~2500nmの範囲の透過率および反射率を測定し、JIS R3106の規定に従い可視光透過率Tv(%)を、ISO13837の規定に従い全日射透過率Tts(%)を求めた。また、450~600nmの透過率の相加平均値T450-600と650~780nmの透過率の相加平均値T650-780を求めた。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4と表3中の比較例2から明らかなように、ジイモニウム色素を有する光学膜が形成された実施例3の合わせガラスについては、光学膜がない構成と比較して、Tvの低下が4.3%に対してTtsの低下が7.5%であり、可視光透過率の低下を抑制しつつ全日射透過率を低減できる。
(比較例3)
[光学膜の作製、屈折率、消衰係数]
 イソプロピルアルコール(IPA)870gにCs0.33WO粉末(住友金属鉱山(株)製)130gを攪拌混合し、これを媒体攪拌ミルで分散処理して平均分散粒子径10nmの分散液Aを調製した。
 次いで、上記分散液A200gとエチルアセトアセテートアルミニウムジイソプロピレート(川研ファインケミカル(株)製、商品名アルミキレートALCH)20gとIPA540gとを混合攪拌した後、超音波ホモジナイザーを用いて分散処理した。
 次いで、当該分散処理物を攪拌しながら、当該分散処理物へ、水100gを1時間かけて滴下添加し、さらに攪拌しながら、テトラエトキシシラン(多摩化学(株)製、正珪酸エチル、SiO換算量28.8%)140gを2時間かけて滴下添加した後、20℃にて15時間の攪拌を行った後、この液を70℃で2時間加熱熟成し、熟成液を得た。
 次いで、この熟成液を真空乾燥して溶媒を蒸発させた後、200℃で1時間加熱処理して得られた粉状体を乾式粉砕することで、Cs0.33WO微粒子に対して約5重量%のAlおよび約2倍重量のSiOで被覆された、Cs0.33WO微粒子を得た。
 このAl/SiO被覆Cs0.33WO微粒子8gと有機分散剤8gとトルエン84gとを混合し、媒体攪拌ミルで湿式分散処理を行い平均分散粒子径100nmの分散液を調製した。
 当該分散液10gと紫外線硬化樹脂(東亞合成(株)製、商品名UV3701)10gとを混合し、塗布液とした。
 上記塗布液を、基材として準備した100μm厚のPETフィルム上へ、メイヤーバーを用いて成膜した。そして、70℃で1分間乾燥し、溶媒を蒸発させた後、高圧水銀ランプを用いて紫外線を照射し膜を硬化させ、光学膜を得た。
 この光学膜の透過率および反射率を分光光度計(日立ハイテクノロージーズ U-4100)により測定し、これらの値から屈折率および消衰係数を算出した。図9に、光学膜の波長380~780nmの範囲の透過率および反射率のスペクトルを示す。また、図10に、屈折率および消衰係数の波長分散を示す。なお、光学膜の消衰係数の相加平均値比k650-780/k450-600は、5.3であった。
 なお、光学膜の厚みを断面SEMにより測定したところ、8μmであることが確認された。また、光学膜を有するPETフィルムのシート抵抗値を2探針抵抗計(三菱油化社製、商品名:ハイレスタIP)により測定したところ、1GΩ/□以上であることが確認された。
[合わせガラス]
 まず、実施例2と同様にして、赤外線反射フィルムを作製した。
 さらに、赤外線反射フィルムの易接着処理側、すなわち赤外線反射膜が形成されていない主面側に、上記した塗工液をメイヤーバーにて乾燥後の厚さが8μmとなるように塗布した後、70℃で1分間乾燥し、溶媒を蒸発させた後、高圧水銀ランプを用いて紫外線を照射し膜を硬化させ、光学膜を有する赤外線反射フィルムである複合フィルムを得た。
 次に、厚さ2mmのクリアガラス板、赤外線遮蔽粒子を含有しないPVBからなる厚さ0.76mmの中間膜、複合フィルム、実施例1に使用した赤外線遮蔽粒子を含有するPVBからなる厚さ0.76mmの中間膜、厚さ2mmのUVグリーンガラス板を、この順に重ね合わせて素材積層体とした。その後、素材積層体を真空バッグに入れ、内部の圧力が約100kPa以下となるように脱気しつつ120℃で30分間加熱して予備圧着体とし、さらにこの予備圧着体をオートクレーブに入れ、温度を135℃、圧力を1.3MPaとして60分間の加熱加圧を行って合わせガラスとした
 この合わせガラスについて、分光光度計(日立ハイテクノロジーズ社製、商品名:U4100)により波長300~2500nmの範囲の透過率および反射率を測定し、JIS R3106の規定に従い可視光透過率Tv(%)を、ISO13837の規定に従い全日射透過率Tts(%)を求めた。また、450~600nmの透過率の相加平均値T450-600と650~780nmの透過率の相加平均値T650-780を求めた。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005

 表5と表3中比較例2から明らかなように、Cs0.33WO分散膜粒子を有する光学膜が形成された比較例3の合わせガラスについては、光学膜がない構成と比較して、Tvの低下が7.1%に対してTtsの低下が5.5%であり可視光透過率の低下を抑制できない。
(実施例4)
[光学膜の作製、屈折率、消衰係数]
 アクリル系樹脂溶液(日本触媒社製、商品名:ハルスハイブリッド IR-G205 固形分30%、溶媒 酢酸エチル、トルエン)226.3g、吸収色素としてのフタロシアニン系色素(山田化学社製、商品名:NIR43V)1.40g(樹脂と色素100質量%に対して2質量%)、および溶剤(東京化成社製、商品名:シクロペンタノン)172.3gを混合して塗工液を調製した。この塗工液を厚さ100μm厚のPETフィルム上へ、スピンコートにて乾燥後の厚さが4μmとなるように塗布した後、100℃で10分間乾燥させて光学膜を形成した。
 この光学膜の透過率および反射率を分光光度計(日立ハイテクノロージーズ U-4100)により測定し、これらの値から屈折率および消衰係数を算出した。図11に、光学膜の波長380~780nmの範囲の透過率および反射率のスペクトルを示す。また、図12に、屈折率および消衰係数の波長分散を示す。なお、光学膜の消衰係数の相加平均値比k650-780/k450-600は、32.7であった。
 なお、光学膜の厚みを触針式段差計により測定したところ、2μmであることが確認された。また、光学膜を有するソーダライムガラス板のシート抵抗値を2探針抵抗計(三菱油化社製、商品名:ハイレスタIP)により測定したところ、1GΩ/□以上であることが確認された。
[合わせガラス]
 まず、樹脂フィルム(PETフィルム)の片面に実施例2と同様にして、赤外線反射フィルムを作製した。
 さらに、赤外線反射フィルムの易接着処理側、すなわち赤外線反射膜が形成されていない主面側に、上記した塗工液をスピンコートにて乾燥後の厚さが4μmとなるように塗布した後、100℃で10分間乾燥させ、光学膜を有する赤外線反射フィルムである複合フィルムを得た。
 厚さ2mmのクリアガラス板、赤外線遮蔽粒子を含有しないPVBからなる厚さ0.76mmの中間膜、赤外線反射フィルム(複合フィルム)、実施例1に使用した赤外線遮蔽粒子を含有するPVBからなる厚さ0.76mmの中間膜、厚さ2mmのUVグリーンガラス板を、この順に重ね合わせて素材積層体とした。なお、熱線反射フィルムは、熱線反射膜側が光線入射側となるように配置した。その後、素材積層体を真空バッグに入れ、内部の圧力が約100kPa以下となるように脱気しつつ120℃で30分間加熱して予備圧着体とし、さらにこの予備圧着体をオートクレーブに入れ、温度を135℃、圧力を1.3MPaとして60分間の加熱加圧を行って合わせガラスとした。
 この合わせガラスについて、分光光度計(日立ハイテクノロジーズ社製、商品名:U4100)により波長300~2500nmの範囲の透過率および反射率を測定し、JIS R3106の規定に従い可視光透過率Tv(%)を、ISO 13837の規定に従い全日射透過率Tts(%)を求めた。また、450~600nmの透過率の相加平均値T450-600と650~780nmの透過率の相加平均値T650-780を求めた。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000006
 表5と表3中の比較例2から明らかなように、フタロシアニン色素を有する光学膜が形成された実施例4の合わせガラスについては、光学膜がない構成と比較して、Tvの低下が6.1%に対してTtsの低下が9.1%であり、可視光透過率の低下を抑制しつつ全日射透過率を低減できる。
 本発明によれば、可視光透過率の低下を抑制しつつ全日射透過率を低減することができる光学膜を提供することができ、合わせガラス用として有用である。
 なお、2011年6月10日に出願された日本特許出願2011-129925号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
 1…Ag微粒子を有する光学膜(Ag膜)
 2…透明基板
 3…KCuPO粒子を有する光学膜(KCuPO膜)
 11…透明マトリックス
 12…Ag微粒子
 31…透明マトリックス
 32…KCuPO粒子

Claims (9)

  1.  波長450~600nmの範囲における消衰係数の相加平均値に対する波長650~780nmの範囲における消衰係数の相加平均値の比が7以上であることを特徴とする合わせガラス用の光学膜。
  2.  シート抵抗が500kΩ/□以上であることを特徴とする請求項1に記載の合わせガラス用の光学膜。
  3.  前記光学膜は、透明マトリックスと、この透明マトリックス中に分散含有される可視光吸収材とを有することを特徴とする請求項1または2に記載の合わせガラス用の光学膜。
  4.  前記可視光吸収材が、有機色素および無機顔料からなる群から選ばれる少なくとも1種であることを特徴とする請求項3に記載の合わせガラス用の光学膜。
  5.  前記可視光吸収材が、ジイモニウム系色素であることを特徴とする請求項3または4に記載の合わせガラス用の光学膜。
  6.  前記可視光吸収材が、フタロシアニン系色素であることを特徴とする請求項3または4に記載の合わせガラス用の光学膜。
  7.  1対の透明基板間に、赤外線反射膜と請求項1乃至6のいずれか1項に記載の合わせガラス用の光学膜とが配置されることを特徴とする合わせガラス。
  8.  前記赤外線反射膜は、高屈折率誘電体層と低屈折率誘電体層とが交互に積層されたものであることを特徴とする請求項7に記載の合わせガラス。
  9.  可視光透過率が70%以上、かつ波長650nm~780nmの透過率の相加平均値が40%以下であることを特徴とする請求項7または8に記載の合わせガラス。
PCT/JP2012/064726 2011-06-10 2012-06-07 光学膜および合わせガラス WO2012169603A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011129925A JP2014156358A (ja) 2011-06-10 2011-06-10 光学膜および合わせガラス
JP2011-129925 2011-06-10

Publications (1)

Publication Number Publication Date
WO2012169603A1 true WO2012169603A1 (ja) 2012-12-13

Family

ID=47296157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064726 WO2012169603A1 (ja) 2011-06-10 2012-06-07 光学膜および合わせガラス

Country Status (2)

Country Link
JP (1) JP2014156358A (ja)
WO (1) WO2012169603A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194292A1 (ja) * 2018-04-05 2019-10-10 Agc株式会社 合わせガラス

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7318376B2 (ja) 2019-07-03 2023-08-01 王子ホールディングス株式会社 自動車用防眩性・遮熱性シートおよび自動車用防眩性・遮熱性合わせガラス
JPWO2022130953A1 (ja) * 2020-12-16 2022-06-23
JP2023092191A (ja) * 2021-12-21 2023-07-03 日本電気硝子株式会社 膜付き透明基板、調理器用トッププレート、加熱調理器用窓ガラス、及びカバーガラス

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281388A (ja) * 1999-03-31 2000-10-10 Central Glass Co Ltd 電波透過性波長選択ガラスおよびその製法
WO2007020791A1 (ja) * 2005-08-16 2007-02-22 Asahi Glass Company, Limited 車両窓用合わせガラス
JP2007045636A (ja) * 2005-08-05 2007-02-22 Sekisui Chem Co Ltd 合わせガラス用中間膜および合わせガラス
WO2011074425A1 (ja) * 2009-12-16 2011-06-23 旭硝子株式会社 合わせガラス
JP2011195417A (ja) * 2010-03-23 2011-10-06 Asahi Glass Co Ltd 合わせガラス
JP2011218610A (ja) * 2010-04-06 2011-11-04 Fujifilm Corp 転写用フィルム、合わせガラス及びその製造方法
WO2012070477A1 (ja) * 2010-11-22 2012-05-31 富士フイルム株式会社 熱線遮蔽材

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281388A (ja) * 1999-03-31 2000-10-10 Central Glass Co Ltd 電波透過性波長選択ガラスおよびその製法
JP2007045636A (ja) * 2005-08-05 2007-02-22 Sekisui Chem Co Ltd 合わせガラス用中間膜および合わせガラス
WO2007020791A1 (ja) * 2005-08-16 2007-02-22 Asahi Glass Company, Limited 車両窓用合わせガラス
WO2011074425A1 (ja) * 2009-12-16 2011-06-23 旭硝子株式会社 合わせガラス
JP2011195417A (ja) * 2010-03-23 2011-10-06 Asahi Glass Co Ltd 合わせガラス
JP2011218610A (ja) * 2010-04-06 2011-11-04 Fujifilm Corp 転写用フィルム、合わせガラス及びその製造方法
WO2012070477A1 (ja) * 2010-11-22 2012-05-31 富士フイルム株式会社 熱線遮蔽材

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194292A1 (ja) * 2018-04-05 2019-10-10 Agc株式会社 合わせガラス
JPWO2019194292A1 (ja) * 2018-04-05 2021-05-13 Agc株式会社 合わせガラス
JP7222393B2 (ja) 2018-04-05 2023-02-15 Agc株式会社 合わせガラス

Also Published As

Publication number Publication date
JP2014156358A (ja) 2014-08-28

Similar Documents

Publication Publication Date Title
WO2011074425A1 (ja) 合わせガラス
TWI321552B (ja)
WO2012008587A1 (ja) 赤外線反射基板および合わせガラス
JP4848872B2 (ja) 窓用合わせガラス
JP5671365B2 (ja) 赤外光反射板並びに合わせガラス用積層中間膜シート及び合わせガラスとそれらの製造方法
JP5781735B2 (ja) 熱線遮蔽複層ガラス
JP6127804B2 (ja) 車両用合わせガラスおよびその製造方法
JP6127805B2 (ja) 車両用合わせガラスおよびその製造方法
JP5709710B2 (ja) 赤外光反射層及び赤外光反射板並びにガラス用積層中間膜シート及び合わせガラスとそれらの製造方法
JP2011154215A (ja) 赤外光反射板、合わせガラス用積層中間膜シート及びその製造方法、並びに合わせガラス
JP2008037668A (ja) 窓用合わせガラス
JP5499837B2 (ja) 熱線遮蔽フィルム
WO2012169603A1 (ja) 光学膜および合わせガラス
JP5840830B2 (ja) 熱線遮蔽複層ガラス
JP2011195417A (ja) 合わせガラス
WO2012157385A1 (ja) 合わせガラス
JP5413314B2 (ja) 赤外線反射フィルムおよび合わせガラスの製造方法
JP6618233B1 (ja) 熱線遮蔽構造体およびそれを含む合わせガラスならびにそれらの製造方法
JP2018171908A (ja) 熱線透過抑制透光性基材、透光性基材ユニット
JP2017209926A (ja) 飛散防止フィルムおよび積層体
JP2000219543A (ja) 合わせガラス用転写材料を用いる合わせガラスの製造方法
JP2018022073A (ja) 近赤外線遮蔽積層体、車両用ガラス及び車両
WO2018181219A1 (ja) 熱線透過抑制透光性基材、透光性基材ユニット
JP2023154400A (ja) 被覆ガラス板とその製造方法、自動車用フロントベンチガラス、並びに、窓枠部材付き車両窓ガラスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12797479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12797479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP