WO2012067134A1 - 車両用ブレーキシステムの入力装置 - Google Patents

車両用ブレーキシステムの入力装置 Download PDF

Info

Publication number
WO2012067134A1
WO2012067134A1 PCT/JP2011/076361 JP2011076361W WO2012067134A1 WO 2012067134 A1 WO2012067134 A1 WO 2012067134A1 JP 2011076361 W JP2011076361 W JP 2011076361W WO 2012067134 A1 WO2012067134 A1 WO 2012067134A1
Authority
WO
WIPO (PCT)
Prior art keywords
master cylinder
input device
stroke simulator
vehicle
brake
Prior art date
Application number
PCT/JP2011/076361
Other languages
English (en)
French (fr)
Inventor
一昭 村山
邦道 波多野
井上 亜良太
和由 阿久津
孝明 大西
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010257355A external-priority patent/JP5200092B2/ja
Priority claimed from JP2010257352A external-priority patent/JP5149953B2/ja
Priority claimed from JP2010257351A external-priority patent/JP5364077B2/ja
Priority claimed from JP2010257328A external-priority patent/JP5364076B2/ja
Priority claimed from JP2010257353A external-priority patent/JP5276646B2/ja
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US13/885,889 priority Critical patent/US9566968B2/en
Priority to CN201180055266.0A priority patent/CN103221281B/zh
Priority to EP11842089.2A priority patent/EP2641793B1/en
Publication of WO2012067134A1 publication Critical patent/WO2012067134A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/745Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on a hydraulic system, e.g. a master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input

Definitions

  • the present invention relates to an input device for a vehicle brake system.
  • boosters such as a negative pressure type booster and a hydraulic type booster
  • an electric booster using an electric motor as a boosting source is known (see, for example, Patent Document 1).
  • the electric booster disclosed in Patent Document 1 includes a main piston moving forward and backward by the operation of a brake pedal, a cylindrical booster piston externally fitted with the main piston so as to be displaceable relative to the main piston, and rotational force of an electric motor. Is transmitted to the booster piston as a booster thrust, for example, a rotation-linear motion conversion mechanism such as a ball screw or the like.
  • the main piston and the booster piston are used as pistons of the master cylinder, and the front end portions of the master piston and the pressure chamber of the master cylinder allow the operator to input from the brake pedal to the main piston
  • the brake fluid pressure can be generated in the master cylinder by the driven thrust and the booster thrust input from the electric motor to the booster piston.
  • the electric booster disclosed in Patent Document 1 includes an input device to which the brake operation of the operator is input, an electric brake actuator that generates a brake fluid pressure based on an electric signal according to the brake operation, and the like. It is assembled in one and placed in front of the brake pedal. For this reason, the motor-driven booster has a low degree of freedom in layout in a structure mounting room in which a structure such as a vehicle engine or a traveling motor is mounted. It is difficult to divert and sometimes lacks versatility. In particular, with regard to an input device to which a brake operation of an operator is input, the installation location is particularly limited, and therefore, miniaturization is desired.
  • the present invention has been made in view of the above problems, and its object is to reduce the size of a conventional vehicle brake system and further improve the versatility of the input device for a vehicle brake system. It is to provide.
  • the input device of the vehicle brake system is an electric brake that controls the brake fluid pressure based on the input device to which the operation of the brake operator is input and the electrical signal according to the operation of at least the brake operator.
  • an actuator configured to be separate from the electric brake actuator and having the brake operating element and operated by an operator, wherein the operation of the brake operating element is performed.
  • a master cylinder that generates a fluid pressure by an input by the controller, and a stroke simulator which is provided in parallel with the master cylinder and in communication with the master cylinder to artificially apply an operation reaction force of the brake operating element to the brake operating element;
  • the master cylinder and the stroke simulator are Characterized in that it is a turned by forming (claim 1).
  • the input device of the vehicle brake system thus miniaturized can be suitably mounted also on a hybrid car, an electric car or the like where the mounting space in the structure mounting room is smaller than that of a gasoline car.
  • parts can be shared with gasoline cars, hybrid cars, electric cars and the like, and the versatility of the parts is enhanced, which also reduces the manufacturing cost.
  • a first pressure sensor is provided between the master cylinder and the first shutoff valve, and the input device is interposed between the second shutoff valve and the second connection port.
  • a second pressure sensor is provided (claim 2).
  • appropriate brake control can be performed by using two pressure sensors.
  • the input device of the vehicle brake system according to the present invention is characterized in that an air venting bleeder for venting air in at least the master cylinder and the stroke simulator is provided.
  • At least the air in the master cylinder and the stroke simulator can be extracted, and defects in the brake system can be more reliably reduced.
  • the input device of the vehicle brake system according to the present invention is characterized in that the master cylinder and the stroke simulator are integrally juxtaposed in the vehicle width direction of the vehicle (claim 4).
  • the flow path between the master cylinder and the stroke simulator can be particularly shortened, and further, the input device including the master cylinder and the stroke simulator can be particularly miniaturized.
  • the input device of the vehicle brake system thus miniaturized can be suitably mounted also on a hybrid car, an electric car or the like where the mounting space in the structure mounting room is smaller than that of a gasoline car.
  • parts can be shared with gasoline cars, hybrid cars, electric cars and the like, and the versatility of the parts is enhanced, which also reduces the manufacturing cost.
  • the input device of the vehicle brake system according to the present invention is characterized in that a reservoir tank is provided between the master cylinder and the stroke simulator above the master cylinder and the stroke simulator. Item 5).
  • the reservoir tank can be reliably disposed even in a hybrid vehicle or the like in which the mounting space is limited. Also, the versatility of the parts can be enhanced. Furthermore, wasteful space in the structure mounting room can be reduced, and the vehicle can be miniaturized.
  • the input device of the vehicle brake system includes a mounting plate capable of mounting the master cylinder and the stroke simulator on a dashboard of the vehicle, and the length of the mounting plate in the vehicle width direction is It is characterized in that the length of the mounting plate is longer than the length of the vehicle in the vertical direction.
  • the master cylinder and the stroke simulator can be arranged such that the length in the vehicle width direction of the mounting plate is arranged in parallel in a long direction, so the area of the mounting plate is minimized. It can be Accordingly, the above-mentioned mounting plate can be similarly used for a dashboard provided in a gasoline automobile that does not have a stroke simulator. That is, since the fixed points of the existing dashboard can be used, the versatility of the dashboard is increased and the manufacturing cost is reduced.
  • the input device of the vehicle brake system according to the present invention is characterized in that the mounting plate is provided with a lightening portion (claim 7).
  • the weight of the mounting plate can be reduced, so that the weight of the vehicle can be reduced.
  • the input device of the vehicle brake system is characterized by including a recess formed between the master cylinder and the stroke simulator, and a water draining through hole formed in the recess. (Claim 8).
  • an input device to which the operation of the brake operating element is inputted, and an electric brake actuator which generates a brake fluid pressure based on at least the electric signal according to the operation Since they are arranged separately from each other in the structure mounting chamber of the vehicle, it is possible to miniaturize the device as compared with those in which these are integrated. Therefore, in the structure mounting room formed in front of the vehicle of the dashboard, the degree of freedom in layout can be enhanced. In other words, not only brake-related devices but also various devices such as drive sources (engines and / or traveling motors), transmissions, cooling systems such as radiators, low-voltage batteries, etc. are mounted in the structure mounting room Therefore, it becomes difficult to secure a large empty space (installation space).
  • the size of each device can be reduced, and it is not necessary to secure a large empty space, and in a narrow empty space. Even if it exists, it becomes possible to mount each device.
  • the versatility of each device can be improved and it can be easily applied to different vehicle types.
  • the electric brake actuator which may be a source of sound or vibration, can be disposed apart from the driver, It is possible to prevent the driver from giving a sense of discomfort (discomfort) due to sound or vibration.
  • the input device includes a master cylinder that generates a fluid pressure by an input by the operation of the brake operator, and a stroke simulator which is juxtaposed to the master cylinder and artificially applies an operation reaction force of the brake operator to the brake operator.
  • the recess is lightened, thereby achieving weight reduction.
  • the through hole for draining is formed in the recess, even if the water drop or the like is accumulated in the recess, the water drop or the like can be suitably discharged from the recess through the through hole. Therefore, it is possible to obtain an input device capable of allowing movement of water droplets or the like to prevent liquid accumulation. Further, weight reduction can be achieved by providing the through holes. In addition, since it is possible to prevent liquid accumulation, it contributes to the prevention of rust.
  • a plurality of the through holes are provided in the concave portion (claim 9).
  • the water droplets and the like accumulated in the recess can be suitably discharged through the plurality of through holes. Therefore, it is possible to obtain an input device capable of preferably allowing movement of water droplets and the like to further prevent liquid accumulation. Further, by providing the plurality of through holes, it is possible to further reduce the weight. Moreover, since the liquid accumulation can be further prevented, the effect of preventing rusting is enhanced.
  • the stroke simulator is juxtaposed so as to be integral with the master cylinder extending in the longitudinal direction of the vehicle, and the front end position of the port of the master cylinder and the port of the stroke simulator.
  • the front end position of the port of the master cylinder and the port of the stroke simulator are substantially the same, so that both the width and the length can be reduced, and a miniaturized input device can be realized.
  • a flow path of the brake fluid connecting ports of the master cylinder and the stroke simulator extends from the master cylinder and the stroke simulator toward respective sides. It is characterized in that it is formed in (claim 11).
  • the input device of the vehicle brake system according to the present invention is characterized in that the ports of the master cylinder and the stroke simulator are formed on upper portions of the master cylinder and the stroke simulator, respectively. ).
  • the input device of the vehicle brake system has a valve unit provided with a stroke simulator shut-off valve provided between the master cylinder and the stroke simulator for blocking the flow of the hydraulic pressure passage.
  • the master cylinder, the stroke simulator, and the valve unit are integrally formed (claim 13).
  • the input device of the vehicle brake system thus miniaturized can be suitably mounted also on a hybrid car, an electric car or the like where the mounting space in the structure mounting room is smaller than that of a gasoline car.
  • parts can be shared with gasoline cars, hybrid cars, electric cars and the like, and the versatility of the parts is enhanced, which also reduces the manufacturing cost.
  • the input device of the vehicle brake system according to the present invention is characterized in that the stroke simulator, the master cylinder and the valve unit are juxtaposed in this order (claim 14).
  • the flow passage between the master cylinder and the stroke simulator can be shortened as compared with the case where a valve unit is provided between the master cylinder and the stroke simulator, and the master cylinder
  • the flow path between the valve unit and the valve unit can also be shortened.
  • the input device of the vehicle brake system thus miniaturized can be suitably mounted also on a hybrid car, an electric car or the like where the mounting space in the structure mounting room is smaller than that of a gasoline car.
  • parts can be shared with gasoline cars, hybrid cars, electric cars and the like, and the versatility of the parts is enhanced, which also reduces the manufacturing cost.
  • FIG. 1 It is a schematic enlarged view of the input device of the brake system for vehicles concerning a 2nd embodiment, (a) is a top view from the back of vehicles, (b) is a top view from the vehicles front. It is an upper side view of the input device of the brake system for vehicles concerning a 2nd embodiment. It is a figure which shows roughly the connection relation of a master cylinder and a stroke simulator in the input device of the brake system for vehicles which concerns on 2nd Embodiment. (A) is a schematic perspective view of the input device of the brake system for vehicles which concerns on 3rd Embodiment, (b) is a top view of an input device.
  • FIG. 1 is a schematic perspective view of the input device of the brake system for vehicles concerning a 3rd embodiment which shows a crevice and a penetration hole
  • (b) is an AA line sectional view in Drawing 8 (a). It is a side view which shows the attachment state of the input device of the brake system for vehicles concerning a 3rd embodiment to the dashboard.
  • (A) and (b) are action explanatory drawings.
  • (A) is a whole perspective view of the input device concerning a 4th embodiment
  • (b) is a top view of an input device.
  • FIG.12 (b) is IV-IV sectional drawing of FIG.12 (b). It is a schematic enlarged view of the input device of the brake system for vehicles concerning a 5th embodiment, (a) is a perspective view and (b) is a top view from the upper part of vehicles.
  • (A) is a schematic diagram showing arrangement of a master cylinder and stroke simulator which constitute an input device of a brake system for vehicles concerning a 5th embodiment, (b) is an IV-IV sectional view of Drawing 14 (b). is there. It is a schematic sectional drawing in the vehicle front-back direction of a valve unit.
  • front, rear, upper, lower, left, and right directions are based on front, rear, upper, lower, left, or right directions shown in FIG.
  • the vehicle brake system 10 shown in FIG. 1 transmits hydraulic pressure as a fail safe system and a brake system of By Wire type that transmits an electric signal to operate the brake for normal use. It is configured with both of the traditional hydraulic brake systems that operate the brakes.
  • the vehicle brake system 10 includes a motor cylinder device as an electric brake actuator that generates a brake fluid pressure based on an input device 14 to which a brake operation of an operator is input and at least an electrical signal corresponding to the brake operation. 16 and a vehicle stability assist device 18 (hereinafter referred to as VSA device 18, VSA; registered trademark) as a vehicle behavior stabilization device that supports stabilization of the behavior of the vehicle based on the brake fluid pressure generated by the motor cylinder device 16 And is configured.
  • VSA device 18 vehicle stability assist device 18
  • the input device 14, the motor cylinder device 16, and the VSA device 18 are mounted in a structure mounting room R in which a structure 3 such as an engine or a traveling motor mounted on the front of the dashboard 2 of the vehicle V is mounted. , And are arranged separately from each other via piping tubes 22a to 22f. Further, as a by-wire type brake system, the input device 14 and the motor cylinder device 16 are electrically connected to control means (not shown) by a harness (not shown).
  • FIG. 2 is a schematic configuration view of the vehicle brake system 10. The hydraulic pressure passage will be described.
  • the connection port 20a of the input device 14 and the connection point A1 are connected by the first piping tube 22a with reference to the connection point A1 in FIG. 2, and the output port 24a of the motor cylinder device 16 And the connection point A1 are connected by the second piping tube 22b, and the introduction port 26a of the VSA device 18 and the connection point A1 are connected by the third piping tube 22c.
  • connection point A2 in FIG. 2 the other connection port 20b of the input device 14 and the connection point A2 are connected by the fourth piping tube 22d, and the other output port 24b of the motor cylinder device 16
  • the connection point A2 is connected by the fifth piping tube 22e, and the other introduction port 26b of the VSA device 18 and the connection point A2 are connected by the sixth piping tube 22f.
  • the VSA device 18 is provided with a plurality of lead ports 28a-28d.
  • the first outlet port 28a is connected to the wheel cylinder 32FR of the disc brake mechanism 30a provided on the right front wheel by the seventh piping tube 22g.
  • the second outlet port 28b is connected to the wheel cylinder 32FL of the disc brake mechanism 30b provided on the left front wheel by an eighth piping tube 22h.
  • the third outlet port 28c is connected to the wheel cylinder 32RR of the disk brake mechanism 30c provided on the right rear wheel by the ninth piping tube 22i.
  • the fourth outlet port 28d is connected to the wheel cylinder 32RL of the disc brake mechanism 30d provided on the left rear wheel by the tenth piping tube 22j.
  • the brake fluid is supplied to the wheel cylinders 32FR, 32FL, 32RR, 32RL of the disc brake mechanisms 30a-30d by the piping tubes 22g-22j connected to the outlet ports 28a-28d, respectively.
  • each wheel cylinder 32FR, 32FL, 32RR, 32RL is activated to operate on the corresponding wheels (right front wheel, left front wheel, right rear wheel, left rear wheel). A braking force is applied.
  • the vehicle brake system 10 can be mounted on various vehicles including, for example, automobiles, hybrid vehicles, electric vehicles, fuel cell vehicles and the like driven only by an engine (internal combustion engine).
  • an engine internal combustion engine
  • the input device 14 has a tandem-type master cylinder 34 capable of generating a hydraulic pressure by an operation of the brake pedal 12 by the driver, and a first reservoir 36 attached to the master cylinder 34.
  • a tandem-type master cylinder 34 capable of generating a hydraulic pressure by an operation of the brake pedal 12 by the driver, and a first reservoir 36 attached to the master cylinder 34.
  • two pistons 40a and 40b spaced apart by a predetermined distance in the axial direction of the cylinder tube 38 are slidably disposed.
  • One piston 40 a is disposed close to the brake pedal 12 and is connected to the brake pedal 12 via the push rod 42. Further, the other piston 40 b is disposed farther from the brake pedal 12 than the one piston 40 a.
  • a pair of piston packings 44a and 44b are respectively mounted on the outer peripheral surfaces of the one and the other pistons 40a and 40b via an annular step. Between the pair of piston packings 44a and 44b, back chambers 48a and 48b communicating with supply ports 46a and 46b described later, respectively, are formed. Also, a spring member 50a is disposed between one and the other pistons 40a and 40b, and another spring member 50b is disposed between the other piston 40b and the side end of the cylinder tube 38. Be done.
  • the cylinder tube 38 of the master cylinder 34 is provided with two supply ports 46a and 46b, two relief ports 52a and 52b, and two output ports 54a and 54b.
  • each supply port 46a (46b) and each relief port 52a (52b) are provided so as to join together and communicate with a reservoir chamber (not shown) in the first reservoir 36.
  • a first pressure chamber 56a and a second pressure chamber 56b for generating a brake fluid pressure corresponding to the pedaling force that the driver (operator) depresses the brake pedal 12 are provided.
  • the first pressure chamber 56a is provided in communication with the connection port 20a via the first hydraulic pressure passage 58a
  • the second pressure chamber 56b is in communication with the other connection port 20b via the second hydraulic pressure passage 58b.
  • a pressure sensor Pm is disposed between the master cylinder 34 and the connection port 20a on the upstream side of the first fluid pressure passage 58a, and a normally open type on the downstream side of the first fluid pressure passage 58a.
  • a first shutoff valve 60a consisting of a (normally open type) solenoid valve is provided. The pressure sensor Pm detects the fluid pressure upstream of the first shutoff valve 60a on the side of the master cylinder 34 on the first fluid pressure passage 58a.
  • a second shutoff valve 60b consisting of a normally open type (normally open type) solenoid valve.
  • a pressure sensor Pp is provided downstream of the second hydraulic passage 58b. The pressure sensor Pp detects the hydraulic pressure on the downstream side of the wheel cylinders 32FR, 32FL, 32RR, and 32RL relative to the second shutoff valve 60b on the second hydraulic pressure passage 58b.
  • the normal open of the first shut-off valve 60a and the second shut-off valve 60b is a valve configured such that the normal position (position of the valve body at the time of demagnetization (non-energization)) is in an open position (always open).
  • the 1st shut-off valve 60a and the 2nd shut-off valve 60b show the state at the time of excitation (the 3rd shut-off valve 62 mentioned later is the same).
  • the second hydraulic pressure passage 58b between the master cylinder 34 and the second shutoff valve 60b is provided with a branched hydraulic pressure passage 58c branched from the second hydraulic pressure passage 58b, and the branched hydraulic pressure passage 58c is formed by A third shutoff valve 62 consisting of a normally closed type (normally closed type) solenoid valve and a stroke simulator 64 are connected in series.
  • the normally closed state of the third shutoff valve 62 refers to a valve configured such that the normal position (the position of the valve body at the time of demagnetization (non-energization)) is in the closed position state (always closed).
  • the stroke simulator 64 is a device that generates a reaction force and a stroke according to the operation of the brake pedal 12 when the first shutoff valve 60a and the second shutoff valve 60b are shut off.
  • the stroke simulator 64 is connected to the master cylinder 34 via the branch hydraulic pressure passage 58c and the second hydraulic pressure passage 58b as described above. Further, the stroke simulator 64 is provided with a hydraulic pressure chamber 65 communicating with the branch hydraulic pressure passage 58c, and the brake fluid (brake (brake) is derived from the second pressure chamber 56b of the master cylinder 34 via the hydraulic pressure chamber 65. Fluid) is made absorbable.
  • the stroke simulator 64 is a simulator that is biased by the first return spring 66a having a high spring constant and the second return spring 66b having a low spring constant, which are disposed in series with each other, and the first and second return springs 66a and 66b. It has a piston 68 and is set to increase the pedal reaction force of the brake pedal 12 by setting the increase gradient of the pedal reaction force low at the early stage of depression of the brake pedal 12 and setting the pedal reaction force high at the late stage of depression. .
  • the hydraulic pressure passage can be roughly divided into a first hydraulic system 70a connecting the first pressure chamber 56a of the master cylinder 34 and the plurality of wheel cylinders 32FR, 32FL, and a plurality of second pressure chambers 56b of the master cylinder 34.
  • the second hydraulic system 70b is connected to the wheel cylinders 32RR and 32RL.
  • the first hydraulic system 70a includes a first hydraulic path 58a connecting the output port 54a of the master cylinder 34 (cylinder tube 38) of the input device 14 and the connection port 20a, the connection port 20a of the input device 14 and the motor cylinder.
  • the piping tubes 22a and 22b connecting the output port 24a of the device 16, the piping tubes 22b and 22c connecting the output port 24a of the motor cylinder device 16 and the introduction port 26a of the VSA device 18, and the outlet port of the VSA device 18 It is comprised by piping tube 22g, 22h which respectively connects 28a, 28b and each wheel cylinder 32FR, 32FL.
  • the second hydraulic system 70 b includes a second hydraulic passage 58 b connecting the output port 54 b of the master cylinder 34 (cylinder tube 38) in the input device 14 to the other connection port 20 b, and another connection port of the input device 14.
  • 20b and piping tubes 22d and 22e connecting the output port 24b of the motor cylinder device 16, piping tubes 22e and 22f connecting the output port 24b of the motor cylinder device 16 and the introduction port 26b of the VSA device 18, VSA device It has piping tubes 22i and 22j which respectively connect the 18 outlet ports 28c and 28d and the wheel cylinders 32RR and 32RL.
  • the motor cylinder device 16 has an actuator mechanism 74 including an electric motor 72 and a driving force transmission unit 73, and a cylinder mechanism 76 biased by the actuator mechanism 74. Further, a driving force transmission unit 73 of the actuator mechanism 74 includes a gear mechanism (speed reduction mechanism) 78 for transmitting the rotational driving force of the electric motor 72, and a ball screw shaft 80a for converting the rotational driving force into a linear driving force. And a ball screw structure 80 including a ball 80b.
  • the cylinder mechanism 76 has a substantially cylindrical cylinder body 82 and a second reservoir 84 attached to the cylinder body 82.
  • the second reservoir 84 is connected to the first reservoir 36 attached to the master cylinder 34 of the input device 14 by the piping tube 86, and the brake fluid stored in the first reservoir 36 is connected via the piping tube 86 to the second reservoir It is provided to be supplied in H.84.
  • a first slave piston 88a and a second slave piston 88b which are separated by a predetermined distance in the axial direction of the cylinder body 82, are slidably disposed.
  • the first slave piston 88a is disposed close to the ball screw structure 80 and connected to one end of the ball screw shaft 80a to be displaced integrally with the ball screw shaft 80a in the direction of the arrow X1 or X2.
  • the second slave piston 88b is disposed apart from the ball screw structure 80 side more than the first slave piston 88a.
  • a pair of slave piston packings 90a and 90b are respectively mounted on the outer peripheral surfaces of the first and second slave pistons 88a and 88b via an annular step. Between the pair of slave piston packings 90a and 90b, a first back chamber 94a and a second back chamber 94b respectively communicating with reservoir ports 92a and 92b described later are formed. Further, a first return spring 96a is disposed between the first and second slave pistons 88a and 88b, and a second return spring is disposed between the second slave piston 88b and the side end of the cylinder body 82. 96b is disposed.
  • the cylinder body 82 of the cylinder mechanism 76 is provided with two reservoir ports 92a and 92b and two output ports 24a and 24b.
  • the reservoir port 92a (92b) is provided in communication with a reservoir chamber (not shown) in the second reservoir 84.
  • a first fluid pressure chamber 98a for generating the brake fluid pressure output from the output port 24a to the wheel cylinders 32FR and 32FL, and from the other output port 24b to the wheel cylinders 32RR and 32RL
  • a second hydraulic pressure chamber 98b is provided to generate the output brake hydraulic pressure.
  • a restricting means 100 for restricting the maximum distance and the minimum distance of the first slave piston 88a and the second slave piston 88b is provided between the first slave piston 88a and the second slave piston 88b. Furthermore, the second slave piston 88b is provided with a stopper pin 102 for restricting the sliding range of the second slave piston 88b to prevent over-return to the first slave piston 88a side.
  • a first brake system 110a for controlling a first hydraulic system 70a connected to the right front wheel and left front wheel disk brake mechanisms 30a, 30b (wheel cylinder 32FR, wheel cylinder 32FL). And a second brake system 110b for controlling a second hydraulic system 70b connected to the right rear wheel and the left rear disk brake mechanisms 30c, 30d (wheel cylinder 32RR, wheel cylinder 32RL).
  • the first brake system 110a is a hydraulic system connected to a disk brake mechanism provided on the left front wheel and the right rear wheel
  • the second brake system 110b is a disk brake provided on the right front wheel and the left rear wheel It may be a hydraulic system connected to the mechanism.
  • first brake system 110a is composed of a hydraulic system connected to a disc brake mechanism provided on the right front wheel and the right rear wheel on one side of the vehicle body, and the second brake system 110b is on the left front wheel and left rear on the vehicle side. It may be a hydraulic system connected to a disc brake mechanism provided on the wheel.
  • first brake system 110a and the second brake system 110b have the same structure, the corresponding components of the first brake system 110a and the second brake system 110b have the same reference numerals.
  • the description of the second brake system 110b will be appropriately described in parentheses with reference to the description of the 1 brake system 110a.
  • the first brake system 110a (second brake system 110b) has a first common hydraulic pressure passage 112 and a second common hydraulic pressure passage 114 common to the wheel cylinders 32FR, 32FL (32RR, 32RL).
  • the VSA device 18 includes a regulator valve 116 formed of a normally open type solenoid valve disposed between the inlet port 26 a and the first common hydraulic pressure passage 112, and disposed in parallel with the regulator valve 116 from the inlet port 26 a side.
  • a first check valve 118 for permitting the flow of brake fluid to the side of the first common hydraulic pressure passage 112 (preventing the flow of brake fluid from the side of the first common hydraulic pressure passage 112 to the side of the introduction port 26a);
  • a first in-valve 120 which is a normally open type solenoid valve disposed between the common hydraulic pressure passage 112 and the first outlet port 28a, and a first in-valve 120 disposed in parallel with the first in-valve 120 1 Allow flow of the brake fluid to the common hydraulic pressure passage 112 (from the first common hydraulic pressure passage 112 to the first outlet port
  • a second in-valve consisting of a second check valve 122 which blocks the flow of brake fluid to the 8a side, and a normally open type solenoid valve disposed between the first common hydraulic pressure passage 112 and the second outlet port 28b.
  • a third check valve 126 for blocking the flow of the brake fluid to the port 28b side.
  • the VSA device 18 includes a first out valve 128 which is a normally closed type solenoid valve disposed between the first outlet port 28 a and the second common hydraulic passage 114, a second outlet port 28 b and a second outlet port 28 b.
  • a second out valve 130 formed of a normally closed type solenoid valve disposed between the common hydraulic pressure passage 114, a reservoir 132 connected to the second common hydraulic pressure passage 114, and a first common hydraulic pressure passage 112 It is disposed between the second common hydraulic pressure passage 114 and allows the flow of brake fluid from the second common hydraulic pressure passage 114 side to the first common hydraulic pressure passage 112 side (from the first common hydraulic pressure passage 112 side
  • a pump 136 for supplying a brake fluid from the hydraulic pressure passage 114 side to the first common hydraulic pressure passage 112 side, and a pump
  • the brake fluid generated in the first fluid pressure chamber 98a of the motor cylinder device 16 is outputted from the output port 24a of the motor cylinder device 16 on the fluid pressure path close to the introduction port 26a.
  • a pressure sensor Ph is provided to detect pressure. Detection signals detected by the pressure sensors Pm, Pp, and Ph are introduced to control means (not shown).
  • the vehicle brake system 10 according to the present embodiment is basically configured as described above, and the operation and effect thereof will be described next.
  • the first shut-off valve 60a and the second shut-off valve 60b which are normally open type solenoid valves, are excited by excitation and the third normally closed type solenoid valve is formed.
  • the shutoff valve 62 is excited to be in the valve open state (see FIG. 2). Therefore, since the first hydraulic system 70a and the second hydraulic system 70b are shut off by the first shutoff valve 60a and the second shutoff valve 60b, the brake hydraulic pressure generated in the master cylinder 34 of the input device 14 is a disc brake It is not transmitted to the wheel cylinders 32FR, 32FL, 32RR, 32RL of the mechanisms 30a-30d.
  • the brake fluid pressure generated in the second pressure chamber 56b of the master cylinder 34 is transmitted to the fluid pressure chamber 65 of the stroke simulator 64 via the branch fluid pressure passage 58c and the third shutoff valve 62 in the valve open state. Be done.
  • the simulator piston 68 is displaced against the spring force of the return springs 66a and 66b by the brake fluid pressure supplied to the fluid pressure chamber 65, the stroke of the brake pedal 12 is permitted and the pseudo pedal reverse A force is generated and applied to the brake pedal 12.
  • the control means detects depression of the brake pedal 12 by the driver, it drives the electric motor 72 of the motor cylinder device 16 to bias the actuator mechanism 74, and the first return spring 96a.
  • the first slave piston 88a and the second slave piston 88b are displaced in the direction of the arrow X1 in FIG. 2 against the spring force of the second return spring 96b.
  • the displacement of the first slave piston 88a and the second slave piston 88b pressurizes the brake fluid in the first fluid pressure chamber 98a and the second fluid pressure chamber 98b to generate a desired brake fluid pressure.
  • the brake fluid pressure of the first fluid pressure chamber 98 a and the second fluid pressure chamber 98 b in the motor cylinder device 16 is controlled by the disc brake mechanism 30 a through the first and second in valves 120 and 124 in the valve open state of the VSA device 18.
  • a desired braking force is applied to each wheel by being transmitted to the wheel cylinders 32FR, 32FL, 32RR, 32RL of ⁇ 30 d and the wheel cylinders 32FR, 32FL, 32RR, 32RL are operated.
  • control means such as the motor cylinder device 16 functioning as an electric brake actuator (power hydraulic pressure source) and an ECU (not shown) performing by-wire control can operate.
  • the communication between the master cylinder 34 that generates the brake fluid pressure by the driver stepping on the brake pedal 12 and the disc brake mechanisms 30a to 30d (wheel cylinders 32FR, 32FL, 32RR, 32RL) that brakes the respective wheels is A so-called brake-by-wire type brake system is activated in which the disc brake mechanisms 30a to 30d are operated with the brake fluid pressure generated by the motor cylinder device 16 in a state of being shut off by the shutoff valve 60a and the second shutoff valve 60b.
  • the present embodiment can be suitably applied to, for example, a vehicle such as an electric car which does not have a negative pressure brake booster which has been used since old days.
  • the first shutoff valve 60a and the second shutoff valve 60b are opened, and the brake fluid pressure generated in the master cylinder 34 is set to the disc brake mechanisms 30a to 30d ( A so-called old hydraulic brake system is activated, in which the disc brake mechanisms 30a to 30d (wheel cylinders 32FR, 32FL, 32RR, 32RL) are operated by transmitting to the wheel cylinders 32FR, 32FL, 32RR, 32RL). .
  • FIG. 3 is a schematic perspective view of the input device 14A.
  • the same members as shown in FIG. 2 are represented by the same reference numerals in FIGS. 3 and 4, and the detailed description thereof is omitted.
  • the input device 14A connects the master cylinder 34, the stroke simulator 64, and the first reservoir (reservoir tank) 36 (the piping tube 86 (see FIG. 2)). And the connection port 36a)) are integrally provided.
  • the sensor valve unit 300, the master cylinder 34, and the stroke simulator 64 are juxtaposed in this order in the left-right direction of the vehicle and fixed to the mounting plate (stud plate) 304.
  • FIGS. 3A and 3B show the master cylinder 34 of the input device 14A in which the brake pedal (brake operation element) 12 is connected.
  • the input device 14A includes the connection port 20a (first connection port) in communication with the master cylinder 34 via the first hydraulic pressure passage 58a (see FIG. 2), the master cylinder 34 and the first connection port 20a. And a connection port 20b (second connection port) communicating with each other via a hydraulic pressure passage 58b (see FIG. 2). Furthermore, although not shown in FIG. 3, the input device 14A also has a branch hydraulic pressure passage 58c branched from the second hydraulic pressure passage 58b.
  • a first shutoff valve 60a In the middle of the first hydraulic pressure passage 58a, the second hydraulic pressure passage 58b and the branch hydraulic pressure passage 58c, as shown in FIG. 2, a first shutoff valve 60a, a second shutoff valve 60b and a third shutoff valve 62, Also, a pressure sensor Pm (first fluid pressure sensor) and a pressure sensor Pp (second fluid pressure sensor) are provided.
  • the sensor valve unit 300 includes a first shutoff valve 60a, a second shutoff valve 60b and a third shutoff valve 62, and an electronic circuit for controlling the pressure sensor Pm and the pressure sensor Pp.
  • the housing of the sensor valve unit 300 is made of resin, and the housing of the sensor valve unit 300 is made of a member which is more fragile than metal like resin, for example, when the input device 14A receives an impact.
  • the housing of the sensor valve unit 300 can absorb an impact. Further, by making the sensor valve unit 300 made of resin, the weight of the input device 14A can be reduced. Further, the sensor valve unit 300 has a tapered shape in the lower direction of the vehicle, and is shaped so as to be easily removed when the input device 14A is removed from the vehicle.
  • the input device 14A is also provided with an air bleeder 301 for venting air in at least the master cylinder 34 and the stroke simulator 64.
  • the air bleeder 301 will be described later with reference to FIG.
  • the mounting plate 304 is integrally fixed in parallel with the master cylinder 34 and the stroke simulator 64, and is formed such that the edge is curved in the vertical direction and the lateral direction of the vehicle. Further, the mounting plate 304 is provided with a fixture 303 for fixing to, for example, a dashboard.
  • the length in the vehicle width direction of the vehicle is longer than the length in the vertical direction of the vehicle.
  • the master cylinder 34 and the stroke simulator 64 can be arranged such that the length of the mounting plate in the vehicle width direction is juxtaposed in the long direction.
  • the mounting plate 304 can be fixed using the existing dashboard fixing points provided in gasoline cars and the like.
  • the input device 14A is provided with a first reservoir 36 provided so that the master cylinder 34 and the stroke simulator 64 partially overlap in the vertical direction.
  • the first reservoir 36 has an elongated outer shape in the front-rear direction. As described above, since the first reservoir 36 is attached to the master cylinder 34 and the stroke simulator 64, space saving in the structure mounting chamber can be achieved.
  • FIG. 4 is a view schematically showing how the input device 14A is arranged on the dashboard 2 of the vehicle. As shown in FIG. 4, the input device 14A is fixed to the dashboard 2 by a fixing tool (stud bolt) 303. In addition, a part of the master cylinder 34 of the input device 14A is disposed so as to protrude into the vehicle rear portion (that is, the vehicle interior).
  • a fixing tool stud bolt
  • the input device 14A is fixed to the dashboard 2 so that the height in the forward direction of the vehicle is higher than the height in the backward direction of the vehicle. That is, when the input device 14A is fixed to the dashboard 2, the input device 14A is fixed such that the position of the air bleeder 301 is high.
  • the air in the master cylinder 34 and the stroke simulator 64 is at least removed from the air venting bleed 301 by being fixed so that the height in the forward direction of the vehicle is high. Can. And, by arranging the input device 14A on the dashboard in this way, the input to the input device 14A by the operation of the brake pedal 12 can be transmitted to the input device 14A more reliably.
  • a master cylinder 34 and a stroke simulator 64 are integrally formed.
  • at least piping between the master cylinder 34 and the stroke simulator 64 can be made shortest, and the input device 14A can be miniaturized.
  • the input device 14A according to the first embodiment can be mounted also in an electric car, a hybrid car or the like, which has a limited mounting space as compared with a gasoline car, so parts for example in a gasoline car, an electric car, a hybrid car etc. Can be achieved, thereby reducing manufacturing costs.
  • FIG. 5 is a schematic enlarged view of the input device of the vehicle brake system according to the second embodiment, in which (a) is a plan view from the rear of the vehicle, and (b) is a plan view from the front of the vehicle.
  • FIG. 6 is an upper side view of the input device of the vehicle brake system according to the second embodiment.
  • FIG. 7 is a view schematically showing a connection relationship between a master cylinder and a stroke simulator in the input device of the vehicle brake system according to the second embodiment.
  • the same members as those shown in FIG. 2 are denoted by the same reference numerals in FIGS. 5 to 7, and the detailed description thereof is omitted.
  • the master cylinder 34 and the stroke simulator 64 are fixed to the mounting plate (stud plate) 304 and are integrally juxtaposed in the vehicle width direction of the vehicle. It is what has become.
  • a lightening portion 305 in which the mounting plate 304 is lightened is provided along the shape of the mounting plate 304.
  • four fasteners (stud bolts) 303 are provided to extend in front of the vehicle for securing the mounting plate 304 to which the master cylinder 34 and the like are fixed to the dashboard 2, for example.
  • a connecting portion 34a is provided at the tip of a push rod extending from the master cylinder 34 to the brake pedal (brake operation element) 12 side, and the brake pedal 12 is connected to the connecting portion 34a.
  • a first reservoir 36 (connection port 36a for connecting the piping tube 86) having an elongated outer shape in the front-rear direction ) Is provided.
  • a sensor valve unit 300 is provided integrally with the master cylinder 34 and the stroke simulator 64 on the front side of the mounting plate 304 on the side opposite to the stroke simulator 64 of the master cylinder 34.
  • the connection port 36a and the second reservoir 84 may be directly connected by the piping tube 86, depending on the mounting layout of the vehicle, the connection port 36a and the second reservoir 84 may be separately connected.
  • a body tank can also be provided. When a separate tank is provided, the connection port 36a is connected to the separate tank.
  • an air venting bleeder 301 for venting air of at least the master cylinder 34 and the stroke simulator 64.
  • the input device 14B includes the connection port 20a (first connection port) in communication with the master cylinder 34 via the first hydraulic pressure passage 58a (see FIG. 2), the master cylinder 34, And a connection port 20b (second connection port) communicating with each other via a hydraulic pressure passage 58b (see FIG. 2). Furthermore, although not shown in FIG. 5, the input device 14B also has a branch hydraulic passage 58c branched from the second hydraulic passage 58b.
  • a first shutoff valve 60a In the middle of the first hydraulic pressure passage 58a, the second hydraulic pressure passage 58b and the branch hydraulic pressure passage 58c, as shown in FIG. 2, a first shutoff valve 60a, a second shutoff valve 60b and a third shutoff valve 62, Also, a pressure sensor Pm (first fluid pressure sensor) and a pressure sensor Pp (second fluid pressure sensor) are provided.
  • the sensor valve unit 300 includes a first shutoff valve 60a, a second shutoff valve 60b and a third shutoff valve 62, and an electronic circuit for controlling the pressure sensor Pm and the pressure sensor Pp.
  • the housing of the sensor valve unit 300 is made of resin, and the housing of the sensor valve unit 300 is made of a member that is more fragile than metal, such as resin, for example, when the input device 14B receives an impact.
  • the housing of the sensor valve unit 300 can absorb an impact. Further, by making the sensor valve unit 300 made of resin, the weight of the input device 14B can be reduced. Further, the sensor valve unit 300 has a tapered shape in the lower direction of the vehicle, and is shaped so as to be easily removed when the input device 14B is removed from the vehicle.
  • the air removal bleeder 301 is for removing the air in at least the master cylinder 34 and the stroke simulator 64.
  • the position of the air removal bleeder 301 is provided at the highest position when the input device 14B is fixed to, for example, the dashboard 2 of the vehicle.
  • the air in the master cylinder 34 or the like can be removed from the air bleeder 301 by fixing so that the height in the forward direction of the vehicle is high.
  • the air venting bleeder 301 may be provided at a portion where air is collected in the master cylinder 34, the stroke simulator 64, etc., or a portion where air is accumulated in the hydraulic path configuration, such as above and below the front of the master cylinder 34. .
  • the mounting plate 304 is integrally fixed in parallel with the master cylinder 34 and the stroke simulator 64, and is formed such that the edge is curved in the vertical direction and the lateral direction of the vehicle.
  • the length in the vehicle width direction of the vehicle is longer than the length in the vertical direction of the vehicle.
  • the master cylinder 34 and the stroke simulator 64 can be arranged such that the length of the mounting plate in the vehicle width direction is juxtaposed in the long direction.
  • the mounting plate 304 can be fixed using the existing dashboard fixing points provided in gasoline cars and the like.
  • the mounting plate 304 is provided with the lightening portion 305 as described above. In the second embodiment, it is formed between the two fixtures 303 on the left side of the vehicle, along the edge of the fixture 304. By providing the lightening portion 305 in this manner, the weight of the vehicle can be reduced.
  • FIG. 6 is a top side view of the input device 14B
  • FIG. 7 is a view schematically showing the connection between the master cylinder 34 and the stroke simulator 64.
  • the hydraulic fluid passage is connected so as to have the shortest distance between the master cylinder 34 and the stroke simulator 64, and the third shutoff valve 62 is disposed midway in the hydraulic fluid passage.
  • the third shutoff valve shown in FIG. 7 is in the closed state.
  • the sensor valve unit 300, the master cylinder 34 and the stroke simulator 64 are juxtaposed in this order from the left side to the right side of the vehicle.
  • the first reservoir 36 is connected to the master cylinder 34 via connection ports facing the relief ports 52a, 52b (see FIG. 2) provided in the master cylinder 34.
  • the positions in the front-rear direction of the port position provided in the master cylinder 34 and the port position provided in the stroke simulator 64 coincide with each other.
  • a master cylinder 34 and a stroke simulator 64 are integrally juxtaposed in the vehicle width direction of the vehicle.
  • the flow path between at least the master cylinder 34 and the stroke simulator 64 can be minimized, and the input device 14B can be miniaturized.
  • the input device 14B according to the second embodiment can be mounted also in an electric car, a hybrid car or the like in which the mounting space in the structure mounting room is limited as compared with a gasoline car.
  • the input device 14B can be installed on an existing dashboard used for a gasoline car or the like. Therefore, it is possible to achieve commonality of parts in, for example, a gasoline car, an electric car, a hybrid car, and the like, thereby reducing the manufacturing cost.
  • FIG. 8A is a schematic perspective view of an input device 14C according to the third embodiment
  • FIG. 8B is a plan view of the input device 14C according to the third embodiment.
  • FIG. 8 (b) omits the first reservoir of FIG. 8 (a) for convenience of drawing.
  • the master cylinder 34 constituting the input device 14C extends in the front-rear direction of the vehicle V (see FIG. 1), and the stroke simulator 64 They are juxtaposed so as to be integrated. More specifically, the stroke simulator 64 of the third embodiment is disposed side by side on the right side of the master cylinder 34 (outside in the vehicle width direction).
  • the master cylinder 34 and the stroke simulator 64 in the third embodiment are formed of a metal integrally-formed body together with a stud plate 304 that supports them at the rear end side.
  • the simulator housing 64a which is the exterior of the stroke simulator 64
  • the master cylinder housing 34a which is the exterior of the master cylinder 34, are continuously formed.
  • a first reservoir 36 (see FIG. 8 (a)) having an elongated outer shape is connected to the first reservoir 36 in the vertical direction. It is arrange
  • the first reservoir 36 and the master cylinder 34 communicate with the first and second pressure chambers 56a and 56b and the back chamber shown in FIG. 2 through the connection ports facing the relief ports 52a and 52b shown in FIG. 8B. It communicates with 48a and 48b.
  • symbol 36a shown to Fig.8 (a) is a connector to which the proximal end of the piping tube 86 (refer FIG. 2) which connects the 1st reservoir 36 and the 2nd reservoir 84 shown in FIG. 2 is connected.
  • the connector 36a is formed of a tubular member projecting forward of the input device 14C.
  • FIGS. 8A and 8B the base end of a first piping tube 22a extended toward the joint 23a shown in FIG. 1 is connected to the front side of the master cylinder housing 34a.
  • a first connection port 20a and a second connection port 20b to which the base end of a fourth piping tube 22d extended toward the joint 23b shown in FIG. 1 is connected are provided.
  • a bleeder 301 for air removal and a sensor unit 300 are provided on the right side and the left side of the input device 14C.
  • the rear end portion of the master cylinder 34 extends further rearward from the stud plate 304. Then, as described above, the rear end portion of the master cylinder 34 is configured to receive the other end side of the push rod 42 connecting the brake pedal 12 to one end side thereof (see FIG. 2).
  • reference numeral 306 denotes a boot disposed across the master cylinder 34 and the push rod 42.
  • the input device 14C is fixed to the dashboard 2 (see FIG. 1) via the stud bolt 303 extending rearward from the stud plate 304, but at this time, from the stud plate 304 A portion of the master cylinder 34 extending rearward extends through the dashboard 2 and into the compartment C (see FIG. 1).
  • the sensor unit 300 includes a first fluid pressure sensor Pm and a second fluid pressure sensor Pp shown in FIG. 2 and an electronic circuit board (not shown) for processing pressure detection signals from these in a resin case.
  • a first shutoff valve 60a, a second shutoff valve 60b, and a third shutoff valve 62 (all of which are operationally controlled by the electronic circuit board) shown in FIG. 2 are disposed.
  • the first fluid pressure sensor Pm and the second fluid pressure sensor Pp are arranged to face monitor holes (not shown) provided to communicate with the first fluid pressure passage 58a and the second fluid pressure passage 58b, respectively.
  • the monitor hole is formed by a hole which is bored from the sensor unit 300 side toward the first hydraulic pressure passage 58a and the second hydraulic pressure passage 58b.
  • the master cylinder housing 34a which is the exterior of the master cylinder 34
  • the simulator housing 64a which is the exterior of the stroke simulator 64
  • a recess 308 is formed between the master cylinder 34 (master cylinder housing 34 a) and the stroke simulator 64 (simulator housing 64 a) to be the connection portion 307.
  • the recess 308 is formed by connecting the cylindrical master cylinder housing 34a and the same cylindrical simulator housing 64a.
  • the master cylinder 34 and the stroke simulator 64 can be obtained by the recess 308.
  • a lightening portion recessed in the vertical direction is formed between the two.
  • the recessed portion 308 is formed with a water draining through hole 309 which is open on the bottom surface 307 a of the recessed portion 308 (upper surface of the connecting portion 307).
  • the through hole 309 penetrates the connecting portion 307 in the vertical direction (vertical direction), and the upper end is at the rear end of the bottom surface 307 a of the recess 308 (the upper surface of the connecting portion 307).
  • the lower end is open to the lower surface 307 b of the connecting portion 307.
  • Such an input device 14C is fixed to the dashboard 2 via a stud bolt 303 extending from the stud plate 304 as shown in FIG.
  • the upper side of the dashboard 2 is inclined rearward relative to the lower side, and the input device 14C fixed to the inclined dashboard 2 in this manner also has an upper side compared to the rear 311 side.
  • the axis O1 of the input device 14C is fixed in an inclined state.
  • the concave portion 308 of the input device 14C is also disposed in a downward sloping shape from the front portion 310 to the rear portion 311 side, and the bottom surface of the downwardly sloping concave portion 308
  • the upper end opening of the through hole 309 is positioned in the vicinity of the rear end of the portion 307a.
  • the water droplets or the like not blocked by the elongated first reservoir 36 are between the master cylinder 34 and the stroke simulator 64. May enter into the recess 308 of the Here, as described above, since the concave portion 308 is inclined downward from the front portion 310 side of the input device 14C toward the rear portion 311, as shown in FIG. 11A, the concave portion 308 is in the concave portion 308. Water droplets or the like W that has entered the flow toward the rear end of the bottom surface 307a of the recess 308 and are led around the opening of the through hole 309 near the rear end of the bottom surface 307a.
  • the lower end of the through hole 309 is opened to the lower surface 307 b of the connection portion 307, so water droplets W introduced around the opening of the through hole 309 enter the through hole 309 and flow in the through hole 309, As shown in FIG. 11 (b), it is discharged below the input device 14C.
  • water droplets and the like do not accumulate in the concave portion 308 of the connection portion 307, and liquid accumulation in the concave portion 308 is suitably avoided.
  • the size of the device can be reduced as compared with those in which these are integrated. Can be Therefore, the degree of freedom of the layout in the engine room R can be enhanced. That is, by separately configuring the input device 14C and the motor cylinder device 16 in the engine room R, the size of each device can be reduced, and it is not necessary to secure a large empty space, which is narrow. Each device can be mounted even in an empty space.
  • the versatility of each device is improved and it becomes easy to apply to different vehicle types.
  • the motor cylinder device 16 that may be a source of noise and vibration may be disposed away from the driver. It is possible to prevent the driver from giving a sense of discomfort (discomfort) due to sound or vibration.
  • the master cylinder 34 and the stroke simulator 64 are integrally provided in the input device 14C, the piping between them can be minimized, and the input device 14C can be miniaturized. .
  • the input device 14C according to the third embodiment can be mounted also in an electric car or a hybrid car whose mounting space is limited as compared with a gasoline car, for example, parts for gasoline car, electric car, hybrid car etc. Can be achieved, thereby reducing manufacturing costs.
  • a recess 308 is formed between the master cylinder 34 and the stroke simulator 64 provided in parallel to the master cylinder 34, so that the recess 308 makes the master cylinder 34 and the stroke simulator 64 The extra part in between is lightened, and weight reduction is achieved. Further, since the through hole 309 for draining water is formed in the concave portion 308, even if water droplets etc. are accumulated in the concave portion 308, the water droplet W or the like is made through the through hole 309 from the concave portion 308 below the input device 14C Can be suitably discharged. Therefore, the input device 14C capable of allowing movement of water droplets or the like W to prevent liquid accumulation is obtained. Further, by providing the through holes 309, further weight reduction can be achieved. In addition, since it is possible to prevent liquid accumulation, it contributes to the prevention of rust.
  • one through hole 309 is provided in the recess 308.
  • the present invention is not limited to this.
  • a plurality of through holes 309 may be provided in the recess 308. With such a configuration, water droplets and the like W accumulated in the recess 308 can be suitably discharged through the plurality of through holes 309. Therefore, the input device 14C can be obtained which can appropriately allow movement of water droplets or the like W to further prevent liquid accumulation. Further, by providing the plurality of through holes 309, it is possible to further reduce the weight. Moreover, since the liquid accumulation can be further prevented, the effect of preventing rusting is enhanced.
  • FIG. 12A is a whole perspective view of the input device according to the fourth embodiment
  • FIG. 12B is a plan view of the input device.
  • FIG. 12B the description of the first reservoir and the brake pedal in FIG. 12A is omitted for convenience of drawing.
  • FIG. 13 (a) is a schematic view showing the arrangement of a master cylinder and a stroke simulator which constitute the input device
  • FIG. 13 (b) is a cross-sectional view taken along line IV-IV of FIG. 12 (b).
  • the master cylinder 34 constituting the input device 14D extends in the front-rear direction of the vehicle V (see FIG. 1), and the stroke simulator 64 It is juxtaposed to be integrated with the More specifically, the stroke simulator 64 in the fourth embodiment is disposed side by side on the right side of the master cylinder 34 (outside in the vehicle width direction).
  • the master cylinder 34 and the stroke simulator 64 in the fourth embodiment, together with the stud plate 304 that supports them on the rear end side, are formed of a single-piece metal molding and are the exterior of the stroke simulator 64.
  • the master cylinder housing 34a which is the exterior of the master cylinder 34 are formed continuously with each other.
  • a first reservoir 36 (see FIG. 12 (a)) having an elongated outer shape is connected to the first reservoir 36 in the vertical direction. It is arrange
  • the first reservoir 36 and the master cylinder 34 are connected via relief ports 52a and 52b shown in FIG. 12B and connection ports formed to face supply ports 46a and 46b (not shown) (see FIG. 2). It communicates with the first and second pressure chambers 56a, 56b shown in FIG. 2 and the back chambers 48a, 48b.
  • reference numeral 36a is a connector to which the proximal end of the piping tube 86 for connecting the first reservoir 36 and the second reservoir 84 shown in FIG. 2 is connected.
  • the connector 36a is formed of a tubular member projecting forward of the input device 14D.
  • FIGS. 12 (a) and 12 (b) the base end of a first piping tube 22a extending toward the joint 23a shown in FIG. 1 is connected to the front side of the master cylinder housing 34a.
  • a first connection port 20a and a second connection port 20b to which a base end of a fourth piping tube 22d extended toward the joint 23b shown in FIG. 1 is connected are provided.
  • a bleeder 301 for air removal and a sensor unit 300 which will be described in detail later, are provided on the right side and the left side of the input device 14D.
  • the rear end portion of the master cylinder 34 extends further rearward from the stud plate 304. Then, as described above, the rear end portion of the master cylinder 34 is configured to receive the other end side of the push rod 42 connecting the brake pedal 12 to one end side thereof (see FIG. 2).
  • reference numeral 306 denotes a boot disposed across the master cylinder 34 and the push rod 42. Also, as described above, the input device 14D is fixed to the dashboard 2 (see FIG.
  • the input device 14D in the fourth embodiment is attached with an inclination such that the axial direction of the master cylinder 34 becomes a rising inclination toward the front of the vehicle. ing.
  • the port 65a communicating with the fluid pressure chamber 65 of the stroke simulator 64 is connected to the port 54b communicating with the second pressure chamber 56b of the master cylinder 34. That is, as shown in FIG. 2, the port 65a of the stroke simulator 64 is connected to the port 54b formed closer to the front end of the second pressure chamber 56b disposed on the front side than the first pressure chamber 56a. There is.
  • the port 54 b and the port 65 a correspond to “ports to each other” in the claims.
  • the ports 54b and 65a of the master cylinder 34 and the stroke simulator 64 have substantially the same positions in the front-rear direction, in other words, their front end positions substantially match. It is formed to be.
  • the ports 54b and 65a are connected to each other via the second hydraulic pressure passage 58b (see FIG. 2) and the branch hydraulic pressure passage 58c (see FIG. 2) as described above.
  • reference numerals 40a and 40b respectively denote the pistons of the master cylinder 34
  • reference numerals 66a and 66b denote return springs of the stroke simulator 64
  • reference numeral 68 denotes It is the above-mentioned simulator piston.
  • the third shutoff valve 62 is schematically shown by a broken line for convenience of drawing, but the arrangement of the third shutoff valve 62 will be described in detail later.
  • the port 54b of the master cylinder 34 and the port 65a of the stroke simulator 64 are formed on the top of the master cylinder 34 and the stroke simulator 64, respectively.
  • a second hydraulic pressure passage 58b and a branch hydraulic pressure passage 58c connecting the ports 54b and 65a of the master cylinder 34 and the stroke simulator 64 extend from the master cylinder 34 and the stroke simulator 64 toward the respective sides. It is formed as. Specifically, the branch hydraulic pressure passage 58c in the fourth embodiment extends so as to pass above the master cylinder 34 disposed on the left side from the stroke simulator 64, and is adjacent to the sensor unit 300 described later. It further extends after passing through the third shutoff valve 62 disposed in the vicinity, and reaches the surface adjacent to the sensor unit 300.
  • the second hydraulic pressure passage 58b in the fourth embodiment is bent upward while extending in parallel with the branch hydraulic pressure passage 58c from the master cylinder 34 toward the sensor unit 300 disposed on the left side, After joining with the branch hydraulic pressure passage 58c extending in the section between the shutoff valve 62 and the sensor unit 300, it extends to the second connection port 20b shown in FIG. 12A via the second shutoff valve 60b shown in FIG. ing.
  • the second hydraulic pressure passage 58b and the branch hydraulic pressure passage 58c correspond to the "brake fluid flow passage connecting ports of the master cylinder and the stroke simulator" in the claims
  • the third shutoff valve 62 is It corresponds to "the on-off valve disposed in the middle of the flow path of the brake fluid connecting the ports of the master cylinder and the stroke simulator" in the claims.
  • the second hydraulic pressure passage 58b after passing through the second shutoff valve 60b shown in FIG. 2 is forwardly directed along the master cylinder 34 at the lower left corner of the master cylinder 34 as shown in FIG. 13 (b). It extends in the (forward direction of FIG. 12 (a)) to reach the second connection port 20b shown in FIG. 12 (a).
  • the input device 14D is provided with a sensor unit 300 on the left side of the master cylinder 34.
  • the sensor unit 300 includes a first fluid pressure sensor Pm and a second fluid pressure sensor Pp shown in FIG. 2 and an electronic circuit board (not shown) for processing pressure detection signals from these in a resin case, and further, A first shutoff valve 60a, a second shutoff valve 60b, and a third shutoff valve 62 (all of which are operationally controlled by the electronic circuit board) shown in FIG. 2 are disposed.
  • the first fluid pressure sensor Pm and the second fluid pressure sensor Pp are arranged to face monitor holes (not shown) provided to communicate with the first fluid pressure passage 58a and the second fluid pressure passage 58b, respectively.
  • the monitor hole is formed by a hole bored toward the first hydraulic pressure passage 58a and the second hydraulic pressure passage 58b from the side of the sensor unit 300 shown in FIG. 13 (b).
  • the bleeder 301 for air removal branches from the branch hydraulic pressure passage 58c connected to the port 65a of the stroke simulator 64 and extends right above the port 65a. It is comprised by the plug arrange
  • the bleeder 301 is for removing air remaining in the master cylinder 34, the stroke simulator 64, the hydraulic pressure passage and the like.
  • the input device 14D according to the fourth embodiment and the vehicle brake system 10 including the input device 14D are basically configured as described above, and the operation and effects thereof will be described next.
  • the first shut-off valve 60a and the second shut-off valve 60b which are normally open type solenoid valves, are excited by excitation and the third normally closed type solenoid valve is formed.
  • the shutoff valve 62 is excited, the valve opens. Therefore, since the first hydraulic system 70a and the second hydraulic system 70b are shut off by the first shutoff valve 60a and the second shutoff valve 60b, the brake hydraulic pressure generated in the master cylinder 34 of the input device 14D is a disc brake It is not transmitted to the wheel cylinders 32FR, 32RL, 32RR, 32FL of the mechanisms 30a-30d.
  • the brake fluid pressure generated in the second pressure chamber 56b of the master cylinder 34 is transmitted to the fluid pressure chamber 65 of the stroke simulator 64 via the branch fluid pressure passage 58c and the third shutoff valve 62 in the valve open state. Be done.
  • the simulator piston 68 is displaced against the spring force of the return springs 66a and 66b by the brake fluid pressure supplied to the fluid pressure chamber 65, the stroke of the brake pedal 12 is permitted and the pseudo pedal reverse A force is generated and applied to the brake pedal 12.
  • the control means detects depression of the brake pedal 12 by the driver, it drives the electric motor 72 of the motor cylinder device 16 to bias the actuator mechanism 74, and the first return spring 96a.
  • the first slave piston 88a and the second slave piston 88b are displaced in the direction of the arrow X1 in FIG. 2 against the spring force of the second return spring 96b.
  • the brake fluid in the first fluid pressure chamber 98a and the second fluid pressure chamber 98b is pressurized so as to be balanced, and a desired brake fluid pressure is generated.
  • the brake fluid pressure of the first fluid pressure chamber 98 a and the second fluid pressure chamber 98 b in the motor cylinder device 16 is controlled by the disc brake mechanism 30 a through the first and second in valves 120 and 124 in the valve open state of the VSA device 18. It is transmitted to the wheel cylinders 32FR, 32RL, 32RR, and 32FL of .about.30d, and the wheel cylinders 32FR, 32RL, 32RR, and 32FL are operated to apply a desired braking force to each wheel.
  • the driver operates the brake pedal in a normal state where the motor cylinder device 16 functioning as a power hydraulic pressure source and the ECU (not shown) performing bi-wire control can operate.
  • Communication between the master cylinder 34 that generates the brake fluid pressure by stepping 12 and the disc brake mechanisms 30a to 30d (wheel cylinders 32FR, 32RL, 32RR, 32FL) that brakes each wheel is cut off by the first shutoff valve 60a and the second shutoff With the valve 60b shut off, a so-called brake-by-wire braking system is activated in which the disk brake mechanisms 30a to 30d are operated with the brake fluid pressure generated by the motor cylinder device 16.
  • the present invention can be suitably applied to a vehicle V such as an electric car in which there is no negative pressure due to the conventionally used internal combustion engine.
  • the first shutoff valve 60a and the second shutoff valve 60b are opened, and the third shutoff valve 62 is closed.
  • the generated brake fluid pressure is transmitted to the disc brake mechanisms 30a-30d (wheel cylinders 32FR, 32RL, 32RR, 32FL) to operate the disc brake mechanisms 30a-30d (wheel cylinders 32FR, 32RL, 32RR, 32FL).
  • the so-called old hydraulic brake system is activated.
  • the input device 14D, the motor cylinder device (electric brake actuator) 16 and the VSA device (vehicle behavior stabilization device) 18 are mounted in the engine room (mounting space of the power device). Because the input device 14D, the motor cylinder device 16, and the VSA device 18 can be downsized, the degree of freedom of layout can be enhanced.
  • the input device 14D, the motor cylinder device 16 and the VSA device 18 are separately configured, whereby each device (input device 14D, motor cylinder device 16, VSA device 18) This makes it easy to apply it to different car models by improving its versatility.
  • the motor cylinder device 16 since the motor cylinder device 16 is fixed to the dashboard 2 and spaced apart from the input device 14D, it may be a source of noise and vibration. Since the motor cylinder device 16 can be disposed apart from the driver, it is possible to prevent the driver from feeling discomfort (discomfort) due to sound or vibration.
  • the motor cylinder device 16 and the VSA device 18 in the vehicle width direction
  • the motor cylinder device 16 and the VSA device 18 By arranging the motor cylinder device 16 and the VSA device 18 opposite to each other in the above, it becomes easy to secure an empty space for installing the motor cylinder device 16 and the VSA device 18, and the layout becomes easy.
  • the stroke simulator 64 is integrated with the master cylinder 34 extending in the front-rear direction of the vehicle V (see FIG. 1). And the front end position of the port 54b of the master cylinder 34 and the port 65a of the stroke simulator 64 substantially coincide with each other, so that both the width and the length are reduced, and the miniaturized input device 14D is realized. be able to.
  • the second hydraulic pressure passage 58b and the branch hydraulic pressure passage 58c connecting the ports 54b and 65a of the master cylinder 34 and the stroke simulator 64 are connected from the master cylinder 34 and the stroke simulator 64, respectively.
  • the second hydraulic passage 58 b and the branch hydraulic passage 58 c can be designed to be short. Therefore, according to this input device 14D, a more miniaturized input device 14D can be realized.
  • the ports 54b and 65a of the master cylinder 34 and the stroke simulator 64 are formed on upper portions of the master cylinder 34 and the stroke simulator 64, respectively. Therefore, according to the input device 14D, when the brake fluid is filled in the master cylinder 34 and the stroke simulator 64 and air in the master cylinder 34 and the stroke simulator 64 is removed, the bleeder 301 (FIG. 13 (b)) Makes it easy to remove the air from
  • the bleeder 301 is attached to the dashboard 2 so that the axis of the master cylinder 34 has a rising slope toward the front of the vehicle V.
  • the tip of the input device 14D is disposed at a position where the rising slope is high. As a result, the removal of air through the bleeder 301 is easier.
  • the third shutoff valve 62 disposed in the middle of the second hydraulic pressure passage 58b connecting the master cylinder 34 and the ports 54b and 65a of the stroke simulator 64 is incorporated. Therefore, according to the input device 14D, for example, the simplified vehicle brake system 10 is constructed as compared with the vehicle brake system 10 including the one having the third shutoff valve 62 outside the input device 14D. be able to.
  • the connector 36a, the first connection port 20a, and the second connection port 20b are formed toward the front, so the dashboard 2 ( 1), the piping 36 (see FIG. 2), the first piping tube 22a (see FIG. 2), and the connector 36a, the first connection port 20a, and the second connection port 20b of the input device 14D fixed to FIG.
  • the process of attaching the fourth piping tube 22d (see FIG. 2) is facilitated.
  • FIG. 14 (a) is a schematic perspective view of the input device 14E
  • FIG. 14 (b) is a plan view from above, and the same members as those shown in FIG. Description is omitted.
  • the master cylinder 34 constituting the input device 14E extends in the front-rear direction of the vehicle V (see FIG. 1), and the stroke simulator 64 It is juxtaposed to be integrated with the More specifically, the stroke simulator 64 in the fifth embodiment is disposed side by side on the right side of the master cylinder 34 (outside in the vehicle width direction).
  • the master cylinder 34 and the stroke simulator 64 in the fifth embodiment are formed of a metal integrally-formed body together with a stud plate 304 that supports them at the rear end side.
  • a first reservoir 36 (reservoir tank) having an elongated outer shape extends in the vehicle longitudinal direction between the master cylinder 34 and the stroke simulator 64. It is arranged. At this time, the first reservoir 36 is arranged such that the master cylinder 34 and the stroke simulator 64 overlap with a part of the first reservoir 36 in the vertical direction.
  • the first reservoir 36 and the master cylinder 34 are connected through relief ports 52a and 52b shown in FIG. 14B and connection ports formed to face supply ports 46a and 46b (not shown) (see FIG. 2). It communicates with the first and second pressure chambers 56a, 56b shown in FIG. 2 and the back chambers 48a, 48b.
  • reference numeral 36a is a connector to which the proximal end of a piping tube 86 for connecting the first reservoir 36 and the second reservoir 84 shown in FIG. 2 is connected.
  • the connector 36a is formed of a tubular member projecting forward of the input device 14E.
  • the connection port 36a and the second reservoir 84 may be directly connected by the piping tube 86, depending on the mounting layout of the vehicle, the connection port 36a and the second reservoir 84 may be separately connected.
  • a body tank can also be provided. When a separate tank is provided, the connection port 36a is connected to the separate tank.
  • a first connection port 20a which communicates with the master cylinder 34 and is connected to the base end of the first piping tube 22a on the front side of the input device 14E.
  • a second connection port 20b which communicates with the master cylinder 34 and to which the base end of the fourth piping tube 22d is connected.
  • an air bleeder 301 and a valve unit 300 which will be described in detail later, are integrally provided on the right and left sides of the input device 14E.
  • the rear end portion of the master cylinder 34 is connected to the brake operating element 12 through the connecting portion 34a. ing.
  • the port 65a communicating with the fluid pressure chamber 65 of the stroke simulator 64 is connected to the port 54b communicating with the second pressure chamber 56b of the master cylinder 34. That is, as shown in FIG. 2, the port 65a of the stroke simulator 64 is connected to the port 54b formed closer to the front end of the second pressure chamber 56b disposed on the front side than the first pressure chamber 56a. There is.
  • the ports 54b and 65a of the master cylinder 34 and the stroke simulator 64 are arranged such that the positions in the front-rear direction substantially coincide with each other.
  • the front end positions of are substantially formed to coincide with each other.
  • the ports 54b and 65a are connected to each other via the second hydraulic pressure passage 58b (see FIG. 2) and the branch hydraulic pressure passage 58c (see FIG. 2) as described above.
  • a third shutoff valve 62 is provided between the ports 54b and 65a.
  • the 3rd cutoff valve 62 shown to Fig.15 (a) has shown the thing of the valve open state.
  • reference numerals 40a and 40b denote pistons of the master cylinder 34
  • reference numerals 66a and 66b denote return springs of the stroke simulator 64
  • reference numeral 68 denotes It is the above-mentioned simulator piston.
  • the port 54b of the master cylinder 34 and the port 65a of the stroke simulator 64 are formed on the top of the master cylinder 34 and the stroke simulator 64, respectively.
  • the second hydraulic pressure passage 58b in the fifth embodiment is connected to the second pressure chamber 56b of the master cylinder 34, and is branched from the master cylinder 34 toward the valve unit 300 disposed on the left side. After it joins with the branch hydraulic pressure passage 58c which is bent upward in the middle along with the second hydraulic pressure passage 58c which extends in the section between the third shutoff valve 62 and the valve unit 300, the drawing is performed via the second shutoff valve 60b shown in FIG. It extends to the second connection port 20b shown in 14 (a).
  • the second hydraulic pressure passage 58b after passing through the second shutoff valve 60b shown in FIG. 2 is along the master cylinder 34 at the lower left corner of the master cylinder 34, as shown in FIG. As such, it extends in the forward direction (forward direction in FIG. 14A) to reach the second connection port 20b shown in FIG. 14A.
  • a third shutoff valve 62 and a master cylinder 34 provided in the branch hydraulic pressure passage 58c.
  • the second shutoff valve 60b (master cylinder shutoff valve) provided on the 58b is disposed.
  • the bleeder 301 for air removal branches from the branch hydraulic pressure passage 58c connected to the port 65a of the stroke simulator 64 and extends right above the port 65a. It is comprised by the plug arrange
  • the bleeder 301 is for removing air remaining in the master cylinder 34, the stroke simulator 64, the hydraulic pressure passage and the like.
  • the bleeder 301 may be provided, for example, in the upper front or lower of the master cylinder 34, in a portion where air is collected in the master cylinder 34, the stroke simulator 64, etc.
  • the input device 14E according to the fifth embodiment and the vehicle brake system 10 including the same are basically configured as described above, and the operation and effects thereof will be described next.
  • the first shut-off valve 60a and the second shut-off valve 60b which are normally open type solenoid valves, are excited by excitation and the third normally closed type solenoid valve is formed.
  • the shutoff valve 62 is excited, the valve opens. Therefore, since the first hydraulic system 70a and the second hydraulic system 70b are shut off by the first shutoff valve 60a and the second shutoff valve 60b, the brake hydraulic pressure generated in the master cylinder 34 of the input device 14E is a disc brake It is not transmitted to the wheel cylinders 32FR, 32RL, 32RR, 32FL of the mechanisms 30a-30d.
  • the brake fluid pressure generated in the second pressure chamber 56b of the master cylinder 34 is transmitted to the fluid pressure chamber 65 of the stroke simulator 64 via the branch fluid pressure passage 58c and the third shutoff valve 62 in the valve open state. Be done.
  • the simulator piston 68 is displaced against the spring force of the return springs 66a and 66b by the brake fluid pressure supplied to the fluid pressure chamber 65, the stroke of the brake pedal 12 is permitted and the pseudo pedal reverse A force is generated and applied to the brake pedal 12.
  • the brake fluid pressure of the first fluid pressure chamber 98 a and the second fluid pressure chamber 98 b in the motor cylinder device 16 is controlled by the disc brake mechanism 30 a through the first and second in valves 120 and 124 in the valve open state of the VSA device 18. It is transmitted to the wheel cylinders 32FR, 32RL, 32RR, and 32FL of .about.30d, and the wheel cylinders 32FR, 32RL, 32RR, and 32FL are operated to apply a desired braking force to each wheel.
  • the driver operates the brake pedal in a normal state where the motor cylinder device 16 functioning as a power hydraulic pressure source and the ECU (not shown) performing bi-wire control can operate.
  • Communication between the master cylinder 34 that generates the brake fluid pressure by stepping 12 and the disc brake mechanisms 30a to 30d (wheel cylinders 32FR, 32RL, 32RR, 32FL) that brakes each wheel is cut off by the first shutoff valve 60a and the second shutoff With the valve 60b shut off, a so-called brake-by-wire braking system is activated in which the disk brake mechanisms 30a to 30d are operated with the brake fluid pressure generated by the motor cylinder device 16.
  • the present invention can be suitably applied to a vehicle V such as an electric car in which a negative pressure type brake booster or the like that has been used conventionally does not exist.
  • the first shutoff valve 60a and the second shutoff valve 60b are opened, and the brake fluid pressure generated in the master cylinder 34 is set to the disc brake mechanisms 30a to 30d ( A so-called old hydraulic brake system is activated, in which the disc brake mechanisms 30a to 30d (wheel cylinders 32FR, 32RL, 32RR, 32FL) are actuated by transmitting to the wheel cylinders 32FR, 32RL, 32RR, 32FL). .
  • the valve unit 300, the master cylinder 34, and the stroke simulator 64 are juxtaposed in this order from the left side to the right side of the vehicle. Further, the first reservoir 36 is connected to the master cylinder 34 via connection ports facing the relief ports 52 a and 52 b (see the drawing) provided in the master cylinder 34.
  • the positions in the front-rear direction of the port position of the master cylinder 34 and the port position of the stroke simulator 64 substantially coincide with each other.
  • FIG. 16 is a schematic view of a cross section of the valve unit 300 in the longitudinal direction of the vehicle.
  • a substrate (not shown) or the like is provided.
  • the first fluid pressure sensor Pm and the second fluid pressure sensor Pp are arranged to face monitor holes (not shown) provided to communicate with the first fluid pressure passage 58a and the second fluid pressure passage 58b, respectively.
  • the monitor hole is formed by a hole penetrating from the bubble unit 300 side to the first hydraulic pressure passage 58a and the second hydraulic pressure passage 58b.
  • the valve unit 300 is internally provided with a first shutoff valve 60a (master cylinder shutoff valve), a second shutoff valve 60b (master cylinder shutoff valve), and a third shutoff valve 62 (stroke simulator shutoff valve).
  • first shutoff valve 60a and the second shutoff valve 60b are valves of a normally open type solenoid valve, and as shown in FIG. 2, they are provided in the middle of the hydraulic passages 58a and 58b.
  • the third shutoff valve 62 is a valve that is a normally closed type solenoid valve, and is provided to close the hydraulic pressure passage 58c.
  • the connection relation of the first shutoff valve 60a, the second shutoff valve 60b and the third shutoff valve 62, and the first hydraulic pressure sensor Pm and the second hydraulic pressure sensor Pp is schematically shown by thick solid lines in FIG.
  • the first connection port 20a and the first pressure chamber 56a are connected via a first shutoff valve 60a.
  • a first hydraulic pressure sensor Pm is provided between the first pressure chamber 56a and the first shutoff valve 60a, and although not shown in FIG. 16, the hydraulic pressure passage extending from the first shutoff valve 60a and the first hydraulic pressure sensor A fluid pressure passage extending from the fluid pressure sensor Pm merges and is connected to the first pressure chamber 56a.
  • the second connection port 20b is connected to the second pressure chamber 56b via the second shutoff valve 60b.
  • a second hydraulic pressure sensor Pp is provided between the second connection port 20b and the second shutoff valve 60b.
  • the hydraulic pressure passage is branched between the second shutoff valve 60b and the second pressure chamber 56b, and is connected to a stroke simulator 64 (not shown in FIG. 16) via the third shutoff valve 62.
  • the stroke simulator 64, the master cylinder 34 and the valve unit 300 are integrally juxtaposed in the vehicle width direction of the vehicle in this order.
  • the input device 14E it is possible to shorten the flow path between at least the master cylinder 34 and the stroke simulator 64, and to miniaturize the input device 14E.
  • the input device 14E according to the fifth embodiment can be mounted also in an electric car, a hybrid car or the like in which the mounting space in the structure mounting room is limited as compared with a gasoline car.
  • the master cylinder 34 and the stroke simulator 64 are provided side by side so as to be parallel, but they need not necessarily be provided in parallel as long as they are integrated. Furthermore, they do not necessarily have to be provided in the same plane.
  • the master cylinder 34 and the stroke simulator 64 are integrally formed with the mounting plate 304, but the master cylinder 34 and the stroke simulator 64 are integrally formed. For example, they do not necessarily have to be integrally formed with the mounting plate 304.
  • the specific configurations of the master cylinder 34, the stroke simulator 64, the motor cylinder device 16 and the like are not particularly limited, and can be arbitrarily determined as long as the effects of the present invention are not significantly impaired. It goes without saying that other configurations can be arbitrarily changed as long as the effects of the present invention are not significantly impaired.
  • the master cylinder 34 and the stroke simulator 64 are provided side by side so as to be parallel, but they need not necessarily be provided in parallel as long as they are integrated. Furthermore, they do not necessarily have to be provided in the same plane.
  • the specific configurations of the master cylinder 34, the stroke simulator 64, the motor cylinder device 16 and the like are not particularly limited, and can be arbitrarily determined as long as the effects of the present invention are not significantly impaired. It goes without saying that other configurations can be arbitrarily changed as long as the effects of the present invention are not significantly impaired.
  • the master cylinder 34 and the stroke simulator 64 have been described to be arranged side by side horizontally, but may be arranged vertically or obliquely side by side.
  • the master cylinder 34 and the stroke simulator 64 are arranged in parallel, but the master cylinder 34 and the stroke simulator 64 are arranged in parallel with an allowable axial deviation. It may be.
  • the present invention can be applied to either a right-hand drive car or a left-hand drive car.
  • the master cylinder 34 and the stroke simulator 64 are provided side by side so as to be parallel, but they need not necessarily be provided in parallel as long as they are integrated. Furthermore, they do not necessarily have to be provided in the same plane.
  • the master cylinder 34 and the stroke simulator 64 overlap with a part of the first reservoir 36 above the master cylinder 34 and the stroke simulator 64 at the position of the first reservoir 36 (reservoir tank).
  • the position of the first reservoir 36 is not limited to this position, and may be provided, for example, between the master cylinder 34 and the valve unit 300.
  • valve unit 300 positions of the respective shut-off valves and the respective hydraulic pressure sensors in the valve unit 300 are not limited to those shown in FIG. 16, and may be appropriately arranged in the valve unit 300 according to the positions of the respective hydraulic channels. Just do it.
  • the specific configurations of the master cylinder 34, the stroke simulator 64, the motor cylinder device 16 and the like are not particularly limited, and can be arbitrarily determined as long as the effects of the present invention are not significantly impaired. It goes without saying that other configurations can be arbitrarily changed as long as the effects of the present invention are not significantly impaired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)

Abstract

【課題】従来の車両用ブレーキシステムと比較して小型化され、さらには汎用性を向上させた車両用ブレーキシステムの入力装置を提供する。 【解決手段】ブレーキ操作子12の前記操作による入力によって液圧を発生するマスタシリンダ34と、マスタシリンダ34に並設され、ブレーキ操作子12の操作反力をブレーキ操作子12に擬似的に付与するストロークシミュレータ64と、を有し、マスタシリンダ34とストロークシミュレータ64とが一体となって形成されていることを特徴とする、車両用ブレーキシステム10の入力装置14。

Description

車両用ブレーキシステムの入力装置
 本発明は、車両用ブレーキシステムの入力装置に関する。
 従来、車両(自動車)用のブレーキシステムとしては、例えば、負圧式ブースタや油圧式ブースタ等の倍力装置を備えるものが知られている。また、近年では、電動モータを倍力源として利用する電動倍力装置が知られている(例えば、特許文献1参照)。
 この特許文献1に開示された電動倍力装置は、ブレーキペダルの操作によって進退運動する主ピストンと、この主ピストンと相対変位可能に外嵌された筒状のブースタピストンと、電動モータの回転力をブースタピストンにブースタ推力として伝達する、例えばボールねじ等の回転-直動変換機構とを備えている。
 この電動倍力装置によれば、主ピストンとブースタピストンとをマスタシリンダのピストンとして利用し、それぞれの前端部をマスタシリンダの圧力室に臨ませることで、操作者によってブレーキペダルから主ピストンに入力される推力と、電動モータからブースタピストンに入力されるブースタ推力とによって、ブレーキ液圧をマスタシリンダ内に発生させることができる。
特開2010-23594号公報
 しかしながら、特許文献1に記載された電動倍力装置は、操作者のブレーキ操作が入力される入力装置や、ブレーキ操作に応じた電気信号に基づいてブレーキ液圧を発生させる電動ブレーキアクチュエータ等が一つにまとめて組み立てられて、ブレーキペダルの前方に配置されている。このため、前記電動倍力装置は、車両のエンジンや走行用モータ等の構造物が搭載される構造物搭載室内におけるレイアウトの自由度が小さく、しかも、例えば複数車種の車両に搭載する場合には流用が困難で汎用性に欠けることがある。特に、操作者のブレーキ操作が入力される入力装置については、その設置場所がとりわけ限定されることから、小型化が望まれている。
 本発明は前記の課題に鑑みて為されたものであり、その目的は、従来の車両用ブレーキシステムと比較して小型化され、さらには汎用性を向上させた車両用ブレーキシステムの入力装置を提供することにある。
 本発明者らは前記課題を解決するべく鋭意検討した結果、少なくともマスタシリンダ及びストロークシミュレータを一体化して形成することにより、前記課題を解決することができることを見出し、本発明を完成させた。
 即ち、本発明の車両用ブレーキシステムの入力装置は、ブレーキ操作子の操作が入力される入力装置と、少なくとも前記ブレーキ操作子の操作に応じた電気信号に基づいてブレーキ液圧を制御する電動ブレーキアクチュエータと、を備える車両用ブレーキシステムにおいて、前記電動ブレーキアクチュエータとは別体として構成され、前記ブレーキ操作子を有して操作者により操作される入力装置であって、前記ブレーキ操作子の前記操作による入力によって液圧を発生するマスタシリンダと、前記マスタシリンダに並設されるとともに前記マスタシリンダと連通され、前記ブレーキ操作子の操作反力を前記ブレーキ操作子に擬似的に付与するストロークシミュレータと、を有し、前記マスタシリンダと前記ストロークシミュレータとが一体となって形成されていることを特徴とする(請求項1)。
 請求項1に係る発明によれば、マスタシリンダとストロークシミュレータとの間の配管を短くすることが可能となり、さらにはマスタシリンダとストロークシミュレータを備える入力装置を小型化することができる。また、このように小型化した車両用ブレーキシステムの入力装置は、構造物搭載室内の搭載スペースがガソリン自動車と比べて余裕の少ないハイブリッド自動車や電気自動車等にも好適に搭載することができる。その結果、ガソリン自動車やハイブリッド自動車、電気自動車等との間で部品を共通化することができ、部品の汎用性が高まるため製造コストの削減にもなる。
 また、本発明の車両用ブレーキシステムの入力装置は、前記マスタシリンダと前記第1遮断弁との間に第1圧力センサが設けられ、前記第2遮断弁と前記第2接続ポートとの間に第2圧力センサが設けられていることを特徴とする(請求項2)。
 請求項2に係る発明によれば、二つの圧力センサを用いることにより、適切なブレーキ制御を行うことができる。
 また、本発明の車両用ブレーキシステムの入力装置は、少なくとも前記マスタシリンダ及び前記ストロークシミュレータ内のエアを抜くエア抜き用ブリーダが設けられていることを特徴とする(請求項3)。
 請求項3に係る発明によれば、少なくともマスタシリンダ及びストロークシミュレータ内のエアを抜くことができ、ブレーキシステムの不具合をより確実に低減させることができる。
 また、本発明の車両用ブレーキシステムの入力装置は、前記マスタシリンダと前記ストロークシミュレータとが、車両の車幅方向に一体に並設されていることを特徴とする(請求項4)。
 請求項4に係る発明によれば、マスタシリンダとストロークシミュレータとの間の流路を特に短くすることが可能となり、さらにはマスタシリンダとストロークシミュレータとを備える入力装置を特に小型化することができる。また、このように小型化した車両用ブレーキシステムの入力装置は、構造物搭載室内の搭載スペースがガソリン自動車と比べて余裕の少ないハイブリッド自動車や電気自動車等にも好適に搭載することができる。その結果、ガソリン自動車やハイブリッド自動車、電気自動車等との間で部品を共通化することができ、部品の汎用性が高まるため製造コストの削減にもなる。
 また、本発明の車両用ブレーキシステムの入力装置は、前記マスタシリンダ及び前記ストロークシミュレータの上方において、前記マスタシリンダと前記ストロークシミュレータとの間にリザーバタンクが設けられていることを特徴とする(請求項5)。
 請求項5に係る発明によれば、搭載スペースが限られているハイブリッド自動車等においてもリザーバタンクを確実に配置することができる。また、部品の汎用性を高めることもできる。さらには、構造物搭載室内の無駄な空間を削減することもでき、車両の小型化も図れる。
 また、本発明の車両用ブレーキシステムの入力装置は、前記マスタシリンダ及び前記ストロークシミュレータを前記車両のダッシュボードに取り付け可能な取り付けプレートを有し、該取り付けプレートの前記車幅方向の長さが、前記取り付けプレートにおける前記車両の上下方向の長さよりも長くなっていることを特徴とする(請求項6)。
 請求項6に係る発明によれば、取り付けプレートの車幅方向の長さが長い方向に並設されるようにマスタシリンダ及びストロークシミュレータを配置することができるため、取り付けプレートの面積を最小限のものとすることができる。従って、ストロークシミュレータを備えないガソリン自動車に設けられているダッシュボードに対しても同様に上記取り付けプレートを用いることができる。即ち、既存のダッシュボードの固定点を利用することができるためダッシュボードの汎用性が高まり、製造コストの削減になる。
 また、本発明の車両用ブレーキシスステムの入力装置は、前記取り付けプレートに肉抜き部が設けられていることを特徴とする(請求項7)。
 請求項7に係る発明によれば、取り付けプレートを軽量化することができるので、車両を軽量化することができる。
 また、本発明の車両用ブレーキシステムの入力装置は、前記マスタシリンダと前記ストロークシミュレータとの間に形成された凹部と、前記凹部に形成された水抜き用の貫通孔と、を備えることを特徴とする(請求項8)。
 請求項8に係る発明によれば、ブレーキ操作子の操作が入力される入力装置と、少なくとも前記操作に応じた電気信号に基づいてブレーキ液圧を発生する電動ブレーキアクチュエータと、を備え、これらが車両の構造物搭載室に相互に分離されて配置されているので、これらが一体とされたものに比べて装置の小型化を図ることができる。したがって、ダッシュボードの車両前方に形成された構造物搭載室において、レイアウトの自由度を高めることができる。
 つまり、構造物搭載室内には、構造物として、ブレーキ関係の装置だけではなく、駆動源(エンジンおよび/または走行モータ)、トランスミッション、ラジエータ等の冷却系、低圧バッテリなど各種の装置が搭載されるため、必然的に大きな空スペース(設置スペース)を確保することが難しくなる。しかし、本発明のように入力装置と電動ブレーキアクチュエータとをそれぞれ分離して構成することで、個々の装置のサイズを小さくすることができ、大きな空スペースを確保する必要がなくなり、狭い空スペースであっても各装置を搭載することが可能になる。
 また、入力装置と電動ブレーキアクチュエータとをそれぞれ分離して構成することで、各装置の汎用性を向上して異なる車種に適用し易くなる。
 また、入力装置と電動ブレーキアクチュエータとをそれぞれ分離して(別体にて)構成するので、音や振動の発生源となることがある電動ブレーキアクチュエータを運転者から離して配置することができ、運転者に音や振動による違和感(不快感)を与えるのを防止することができる。
 さらに、入力装置は、ブレーキ操作子の操作による入力によって液圧を発生するマスタシリンダと、マスタシリンダに並設され、ブレーキ操作子の操作反力をブレーキ操作子に擬似的に付与するストロークシミュレータとの間に、凹部が形成されているので、この凹部によってマスタシリンダとストロークシミュレータとの間の余分な部分が肉抜きされ、軽量化が図られている。
 また、凹部には、水抜き用の貫通孔が形成されているので、凹部に水滴等が溜ったとしても、この貫通孔を通じて水滴等を凹部から好適に排出することができる。したがって、水滴等の移動を許容して液溜りを防止することができる入力装置が得られる。
 また、貫通孔が設けられることによりさらに軽量化を図ることができる。また、液溜りを防止することができるので、錆の防止に寄与する。
 また、本発明の車両用ブレーキシスステムの入力装置において、前記貫通孔は、前記凹部に複数設けられていることを特徴とする(請求項9)。
 請求項9に係る発明によれば、凹部に溜った水滴等を複数の貫通孔を通じて好適に排出することができる。したがって、水滴等の移動を好適に許容して液溜りをより一層防止することができる入力装置が得られる。
 また、複数の貫通孔が設けられることにより、より一層の軽量化を図ることができる。また、液溜りをより一層防止することができるので、錆びの防止効果が高まる。
 また、本発明の車両用ブレーキシステムの入力装置は、前記マスタシリンダと前記ストロークシミュレータとが連通し合うように形成された前記マスタシリンダ及び前記ストロークシミュレータのポート同士の前端位置が略一致することを特徴とする(請求項10)。
 請求項10に係る発明によれば、車両の前後方向に延在するマスタシリンダに対してストロークシミュレータが一体となるように並設されると共に、マスタシリンダのポートとストロークシミュレータのポートとの前端位置が略一致しているので、幅及び長さが共に縮減し、小型化した入力装置を実現することができる。
 また、本発明の車両用ブレーキシステムの入力装置は、前記マスタシリンダ及び前記ストロークシミュレータのポート同士を繋ぐブレーキ液の流路は、前記マスタシリンダ及び前記ストロークシミュレータからそれぞれの側方に向かって延びるように形成されていることを特徴とする(請求項11)。
 請求項11に係る発明によれば、ポート同士を繋ぐブレーキ液の流路を短くすることができるので、より小型化した入力装置を実現することができる。
 また、本発明の車両用ブレーキシステムの入力装置は、前記マスタシリンダ及び前記ストロークシミュレータのポートは、前記マスタシリンダ及び前記ストロークシミュレータのそれぞれの上部に形成されていることを特徴とする(請求項12)。
 請求項12に係る発明によれば、マスタシリンダ及びストロークシミュレータ内にブレーキ液を充填すると共にマスタシリンダ及びストロークシミュレータ内の空気を除去する際に、ブレーキ液の充填及び空気の除去を、効率よく行うことができる。
 また、本発明の車両用ブレーキシステムの入力装置は、前記マスタシリンダと前記ストロークシミュレータとの間に設けられている前記液圧路の流れを遮断するストロークシミュレータ遮断弁を備えているバルブユニットを有し、前記マスタシリンダと前記ストロークシミュレータと前記バルブユニットとが一体となって形成されていることを特徴とする(請求項13)。
 請求項13に係る発明によれば、マスタシリンダとストロークシミュレータとバルブユニットとにおける相互間の流路(液圧路)を短くすることが可能となり、これらを備える入力装置を小型化することができる。また、このように小型化した車両用ブレーキシステムの入力装置は、構造物搭載室内の搭載スペースがガソリン自動車と比べて余裕の少ないハイブリッド自動車や電気自動車等にも好適に搭載することができる。その結果、ガソリン自動車やハイブリッド自動車、電気自動車等との間で部品を共通化することができ、部品の汎用性が高まるため製造コストの削減にもなる。
 また、本発明の車両用ブレーキシステムの入力装置は、前記ストロークシミュレータと前記マスタシリンダと前記バルブユニットとが、この順で並設されていることを特徴とする(請求項14)。
 請求項14に係る発明によれば、例えばマスタシリンダとストロークシミュレータとの間にバルブユニットを設ける場合と比べて、マスタシリンダとストロークシミュレータとの間の流路を短くすることができるとともに、マスタシリンダとバルブユニットとの間の流路も短くすることができる。
 本発明によれば、マスタシリンダとストロークシミュレータとの間の配管を短くすることが可能となり、さらにはマスタシリンダとストロークシミュレータを備える入力装置を小型化することができる。また、このように小型化した車両用ブレーキシステムの入力装置は、構造物搭載室内の搭載スペースがガソリン自動車と比べて余裕の少ないハイブリッド自動車や電気自動車等にも好適に搭載することができる。その結果、ガソリン自動車やハイブリッド自動車、電気自動車等との間で部品を共通化することができ、部品の汎用性が高まるため製造コストの削減にもなる。
本実施形態に係る車両用ブレーキシステムにおける構成要素の配置を概略的に示す車両全部の部分拡大平面図である。 本実施形態に係る車両用ブレーキシステムの概略構成図である。 第1実施形態に係る車両用ブレーキシステムの入力装置の概略拡大図であり、(a)はその斜視図、(b)はその平面図である。 第1実施形態に係る車両用ブレーキシステムの入力装置を車両のダッシュボードに固定した様子を示す概略図である。 第2実施形態に係る車両用ブレーキシステムの入力装置の概略拡大図であり、(a)は車両後方からの平面図、(b)は車両前方からの平面図である。 第2実施形態に係る車両用ブレーキシステムの入力装置の上側面図である。 第2実施形態に係る車両用ブレーキシステムの入力装置における、マスタシリンダとストロークシミュレータとの接続関係を概略的に示す図である。 (a)は第3実施形態に係る車両用ブレーキシステムの入力装置の概略斜視図、(b)は入力装置の平面図である。 (a)は凹部及び貫通孔を示す、第3実施形態に係る車両用ブレーキシステムの入力装置の概略斜視図、(b)は図8(a)におけるA-A線断面図である。 ダッシュボードに対する、第3実施形態に係る車両用ブレーキシステムの入力装置を取り付け状態を示す側面図である。 (a)(b)は作用説明図である。 (a)は、第4実施形態に係る入力装置の全体斜視図、(b)は、入力装置の平面図である。 (a)は、第4実施形態に係る入力装置の入力装置を構成するマスタシリンダ及びストロークシミュレータの配置を示す模式図、(b)は、図12(b)のIV-IV断面図である。 第5実施形態に係る車両用ブレーキシステムの入力装置の概略拡大図であり、(a)は斜視図、(b)は車両上方からの平面図である。 (a)は、第5実施形態に係る車両用ブレーキシステムの入力装置を構成するマスタシリンダ及びストロークシミュレータの配置を示す概略図、(b)は、図14(b)のIV-IV断面図である。 バルブユニットの車両前後方向における概略断面図である。
 本実施形態について、適宜図面を参照しながら説明する。
 なお、以下の説明における前後上下左右の方向は、車両の前後上下左右の方向に一致させた、図1に示す前後上下左右の方向を基準とする。
(全体構成)
 図1に示す車両用ブレーキシステム10は、通常時用として、電気信号を伝達してブレーキを作動させるバイ・ワイヤ(By Wire)式のブレーキシステムと、フェイルセイフ時用として、油圧を伝達してブレーキを作動させる旧来の油圧式のブレーキシステムの双方を備えて構成される。
 このため、車両用ブレーキシステム10は、操作者のブレーキ操作が入力される入力装置14と、少なくとも前記ブレーキ操作に応じた電気信号に基づいてブレーキ液圧を発生させる電動ブレーキアクチュエータとしてのモータシリンダ装置16と、モータシリンダ装置16で発生したブレーキ液圧に基づいて車両の挙動の安定化を支援する車両挙動安定化装置としてのビークルスタビリティアシスト装置18(以下、VSA装置18という、VSA;登録商標)とを備えて構成されている。
 これらの入力装置14、モータシリンダ装置16、及び、VSA装置18は、車両Vのダッシュボード2の前方に設けられたエンジンや走行用モータ等の構造物3が搭載される構造物搭載室Rに、配管チューブ22a~22fを介して互いに分離して配置されている。また、バイ・ワイヤ式のブレーキシステムとして、入力装置14とモータシリンダ装置16とは、図示しないハーネスによって図示しない制御手段と電気的に接続されている。
 図2は、車両用ブレーキシステム10の概略構成図である。
 液圧路について説明すると、図2中の連結点A1を基準として、入力装置14の接続ポート20aと連結点A1とが第1配管チューブ22aによって接続され、また、モータシリンダ装置16の出力ポート24aと連結点A1とが第2配管チューブ22bによって接続され、さらに、VSA装置18の導入ポート26aと連結点A1とが第3配管チューブ22cによって接続されている。
 図2中の他の連結点A2を基準として、入力装置14の他の接続ポート20bと連結点A2とが第4配管チューブ22dによって接続され、また、モータシリンダ装置16の他の出力ポート24bと連結点A2とが第5配管チューブ22eによって接続され、さらに、VSA装置18の他の導入ポート26bと連結点A2とが第6配管チューブ22fによって接続されている。
 VSA装置18には、複数の導出ポート28a~28dが設けられる。第1導出ポート28aは、第7配管チューブ22gによって右側前輪に設けられたディスクブレーキ機構30aのホイールシリンダ32FRと接続される。第2導出ポート28bは、第8配管チューブ22hによって左側前輪に設けられたディスクブレーキ機構30bのホイールシリンダ32FLと接続される。第3導出ポート28cは、第9配管チューブ22iによって右側後輪に設けられたディスクブレーキ機構30cのホイールシリンダ32RRと接続される。第4導出ポート28dは、第10配管チューブ22jによって左側後輪に設けられたディスクブレーキ機構30dのホイールシリンダ32RLと接続される。
 この場合、各導出ポート28a~28dに接続される配管チューブ22g~22jによってブレーキ液がディスクブレーキ機構30a~30dの各ホイールシリンダ32FR、32FL、32RR、32RLに対して供給され、各ホイールシリンダ32FR、32FL、32RR、32RL内の液圧が上昇することにより、各ホイールシリンダ32FR、32FL、32RR、32RLが作動し、対応する車輪(右側前輪、左側前輪、右側後輪、左側後輪)に対して制動力が付与される。
 なお、車両用ブレーキシステム10は、例えば、エンジン(内燃機関)のみによって駆動される自動車、ハイブリッド自動車、電気自動車、燃料電池自動車等を含む各種車両に対して搭載可能に設けられる。
 入力装置14は、運転者によるブレーキペダル12の操作によって液圧を発生可能なタンデム式のマスタシリンダ34と、前記マスタシリンダ34に付設された第1リザーバ36とを有する。このマスタシリンダ34のシリンダチューブ38内には、前記シリンダチューブ38の軸方向に沿って所定間隔離間する2つのピストン40a、40bが摺動自在に配設される。一方のピストン40aは、ブレーキペダル12に近接して配置され、プッシュロッド42を介してブレーキペダル12と連結される。また、他方のピストン40bは、一方のピストン40aよりもブレーキペダル12から離間して配置される。
 この一方及び他方のピストン40a、40bの外周面には、環状段部を介して一対のピストンパッキン44a、44bがそれぞれ装着される。一対のピストンパッキン44a、44bの間には、それぞれ、後記するサプライポート46a、46bと連通する背室48a、48bが形成される。また、一方及び他方のピストン40a、40bとの間には、ばね部材50aが配設され、他方のピストン40bとシリンダチューブ38の側端部との間には、他のばね部材50bが配設される。
 マスタシリンダ34のシリンダチューブ38には、2つのサプライポート46a、46bと、2つのリリーフポート52a、52bと、2つの出力ポート54a、54bとが設けられる。この場合、各サプライポート46a(46b)及び各リリーフポート52a(52b)は、それぞれ合流して第1リザーバ36内の図示しないリザーバ室と連通するように設けられる。
 また、マスタシリンダ34のシリンダチューブ38内には、運転者(操作者)がブレーキペダル12を踏み込む踏力に対応したブレーキ液圧を発生させる第1圧力室56a及び第2圧力室56bが設けられる。第1圧力室56aは、第1液圧路58aを介して接続ポート20aと連通するように設けられ、第2圧力室56bは、第2液圧路58bを介して他の接続ポート20bと連通するように設けられる。
 マスタシリンダ34と接続ポート20aとの間であって、第1液圧路58aの上流側には圧力センサPmが配設されると共に、第1液圧路58aの下流側には、ノーマルオープンタイプ(常開型)のソレノイドバルブからなる第1遮断弁60aが設けられる。この圧力センサPmは、第1液圧路58a上において、第1遮断弁60aよりもマスタシリンダ34側の上流の液圧を検知するものである。
 マスタシリンダ34と他の接続ポート20bとの間であって、第2液圧路58bの上流側には、ノーマルオープンタイプ(常開型)のソレノイドバルブからなる第2遮断弁60bが設けられると共に、第2液圧路58bの下流側には、圧力センサPpが設けられる。この圧力センサPpは、第2液圧路58b上において、第2遮断弁60bよりもホイールシリンダ32FR、32FL、32RR、32RL側の下流側の液圧を検知するものである。
 この第1遮断弁60a及び第2遮断弁60bにおけるノーマルオープンとは、ノーマル位置(消磁(非通電)時の弁体の位置)が開位置の状態(常時開)となるように構成されたバルブをいう。なお、図2において、第1遮断弁60a及び第2遮断弁60bは励磁時の状態を示す(後記する第3遮断弁62も同様)。
 マスタシリンダ34と第2遮断弁60bとの間の第2液圧路58bには、前記第2液圧路58bから分岐する分岐液圧路58cが設けられ、前記分岐液圧路58cには、ノーマルクローズタイプ(常閉型)のソレノイドバルブからなる第3遮断弁62と、ストロークシミュレータ64とが直列に接続される。この第3遮断弁62におけるノーマルクローズとは、ノーマル位置(消磁(非通電)時の弁体の位置)が閉位置の状態(常時閉)となるように構成されたバルブをいう。
 このストロークシミュレータ64は、第1遮断弁60a及び第2遮断弁60bの遮断時に、ブレーキペダル12の操作に応じた反力とストロークとを生じさせる装置である。ストロークシミュレータ64は、前記のように分岐液圧路58c及び第2液圧路58bを介してマスタシリンダ34に接続されている。さらに、ストロークシミュレータ64には、分岐液圧路58cに連通する液圧室65が設けられ、前記液圧室65を介して、マスタシリンダ34の第2圧力室56bから導出されるブレーキ液(ブレーキフルード)が吸収可能に設けられる。
 また、ストロークシミュレータ64は、互いに直列に配置されたばね定数の高い第1リターンスプリング66aとばね定数の低い第2リターンスプリング66bと、前記第1及び第2リターンスプリング66a、66bによって付勢されるシミュレータピストン68とを備え、ブレーキペダル12の踏み込み前期時にペダル反力の増加勾配を低く設定し、踏み込み後期時にペダル反力を高く設定してブレーキペダル12のペダルフィーリングを高めるように設けられている。
 液圧路は、大別すると、マスタシリンダ34の第1圧力室56aと複数のホイールシリンダ32FR、32FLとを接続する第1液圧系統70aと、マスタシリンダ34の第2圧力室56bと複数のホイールシリンダ32RR、32RLとを接続する第2液圧系統70bとから構成される。
 第1液圧系統70aは、入力装置14におけるマスタシリンダ34(シリンダチューブ38)の出力ポート54aと接続ポート20aとを接続する第1液圧路58aと、入力装置14の接続ポート20aとモータシリンダ装置16の出力ポート24aとを接続する配管チューブ22a、22bと、モータシリンダ装置16の出力ポート24aとVSA装置18の導入ポート26aとを接続する配管チューブ22b、22cと、VSA装置18の導出ポート28a、28bと各ホイールシリンダ32FR、32FLとをそれぞれ接続する配管チューブ22g、22hとによって構成される。
 第2液圧系統70bは、入力装置14におけるマスタシリンダ34(シリンダチューブ38)の出力ポート54bと他の接続ポート20bとを接続する第2液圧路58bと、入力装置14の他の接続ポート20bとモータシリンダ装置16の出力ポート24bとを接続する配管チューブ22d、22eと、モータシリンダ装置16の出力ポート24bとVSA装置18の導入ポート26bとを接続する配管チューブ22e、22fと、VSA装置18の導出ポート28c、28dと各ホイールシリンダ32RR、32RLとをそれぞれ接続する配管チューブ22i、22jとを有する。
 モータシリンダ装置16は、電動モータ72及び駆動力伝達部73を備えたアクチュエータ機構74と、アクチュエータ機構74によって付勢されるシリンダ機構76とを有する。また、アクチュエータ機構74の駆動力伝達部73は、電動モータ72の回転駆動力を伝達するギヤ機構(減速機構)78と、この回転駆動力を直線方向駆動力に変換する、ボールねじ軸80a及びボール80bを含むボールねじ構造体80とを有している。
 シリンダ機構76は、略円筒状のシリンダ本体82と、前記シリンダ本体82に付設された第2リザーバ84とを有する。第2リザーバ84は、入力装置14のマスタシリンダ34に付設された第1リザーバ36と配管チューブ86で接続され、第1リザーバ36内に貯留されたブレーキ液が配管チューブ86を介して第2リザーバ84内に供給されるように設けられる。
 シリンダ本体82内には、前記シリンダ本体82の軸方向に沿って所定間隔離間する第1スレーブピストン88a及び第2スレーブピストン88bが摺動自在に配設される。第1スレーブピストン88aは、ボールねじ構造体80側に近接して配置され、ボールねじ軸80aの一端部に連結されて前記ボールねじ軸80aと一体的に矢印X1又はX2方向に変位する。また、第2スレーブピストン88bは、第1スレーブピストン88aよりもボールねじ構造体80側から離間して配置される。
 この第1及び第2スレーブピストン88a、88bの外周面には、環状段部を介して一対のスレーブピストンパッキン90a、90bがそれぞれ装着される。一対のスレーブピストンパッキン90a、90bの間には、それぞれ、後記するリザーバポート92a、92bとそれぞれ連通する第1背室94a及び第2背室94bが形成される。また、第1及び第2スレーブピストン88a、88bとの間には、第1リターンスプリング96aが配設され、第2スレーブピストン88bとシリンダ本体82の側端部と間には、第2リターンスプリング96bが配設される。
 シリンダ機構76のシリンダ本体82には、2つのリザーバポート92a、92bと、2つの出力ポート24a、24bとが設けられる。この場合、リザーバポート92a(92b)は、第2リザーバ84内の図示しないリザーバ室と連通するように設けられる。
 また、シリンダ本体82内には、出力ポート24aからホイールシリンダ32FR、32FL側へ出力されるブレーキ液圧を発生させる第1液圧室98aと、他の出力ポート24bからホイールシリンダ32RR、32RL側へ出力されるブレーキ液圧を発生させる第2液圧室98bが設けられる。
 なお、第1スレーブピストン88aと第2スレーブピストン88bとの間には、第1スレーブピストン88aと第2スレーブピストン88bの最大距離と最小距離とを規制する規制手段100が設けられる。さらに、第2スレーブピストン88bには、前記第2スレーブピストン88bの摺動範囲を規制して、第1スレーブピストン88a側へのオーバーリターンを阻止するストッパピン102が設けられる。
 VSA装置18は、周知のものからなり、右側前輪及び左側前輪のディスクブレーキ機構30a、30b(ホイールシリンダ32FR、ホイールシリンダ32FL)に接続された第1液圧系統70aを制御する第1ブレーキ系110aと、右側後輪及び左側後輪のディスクブレーキ機構30c、30d(ホイールシリンダ32RR、ホイールシリンダ32RL)に接続された第2液圧系統70bを制御する第2ブレーキ系110bとを有する。なお、第1ブレーキ系110aは、左側前輪及び右側後輪に設けられたディスクブレーキ機構に接続された液圧系統で、第2ブレーキ系110bは、右側前輪及び左側後輪に設けられたディスクブレーキ機構に接続された液圧系統であってもよい。さらに、第1ブレーキ系110aは、車体片側の右側前輪及び右側後輪に設けられたディスクブレーキ機構に接続された液圧系統からなり、第2ブレーキ系110bは、車体片側の左側前輪及び左側後輪に設けられたディスクブレーキ機構に接続された液圧系統であってもよい。
 この第1ブレーキ系110a及び第2ブレーキ系110bは、それぞれ同一構造からなるため、第1ブレーキ系110aと第2ブレーキ系110bで対応するものには同一の参照符号を付していると共に、第1ブレーキ系110aの説明を中心にして、第2ブレーキ系110bの説明を括弧書きで適宜付記する。
 第1ブレーキ系110a(第2ブレーキ系110b)は、ホイールシリンダ32FR、32FL(32RR、32RL)に対して、共通する第1共通液圧路112及び第2共通液圧路114を有する。VSA装置18は、導入ポート26aと第1共通液圧路112との間に配置されたノーマルオープンタイプのソレノイドバルブからなるレギュレータバルブ116と、前記レギュレータバルブ116と並列に配置され導入ポート26a側から第1共通液圧路112側へのブレーキ液の流通を許容する(第1共通液圧路112側から導入ポート26a側へのブレーキ液の流通を阻止する)第1チェックバルブ118と、第1共通液圧路112と第1導出ポート28aとの間に配置されたノーマルオープンタイプのソレノイドバルブからなる第1インバルブ120と、前記第1インバルブ120と並列に配置され第1導出ポート28a側から第1共通液圧路112側へのブレーキ液の流通を許容する(第1共通液圧路112側から第1導出ポート28a側へのブレーキ液の流通を阻止する)第2チェックバルブ122と、第1共通液圧路112と第2導出ポート28bとの間に配置されたノーマルオープンタイプのソレノイドバルブからなる第2インバルブ124と、前記第2インバルブ124と並列に配置され第2導出ポート28b側から第1共通液圧路112側へのブレーキ液の流通を許容する(第1共通液圧路112側から第2導出ポート28b側へのブレーキ液の流通を阻止する)第3チェックバルブ126とを備える。
 さらに、VSA装置18は、第1導出ポート28aと第2共通液圧路114との間に配置されたノーマルクローズタイプのソレノイドバルブからなる第1アウトバルブ128と、第2導出ポート28bと第2共通液圧路114との間に配置されたノーマルクローズタイプのソレノイドバルブからなる第2アウトバルブ130と、第2共通液圧路114に接続されたリザーバ132と、第1共通液圧路112と第2共通液圧路114との間に配置されて第2共通液圧路114側から第1共通液圧路112側へのブレーキ液の流通を許容する(第1共通液圧路112側から第2共通液圧路114側へのブレーキ液の流通を阻止する)第4チェックバルブ134と、前記第4チェックバルブ134と第1共通液圧路112との間に配置されて第2共通液圧路114側から第1共通液圧路112側へブレーキ液を供給するポンプ136と、前記ポンプ136の前後に設けられ第2共通液圧路114側から第1共通液圧路112側へのブレーキ液の流通を許容する(第1共通液圧路112側から第2共通液圧路114側へのブレーキ液の流通を阻止する)第5チェックバルブ138及び第6チェックバルブ140と、前記ポンプ136を駆動するモータMと、第2共通液圧路114と導入ポート26aとの間に配置されて導入ポート26a側から第2共通液圧路114側へのブレーキ液の流通を許容する(第2共通液圧路114側から導入ポート26a側へのブレーキ液の流通を阻止する)第7チェックバルブ142とを備える。
 なお、第1ブレーキ系110aにおいて、導入ポート26aに近接する液圧路上には、モータシリンダ装置16の出力ポート24aから出力され、前記モータシリンダ装置16の第1液圧室98aで発生したブレーキ液圧を検知する圧力センサPhが設けられる。各圧力センサPm、Pp、Phで検出された検出信号は、図示しない制御手段に導入される。
 本実施形態に係る車両用ブレーキシステム10は、基本的に以上のように構成されるものであり、次にその作用効果について説明する。
 車両用ブレーキシステム10が正常に機能する正常時には、ノーマルオープンタイプのソレノイドバルブからなる第1遮断弁60a及び第2遮断弁60bが励磁で弁閉状態となり、ノーマルクローズタイプのソレノイドバルブからなる第3遮断弁62が励磁で弁開状態となる(図2参照)。従って、第1遮断弁60a及び第2遮断弁60bによって第1液圧系統70a及び第2液圧系統70bが遮断されているため、入力装置14のマスタシリンダ34で発生したブレーキ液圧がディスクブレーキ機構30a~30dのホイールシリンダ32FR、32FL、32RR、32RLに伝達されることはない。
 このとき、マスタシリンダ34の第2圧力室56bで発生したブレーキ液圧は、分岐液圧路58c及び弁開状態にある第3遮断弁62を経由してストロークシミュレータ64の液圧室65に伝達される。この液圧室65に供給されたブレーキ液圧によってシミュレータピストン68がリターンスプリング66a、66bのばね力に抗して変位することにより、ブレーキペダル12のストロークが許容されると共に、擬似的なペダル反力を発生させてブレーキペダル12に付与される。この結果、運転者にとって違和感のないブレーキフィーリングが得られる。
 このようなシステム状態において、図示しない制御手段は、運転者によるブレーキペダル12の踏み込みを検出すると、モータシリンダ装置16の電動モータ72を駆動させてアクチュエータ機構74を付勢し、第1リターンスプリング96a及び第2リターンスプリング96bのばね力に抗して第1スレーブピストン88a及び第2スレーブピストン88bを図2中の矢印X1方向に向かって変位させる。この第1スレーブピストン88a及び第2スレーブピストン88bの変位によって第1液圧室98a及び第2液圧室98b内のブレーキ液が加圧されて所望のブレーキ液圧が発生する。
 このモータシリンダ装置16における第1液圧室98a及び第2液圧室98bのブレーキ液圧は、VSA装置18の弁開状態にある第1、第2インバルブ120、124を介してディスクブレーキ機構30a~30dのホイールシリンダ32FR、32FL、32RR、32RLに伝達され、前記ホイールシリンダ32FR、32FL、32RR、32RLが作動することにより各車輪に所望の制動力が付与される。
 換言すると、本実施形態に係る車両用ブレーキシステム10では、電動ブレーキアクチュエータ(動力液圧源)として機能するモータシリンダ装置16やバイ・ワイヤ制御する図示しないECU等の制御手段が作動可能な正常時において、運転者がブレーキペダル12を踏むことでブレーキ液圧を発生するマスタシリンダ34と各車輪を制動するディスクブレーキ機構30a~30d(ホイールシリンダ32FR、32FL、32RR、32RL)との連通を第1遮断弁60a及び第2遮断弁60bで遮断した状態で、モータシリンダ装置16が発生するブレーキ液圧でディスクブレーキ機構30a~30dを作動させるという、いわゆるブレーキ・バイ・ワイヤ方式のブレーキシステムがアクティブになる。このため、本実施形態では、例えば、電気自動車等のように、旧来から用いられていた負圧式ブレーキブースタ等が存在しない車両に好適に適用することができる。
 一方、モータシリンダ装置16等が作動不能となる異常時では、第1遮断弁60a及び第2遮断弁60bをそれぞれ弁開状態としマスタシリンダ34で発生するブレーキ液圧をディスクブレーキ機構30a~30d(ホイールシリンダ32FR、32FL、32RR、32RL)に伝達して、前記ディスクブレーキ機構30a~30d(ホイールシリンダ32FR、32FL、32RR、32RL)を作動させるという、いわゆる旧来の油圧式のブレーキシステムがアクティブになる。
(入力装置14)
 次に、入力装置14のより具体的な構成を、5つの実施形態を挙げて説明する。即ち、入力装置14の説明として、入力装置14A~14Eを挙げて説明する。
<第1実施形態>
 図3は、入力装置14Aの概略斜視図であり、図2に示す部材と同じものについては、図3及び図4においても同じ符号で表すものとし、その詳細な説明は省略する。
 図3(a)及び(b)に示すように、入力装置14Aは、マスタシリンダ34と、ストロークシミュレータ64と、第1リザーバ(リザーバタンク)36(配管チューブ86(図2参照)を接続するための接続口36aを備えている。)とを、一体となって備えるものである。第1実施形態に係る入力装置14Aにおいては、車両の左右方向に、センサバルブユニット300、マスタシリンダ34及びストロークシミュレータ64がこの順で並設され、取り付けプレート(スタッドプレート)304に固定されている。
 そして、図3(a)及び(b)には、入力装置14Aのマスタシリンダ34にブレーキペダル(ブレーキ操作子)12が接続されたものを示している。
 また、入力装置14Aは、前記のように、マスタシリンダ34と第1液圧路58a(図2参照)を介して連通している接続ポート20a(第1接続ポート)と、マスタシリンダ34と第2液圧路58b(図2参照)を介して連通している接続ポート20b(第2接続ポート)と、を有している。さらに、図3においては図示していないが、第2液圧路58bから分岐した分岐液圧路58cも入力装置14Aは有している。
 そして、第1液圧路58a、第2液圧路58b及び分岐液圧路58cの途中には、図2に示すように第1遮断弁60a、第2遮断弁60b及び第3遮断弁62、並びに、圧力センサPm(第1液圧センサ)及び圧力センサPp(第2液圧センサ)が設けられている。
 センサバルブユニット300は、第1遮断弁60a、第2遮断弁60b及び第3遮断弁62、並びに、圧力センサPm及び圧力センサPpを制御するための電子回路が収納されたものである。センサバルブユニット300の筐体は樹脂製であり、センサバルブユニット300の筐体を例えば樹脂のように金属よりも脆弱な部材で構成することにより、入力装置14Aが衝撃を受けた際に、当該衝撃をセンサバルブユニット300の筐体が吸収することができる。また、センサバルブユニット300を樹脂製とすることで、入力装置14Aの軽量化を図ることができる。
 また、センサバルブユニット300は車両下部方向へテーパ形状を有しており、入力装置14Aを車両から取り外すときの取り外しが容易な形状となっている。
 また、入力装置14Aには、少なくともマスタシリンダ34及びストロークシミュレータ64内のエアを抜くためのエア抜き用ブリーダ301が設けられている。エア抜き用ブリーダ301については、図4を参照しながら後述する。
 取り付けプレート304はマスタシリンダ34及びストロークシミュレータ64が一体に並設されて固定されるものであり、車両の上下方向及び左右方向において縁部が弯曲するように形成されている。また、取り付けプレート304には、例えばダッシュボードに固定するための固定具303が設けられている。
 取り付けプレート304は、車両の車幅方向の長さが、車両の上下方向の長さよりも長くなっている。このような寸法にすることで、取り付けプレートの車幅方向の長さが長い方向に並設されるようにマスタシリンダ34及びストロークシミュレータ64を配置することができる。さらに、ガソリン自動車等に備えられている既存のダッシュボードの固定点を用い、取り付けプレート304を固定することができる。
 さらに、入力装置14Aには、マスタシリンダ34とストロークシミュレータ64とが上下方向で一部と重なるように付設される第1リザーバ36が設けられている。第1リザーバ36は前後方向に細長の外形を有している。このように、マスタシリンダ34及びストロークシミュレータ64に第1リザーバ36が付設されていることにより、構造物搭載室における省スペース化を図ることができる。
 図4は、入力装置14Aが車両のダッシュボード2に配置されている様子を概略的に示す図である。図4に示すように、入力装置14Aはダッシュボード2に固定具(スタッドボルト)303によって固定されている。また、入力装置14Aが有するマスタシリンダ34の一部が、車両後方部(即ち車室内)に突出されて配置されるようになっている。
 また、入力装置14Aは、車両前方向の高さが、車両後方向の高さよりも高い位置になるようにダッシュボード2に固定されている。即ち、入力装置14Aをダッシュボード2に固定する際に、エア抜き用ブリーダ301の位置が高くなるように入力装置14Aが固定されている。
 このように、入力装置14Aを車両に固定した際に車両前方向の高さが高いように固定されることにより、少なくともマスタシリンダ34及びストロークシミュレータ64内のエアをエア抜き用ブリード301から抜くことができる。そして、入力装置14Aをダッシュボードにこのように配置することにより、ブレーキペダル12の操作による入力装置14Aへの入力を、より確実に入力装置14Aへ伝達させることができる。
 図3及び図4に示すように、入力装置14Aにおいては、マスタシリンダ34とストロークシミュレータ64とが一体となって形成されている。入力装置14Aがこのような構成を有することで、少なくともマスタシリンダ34とストロークシミュレータ64との間の配管を最短のものとすることができ、入力装置14Aを小型化することができる。その結果、ガソリン自動車に比べて搭載スペースが限られる電気自動車やハイブリッド自動車等においても第1実施形態に係る入力装置14Aを搭載することができるため、例えばガソリン自動車、電気自動車、ハイブリッド自動車等で部品の共通化を図ることができ、以って、製造コストの削減を図ることができる。
<第2実施形態>
 次に、図5~図7を参照しながら、第2実施形態に係る入力装置14Bの構成を説明する。
 図5は、第2実施形態に係る車両用ブレーキシステムの入力装置の概略拡大図であり、(a)は車両後方からの平面図、(b)は車両前方からの平面図である。また、図6は、第2実施形態に係る車両用ブレーキシステムの入力装置の上側面図である。さらに図7は、第2実施形態に係る車両用ブレーキシステムの入力装置における、マスタシリンダとストロークシミュレータとの接続関係を概略的に示す図である。
 なお、各図において、図2に示す部材と同じものについては、図5~図7においても同じ符号で表すものとし、その詳細な説明は省略する。
 図5(a)に示すように、入力装置14Bは、マスタシリンダ34とストロークシミュレータ64とは取り付けプレート(スタッドプレート)304に固定され、車両の車幅方向に一体に並設されているようになっているものである。また、マスタシリンダ34を中心として、ストロースシミュレータ64の反対側には、取り付けプレート304の形状に沿うように取り付けプレート304が肉抜きされた肉抜き部305が設けられている。また、マスタシリンダ34等が固定された取り付けプレート304を例えばダッシュボード2に固定するための車両前方に延在する固定具(スタッドボルト)303が4個設けられている。そして、マスタシリンダ34からブレーキペダル(ブレーキ操作子)12側に伸びるプッシュロッドの先端には連結部34aが設けられ、連結部34aにはブレーキペダル12が連結されるようになっている。
 さらに、マスタシリンダ34及びストロークシミュレータ64の上方において、マスタシリンダ34とストロークシミュレータ64との間には、前後方向に細長の外形を有する第1リザーバ36(配管チューブ86を接続するための接続口36aを備えている。)が設けられている。この位置に第1リザーバ36が設けられることにより、構造物搭載室内での省スペース化を図ることができる。そして、取り付けプレート304の車両前方側において、マスタシリンダ34のストロークシミュレータ64とは反対側に、センサバルブユニット300がマスタシリンダ34及びストロークシミュレータ64と一体に設けられている。
 なお、接続口36aと第2リザーバ84(図2参照)とは直接配管チューブ86で接続されてもよいが、車両の搭載レイアウトに応じて、接続口36aと第2リザーバ84との間に別体タンクを設けることもできる。別体タンクを設ける場合、接続口36aは当該別体タンクと接続されることとなる。
 また、図5(b)に示すように、入力装置14Bにおいて、ストロークシミュレータ64の車両後方側には、少なくともマスタシリンダ34及びストロークシミュレータ64のエアを抜くエア抜き用ブリーダ301が設けられている。
 また、入力装置14Bは、前記のように、マスタシリンダ34と第1液圧路58a(図2参照)を介して連通している接続ポート20a(第1接続ポート)と、マスタシリンダ34と第2液圧路58b(図2参照)を介して連通している接続ポート20b(第2接続ポート)と、を有している。さらに、図5においては図示していないが、第2液圧路58bから分岐した分岐液圧路58cも入力装置14Bは有している。
 そして、第1液圧路58a、第2液圧路58b及び分岐液圧路58cの途中には、図2に示すように第1遮断弁60a、第2遮断弁60b及び第3遮断弁62、並びに、圧力センサPm(第1液圧センサ)及び圧力センサPp(第2液圧センサ)が設けられている。
 センサバルブユニット300は、第1遮断弁60a、第2遮断弁60b及び第3遮断弁62、並びに、圧力センサPm及び圧力センサPpを制御するための電子回路が収納されたものである。センサバルブユニット300の筐体は樹脂製であり、センサバルブユニット300の筐体を例えば樹脂のように金属よりも脆弱な部材で構成することにより、入力装置14Bが衝撃を受けた際に、当該衝撃をセンサバルブユニット300の筐体が吸収することができる。また、センサバルブユニット300を樹脂製とすることで、入力装置14Bの軽量化を図ることができる。
 また、センサバルブユニット300は車両下部方向へテーパ形状を有しており、入力装置14Bを車両から取り外すときの取り外しが容易な形状となっている。
 エア抜き用ブリーダ301は、少なくともマスタシリンダ34及びストロークシミュレータ64内のエアを抜くためものである。エア抜き用ブリーダ301の位置は、入力装置14Bが車両の例えばダッシュボード2に固定された場合に最も高くなる部分に設けられている。このように、入力装置14Bを車両に固定した際に車両前方向の高さが高いように固定されることにより、マスタシリンダ34等内のエアをエア抜き用ブリーダ301から抜くことができる。なお、例えばマスタシリンダ34の前方の上方や下方等、マスタシリンダ34やストロークシミュレータ64等内のエアが集まる部位や液圧路構成上エアが溜まる部位にエア抜き用ブリーダ301が設けられてもよい。
 取り付けプレート304はマスタシリンダ34及びストロークシミュレータ64が一体に並設されて固定されるものであり、車両の上下方向及び左右方向において縁部が弯曲するように形成されている。取り付けプレート304は、車両の車幅方向の長さが、車両の上下方向の長さよりも長くなっている。このような寸法にすることで、取り付けプレートの車幅方向の長さが長い方向に並設されるようにマスタシリンダ34及びストロークシミュレータ64を配置することができる。さらに、ガソリン自動車等に備えられている既存のダッシュボードの固定点を用い、取り付けプレート304を固定することができる。
 また、取り付けプレート304には、前記のように肉抜き部305が設けられている。第2実施形態においては、車両左側にある2個の固定具303の間であって、取り付け具304の縁部に沿うように形成されている。このように肉抜き部305を設けることにより、車両の軽量化を図ることができる。
 図6は入力装置14Bの上側面図であり、図7はマスタシリンダ34とストロークシミュレータ64との接続関係を概略的に示す図である。なお、図7においては、図示の簡略化のためにマスタシリンダ34とストロークシミュレータ64との間で液圧路が最短距離となるように接続し、当該液圧路の途中に第3遮断弁62が設けられるようにしている。また、図7に示す第3遮断弁は閉状態のものである。
 図6に示すように、第2実施形態においては車両の左側から右側方向へ、センサバルブユニット300、マスタシリンダ34及びストロークシミュレータ64がこの順番で並設されている。また、マスタシリンダ34に設けられたリリーフポート52a、52b(図2参照)を臨む接続口を介して、第1リザーバ36がマスタシリンダ34に接続されている。
 また、図7に示すように第2実施形態においては、マスタシリンダ34が備えるポート位置とストロークシミュレータ64が備えるポート位置との前後方向の位置が一致するように設けている。マスタシリンダ34及びストロークシミュレータ64をこのように配置することで、これらの間に設けられる流路を最短のものとすることができ、入力装置14Bをより小型化することができる。
 図5~図7に示すように、入力装置14Bにおいては、マスタシリンダ34とストロークシミュレータ64とが、車両の車幅方向に一体に並設されている。入力装置14Bがこのような構成を有することで、少なくともマスタシリンダ34とストロークシミュレータ64との間の流路を最小限のものとすることができ、入力装置14Bを小型化することができる。その結果、ガソリン自動車に比べて構造物搭載室内の搭載スペースが限られる電気自動車やハイブリッド自動車等においても第2実施形態に係る入力装置14Bを搭載することができるようになる。
 また、第2実施形態に係る入力装置14Bによれば、ガソリン自動車等に用いられる既存のダッシュボードに入力装置14Bを設置することができるようになる。そのため、例えばガソリン自動車、電気自動車、ハイブリッド自動車等で部品の共通化を図ることができ、以って、製造コストの削減を図ることができる。
<第3実施形態>
 次に、図8~図11を参照しながら、第3実施形態に係る入力装置14Cの構成を説明する。
 図8(a)は第3実施形態に係る入力装置14Cの概略斜視図、図8(b)は第3実施形態に係る入力装置14Cの平面図である。ただし、図8(b)は、図8(a)の第1リザーバを作図の便宜上、省略している。
 図8(a)(b)に示すように、入力装置14Cを構成するマスタシリンダ34は、車両V(図1参照)の前後方向に延在するとともに、ストロークシミュレータ64は、このマスタシリンダ34と一体となるように並設されている。さらに具体的には、第3実施形態のストロークシミュレータ64は、マスタシリンダ34の右側(車幅方向の外側)で横並びに配置されている。そして、第3実施形態でのマスタシリンダ34及びストロークシミュレータ64は、これらをその後端側で支持するスタッドプレート304とともに、金属の一体成型体で形成されている。これによって、ストロークシミュレータ64の外装であるシミュレータハウジング64aと、マスタシリンダ34の外装であるマスタシリンダハウジング34aとが互いに連続して形成されることとなる。
 このようなマスタシリンダ34及びストロークシミュレータ64の上方には、細長の外形を有する第1リザーバ36(図8(a)参照)が、マスタシリンダ34とストロークシミュレータ64とが上下方向で第1リザーバ36の一部と重なるように前後方向に延在するように配置されている。この第1リザーバ36とマスタシリンダ34とは、図8(b)に示すリリーフポート52a、52bを臨む接続口を介して、図2に示す第1及び第2圧力室56a、56b、並びに背室48a、48bに連通するようになっている。なお、図8(a)に示す符号36aは、第1リザーバ36と、図2に示す第2リザーバ84とを連通させる配管チューブ86(図2参照)の基端が接続されるコネクタである。このコネクタ36aは、入力装置14Cの前方に突出する管状部材で形成されている。
 また、図8(a)(b)に示すように、マスタシリンダハウジング34aの前側には、図1に示すジョイント23aに向かって延設される第1配管チューブ22aの基端が接続される第1接続ポート20aと、図1に示すジョイント23bに向かって延設される第4配管チューブ22dの基端が接続される第2接続ポート20bとが設けられている。
 また、図8(a)(b)に示すように、入力装置14Cの右側及び左側には、エア抜き用のブリーダ301、及びセンサユニット300が設けられている。
 また、図8(a)(b)に示すように、入力装置14Cの後側においては、マスタシリンダ34の後端部がスタッドプレート304からさらに後方に延びている。そして、マスタシリンダ34の後端部は、前記したように、ブレーキペダル12をその一端側に連結したプッシュロッド42の他端側を受け入れる構成となっている(図2参照)。図8(a)(b)中、符号306は、マスタシリンダ34とプッシュロッド42とに亘って配置されるブーツである。
 また、前記したように、入力装置14Cは、スタッドプレート304から後方に向かって延出するスタッドボルト303を介してダッシュボード2(図1参照)に固定されるが、この際、スタッドプレート304から後方に延びるマスタシリンダ34の一部は、ダッシュボード2を貫通して車室C(図1参照)内に延在することとなる。
 センサユニット300は、樹脂製の筐体内に、図2に示す第1液圧センサPm及び第2液圧センサPp、並びにこれらからの圧力検出信号を処理する電子回路基板(図示省略)、さらに、図2に示す第1遮断弁60a、第2遮断弁60b及び第3遮断弁62(いずれも前記電子回路基板により作動制御される)などが配設されている。なお、第1液圧センサPm及び第2液圧センサPpは、第1液圧路58a及び第2液圧路58bのそれぞれに連通するように設けられた図示しないモニタ孔に臨むように配置されることで、前記したそれぞれの液圧を検出するようになっている。ちなみに、前記モニタ孔は、センサユニット300側から第1液圧路58a及び第2液圧路58bに向かって穿たれる孔で形成されることとなる。
 前記したように、マスタシリンダ34の外装であるマスタシリンダハウジング34aと、ストロークシミュレータ64の外装であるシミュレータハウジング64aと、は互いに左右方向に連続して形成されており、図9(a)に示すように、その連結部分307となるマスタシリンダ34(マスタシリンダハウジング34a)とストロークシミュレータ64(シミュレータハウジング64a)との間には、凹部308が形成されている。凹部308は、円筒状のマスタシリンダハウジング34aと同じく円筒状のシミュレータハウジング64aとが連結されることで形成されるものであり、結果的に、この凹部308によって、マスタシリンダ34とストロークシミュレータ64との間に、上下方向にそれぞれ凹設された肉抜き部が形成されるようになっている。
 凹部308には、凹部308の底面307a(連結部分307の上面)に開口する水抜き用の貫通孔309が形成されている。この貫通孔309は、図9(b)に示すように、連結部分307を縦方向(鉛直方向)に貫通しており、上端が凹部308の底面307a(連結部分307の上面)の後端に開口し、下端が連結部分307の下面307bに開口している。
 このような入力装置14Cは、図10に示すように、スタッドプレート304から延出するスタッドボルト303を介してダッシュボード2に固定される。ダッシュボード2は、上部側が下部側に比べて後方へ向けて傾斜しており、このように傾斜したダッシュボード2に固定される入力装置14Cも、前部310側が後部311側に比べて上側となるように、入力装置14Cの軸線O1が傾斜した状態に固定される。これによって、図中破線で示すように、入力装置14Cの凹部308も前部310側から後部311側に向けて下り傾斜状に配置されることとなり、その下り傾斜状とされた凹部308の底面307aの後端近傍に、貫通孔309の上端開口が位置する状態となる。
 このように固定された入力装置14Cにおいて、車両走行中等に、水滴等が入力装置14Cにかかると、細長の第1リザーバ36で遮られなかった水滴等がマスタシリンダ34とストロークシミュレータ64との間の凹部308に浸入してくることがある。
 ここで、凹部308は、前記したように、入力装置14Cの前部310側から後部311側に向けて下り傾斜状となっているので、図11(a)に示すように、凹部308内に浸入してきた水滴等Wは、凹部308の底面307aをその後端に向けて流れ、底面307aの後端近傍の貫通孔309の開口周りに導かれる。
 貫通孔309の下端は、連結部分307の下面307bに開口しているので、貫通孔309の開口周りに導かれた水滴等Wは、貫通孔309内に浸入して貫通孔309内を流れ、図11(b)に示すように、入力装置14Cの下方に排出されることとなる。
 これによって、連結部分307の凹部308内に水滴等Wが溜ることがなくなり、凹部308内における液溜りが好適に回避される。
 以上説明した第3実施形態によれば、入力装置14Cとモータシリンダ装置16とがエンジンルームRに相互に分離されて配置されているので、これらが一体とされたものに比べて装置の小型化を図ることができる。したがって、エンジンルームR内におけるレイアウトの自由度を高めることができる。
 つまり、エンジンルームR内において、入力装置14Cとモータシリンダ装置16とをそれぞれ分離して構成することで、個々の装置のサイズを小さくすることができ、大きな空スペースを確保する必要がなくなり、狭い空スペースであっても各装置を搭載することが可能になる。
 また、入力装置14Cとモータシリンダ装置16とをそれぞれ分離して構成することで、各装置の汎用性を向上して異なる車種に適用し易くなる。
 また、入力装置14Cとモータシリンダ装置16とをそれぞれ分離して(別体にて)構成するので、音や振動の発生源となることがあるモータシリンダ装置16を運転者から離して配置することができ、運転者に音や振動による違和感(不快感)を与えるのを防止することができる。
 また、入力装置14Cにマスタシリンダ34とストロークシミュレータ64とが一体的に設けられているので、これらの間の配管を最小限のものとすることができ、入力装置14Cを小型化することができる。その結果、ガソリン自動車に比べて搭載スペースが限られる電気自動車やハイブリッド自動車等においも第3実施形態に係る入力装置14Cを搭載することができるため、例えばガソリン自動車、電気自動車、ハイブリッド自動車等で部品の共通化を図ることができ、以って、製造コストの削減を図ることができる。
 さらに、入力装置14Cは、マスタシリンダ34と、マスタシリンダ34に並設されたストロークシミュレータ64との間に、凹部308が形成されているので、この凹部308によってマスタシリンダ34とストロークシミュレータ64との間の余分な部分が肉抜きされ、軽量化が図られている。
 また、凹部308には、水抜き用の貫通孔309が形成されているので、凹部308に水滴等Wが溜ったとしても、この貫通孔309を通じて水滴等Wを凹部308から入力装置14Cの下方へ好適に排出することができる。したがって、水滴等Wの移動を許容して液溜りを防止することができる入力装置14Cが得られる。
 また、貫通孔309が設けられることによりさらに軽量化を図ることができる。また、液溜りを防止することができるので、錆の防止に寄与する。
 前記した実施形態では、凹部308に貫通孔309を1つ設けたが、これに限られることはなく、貫通孔309を凹部308に複数設けてもよい。
 このように構成することによって、凹部308に溜った水滴等Wを複数の貫通孔309を通じて好適に排出することができる。したがって、水滴等Wの移動を好適に許容して液溜りをより一層防止することができる入力装置14Cが得られる。
 また、複数の貫通孔309が設けられることにより、より一層の軽量化を図ることができる。また、液溜りをより一層防止することができるので、錆びの防止効果が高まる。
<第4実施形態>
 次に、図12及び図13を参照しながら、第4実施形態に係る入力装置14Dの構成を説明する。
 参照する図12(a)は、第4実施形態に係る入力装置の全体斜視図、図12(b)は、入力装置の平面図である。但し、図12(b)は、図12(a)の第1リザーバ及びブレーキペダルの記載を作図の便宜上、省略している。図13(a)は、入力装置を構成するマスタシリンダ及びストロークシミュレータの配置を示す模式図、図13(b)は、図12(b)のIV-IV断面図である。
 図12(a)及び(b)に示すように、入力装置14Dを構成するマスタシリンダ34は、車両V(図1参照)の前後方向に延在すると共に、ストロークシミュレータ64は、このマスタシリンダ34と一体となるように並設されている。更に具体的には、第4実施形態でのストロークシミュレータ64は、マスタシリンダ34の右側(車幅方向の外側)で横並びに配置されている。そして、第4実施形態でのマスタシリンダ34及びストロークシミュレータ64は、これらをその後端側で支持するスタッドプレート304と共に、金属の一体成型体で形成されて、ストロークシミュレータ64の外装であるシミュレータハウジング64aと、マスタシリンダ34の外装であるマスタシリンダハウジング34aとは互いに連続して形成されることとなる。
 このようなマスタシリンダ34及びストロークシミュレータ64の上方には、細長の外形を有する第1リザーバ36(図12(a)参照)が、マスタシリンダ34とストロークシミュレータ64とが上下方向で第1リザーバ36の一部と重なるように前後方向に延在するように配置されている。この第1リザーバ36とマスタシリンダ34とは、図12(b)に示すリリーフポート52a、52b及び図示しないサプライポート46a、46b(図2参照)に臨むように形成された接続口を介して、図2に示す第1及び第2圧力室56a、56b、並びに背室48a、48bに連通するようになっている。なお、図12(a)中、符号36aは、第1リザーバ36と、図2に示す第2リザーバ84とを連通させる配管チューブ86の基端が接続されるコネクタである。このコネクタ36aは、入力装置14Dの前方に突出する管状部材で形成されている。
 また、図12(a)及び(b)に示すように、マスタシリンダハウジング34aの前側には、図1に示すジョイント23aに向かって延設される第1配管チューブ22aの基端が接続される第1接続ポート20aと、図1に示すジョイント23bに向かって延設される第4配管チューブ22dの基端が接続される第2接続ポート20bとが設けられている。
 また、図12(a)及び(b)に示すように、入力装置14Dの右側及び左側には、後に詳しく説明するエア抜き用のブリーダ301、及びセンサユニット300が設けられている。
 また、図12(a)及び(b)に示すように、入力装置14Dの後側においては、マスタシリンダ34の後端部がスタッドプレート304から更に後方に延びている。そして、マスタシリンダ34の後端部は、前記したように、ブレーキペダル12をその一端側に連結したプッシュロッド42の他端側を受け入れる構成となっている(図2参照)。図12(a)及び(b)中、符号306は、マスタシリンダ34とプッシュロッド42とに亘って配置されるブーツである。
 また、前記したように、入力装置14Dは、スタッドプレート304から後方に向かって延出するスタッドボルト303を介してダッシュボード2(図1参照)に固定されるが、この際、スタッドプレート304から後方に延びるマスタシリンダ34の一部は、ダッシュボード2を貫通して車室C(図1参照)内に延在することとなる。
 ちなみに、第4実施形態での入力装置14Dは、その取り付け位置のダッシュボード2の傾斜に応じて、マスタシリンダ34の軸方向が車両の前方に向かって昇り勾配となるように傾斜して取り付けられている。
 次に、入力装置14Dの内部構造について更に詳しく説明する。
 図13(a)に示すように、ストロークシミュレータ64の液圧室65に連通するポート65aは、マスタシリンダ34の第2圧力室56bに連通するポート54bと接続されている。つまり、図2に示すように、第1圧力室56aよりも前側に配置される第2圧力室56bの、前端寄りに形成されるポート54bに対して、ストロークシミュレータ64のポート65aは接続されている。このポート54b及びポート65aは、特許請求の範囲にいう「ポート同士」に相当する。
 また、図13(a)に示すように、マスタシリンダ34及びストロークシミュレータ64のそれぞれのポート54b、65a同士は、前後方向の位置が互いに略一致するように、言い換えればそれらの前端位置が略一致するように形成されている。
 そして、これらのポート54b、65a同士は、前記したように、第2液圧路58b(図2参照)及び分岐液圧路58c(図2参照)を介して接続されている。
 なお、図13(a)中、符号40a及び符号40bは、それぞれマスタシリンダ34の前記したピストンであり、符号66a及び符号66bは、それぞれストロークシミュレータ64の前記したリターンスプリングであり、符号68は、前記したシミュレータピストンである。
 なお、図13(a)では、作図の便宜上、第3遮断弁62を破線で模式的に示しているが、この第3遮断弁62の配置については後に詳しく説明する。
 この入力装置14Dにおいては、図13(b)に示すように、マスタシリンダ34のポート54b及びストロークシミュレータ64のポート65aは、マスタシリンダ34及びストロークシミュレータ64のそれぞれの上部に形成されている。
 そして、マスタシリンダ34及びストロークシミュレータ64のそれぞれのポート54b、65a同士を接続する第2液圧路58b及び分岐液圧路58cは、マスタシリンダ34及びストロークシミュレータ64からそれぞれの側方に向かって延びるように形成されている。具体的には、第4実施形態での分岐液圧路58cは、ストロークシミュレータ64から左側に配置されるマスタシリンダ34の上方を通過するように延びて、後記するセンサユニット300との隣接面の近傍に配置された第3遮断弁62を介した後に更に延びて、センサユニット300との隣接面にまで至っている。
 また、第4実施形態での第2液圧路58bは、マスタシリンダ34から左側に配置されるセンサユニット300側に向かって分岐液圧路58cと並んで延びる途中で上方に屈曲し、第3遮断弁62とセンサユニット300との間の区間で延びる分岐液圧路58cと合流した後、図2に示す第2遮断弁60bを介して図12(a)に示す第2接続ポート20bまで延びている。
 なお、第2液圧路58b及び分岐液圧路58cは、特許請求の範囲にいう「マスタシリンダ及びストロークシミュレータのポート同士を繋ぐブレーキ液の流路」に相当し、第3遮断弁62は、特許請求の範囲にいう「マスタシリンダ及びストロークシミュレータのポート同士を繋ぐブレーキ液の流路の途中に配置される開閉弁」に相当する。
 ちなみに、図2に示す第2遮断弁60bを経由した後の第2液圧路58bは、図13(b)に示すように、マスタシリンダ34の左下隅でマスタシリンダ34に沿うように前方向(図12(a)の前方向)に延びて、図12(a)に示す第2接続ポート20bに至ることとなる。
 このような入力装置14Dにおいては、図13(a)に示すマスタシリンダハウジング34a及びシミュレータハウジング64a内に、前記した第2液圧路58b及び分岐液圧路58cに加えて、図12に示すように分岐液圧路58cに設けられる第3遮断弁62、マスタシリンダ34の出力ポート54aと第1接続ポート20aとを接続する第1液圧路58a、及びこの第1液圧路58aに設けられる第1遮断弁60a、並びに第2液圧路58bに設けられる第2遮断弁60bが配置されることとなる。
 再び図12(a)及び(b)に戻って、この入力装置14Dは、マスタシリンダ34の左側に、センサユニット300を備えている。このセンサユニット300は、樹脂製の筐体内に、図2に示す第1液圧センサPm及び第2液圧センサPp、並びにこれらからの圧力検出信号を処理する電子回路基板(図示省略)、更に、図2に示す第1遮断弁60a、第2遮断弁60b及び第3遮断弁62(いずれも前記電子回路基板により作動制御される)などが配設されている。なお、第1液圧センサPm及び第2液圧センサPpは、第1液圧路58a及び第2液圧路58bのそれぞれに連通するように設けられた図示しないモニタ孔に臨むように配置されることで、前記したそれぞれの液圧を検出するようになっている。ちなみに、前記モニタ孔は、図13(b)に示すセンサユニット300側から第1液圧路58a及び第2液圧路58bに向かって穿たれる孔で形成されることとなる。
 図13(b)に示すように、エア抜き用のブリーダ301は、ストロークシミュレータ64のポート65aに接続される分岐液圧路58cから分岐して、このポート65aの真上に延びて、ストロークシミュレータ64の外側に臨む通路の開口を塞ぐように配置されたプラグで構成されている。
 このブリーダ301は、マスタシリンダ34及びストロークシミュレータ64内にブレーキ液を充填する際に、マスタシリンダ34、ストロークシミュレータ64、液圧路等に残存する空気を抜くためのものである。
 第4実施形態に係る入力装置14D及びこれを備える車両用ブレーキシステム10は、基本的に以上のように構成されるものであり、次にその作用効果について説明する。
 車両用ブレーキシステム10が正常に機能する正常時には、ノーマルオープンタイプのソレノイドバルブからなる第1遮断弁60a及び第2遮断弁60bが励磁で弁閉状態となり、ノーマルクローズタイプのソレノイドバルブからなる第3遮断弁62が励磁で弁開状態となる。従って、第1遮断弁60a及び第2遮断弁60bによって第1液圧系統70a及び第2液圧系統70bが遮断されているため、入力装置14Dのマスタシリンダ34で発生したブレーキ液圧がディスクブレーキ機構30a~30dのホイールシリンダ32FR、32RL、32RR、32FLに伝達されることはない。
 このとき、マスタシリンダ34の第2圧力室56bで発生したブレーキ液圧は、分岐液圧路58c及び弁開状態にある第3遮断弁62を経由してストロークシミュレータ64の液圧室65に伝達される。この液圧室65に供給されたブレーキ液圧によってシミュレータピストン68がリターンスプリング66a、66bのばね力に抗して変位することにより、ブレーキペダル12のストロークが許容されると共に、擬似的なペダル反力を発生させてブレーキペダル12に付与される。この結果、運転者にとって違和感のないブレーキフィーリングが得られる。
 このようなシステム状態において、図示しない制御手段は、運転者によるブレーキペダル12の踏み込みを検出すると、モータシリンダ装置16の電動モータ72を駆動させてアクチュエータ機構74を付勢し、第1リターンスプリング96a及び第2リターンスプリング96bのばね力に抗して第1スレーブピストン88a及び第2スレーブピストン88bを図2中の矢印X1方向に向かって変位させる。この第1スレーブピストン88a及び第2スレーブピストン88bの変位によって第1液圧室98a及び第2液圧室98b内のブレーキ液がバランスするように加圧されて所望のブレーキ液圧が発生する。
 このモータシリンダ装置16における第1液圧室98a及び第2液圧室98bのブレーキ液圧は、VSA装置18の弁開状態にある第1、第2インバルブ120、124を介してディスクブレーキ機構30a~30dのホイールシリンダ32FR、32RL、32RR、32FLに伝達され、前記ホイールシリンダ32FR、32RL、32RR、32FLが作動することにより各車輪に所望の制動力が付与される。
 換言すると、第4実施形態に係る車両用ブレーキシステム10では、動力液圧源として機能するモータシリンダ装置16やバイ・ワイヤ制御する図示しないECU等が作動可能な正常時において、運転者がブレーキペダル12を踏むことでブレーキ液圧を発生するマスタシリンダ34と各車輪を制動するディスクブレーキ機構30a~30d(ホイールシリンダ32FR、32RL、32RR、32FL)との連通を第1遮断弁60a及び第2遮断弁60bで遮断した状態で、モータシリンダ装置16が発生するブレーキ液圧でディスクブレーキ機構30a~30dを作動させるという、いわゆるブレーキ・バイ・ワイヤ方式のブレーキシステムがアクティブになる。このため、第4実施形態では、例えば、電気自動車等のように、旧来から用いられていた内燃機関による負圧が存在しない車両Vに好適に適用することができる。
 一方、モータシリンダ装置16等が作動不能となる異常時では、第1遮断弁60a及び第2遮断弁60bをそれぞれ弁開状態とし、かつ第3遮断弁62を弁閉状態として、マスタシリンダ34で発生するブレーキ液圧をディスクブレーキ機構30a~30d(ホイールシリンダ32FR、32RL、32RR、32FL)に伝達して、前記ディスクブレーキ機構30a~30d(ホイールシリンダ32FR、32RL、32RR、32FL)を作動させるという、いわゆる旧来の油圧式のブレーキシステムがアクティブになる。
 以上説明したように、車両用ブレーキシステム10によれば、入力装置14Dとモータシリンダ装置(電動ブレーキアクチュエータ)16とVSA装置(車両挙動安定化装置)18とを、エンジンルーム(動力装置の搭載室)R内において互いに分離して構成して配置したので、入力装置14D、モータシリンダ装置16、VSA装置18のそれぞれのサイズを小型化することができ、レイアウトの自由度を高めることができる。
 ところで、エンジンルームR内には、動力装置3の他に、電気系、吸気系、排気系、冷却系などの構造物が搭載されるため、必然的に大きな空スペース(設置スペース)を確保することが難しくなる。そこで、第4実施形態のように、入力装置14D、モータシリンダ装置16及びVSA装置18をそれぞれ分離して構成することで、個々の装置(入力装置14D、モータシリンダ装置16、VSA装置18)のサイズをそれぞれ小さく構成することができ、大きな空スペースを確保する必要がなる。これにより、エンジンルームR内の狭い空スペースであっても前記各装置を搭載することが可能になり、レイアウトが容易になる。
 また、車両用ブレーキシステム10によれば、入力装置14Dとモータシリンダ装置16とVSA装置18とをそれぞれ分離して構成することで、各装置(入力装置14D、モータシリンダ装置16、VSA装置18)の汎用性を向上して異なる車種に適用し易くなる。
 また、車両用ブレーキシステム10によれば、ダッシュボード2に固定され、モータシリンダ装置16は、前記入力装置14Dから離間して配置されているので、音や振動の発生源となることもある、モータシリンダ装置16を運転者から離して配置することが可能になるため、運転者に音や振動による違和感(不快感)を与えるのを防止できる。
 また、車両用ブレーキシステム10によれば、エンジンルームR内においては車幅方向の右側又は左側に偏って空スペースが形成されることは少ないので、モータシリンダ装置16とVSA装置18を車幅方向において互いに逆側に配置することで、これらモータシリンダ装置16とVSA装置18を設置するための空スペースが確保し易くなり、レイアウトが容易になる。
 次に、車両用ブレーキシステム10を構成する入力装置14Dの作用効果について説明する。
 この入力装置14Dによれば、図13(a)及び(b)に示すように、車両V(図1参照)の前後方向に延在するマスタシリンダ34に対してストロークシミュレータ64が一体となるように並設されると共に、マスタシリンダ34のポート54bとストロークシミュレータ64のポート65aとの前端位置が略一致しているので、幅及び長さが共に縮減し、小型化した入力装置14Dを実現することができる。
 また、このような入力装置14Dにおいては、マスタシリンダ34及びストロークシミュレータ64のポート54b、65a同士を接続する第2液圧路58b及び分岐液圧路58cは、マスタシリンダ34及びストロークシミュレータ64からそれぞれの側方に向かって延びるように形成されているため、第2液圧路58b及び分岐液圧路58cを短くするように設計可能となる。したがって、この入力装置14Dによれば、より小型化した入力装置14Dを実現することができる。
 また、このような入力装置14Dにおいては、マスタシリンダ34及びストロークシミュレータ64のポート54b、65aは、マスタシリンダ34及びストロークシミュレータ64のそれぞれの上部に形成されている。このため、この入力装置14Dによれば、マスタシリンダ34及びストロークシミュレータ64内にブレーキ液を充填すると共にマスタシリンダ34及びストロークシミュレータ64内の空気を除去する際に、ブリーダ301(図13(b)参照)からの空気の除去が容易となる。
 また、第4実施形態での入力装置14Dにおいては、前記したように、マスタシリンダ34の軸が車両Vの前方に向かって昇り勾配となるようにダッシュボード2に取り付けられるので、ブリーダ301は、入力装置14Dの先端部にあって、昇り勾配の高い位置に配置されることとなる。その結果、ブリーダ301を介しての空気の除去が、より容易となる。
 また、このような入力装置14Dにおいては、マスタシリンダ34及びストロークシミュレータ64のポート54b、65a同士を接続する第2液圧路58bの途中に配置される第3遮断弁62を内蔵する。このため、この入力装置14Dによれば、例えば、第3遮断弁62を入力装置14Dの外側に有するものを備える車両用ブレーキシステム10と比較して、簡素化した車両用ブレーキシステム10を構築することができる。
 このような入力装置14Dにおいては、図12(a)に示すように、その前方に向けてコネクタ36a、第1接続ポート20a、及び第2接続ポート20bが形成されているので、ダッシュボード2(図1参照)に固定された入力装置14Dのコネクタ36a、第1接続ポート20a、及び第2接続ポート20bに、配管チューブ86(図2参照)、第1配管チューブ22a(図2参照)、及び第4配管チューブ22d(図2参照)を取り付ける工程が容易となる。
<第5実施形態>
 次に、図14~図16を参照しながら、第5実施形態に係る入力装置14Eの構成を説明する。
 図14(a)は入力装置14Eの概略斜視図、(b)は上方からの平面図であり、図2に示す部材と同じものについては、図14においても同じ符号で表すものとし、その詳細な説明は省略する。
 図14(a)及び(b)に示すように、入力装置14Eを構成するマスタシリンダ34は、車両V(図1参照)の前後方向に延在すると共に、ストロークシミュレータ64は、このマスタシリンダ34と一体となるように並設されている。更に具体的には、第5実施形態でのストロークシミュレータ64は、マスタシリンダ34の右側(車幅方向の外側)で横並びに配置されている。そして、第5実施形態でのマスタシリンダ34及びストロークシミュレータ64は、これらをその後端側で支持するスタッドプレート304と共に、金属の一体成型体で形成されている。
 このようなマスタシリンダ34及びストロークシミュレータ64の上方には、細長の外形を有する第1リザーバ36(リザーバタンク)が、マスタシリンダ34とストロークシミュレータ64との間で車両前後方向に延在するように配置されている。この際、第1リザーバ36は、マスタシリンダ34とストロークシミュレータ64とが上下方向で第1リザーバ36の一部と重なるように配置されている。この第1リザーバ36とマスタシリンダ34とは、図14(b)に示すリリーフポート52a、52b及び図示しないサプライポート46a、46b(図2参照)に臨むように形成された接続口を介して、図2に示す第1及び第2圧力室56a、56b、並びに背室48a、48bに連通するようになっている。なお、図14(a)中、符号36aは、第1リザーバ36と、図2に示す第2リザーバ84とを連通させる配管チューブ86の基端が接続されるコネクタである。このコネクタ36aは、入力装置14Eの前方に突出する管状部材で形成されている。
 なお、接続口36aと第2リザーバ84(図2参照)とは直接配管チューブ86で接続されてもよいが、車両の搭載レイアウトに応じて、接続口36aと第2リザーバ84との間に別体タンクを設けることもできる。別体タンクを設ける場合、接続口36aは当該別体タンクと接続されることとなる。
 また、図14(a)及び(b)に示すように、入力装置14Eの車両前側には、マスタシリンダ34から連通し、第1配管チューブ22aの基端が接続される第1接続ポート20aと、マスタシリンダ34から連通し、第4配管チューブ22dの基端が接続される第2接続ポート20bとが設けられている。
 また、図14(a)及び(b)に示すように、入力装置14Eの右側及び左側には、後に詳しく説明するエア抜き用のブリーダ301、及びバルブユニット300が一体に設けられている。
 また、図14(a)及び(b)に示すように、入力装置14Eの後側においては、マスタシリンダ34の後端部が連結部34aを介してブレーキ操作子12と接続されるようになっている。
 次に、入力装置14Eの内部構造について更に詳しく説明する。
 図15(a)に示すように、ストロークシミュレータ64の液圧室65に連通するポート65aは、マスタシリンダ34の第2圧力室56bに連通するポート54bと接続されている。つまり、図2に示すように、第1圧力室56aよりも前側に配置される第2圧力室56bの、前端寄りに形成されるポート54bに対して、ストロークシミュレータ64のポート65aは接続されている。
 また、図15(a)に示すように、入力装置14Eにおいては、マスタシリンダ34及びストロークシミュレータ64のそれぞれのポート54b、65a同士は、前後方向の位置が互いに略一致するように、言い換えればそれらの前端位置が略一致するように形成されている。
 そして、これらのポート54b、65a同士は、前記したように、第2液圧路58b(図2参照)及び分岐液圧路58c(図2参照)を介して接続されている。そして、ポート54bと65aとの間には、第3遮断弁62が設けられている。なお、図15(a)に示す第3遮断弁62は弁開状態のものを示している。
 なお、図15(a)中、符号40a及び符号40bは、それぞれマスタシリンダ34の前記したピストンであり、符号66a及び符号66bは、それぞれストロークシミュレータ64の前記したリターンスプリングであり、符号68は、前記したシミュレータピストンである。
 この入力装置14Eにおいては、図15(b)に示すように、マスタシリンダ34のポート54b及びストロークシミュレータ64のポート65aは、マスタシリンダ34及びストロークシミュレータ64のそれぞれの上部に形成されている。
 そして、マスタシリンダ34及びストロークシミュレータ64のそれぞれのポート54b、65a同士を接続する第2液圧路58b及び分岐液圧路58cは、マスタシリンダ34及びストロークシミュレータ64からそれぞれの側方に向かって延びるように形成されている。具体的には、第5実施形態での分岐液圧路58cは、ストロークシミュレータ64から左側に配置されるマスタシリンダ34の上方を通過するように延びて、後述するバルブユニット300に備えられた第3遮断弁62(ストロークシミュレータ遮断弁)を介した後に更に延びて、バルブユニット300との隣接面にまで至っている。第3遮断弁62は、前記のようにノーマルクローズタイプのソレノイドバルブからなる弁であり、液圧路58cを閉塞するように設けられている。
 また、第5実施形態での第2液圧路58bは、マスタシリンダ34の第2圧力室56bに接続され、マスタシリンダ34から左側に配置されるバルブユニット300側に向かって分岐液圧路58cと並んで延びる途中で上方に屈曲し、第3遮断弁62とバルブユニット300との間の区間で延びる分岐液圧路58cと合流した後、図2に示す第2遮断弁60bを介して図14(a)に示す第2接続ポート20bまで延びている。
 より具体的には、図2に示す第2遮断弁60bを経由した後の第2液圧路58bは、図15(b)に示すように、マスタシリンダ34の左下隅でマスタシリンダ34に沿うように前方向(図14(a)の前方向)に延びて、図14(a)に示す第2接続ポート20bに至ることとなる。
 このような入力装置14Eにおいては、前記した第2液圧路58b及び分岐液圧路58cに加えて、図2に示すように分岐液圧路58cに設けられる第3遮断弁62、マスタシリンダ34の出力ポート54aと第1接続ポート20aとを接続する第1液圧路58a、及びこの第1液圧路58aに設けられる第1遮断弁60a(マスタシリンダ遮断弁)、並びに第2液圧路58bに設けられる第2遮断弁60b(マスタシリンダ遮断弁)が配置されることとなる。
 図15(b)に示すように、エア抜き用のブリーダ301は、ストロークシミュレータ64のポート65aに接続される分岐液圧路58cから分岐して、このポート65aの真上に延びて、ストロークシミュレータ64の外側に臨む通路の開口を塞ぐように配置されたプラグで構成されている。
 このブリーダ301は、マスタシリンダ34及びストロークシミュレータ64内にブレーキ液を充填する際に、マスタシリンダ34、ストロークシミュレータ64、液圧路等に残存する空気を抜くためのものである。また、例えばマスタシリンダ34の前方の上方や下方等、マスタシリンダ34やストロークシミュレータ64等内のエアが集まる部位や液圧路構成上エアが溜まる部位にブリーダ301が設けられてもよい。
 第5実施形態に係る入力装置14E及びこれを備える車両用ブレーキシステム10は、基本的に以上のように構成されるものであり、次にその作用効果について説明する。
 車両用ブレーキシステム10が正常に機能する正常時には、ノーマルオープンタイプのソレノイドバルブからなる第1遮断弁60a及び第2遮断弁60bが励磁で弁閉状態となり、ノーマルクローズタイプのソレノイドバルブからなる第3遮断弁62が励磁で弁開状態となる。従って、第1遮断弁60a及び第2遮断弁60bによって第1液圧系統70a及び第2液圧系統70bが遮断されているため、入力装置14Eのマスタシリンダ34で発生したブレーキ液圧がディスクブレーキ機構30a~30dのホイールシリンダ32FR、32RL、32RR、32FLに伝達されることはない。
 このとき、マスタシリンダ34の第2圧力室56bで発生したブレーキ液圧は、分岐液圧路58c及び弁開状態にある第3遮断弁62を経由してストロークシミュレータ64の液圧室65に伝達される。この液圧室65に供給されたブレーキ液圧によってシミュレータピストン68がリターンスプリング66a、66bのばね力に抗して変位することにより、ブレーキペダル12のストロークが許容されると共に、擬似的なペダル反力を発生させてブレーキペダル12に付与される。この結果、運転者にとって違和感のないブレーキフィーリングが得られる。
 このようなシステム状態において、図示しない制御手段は、運転者によるブレーキペダル12の踏み込みを検出すると、モータシリンダ装置16の電動モータ72を駆動させてアクチュエータ機構74を付勢し、第1リターンスプリング96a及び第2リターンスプリング96bのばね力に抗して第1スレーブピストン88a及び第2スレーブピストン88bを図2中の矢印X1方向に向かって変位させる。この第1スレーブピストン88a及び第2スレーブピストン88bの変位によって第1液圧室98a及び第2液圧室98b内のブレーキ液が加圧されて所望のブレーキ液圧が発生する。
 このモータシリンダ装置16における第1液圧室98a及び第2液圧室98bのブレーキ液圧は、VSA装置18の弁開状態にある第1、第2インバルブ120、124を介してディスクブレーキ機構30a~30dのホイールシリンダ32FR、32RL、32RR、32FLに伝達され、前記ホイールシリンダ32FR、32RL、32RR、32FLが作動することにより各車輪に所望の制動力が付与される。
 換言すると、第5実施形態に係る車両用ブレーキシステム10では、動力液圧源として機能するモータシリンダ装置16やバイ・ワイヤ制御する図示しないECU等が作動可能な正常時において、運転者がブレーキペダル12を踏むことでブレーキ液圧を発生するマスタシリンダ34と各車輪を制動するディスクブレーキ機構30a~30d(ホイールシリンダ32FR、32RL、32RR、32FL)との連通を第1遮断弁60a及び第2遮断弁60bで遮断した状態で、モータシリンダ装置16が発生するブレーキ液圧でディスクブレーキ機構30a~30dを作動させるという、いわゆるブレーキ・バイ・ワイヤ方式のブレーキシステムがアクティブになる。このため、第5実施形態では、例えば、電気自動車等のように、旧来から用いられていた負圧式ブレーキブースタ等が存在しない車両Vに好適に適用することができる。
 一方、モータシリンダ装置16等が作動不能となる異常時では、第1遮断弁60a及び第2遮断弁60bをそれぞれ弁開状態としマスタシリンダ34で発生するブレーキ液圧をディスクブレーキ機構30a~30d(ホイールシリンダ32FR、32RL、32RR、32FL)に伝達して、前記ディスクブレーキ機構30a~30d(ホイールシリンダ32FR、32RL、32RR、32FL)を作動させるという、いわゆる旧来の油圧式のブレーキシステムがアクティブになる。
 そして、入力装置14Eにおいては車両の左側から右側方向へ、バルブユニット300、マスタシリンダ34及びストロークシミュレータ64がこの順番で並設されている。また、マスタシリンダ34に設けられたリリーフポート52a、52b(図参照)を臨む接続口を介して、第1リザーバ36がマスタシリンダ34に接続されている。
 また、図15(a)に示すように第5実施形態においては、マスタシリンダ34が備えるポート位置とストロークシミュレータ64が備えるポート位置との前後方向の位置が略一致するように設けている。マスタシリンダ34及びストロークシミュレータ64をこのように配置することで、これらの間に設けられる流路を短くすることができ、入力装置14Eをより小型化することができる。さらには、より素早いブレーキ操作が可能になる。
 次に、図16を参照しながら、バルブユニット300について説明する。図16は、バルブユニット300の車両前後方向における断面の概略図である。
 図16に示すように、バルブユニット300には、樹脂製の筐体内に、図2に示す第1液圧センサPm及び第2液圧センサPp、並びにこれらからの圧力検出信号を処理する電子回路基板(図示しない)等が配設されている。なお、第1液圧センサPm及び第2液圧センサPpは、第1液圧路58a及び第2液圧路58bのそれぞれに連通するように設けられた図示しないモニタ孔に臨むように配置されることで、前記のそれぞれの液圧を検出するようになっている。ちなみに、前記モニタ孔は、バブルユニット300側から第1液圧路58a及び第2液圧路58bに向かって貫かれる孔で形成されることとなる。
 また、バルブユニット300には、その内部に第1遮断弁60a(マスタシリンダ遮断弁)、第2遮断弁60b(マスタシリンダ遮断弁)及び第3遮断弁62(ストロークシミュレータ遮断弁)が備えられている。第1遮断弁60a及び第2遮断弁60bは、前記のようにノーマルオープンタイプのソレノイドバルブからなる弁であり、図2に示すようにそれぞれ液圧路58a及び58bの途中に設けられている。また、第3遮断弁62は、前記のように、ノーマルクローズタイプのソレノイドバルブからなる弁であり、液圧路58cを閉塞するように設けられている。
 第1遮断弁60a、第2遮断弁60b及び第3遮断弁62、並びに、第1液圧センサPm及び第2液圧センサPpについての接続関係を、図16における太実線で概略的に示す。
 図16に示すように、第1接続ポート20aと第1圧力室56aとは、第1遮断弁60aを介して接続されている。また、第1圧力室56aと第1遮断弁60aとの間には第1液圧センサPmが設けられ、図16においては図示していないが、第1遮断弁60aから伸びる液圧路と第1液圧センサPmから伸びる液圧路とが合流し、第1圧力室56aに接続されている。
 一方で、第2接続ポート20bは、第2遮断弁60bを介して第2圧力室56bと接続されている。また、第2接続ポート20bと第2遮断弁60bとの間には、第2液圧センサPpが設けられている。そして、第2遮断弁60bと第2圧力室56bとの間で液圧路は分岐し、第3遮断弁62を介して、図16では図示していないストロークシミュレータ64と接続されている。
 前記のように、入力装置14Eにおいては、ストロークシミュレータ64とマスタシリンダ34とバルブユニット300とが、この順序で車両の車幅方向に一体に並設されている。入力装置14Eがこのような構成を有することで、少なくともマスタシリンダ34とストロークシミュレータ64との間の流路を短くすることができ、入力装置14Eを小型化することができる。その結果、ガソリン自動車に比べて構造物搭載室内の搭載スペースが限られる電気自動車やハイブリッド自動車等においても第5実施形態に係る入力装置14Eを搭載することができるようになる。
(その他)
 以上、具体的な実施形態を挙げて本実施形態を説明したが、本発明はその要旨を逸脱しない範囲内で任意に変更して実施することができる。
 例えば、第1実施形態においては、マスタシリンダ34及びストロークシミュレータ64を平行となるように並設して設けているが、これらが一体となっていれば必ずしも平行に設ける必要は無い。さらに、これらが必ずしも同一面内に設けられる必要も無い。
 また、例えば第1実施形態においては、マスタシリンダ34及びストロークシミュレータ64を取り付けプレート304と一体的に形成されるようにしているが、マスタシリンダ34及びストロークシミュレータ64が一体となって形成されていれば、これらが取り付けプレート304と一体的に形成される必要は必ずしも無い。
 また、取り付けプレート304には、取り付けプレート305が肉抜きされた肉抜き部が設けられていてもよい。このような肉抜き部が設けられることにより、車両の軽量化を図ることができる。
 また、マスタシリンダ34やストロークシミュレータ64、モータシリンダ装置16等の具体的な構成も特に制限されず、本発明の効果を著しく損なわない限り任意に決定できる。その他の構成についても、本発明の効果を著しく損なわない限り任意に変更することができることは言うまでもない。
 また、例えば、第2実施形態においては、マスタシリンダ34及びストロークシミュレータ64を平行となるように並設して設けているが、これらが一体となっていれば必ずしも平行に設ける必要は無い。さらに、これらが必ずしも同一面内に設けられる必要も無い。
 また、マスタシリンダ34やストロークシミュレータ64、モータシリンダ装置16等の具体的な構成も特に制限されず、本発明の効果を著しく損なわない限りに任意に決定できる。その他の構成についても、本発明の効果を著しく損なわない限り任意に変更することができることは言うまでもない。
 また、第4実施形態では、マスタシリンダ34及びストロークシミュレータ64が横に並設されるものについて説明したが、縦又は斜めに並設されるものであってもよい。
 また、第4実施形態では、マスタシリンダ34及びストロークシミュレータ64が平行に並ぶものを想定しているが、許容される軸方向のずれをもってマスタシリンダ34及びストロークシミュレータ64同士が並設されるものであってもよい。
 なお、本発明は、右ハンドル車及び左ハンドル車のいずれにも適用できることは言うまでもない。
 また、第5実施形態においては、マスタシリンダ34及びストロークシミュレータ64を平行となるように並設して設けているが、これらが一体となっていれば必ずしも平行に設ける必要は無い。さらに、これらが必ずしも同一面内に設けられる必要も無い。
 また、第5実施形態においては、第1リザーバ36(リザーバタンク)の位置をマスタシリンダ34及びストロークシミュレータ64の上方において、マスタシリンダ34とストロークシミュレータ64とが第1リザーバ36の一部と重なるように設ける構成としているが、第1リザーバ36の位置はこの位置に限定されるものではなく、例えばマスタシリンダ34とバルブユニット300との間に設ける構成としてもよい。
 また、バルブユニット300内での各遮断弁及び各液圧センサの位置も図16に示されるものに限定されるものではなく、各液圧路の位置に応じてバルブユニット300内で適宜配置すればよい。
 また、マスタシリンダ34やストロークシミュレータ64、モータシリンダ装置16等の具体的な構成も特に制限されず、本発明の効果を著しく損なわない限りに任意に決定できる。その他の構成についても、本発明の効果を著しく損なわない限り任意に変更することができることは言うまでもない。
1   サイドフレーム(車体)
2   ダッシュボード
10  車両用ブレーキシステム
14  入力装置
16  モータシリンダ装置(電動ブレーキアクチュエータ)
18  VSA装置
20a 接続ポート(第1接続ポート)
20b 接続ポート(第2接続ポート)
34  マスタシリンダ
36  第1リザーバ(リザーバタンク)
58a 第1液圧路
58b 第2液圧路
58c 分岐液圧路
60a 第1遮断弁
60b 第2遮断弁
62  第3遮断弁
64  ストロークシミュレータ
300 センサバルブユニット
301 エア抜き用ブリーダ
303 固定具
304 取り付けプレート
Pm  圧力センサ(第1液圧センサ)
Pp  圧力センサ(第2液圧センサ)

Claims (14)

  1.  ブレーキ操作子の操作が入力される入力装置と、少なくとも前記ブレーキ操作子の操作に応じた電気信号に基づいてブレーキ液圧を制御する電動ブレーキアクチュエータと、を備える車両用ブレーキシステムにおいて、前記電動ブレーキアクチュエータとは別体として構成され、前記ブレーキ操作子を有して操作者により操作される入力装置であって、
     前記ブレーキ操作子の前記操作による入力によって液圧を発生するマスタシリンダと、
     前記マスタシリンダに並設されるとともに前記マスタシリンダと連通され、前記ブレーキ操作子の操作反力を前記ブレーキ操作子に擬似的に付与するストロークシミュレータと、
    を有し、
     前記マスタシリンダと前記ストロークシミュレータとが一体となって形成されていることを特徴とする、車両用ブレーキシステムの入力装置。
  2.  前記マスタシリンダと前記第1遮断弁との間に第1圧力センサが設けられ、
     前記第2遮断弁と前記第2接続ポートとの間に第2圧力センサが設けられていることを特徴とする、請求の範囲第1項に記載の車両用ブレーキシステムの入力装置。
  3.  少なくとも前記マスタシリンダ及び前記ストロークシミュレータ内のエアを抜くエア抜き用ブリーダが設けられていることを特徴とする、請求の範囲第1項又は第2項に記載の車両用ブレーキシステムの入力装置。
  4.  前記マスタシリンダと前記ストロークシミュレータとが、車両の車幅方向に一体に並設されていることを特徴とする、請求の範囲第1項に記載の車両用ブレーキシステムの入力装置。
  5.  前記マスタシリンダ及び前記ストロークシミュレータの上方において、
     前記マスタシリンダと前記ストロークシミュレータとの間にリザーバタンクが設けられていることを特徴とする、請求の範囲第4項に記載の車両用ブレーキシステムの入力装置。
  6.  前記マスタシリンダ及び前記ストロークシミュレータを前記車両のダッシュボードに取り付け可能な取り付けプレートを有し、
     該取り付けプレートの前記車幅方向の長さが、前記取り付けプレートにおける前記車両の上下方向の長さよりも長くなっていることを特徴とする、請求の範囲第4項又は第5項に記載の車両用ブレーキシステムの入力装置。
  7.  前記取り付けプレートに肉抜き部が設けられていることを特徴とする、請求の範囲第6項に記載の車両用ブレーキシステムの入力装置。
  8.  前記マスタシリンダと前記ストロークシミュレータとの間に形成された凹部と、
     前記凹部に形成された水抜き用の貫通孔と、を備えることを特徴とする、請求の範囲第1項に記載の車両用ブレーキシステムの入力装置。
  9.  前記貫通孔は、前記凹部に複数設けられていることを特徴とする、請求の範囲第8項に記載の車両用ブレーキシステムの入力装置。
  10.  前記マスタシリンダと前記ストロークシミュレータとが連通し合うように形成された前記マスタシリンダ及び前記ストロークシミュレータのポート同士の前端位置が略一致することを特徴とする、請求の範囲第1項に記載の車両用ブレーキシステムの入力装置。
  11.  前記マスタシリンダ及び前記ストロークシミュレータのポート同士を繋ぐブレーキ液の流路は、前記マスタシリンダ及び前記ストロークシミュレータからそれぞれの側方に向かって延びるように形成されていることを特徴とする、請求の範囲第10項に記載の車両用ブレーキシステムの入力装置。
  12.  前記マスタシリンダ及び前記ストロークシミュレータのポートは、前記マスタシリンダ及び前記ストロークシミュレータのそれぞれの上部に形成されていることを特徴とする請求の範囲第11項に記載の車両用ブレーキシステムの入力装置。
  13.  前記マスタシリンダと前記ストロークシミュレータとの間に設けられている前記液圧路の流れを遮断するストロークシミュレータ遮断弁を備えているバルブユニットを有し、
     前記マスタシリンダと前記ストロークシミュレータと前記バルブユニットとが一体となって形成されていることを特徴とする、請求の範囲第1項に記載の車両用ブレーキシステムの入力装置。
  14.  前記ストロークシミュレータと前記マスタシリンダと前記バルブユニットとが、この順で並設されていることを特徴とする、請求の範囲第13項に記載の車両用ブレーキシステムの入力装置。
PCT/JP2011/076361 2010-11-17 2011-11-16 車両用ブレーキシステムの入力装置 WO2012067134A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/885,889 US9566968B2 (en) 2010-11-17 2011-11-16 Input device of vehicle brake system
CN201180055266.0A CN103221281B (zh) 2010-11-17 2011-11-16 车辆用制动系统的输入装置
EP11842089.2A EP2641793B1 (en) 2010-11-17 2011-11-16 Input device of vehicle brake system

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2010257355A JP5200092B2 (ja) 2010-11-17 2010-11-17 車両用ブレーキシステム及びその入力装置
JP2010-257351 2010-11-17
JP2010257352A JP5149953B2 (ja) 2010-11-17 2010-11-17 車両用ブレーキシステムの入力装置
JP2010257351A JP5364077B2 (ja) 2010-11-17 2010-11-17 車両用ブレーキシステムの入力装置
JP2010-257328 2010-11-17
JP2010-257355 2010-11-17
JP2010-257352 2010-11-17
JP2010-257353 2010-11-17
JP2010257328A JP5364076B2 (ja) 2010-11-17 2010-11-17 車両用ブレーキシステムの入力装置
JP2010257353A JP5276646B2 (ja) 2010-11-17 2010-11-17 車両用ブレーキシステムの入力装置

Publications (1)

Publication Number Publication Date
WO2012067134A1 true WO2012067134A1 (ja) 2012-05-24

Family

ID=46084057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076361 WO2012067134A1 (ja) 2010-11-17 2011-11-16 車両用ブレーキシステムの入力装置

Country Status (4)

Country Link
US (1) US9566968B2 (ja)
EP (1) EP2641793B1 (ja)
CN (1) CN103221281B (ja)
WO (1) WO2012067134A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6115943B2 (ja) 2013-05-24 2017-04-19 日立オートモティブシステムズ株式会社 ブレーキ装置及びブレーキシステム
JP6115944B2 (ja) 2013-05-27 2017-04-19 日立オートモティブシステムズ株式会社 ブレーキ装置及びブレーキシステム
JP5953635B2 (ja) * 2013-12-12 2016-07-20 日信工業株式会社 液圧発生装置
DE102014220413A1 (de) * 2014-10-08 2016-04-14 Bayerische Motoren Werke Aktiengesellschaft Elektrohydraulische Fahrzeug-Bremsanlage
WO2017022545A1 (ja) 2015-07-31 2017-02-09 日立オートモティブシステムズ株式会社 マスタシリンダユニット
JP6575025B2 (ja) * 2016-06-17 2019-09-18 日立オートモティブシステムズ株式会社 液圧制御装置およびブレーキシステム
US10767715B2 (en) 2018-10-11 2020-09-08 Bendix Spicer Foundation Brake Llc Pivotable actuator mounting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005153583A (ja) * 2003-11-21 2005-06-16 Advics:Kk 車両用ブレーキ液圧発生装置
JP2007010121A (ja) * 2005-07-04 2007-01-18 Hosei Brake Ind Ltd ドラムブレーキのバッキングプレート構造
JP2007176277A (ja) * 2005-12-27 2007-07-12 Hitachi Ltd マスタシリンダ装置
JP2009279966A (ja) * 2008-05-19 2009-12-03 Honda Motor Co Ltd ブレーキ装置
JP2010254261A (ja) * 2009-04-28 2010-11-11 Toyota Motor Corp ブレーキ制御装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3425222A (en) * 1966-05-25 1969-02-04 Hydroease Corp Fluid pressure braking system
JPS56167546A (en) * 1980-05-26 1981-12-23 Nissin Kogyo Kk Tandem type master cylinder of automobile
JPS63116966A (ja) 1986-10-31 1988-05-21 Sumitomo Electric Ind Ltd 車両のブレ−キ圧力制御装置
US4969331A (en) * 1988-09-30 1990-11-13 Ford Motor Company Brake master cylinder and booster assembly for automotive vehicle
DE19651153B4 (de) * 1996-12-10 2008-02-21 Robert Bosch Gmbh Hydraulische Bremsanlage
AU2030800A (en) * 1998-11-25 2000-06-13 Kelsey-Hayes Company Structure for mounting a cluster of pressure sensors upon an electro-hydraulic brake system control unit
US6467267B2 (en) * 1999-07-14 2002-10-22 Bosch Braking Systems Co., Ltd. Fluid pressure boosting device and brake system employing the same
US7204566B2 (en) * 2001-04-17 2007-04-17 Toyota Jidosha Kabushiki Kaisha Hydraulic braking pressure control unit
US7063393B2 (en) * 2001-08-22 2006-06-20 Advics Co., Ltd. Electronic brake system without pump unit
FR2829452B1 (fr) * 2001-09-10 2005-01-28 Bosch Gmbh Robert Installation de freinage hydraulique avec simulateur, et simulateur pour une telle installation
US20050042946A1 (en) * 2003-06-30 2005-02-24 Guillaume Longpre Engine cover assembly for watercraft
FR2870807B1 (fr) 2004-05-27 2006-09-01 Bosch Gmbh Robert Simulateur d'actionnement de frein, maitre-cylindre pour frein de vehicule automobile, et procede de commande de ce simulateur
JP2008529892A (ja) * 2005-02-18 2008-08-07 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト 原動機を備えた車両用のブレーキ装置
CN101263033A (zh) * 2005-09-15 2008-09-10 大陆-特韦斯贸易合伙股份公司及两合公司 用于机动车辆的制动系统
JP2008018816A (ja) * 2006-07-12 2008-01-31 Toyota Motor Corp ブレーキ装置、ストロークシミュレータカット機構、及びストロークシミュレータカット方法
JP2008044457A (ja) * 2006-08-11 2008-02-28 Advics:Kk 車両用ブレーキ液圧制御ユニット
JP5082336B2 (ja) * 2006-08-22 2012-11-28 株式会社アドヴィックス ブレーキ制御装置
JP4999416B2 (ja) * 2006-10-02 2012-08-15 本田技研工業株式会社 ブレーキ装置
JP4792416B2 (ja) * 2007-03-12 2011-10-12 本田技研工業株式会社 ブレーキ装置
JP5025510B2 (ja) * 2008-01-31 2012-09-12 本田技研工業株式会社 車両用ブレーキ装置
JP2010023594A (ja) 2008-07-16 2010-02-04 Nissan Motor Co Ltd 電動倍力装置
JP5346511B2 (ja) 2008-07-16 2013-11-20 株式会社神戸製鋼所 作業機械の把持装置及びこれを備えた作業機械
JP5507532B2 (ja) * 2011-11-25 2014-05-28 日信工業株式会社 マスタシリンダ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005153583A (ja) * 2003-11-21 2005-06-16 Advics:Kk 車両用ブレーキ液圧発生装置
JP2007010121A (ja) * 2005-07-04 2007-01-18 Hosei Brake Ind Ltd ドラムブレーキのバッキングプレート構造
JP2007176277A (ja) * 2005-12-27 2007-07-12 Hitachi Ltd マスタシリンダ装置
JP2009279966A (ja) * 2008-05-19 2009-12-03 Honda Motor Co Ltd ブレーキ装置
JP2010254261A (ja) * 2009-04-28 2010-11-11 Toyota Motor Corp ブレーキ制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2641793A4 *

Also Published As

Publication number Publication date
EP2641793A1 (en) 2013-09-25
CN103221281A (zh) 2013-07-24
US20130232967A1 (en) 2013-09-12
EP2641793B1 (en) 2015-08-19
CN103221281B (zh) 2016-01-20
US9566968B2 (en) 2017-02-14
EP2641793A4 (en) 2014-04-30

Similar Documents

Publication Publication Date Title
JP5688097B2 (ja) 車両用ブレーキシステム
WO2012067134A1 (ja) 車両用ブレーキシステムの入力装置
WO2012067004A1 (ja) 車両用ブレーキシステム
JP5726895B2 (ja) 電動ブレーキアクチュエータ及び車両用ブレーキシステム
JP5379113B2 (ja) 車両用ブレーキシステムの入力装置
JP5698258B2 (ja) 車両用ブレーキシステム
JP2012106582A (ja) 電動ブレーキアクチュエータ及び車両用ブレーキシステム
JP5711760B2 (ja) 電動ブレーキアクチュエータの車体取付構造
WO2012067032A1 (ja) 車両用ブレーキシステム
JP5200092B2 (ja) 車両用ブレーキシステム及びその入力装置
JP5149953B2 (ja) 車両用ブレーキシステムの入力装置
WO2012067197A1 (ja) 車両用ブレーキシステム
JP5364077B2 (ja) 車両用ブレーキシステムの入力装置
JP2012106648A (ja) 車両用ブレーキシステム
JP5193270B2 (ja) 電動ブレーキアクチュエータの車体取付構造
JP5369077B2 (ja) 電動ブレーキアクチュエータ取付構造
JP5715382B2 (ja) 車両用ブレーキシステム
JP5276646B2 (ja) 車両用ブレーキシステムの入力装置
JP5646965B2 (ja) 車両用構造物搭載室の配置構造
JP5364076B2 (ja) 車両用ブレーキシステムの入力装置
JP5537391B2 (ja) 車両用ブレーキシステム及びその入力装置
JP5602596B2 (ja) 車両用ブレーキシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842089

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13885889

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011842089

Country of ref document: EP