WO2012066752A1 - サセプタ及びエピタキシャルウェーハの製造方法 - Google Patents

サセプタ及びエピタキシャルウェーハの製造方法 Download PDF

Info

Publication number
WO2012066752A1
WO2012066752A1 PCT/JP2011/006284 JP2011006284W WO2012066752A1 WO 2012066752 A1 WO2012066752 A1 WO 2012066752A1 JP 2011006284 W JP2011006284 W JP 2011006284W WO 2012066752 A1 WO2012066752 A1 WO 2012066752A1
Authority
WO
WIPO (PCT)
Prior art keywords
susceptor
wafer
circumference section
counterbore
epitaxial
Prior art date
Application number
PCT/JP2011/006284
Other languages
English (en)
French (fr)
Inventor
大西 理
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to US13/824,731 priority Critical patent/US9797066B2/en
Priority to DE112011103491.1T priority patent/DE112011103491B4/de
Priority to JP2012544100A priority patent/JP5565472B2/ja
Priority to CN201180054726.8A priority patent/CN103210475B/zh
Priority to KR1020137012068A priority patent/KR101808054B1/ko
Publication of WO2012066752A1 publication Critical patent/WO2012066752A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus

Definitions

  • the present invention relates to a susceptor and an epitaxial wafer manufacturing method, and more specifically, a susceptor capable of reducing deposits (deposition) generated on the outer periphery of a wafer back surface during epitaxial vapor deposition and an epitaxial wafer using the susceptor. It relates to the manufacturing method.
  • a susceptor that penetrates to the back surface of the susceptor and is provided with an open through hole is often used for the purpose of improving the peripheral resistivity distribution and improving the back surface appearance (Patent Document 1).
  • Various quality improvements were achieved by the through-holes provided in the susceptor, but at the same time, local deposition (hereinafter referred to as “backside deposit”) on the outer periphery of the backside of the wafer occurred. It was.
  • the source gas is flowed to the wafer front side, but the source gas may circulate to the back surface of the susceptor due to the mechanism of the epitaxial manufacturing apparatus.
  • the source gas that has entered the back surface of the susceptor enters the back surface of the wafer further from the through hole of the susceptor, reacts on the back surface of the wafer, and back surface deposition occurs.
  • the rear surface deposit of the wafer is locally in the vicinity of the contact portion between the susceptor and the wafer, that is, the outer peripheral portion of the back surface of the wafer (the portion having a radius of about 147 to 149 mm from the center of the wafer if the wafer has a diameter of 300 mm). It is generated and its height changes depending on the reaction time, but reaches several hundred nm.
  • the thickness shape of the epitaxial wafer increases rapidly at the outer peripheral portion, which causes deterioration of the flatness.
  • the back surface deposition is a great obstacle to the manufacture of advanced products.
  • the backside deposit is concentrated on the part where the wafer and the susceptor overlap in close contact with each other, that is, the part where the susceptor is placed, and the height of the backside deposit varies according to the amount of heating on the susceptor side.
  • Patent Document 2 a protrusion is provided at a position corresponding to the wafer outer peripheral portion on the back surface of the susceptor to increase the heat retention effect by increasing the heat capacity of the susceptor. It describes the suppression of occurrence.
  • the present inventor has inferred from the experimental results and experience so far that the backside deposit has a close relationship with the heat transfer generated between the wafer and the susceptor, that is, the wafer outer periphery is in contact with the wafer and the susceptor.
  • the wafer and the susceptor are close to each other, it is assumed that the rear surface deposit is likely to occur due to the temperature higher than the inner peripheral portion of the wafer, and the thermal conditions of the outer peripheral portion and inner peripheral portion of the wafer are constant. I tried to solve the problem.
  • the present invention increases the heat capacity of the outer periphery of the susceptor by increasing the thickness of the susceptor and equalizes the thermal conditions at the outer peripheral portion and the inner peripheral portion of the wafer.
  • An object of the present invention is to provide a method of manufacturing an epitaxial wafer in which an epitaxial layer is vapor-phase grown using the susceptor.
  • the present invention provides a susceptor that supports a semiconductor substrate when performing vapor phase growth of an epitaxial layer, and the top surface of the susceptor includes a counterbore in which the semiconductor substrate is disposed.
  • the counterbore formed has a two-stage structure having an upper counterbore part that supports an outer peripheral edge of the semiconductor substrate, and a lower counterbore part that is lower than the upper counterbore part and formed on the center side.
  • the lower counterbore part is formed with a hole that penetrates to the back surface of the susceptor and is open even when the vapor phase growth is performed, and at least on the back surface side of the susceptor A susceptor is provided in which a protrusion is provided at a position corresponding to an upper counterbore.
  • the susceptor has an increased heat capacity due to an increase in the thickness of the position corresponding to the upper counterbore part, and therefore the temperature of the wafer outer peripheral part is difficult to rise.
  • the inner peripheral portion can be made constant, and the occurrence of backside deposits can be suppressed without impairing the nanotopology quality of the wafer surface and the peripheral resistivity distribution quality.
  • the thickness of the protruding portion is not more than three times the thickness of the susceptor other than the protruding portion at the position corresponding to the upper counterbore portion.
  • the thermal condition between the outer peripheral portion and the inner peripheral portion of the wafer can be made more accurate and constant, and therefore, the rear surface deposit that is the effect of the present invention can be more effectively suppressed.
  • a groove is formed on the protruding portion.
  • the grooves have a lattice shape.
  • the temperature of the protruding portion can be further effectively reduced, and the back surface deposition can be suppressed.
  • the depth of the groove is preferably 1/10 or more of the thickness of the susceptor at the position corresponding to the upper counterbore.
  • the temperature of the protruding portion can be further effectively reduced, and the occurrence of backside deposit can be suppressed.
  • the present invention is also a method for producing an epitaxial wafer, wherein the wafer is placed on the susceptor countersunk using the susceptor of the present invention, and a vapor phase of an epitaxial layer is formed on the wafer while flowing a raw material gas.
  • An epitaxial wafer manufacturing method characterized by performing growth is provided.
  • the thermal conditions of the wafer outer peripheral portion and the inner peripheral portion can be made constant, and the The occurrence of backside deposits can be suppressed without deteriorating the topology quality or the outer peripheral resistivity distribution quality.
  • an epitaxial wafer in which generation of backside deposits is suppressed can be manufactured.
  • FIG. 1 shows a schematic cross-sectional view of an epitaxial growth apparatus used in the present invention.
  • the schematic bottom view of the susceptor of this invention, the schematic sectional drawing, and the figure which expanded one part of the protrusion part are shown.
  • the results of vapor phase growth of an epitaxial layer on the wafer surface using the conventional susceptor and the susceptor of the present invention and evaluating the back surface of the wafer by WaferSight are shown.
  • the vapor phase growth of the epitaxial layer was carried out on the wafer surface using the susceptor of this invention, and the result of having evaluated the wafer back surface by UA3P is shown.
  • the flowchart which showed the flow of the process of the manufacturing method of the epitaxial wafer to which this invention is applied is shown.
  • FIG. 5 shows a flow chart of the procedure of the epitaxial wafer manufacturing method to which the present invention is applied.
  • a wafer silicon wafer
  • the present invention can be used not only for silicon wafers but also for compound semiconductor wafers such as silicon carbide wafers, GaP wafers, and GaAs wafers.
  • the silicon wafer is appropriately cleaned such as RCA cleaning.
  • a cleaning method in this cleaning step in addition to a typical RCA cleaning, a method in which the concentration and type of a chemical solution are changed within a normal range can be used.
  • the silicon wafer is transferred to the epitaxial growth apparatus for processing.
  • a schematic diagram of an example of an epitaxial growth apparatus used in the step (c) and thereafter is shown in FIG.
  • the epitaxial growth apparatus 51 supports the chamber 52, the susceptor 71 disposed inside the chamber, and the susceptor from below, and carries the wafer into the susceptor support means 53 and the chamber 52 that can be rotated up and down, and vice versa.
  • a wafer transfer port 54 for carrying out, a gas introduction pipe 55 for supplying various gases into the chamber, a hydrogen gas supply means (not shown) for supplying hydrogen gas into the chamber, connected to the gas introduction pipe 55, silane, etc.
  • a source gas supply means for supplying a source gas, a gas discharge pipe 57 for discharging various gases from the chamber, a heating means 58 provided outside the chamber 52, a silicon wafer is transferred into the chamber, and the chamber 52 It comprises a wafer transfer means (not shown) for transferring a silicon wafer from the inside.
  • the susceptor 71 may have a lift pin through-hole 73 formed therein.
  • the lift pin 75 is inserted through the lift pin through-hole 73.
  • lift pin lifting / lowering means capable of moving the lift pin 75 up and down relatively with respect to the susceptor may be provided inside the chamber 52.
  • FIG. 2A is a bottom view
  • FIG. 2B is a cross-sectional view
  • FIG. 2C is an enlarged view of a portion of the protrusion 76.
  • a counterbore 72 for positioning a silicon wafer to be placed is formed on the susceptor 71.
  • the counterbore 72 has an upper counterbore 72a that supports the outer peripheral edge of the wafer W and a lower stage than the upper counterbore.
  • a two-stage structure having a lower counterbore 72b formed on the center side is formed.
  • a large number of through holes 74 are formed in substantially the entire surface of the lower counterbore portion 72b.
  • a protrusion 76 (hereinafter also referred to as a block) is provided at a position corresponding to the upper counterbore portion on the back surface of the susceptor.
  • the projecting portion 76 can be formed by bringing a block-like projection into close contact with the back surface of the susceptor, or the back surface is processed when the susceptor itself is formed, and the projection may be formed on the back surface of the susceptor in advance. Since the protrusion 76 is provided, the thickness of the position corresponding to the upper counterbore portion of the susceptor is increased and the heat capacity is also increased.
  • the thermal condition with the part constant, and to suppress the occurrence of backside deposition without deteriorating the nanotopology quality and the peripheral resistivity distribution quality of the wafer main surface.
  • the thickness of the protruding portion 76 is set to be three times or less the thickness of the susceptor other than the protruding portion at a position corresponding to the upper counterbore portion, the susceptor at the time of heating due to an excessively large heat capacity difference Damage can be prevented.
  • a protrusion having a groove 77 formed on the protrusion can be used. Furthermore, it is possible to use the groove 77 having a lattice shape. Still further, the groove 77 having a depth that is 1/10 or more of the thickness of the susceptor at the position corresponding to the upper counterbore part can be used. Since the protrusions 76 are provided with the grooves 77, a portion that is shaded against lamp heating can be inevitably formed on the protrusions, and the grooves 77 have a large surface area.
  • an epitaxial layer is vapor-phase grown on the surface of the silicon wafer as follows.
  • a silicon wafer is transferred into the chamber 52 using a wafer transfer means (not shown) and placed on the spot facing portion 72 of the susceptor 71.
  • a wafer transfer means not shown
  • a commonly used placement method can be applied in addition to the method using the lift pins 75.
  • hydrogen gas is introduced into the chamber 52 from the hydrogen gas supply means through the gas introduction pipe 55 and heated by the heating means 58 to perform hydrogen treatment.
  • the natural oxide film generated on the surface of the silicon wafer is removed.
  • step (e) vapor phase growth of the epitaxial layer is performed on the surface of the silicon wafer.
  • the vapor phase growth of the epitaxial layer is performed by introducing a source gas such as monosilane, trichlorosilane, or silicon tetrachloride and hydrogen gas serving as a carrier gas into the chamber 52 and heating.
  • an epitaxial wafer in which an epitaxial layer is formed on the surface of the silicon wafer can be manufactured.
  • a protrusion is provided in the portion corresponding to the upper counterbore portion on the back surface of the susceptor, and the thickness of the position corresponding to the upper counterbore portion of the susceptor is increased and the heat capacity is also increased. Because it is increased, it is possible to make the thermal conditions of the wafer outer periphery and inner periphery constant, and suppress the occurrence of backside deposition without degrading the nanotopology quality and outer peripheral resistivity distribution quality of the wafer main surface. Can do.
  • a range of a radius of about 145 mm to 149 mm from the center of the back surface of the silicon wafer that is, a range corresponding to the back surface portion of the susceptor provided with the protruding portion according to the present invention on the back surface of the silicon wafer, is each a WaferSight. Evaluation was performed using (manufactured by Panasonic Corporation) and UA3P (manufactured by KLA-Tencor Corporation), and the height of the back surface depot was measured. The measurement result by WaferSight at this time is shown in FIG. 3, the measurement result by UA3P is shown in FIG. 4, and the experimental result is shown in Table 1 below.
  • WaferSight is to measure the amount of displacement of the wafer surface from the number and width of interference fringes caused by optical interference between the reflected light from the wafer and the reflected light from the reference surface. It is a measuring instrument in principle. In the actual measurement, the above-described measurement is performed on both surfaces of the wafer, and the total thickness change is calculated from the thickness of one specific point measured in advance.
  • the UA3P is a measuring machine that performs measurement using a stylus type surface displacement. The principle is that the probe is pressed against the object with a weak constant load, and the displacement of the moving needle according to the unevenness of the object is measured with a laser.
  • the susceptor portion of the present invention in which the block is provided is compared with the conventional susceptor portion in which the block is not provided in the portion corresponding to the upper counterbore portion on the back surface.
  • the height of the backside depot is low. Further, even when a block is provided on the back surface of the susceptor, if the thickness of the block is not more than three times the thickness of the susceptor other than the protruding portion at a position corresponding to the upper counterbore portion, the heat capacity difference It is possible to prevent damage to the susceptor during heating due to an excessively large value.
  • the block is grooved, it is necessary to make a part on the block that will be shaded against lamp heating, and because the surface area increases, it is easy to dissipate heat. Therefore, the occurrence of backside deposit can be more effectively suppressed.
  • the experimental result in the portion where the block is not provided is the same as the case where vapor phase growth of the epitaxial layer is performed using the conventional susceptor which is not provided with the entire circumferential projection portion under the same conditions as the above epitaxial growth conditions. became.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same function and effect. Are included in the technical scope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 本発明は、サセプタの厚さを増大させることによって、サセプタ外周部の熱容量を増大させ、ウェーハ外周部と内周部とにおける熱的条件を等しくすることができるサセプタであり、さらにそのサセプタを用いてエピタキシャル層の気相成長を行うエピタキシャルウェーハの製造方法である。本発明者は、これまでの実験結果や経験から、裏面デポはウェーハとサセプタに生じる熱伝達に密接な関係が有ると推察し、すなわち、ウェーハ外周部は、ウェーハとサセプタとが接触し、あるいはウェーハとサセプタとが近接しているため、ウェーハ内周部よりも温度が高くなることによって裏面デポが発生しやすくなると推察し、ウェーハ裏面における、ウェーハ外周部と内周部との熱的条件を一定にすることで問題の解決を試みた。

Description

サセプタ及びエピタキシャルウェーハの製造方法
 本発明はサセプタ及びエピタキシャルウェーハの製造方法に関し、具体的には、エピタキシャル気相成長時に、ウェーハ裏面外周に発生する析出物(デポジション)を低減することができるサセプタ及び該サセプタを用いたエピタキシャルウェーハの製造方法に関する。
 
 シリコンウェーハのエピタキシャル成長において、外周抵抗率分布の向上や裏面外観の改善を目的として、しばしば、サセプタ裏面まで貫通し、開放された貫通孔が設けられたサセプタが用いられる(特許文献1)。サセプタに設けられた貫通孔によって、種々の品質改善が達成されたが、それと同時に、ウェーハの裏面外周部への局所的なデポジション(以下、「裏面デポ」と呼ぶ)が発生するようになった。
 通常、原料ガスはウェーハ表面側に流されるが、エピタキシャル製造装置の機構上、サセプタの裏面にも原料ガスが回り込むことがある。サセプタの裏面に回りこんだ原料ガスは、サセプタの貫通孔から更にウェーハの裏面に回り込み、ウェーハの裏面で反応し、裏面デポが発生してしまう。
 このとき、ウェーハの裏面デポは、サセプタとウェーハとの接触部近傍、即ち、ウェーハ裏面の外周部分(直径300mmのウェーハであれば、ウェーハの中心から半径147~149mm程度の部分)で局所的に発生し、その高さは反応時間に応じて変化するが、数百nmに至る。
 裏面デポが発生したエピタキシャルウェーハの平坦度を裏面基準で測定した場合、エピタキシャルウェーハの厚み形状は、外周部分で急激に増大した形となり、平坦度悪化の要因となる。デバイスが微細化され、ウェーハ外周部分にまで高平坦度が求められる昨今において、裏面デポは先端品製造に対して大きな妨げとなる。
 従来、裏面デポはウェーハとサセプタとが接触または非常に近接して重なり合う部分、すなわちサセプタの載り代の部分に集中して発生し、裏面デポ高さはサセプタ側の加熱量に応じて変動することから、前記サセプタの載り代を可能な限り小さくする方法や、逆にサセプタの載り代を拡大し、裏面デポを連続的に発生させる方法、またはサセプタ下側のランプによるランプ加熱を低減するという方法などが主として用いられ、対応されてきた。
 しかしながら、上記の方法は、裏面デポに対しては有効ながらも、スリップ転位が発生しやすい、表面のナノトポロジー品質を損ねる、外周抵抗率分布品質を損ねるといった弊害もあった。
 また、特許文献2には、サセプタ裏面のウェーハ外周部に対応する位置に突出物を設け、サセプタの熱容量を増大させて保温効果を高めることにより、ウェーハ外周部を加温して、スリップ転位の発生を抑制することについて記載されている。
 
特開2003-229370 特開2003-37071
 本発明者は、これまでの実験結果や経験から、裏面デポはウェーハとサセプタとの間に生じる熱伝達に密接な関係が有ると推察し、すなわち、ウェーハ外周部は、ウェーハとサセプタとが接触し、あるいはウェーハとサセプタとが近接しているため、ウェーハ内周部よりも温度が高くなることによって裏面デポが発生しやすくなると推察し、ウェーハ外周部と内周部との熱的条件を一定にすることで問題の解決を試みた。
 すなわち、本発明は、上記問題を解消するために、サセプタの厚さを増大させることによって、サセプタ外周部の熱容量を増大させ、ウェーハの外周部と内周部とにおける熱的条件を等しくすることができるサセプタを提供し、さらにそのサセプタを用いてエピタキシャル層の気相成長を行うエピタキシャルウェーハの製造方法を提供することを目的とする。
 上記課題を解決するため、本発明では、エピタキシャル層の気相成長を行う際に半導体基板を支持するサセプタであって、該サセプタの上面には、内部に前記半導体基板が配置される座ぐりが形成され、該座ぐりは、前記半導体基板の外周縁部を支持する上段座ぐり部と、該上段座ぐり部よりも下段でかつ中心側に形成された下段座ぐり部とを有する二段構造を成し、前記下段座ぐり部には、前記サセプタの裏面まで貫通し、前記気相成長を行う際にも開放状態となる孔部が形成されており、前記サセプタの裏面側には、少なくとも前記上段座ぐり部に対応する位置に突出部が設けられているものであることを特徴とするサセプタを提供する。
 このようにすることによって、前記サセプタは、前記上段座ぐり部に対応する位置の厚みが増大されることで熱容量も増大されているので、ウェーハ外周部の温度が上がりにくくなるため、ウェーハ外周部と内周部との熱的条件を一定にすることができ、ウェーハ表面のナノトポロジー品質や外周抵抗率分布品質を損ねることなく裏面デポの発生を抑制することができる。
 またこのとき、前記突出部の厚みが、前記上段座ぐり部に対応する位置における、前記突出部以外のサセプタの厚みの3倍以下であることが好ましい。
 このようにすることによって、ウェーハ外周部と内周部との熱的条件をより正確に一定とすることができるため、本発明の効果である裏面デポをより効果的に抑制することができる。
 またこのとき、前記突出部に溝が施されていることが好ましい。
 このようにすることによって、ランプ加熱に対して影となるような部分を前記突出部上に必然的に作ることができ、また表面積が大きくなることによって放熱もし易いことから前記突出部の温度を下げることができるため、本発明の効果である裏面デポの抑制をより効果的に行うことができる。
 またこのとき、前記溝が格子状であることが好ましい。
 このようにすることにより、さらに効果的に前記突出部の温度を下げることができ、裏面デポを抑制することができる。
 またこのとき、前記溝の深さが、前記上段座ぐり部に対応する位置のサセプタの厚みの1/10以上であることが好ましい。
 このようにすることによって、さらに効果的に前記突出部の温度を下げることができ、裏面デポの発生を抑制することができる。
 また、本発明は、エピタキシャルウェーハの製造方法であって、前記本発明のサセプタを用いて、該サセプタの座ぐりにウェーハを載置し、原料ガスを流しながら前記ウェーハ上にエピタキシャル層の気相成長を行うことを特徴とするエピタキシャルウェーハの製造方法を提供する。
 このように気相成長を行うことによって、ウェーハ表面のナノトポロジー品質や外周抵抗率分布品質を損ねることなく、裏面デポの発生が抑制されたエピタキシャルウェーハを製造することができる。
 以上説明したように、本発明によれば、ウェーハ表面上にエピタキシャル層を気相成長させる際に、ウェーハ外周部と内周部との熱的条件を一定にすることができ、ウェーハ表面のナノトポロジー品質や外周抵抗率分布品質を損ねることなく裏面デポの発生を抑制することができる。また、こういったサセプタを用いてウェーハ表面上にエピタキシャル層の気相成長を行うことにより、裏面デポの発生が抑制されたエピタキシャルウェーハを製造することができる。
 
本発明において用いられるエピタキシャル成長装置の概略断面図を示している。 本発明のサセプタの概略底面図、概略断面図及び突出部の1部分を拡大した図を示している。 本発明の実験例において、従来サセプタと本発明のサセプタをそれぞれ用いてウェーハ表面上にエピタキシャル層の気相成長を行い、そのウェーハ裏面をWaferSightによって評価した結果を示している。 本発明の実験例において、本発明のサセプタを用いてウェーハ表面上にエピタキシャル層の気相成長を行い、そのウェーハ裏面をUA3Pによって評価した結果を示している。 本発明が適用されるエピタキシャルウェーハの製造方法の処理の流れを示したフロー図を示している。
 以下、本発明の実施の形態を、図面を参照しながら詳細に説明するが、本発明はこれらに限定されるものではない。
 本発明が適用されるエピタキシャルウェーハの製造方法の手順のフロー図を図5に示す。
 まず、工程(a)では、エピタキシャル層を成長させるウェーハ(シリコンウェーハ)を準備する。ここで、本発明はシリコンウェーハに限らず、シリコンカーバイドウェーハや、GaPウェーハ、GaAsウェーハなどの化合物半導体ウェーハ等にも用いることができる。
 次に、工程(b)において、シリコンウェーハに対し、適宜RCA洗浄等の洗浄を行う。
 この洗浄工程における洗浄法は、典型的なRCA洗浄の他、薬液の濃度や種類を通常行われる範囲で変更したものを用いることもできる。
 工程(c)以降では、エピタキシャル成長装置にシリコンウェーハを移送して処理を行う。工程(c)以降で用いるエピタキシャル成長装置の一例の概略図を図1に示した。
 エピタキシャル成長装置51は、チャンバー52と、チャンバー内部に配置されたサセプタ71、サセプタを下方から支持し、回転上下動自在なサセプタ支持手段53、チャンバー52内にウェーハを搬入したり、逆に外へと搬出したりするためのウェーハ搬送口54、チャンバー内に各種ガスを供給するガス導入管55、ガス導入管55に接続され、チャンバー内に水素ガスを供給する図示しない水素ガス供給手段及びシラン等の原料ガスを供給する図示しない原料ガス供給手段、チャンバー内から各種ガスを排出するガス排出管57、チャンバー52の外部に備えられた加熱手段58、チャンバー内にシリコンウェーハを移送し、また、チャンバー52内からシリコンウェーハを移送する図示しないウェーハ移送手段等から構成される。
 尚、サセプタ71には、リフトピン用貫通孔73が形成されているものであってもよい。リフトピン用貫通孔73には、リフトピン75が挿通される。
 また、チャンバー52の内部にはリフトピン75をサセプタに対して相対的に上下させることができるリフトピン昇降手段を設けてもよい。
 さらに、本発明であるサセプタ71の拡大概略図を図2に示した。図2(a)は底面図であり、図2(b)は断面図である。また、図2(c)は、突出部76の1部分を拡大した図である。
 サセプタ71には、載置するシリコンウェーハを位置決めする座ぐり72が形成され、該座ぐり72はウェーハWの外周縁部を支持する上段座ぐり部72aと、該上段座ぐり部よりも下段でかつ中心側に形成された下段座ぐり部72bとを有する二段構造を成している。また、下段座ぐり部72bの略全面に多数の貫通孔74が形成されている。
 また、サセプタ裏面の上段座ぐり部に対応する位置には突出部76(以下、ブロックと呼ぶこともある)が設けられている。
 尚、突出部76は、サセプタ裏面にブロック状の突起物を密着させることによって形成することもできるし、サセプタ自体の形成時に裏面加工して、予めサセプタ裏面に突起物を形成してもよい。
 上記突出部76を設けたことにより、サセプタの前記上段座ぐり部に対応する位置の厚みが増大されるとともに熱容量も増大されるので、この部分の温度を上がりにくくし、ウェーハ外周部と内周部との熱的条件を一定にすることができ、ウェーハ主表面のナノトポロジー品質や外周抵抗率分布品質を損ねることなく裏面デポの発生を抑制することができる。
 また、突出部76の厚みが、前記上段座ぐり部に対応する位置における、前記突出部以外のサセプタの厚みの3倍以下とすることにより、熱容量差が大きくなりすぎることによる加熱時のサセプタの破損を防止できる。
 さらに、図2(c)に示すように、前記突出部に溝77が施されているものを用いることができる。またさらに、前記溝77が、格子状であるものを用いることができる。またさらには、前記溝77の深さが、前記上段座ぐり部に対応する位置のサセプタの厚みの1/10以上であるものを用いることができる。
 前記突出部76に前記溝77が施されていることにより、ランプ加熱に対して影となるような部分を前記突出部上に必然的に作ることができ、また、前記溝77により表面積が大きくなって放熱し易くなり、それによって前記突出部の温度を下げることができるため、本発明の効果である裏面デポの抑制をより効果的に行うことができる。さらに前記溝77が格子状であるものを用いることや、前記溝77の深さが、前記上段座ぐり部72aに対応する位置のサセプタの厚みの1/10以上であるものを用いることにより、さらに効果的に裏面デポを抑制することができる。
 このようなサセプタ71を具備したエピタキシャル成長装置51を用いて、以下のようにして、シリコンウェーハ表面上にエピタキシャル層を気相成長させる。
 まず、工程(c)において、図示しないウェーハ移送手段を用いてチャンバー52内にシリコンウェーハを移送し、サセプタ71の座ぐり部72に載置する。シリコンウェーハのサセプタ71への載置方法は、リフトピン75を用いる方法の他、通常用いられる載置方法を適用できる。
 次に、自然酸化膜除去工程(d)では、チャンバー52内に、水素ガス供給手段からガス導入管55を通して、チャンバー52内に水素ガスを導入し、加熱手段58によって加熱して水素処理を行い、シリコンウェーハ表面に生じた自然酸化膜を除去する。
 次に、工程(e)において、シリコンウェーハの表面に、エピタキシャル層の気相成長を行う。このエピタキシャル層の気相成長は、モノシランやトリクロロシラン、四塩化珪素などの原料ガスと、キャリアガスとなる水素ガスとをチャンバー52内に導入し、加熱することによって行う。
 このようにして、シリコンウェーハの表面上にエピタキシャル層が形成されたエピタキシャルウェーハを製造することができる。ここで用いられたエピタキシャル成長装置において、サセプタ裏面の上段座ぐり部に対応する部分には突出部が設けられており、サセプタの前記上段座ぐり部に対応する位置の厚みが増大されるとともに熱容量も増大されるので、ウェーハ外周部と内周部との熱的条件を一定にすることができ、ウェーハ主表面のナノトポロジー品質や外周抵抗率分布品質を損ねることなく裏面デポの発生を抑制することができる。
 
 以下、実験例を示して本発明をより具体的に説明するが、本発明はこれに限定されるものではない。
 
 (実験例)
 サセプタの座ぐりにシリコンウェーハを載置し、原料ガスを流しながら前記シリコンウェーハ表面上にエピタキシャル層の気相成長を行うエピタキシャル成長装置において、図4に示すように、ひとつのサセプタ裏面の、厚みが4mmである上段座ぐり部に対応する部分の円周方向上に、厚さ3.8mmのブロック、厚さ7.6mmのブロック、3.8mmの深さの溝が施された厚さ7.6mmのブロック及びブロックを設けない部分を均等に設け、反応圧力を常圧、反応温度を1100℃、成長速度を2.7μm/minとして、直径300mmのシリコンウェーハ表面上に厚さ5μmのエピタキシャル層の気相成長を行った。このようにすることで、サセプタ裏面の突出部の有無等以外の条件を完全に一致させて、本発明の効果を検証することができる。
 このとき、シリコンウェーハ裏面の中心から半径145mm~149mm程度の範囲、すなわち、シリコンウェーハ裏面において、本発明である突出部が設けられているサセプタの裏面部分に対応する範囲をそれぞれ評価装置であるWaferSight(パナソニック(株)製)及びUA3P(KLA-Tencor Corporation製)を用いて評価し、裏面デポの高さを測定した。このときのWaferSightによる測定結果を図3に、UA3Pによる測定結果を図4に、さらにこの実験結果を下記表1に示す。
 ここで、WaferSightとは、ウェーハに光を入射し、ウェーハからの反射光と基準面からの反射光との光学干渉によって生じる干渉縞の数と幅から、ウェーハ表面の変位量を計測することを原理とする測定器である。実際の測定においては、ウェーハ両面に前述の計測を行い、予め測定しておいた、ある特定の1点の厚みから全体の厚み変化を算出する。
 また、UA3Pは触針式表面変位量によって測定を行う測定機である。探針を微弱な一定荷重で対象に押し当て、対象の凹凸に応じて動く針の変位量をレーザーで計測することを原理とする。
Figure JPOXMLDOC01-appb-T000001
 図3、図4及び表1からわかるように、裏面の上段座ぐり部に対応する部分にブロックが設けられていない従来サセプタ部分に比べ、ブロックが設けられている本発明のサセプタ部分の方が裏面デポの高さが低くなっている。また、サセプタ裏面にブロックを設けた場合であっても、該ブロックの厚さが、前記上段座ぐり部に対応する位置における前記突出部以外のサセプタの厚みの3倍以下であれば、熱容量差が大きくなりすぎることによる加熱時のサセプタの破損を防止できる。さらに、ブロックに溝が施されていれば、ランプ加熱に対して影となるような部分をブロック上に必然的に作ることができ、また表面積が大きくなることによって放熱もし易いことからブロックの温度を下げることができるため、裏面デポの発生をさらに効果的に抑制することができる。このとき、ブロックを設けない部分における実験結果は、上記エピタキシャル成長条件と同じ条件で、全周突出部が設けられていない従来サセプタを用いてエピタキシャル層の気相成長を行った場合と同様の結果となった。
 なお、本発明は上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (6)

  1.  エピタキシャル層の気相成長を行う際に半導体基板を支持するサセプタであって、該サセプタの上面には、内部に前記半導体基板が配置される座ぐりが形成され、該座ぐりは、前記半導体基板の外周縁部を支持する上段座ぐり部と、該上段座ぐり部よりも下段でかつ中心側に形成された下段座ぐり部とを有する二段構造を成し、前記下段座ぐり部には、前記サセプタの裏面まで貫通し、前記気相成長を行う際にも開放状態となる孔部が形成されており、前記サセプタの裏面側には、少なくとも前記上段座ぐり部に対応する位置に突出部が設けられているものであることを特徴とするサセプタ。
     
  2.  前記突出部の厚みが、前記上段座ぐり部に対応する位置における、前記突出部以外のサセプタの厚みの3倍以下であることを特徴とする請求項1に記載のサセプタ。
     
  3.  前記突出部に溝が施されているものであることを特徴とする請求項1または2に記載のサセプタ。
     
  4.  前記溝が、格子状であることを特徴とする請求項3に記載のサセプタ。
     
  5.  前記溝の深さが、前記上段座ぐり部に対応する位置のサセプタの厚みの1/10以上であることを特徴とする請求項3または4に記載のサセプタ。
     
  6.  エピタキシャルウェーハの製造方法であって、前記請求項1乃至請求項5のいずれか1項に記載のサセプタを用いて、該サセプタの座ぐりにウェーハを載置し、原料ガスを流しながら前記ウェーハ上にエピタキシャル層の気相成長を行うことを特徴とするエピタキシャルウェーハの製造方法。
PCT/JP2011/006284 2010-11-15 2011-11-10 サセプタ及びエピタキシャルウェーハの製造方法 WO2012066752A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/824,731 US9797066B2 (en) 2010-11-15 2011-11-10 Susceptor and method for manufacturing epitaxial wafer
DE112011103491.1T DE112011103491B4 (de) 2010-11-15 2011-11-10 Suszeptor und Verfahren zum Herstellen eines Epitaxialwafers
JP2012544100A JP5565472B2 (ja) 2010-11-15 2011-11-10 サセプタ及びエピタキシャルウェーハの製造方法
CN201180054726.8A CN103210475B (zh) 2010-11-15 2011-11-10 衬托器和外延晶片的制造方法
KR1020137012068A KR101808054B1 (ko) 2010-11-15 2011-11-10 서셉터 및 에피택셜 웨이퍼의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010255313 2010-11-15
JP2010-255313 2010-11-15

Publications (1)

Publication Number Publication Date
WO2012066752A1 true WO2012066752A1 (ja) 2012-05-24

Family

ID=46083704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006284 WO2012066752A1 (ja) 2010-11-15 2011-11-10 サセプタ及びエピタキシャルウェーハの製造方法

Country Status (6)

Country Link
US (1) US9797066B2 (ja)
JP (1) JP5565472B2 (ja)
KR (1) KR101808054B1 (ja)
CN (1) CN103210475B (ja)
DE (1) DE112011103491B4 (ja)
WO (1) WO2012066752A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022064786A1 (ja) * 2020-09-28 2022-03-31 エピクルー株式会社 気相成長装置及びエピタキシャルウェーハの製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5477314B2 (ja) * 2011-03-04 2014-04-23 信越半導体株式会社 サセプタ及びこれを用いたエピタキシャルウェーハの製造方法
JP6539929B2 (ja) 2015-12-21 2019-07-10 昭和電工株式会社 ウェハ支持機構、化学気相成長装置およびエピタキシャルウェハの製造方法
JP6847199B2 (ja) * 2016-07-22 2021-03-24 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated エピの均一性調整を改善するための加熱変調器
CN106252209B (zh) * 2016-08-30 2017-05-24 四川广瑞半导体有限公司 一种功率芯片用外延片生产工艺
KR102370157B1 (ko) * 2017-08-31 2022-03-03 가부시키가이샤 사무코 서셉터, 에피택셜 성장 장치, 에피택셜 실리콘 웨이퍼의 제조 방법, 그리고 에피택셜 실리콘 웨이퍼
CN111286723A (zh) * 2018-12-10 2020-06-16 昭和电工株式会社 基座和化学气相沉积装置
KR102460313B1 (ko) * 2018-12-13 2022-10-28 주식회사 원익아이피에스 기판 처리 장치의 서셉터 및 기판 처리 장치
CN110429050B (zh) * 2019-08-05 2022-02-08 西安奕斯伟材料科技有限公司 一种外延生长基座
CN113699586B (zh) * 2021-08-27 2022-07-26 江苏第三代半导体研究院有限公司 一种带空气桥结构的托盘及外延生长方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197532A (ja) * 2001-12-21 2003-07-11 Sumitomo Mitsubishi Silicon Corp エピタキシャル成長方法及びエピタキシャル成長用サセプター
JP2007224375A (ja) * 2006-02-24 2007-09-06 Nuflare Technology Inc 気相成長装置
JP2007294942A (ja) * 2006-03-30 2007-11-08 Sumco Techxiv株式会社 エピタキシャルウェーハの製造方法及び製造装置
JP2010016183A (ja) * 2008-07-03 2010-01-21 Sumco Corp 気相成長装置、エピタキシャルウェーハの製造方法
JP2010141061A (ja) * 2008-12-10 2010-06-24 Sumco Techxiv株式会社 エピタキシャルウェーハの製造方法に用いる冶具

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03184325A (ja) 1989-12-13 1991-08-12 Mitsubishi Electric Corp 半導体製造装置
DE69126724T2 (de) * 1990-03-19 1998-01-15 Toshiba Kawasaki Kk Vorrichtung zur Dampfphasenabscheidung
JPH0963966A (ja) * 1995-08-24 1997-03-07 Toshiba Microelectron Corp 気相成長装置
JP2001010894A (ja) * 1999-06-24 2001-01-16 Mitsubishi Materials Silicon Corp 結晶成長用サセプタとこれを用いた結晶成長装置、およびエピタキシャル・ウェーハとその製造方法
US6902622B2 (en) * 2001-04-12 2005-06-07 Mattson Technology, Inc. Systems and methods for epitaxially depositing films on a semiconductor substrate
JP2003037071A (ja) 2001-07-25 2003-02-07 Shin Etsu Handotai Co Ltd サセプタ、気相成長装置および気相成長方法
JP2003229370A (ja) 2001-11-30 2003-08-15 Shin Etsu Handotai Co Ltd サセプタ、気相成長装置、エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ
US20050000449A1 (en) 2001-12-21 2005-01-06 Masayuki Ishibashi Susceptor for epitaxial growth and epitaxial growth method
WO2005034219A1 (ja) 2003-10-01 2005-04-14 Shin-Etsu Handotai Co., Ltd. シリコンエピタキシャルウェーハの製造方法、及びシリコンエピタキシャルウェーハ
US8021484B2 (en) * 2006-03-30 2011-09-20 Sumco Techxiv Corporation Method of manufacturing epitaxial silicon wafer and apparatus therefor
US9758871B2 (en) 2008-12-10 2017-09-12 Sumco Techxiv Corporation Method and apparatus for manufacturing epitaxial silicon wafer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197532A (ja) * 2001-12-21 2003-07-11 Sumitomo Mitsubishi Silicon Corp エピタキシャル成長方法及びエピタキシャル成長用サセプター
JP2007224375A (ja) * 2006-02-24 2007-09-06 Nuflare Technology Inc 気相成長装置
JP2007294942A (ja) * 2006-03-30 2007-11-08 Sumco Techxiv株式会社 エピタキシャルウェーハの製造方法及び製造装置
JP2010016183A (ja) * 2008-07-03 2010-01-21 Sumco Corp 気相成長装置、エピタキシャルウェーハの製造方法
JP2010141061A (ja) * 2008-12-10 2010-06-24 Sumco Techxiv株式会社 エピタキシャルウェーハの製造方法に用いる冶具

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022064786A1 (ja) * 2020-09-28 2022-03-31 エピクルー株式会社 気相成長装置及びエピタキシャルウェーハの製造方法
JP7557860B2 (ja) 2020-09-28 2024-09-30 エピクルー株式会社 気相成長装置及びエピタキシャルウェーハの製造方法

Also Published As

Publication number Publication date
JPWO2012066752A1 (ja) 2014-05-12
US20130180447A1 (en) 2013-07-18
KR20140018189A (ko) 2014-02-12
KR101808054B1 (ko) 2017-12-12
CN103210475B (zh) 2016-04-27
US9797066B2 (en) 2017-10-24
JP5565472B2 (ja) 2014-08-06
DE112011103491B4 (de) 2020-09-24
DE112011103491T5 (de) 2013-09-26
CN103210475A (zh) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5565472B2 (ja) サセプタ及びエピタキシャルウェーハの製造方法
JP5477314B2 (ja) サセプタ及びこれを用いたエピタキシャルウェーハの製造方法
JP5158093B2 (ja) 気相成長用サセプタおよび気相成長装置
WO2010013646A1 (ja) エピタキシャルウェーハの製造方法及びそれに用いられるウェーハの保持具
KR20170122277A (ko) 서셉터, 에피택셜 성장 장치 및, 에피택셜 웨이퍼
JP5834632B2 (ja) サセプタ、該サセプタを用いた気相成長装置およびエピタキシャルウェーハの製造方法
KR20050012936A (ko) 서셉터 및 이를 포함하는 증착 장치
KR20170126503A (ko) 서셉터 및 에피택셜 성장 장치
JP2010040534A (ja) サセプタ、気相成長装置およびエピタキシャルウェーハの製造方法
WO2005034219A1 (ja) シリコンエピタキシャルウェーハの製造方法、及びシリコンエピタキシャルウェーハ
WO2009084154A1 (ja) エピタキシャル成長用サセプタ
JP2009170676A (ja) エピタキシャルウェーハの製造装置及び製造方法
KR20110090832A (ko) 실리콘으로 구성되고 에피텍셜 증착된 층을 갖는 반도체 웨이퍼의 제조 방법
JP2011165964A (ja) 半導体装置の製造方法
JP3594074B2 (ja) シリコンエピタキシャルウェーハおよびその製造方法
JP5440589B2 (ja) 気相成長装置及びエピタキシャルウェーハの製造方法
TW201005803A (en) Silicon epitaxial wafer and method for manufacturing the same
JP5161748B2 (ja) 気相成長用サセプタ及び気相成長装置並びにエピタキシャルウェーハの製造方法
WO2019098033A1 (ja) サセプタ、エピタキシャルウェーハの製造方法
JP2000012470A (ja) 気相成長装置
JP2005197380A (ja) ウェーハ支持装置
JP2003289044A (ja) サセプタ、エピタキシャルウェーハの製造装置および製造方法
TW201332055A (zh) 基座
JP5140990B2 (ja) エピタキシャルシリコンウエーハの製造方法
JP6841359B1 (ja) シリコンエピタキシャルウェーハ製造用サセプタの製造方法及びシリコンエピタキシャルウェーハの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180054726.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012544100

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13824731

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137012068

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120111034911

Country of ref document: DE

Ref document number: 112011103491

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841887

Country of ref document: EP

Kind code of ref document: A1