WO2009084154A1 - エピタキシャル成長用サセプタ - Google Patents

エピタキシャル成長用サセプタ Download PDF

Info

Publication number
WO2009084154A1
WO2009084154A1 PCT/JP2008/003621 JP2008003621W WO2009084154A1 WO 2009084154 A1 WO2009084154 A1 WO 2009084154A1 JP 2008003621 W JP2008003621 W JP 2008003621W WO 2009084154 A1 WO2009084154 A1 WO 2009084154A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal substrate
single crystal
susceptor
outer peripheral
epitaxial growth
Prior art date
Application number
PCT/JP2008/003621
Other languages
English (en)
French (fr)
Inventor
Masato Ohnishi
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Priority to KR1020107013934A priority Critical patent/KR101516164B1/ko
Priority to US12/746,021 priority patent/US20110073037A1/en
Priority to DE112008003535T priority patent/DE112008003535T5/de
Priority to JP2009547876A priority patent/JP4661982B2/ja
Publication of WO2009084154A1 publication Critical patent/WO2009084154A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile

Definitions

  • the present invention relates to an epitaxial growth susceptor (hereinafter sometimes simply referred to as a “susceptor”) for supporting a single crystal substrate during epitaxial growth in an epitaxial growth apparatus that stacks an epitaxial layer on a single crystal substrate.
  • a susceptor for supporting a single crystal substrate during epitaxial growth in an epitaxial growth apparatus that stacks an epitaxial layer on a single crystal substrate.
  • Epitaxial growth technology is a technology for vapor-phase growth of single crystal thin film layers used in the manufacture of integrated circuits such as bipolar transistors and MOSLSI, and is a uniform single crystal thin film that conforms to the crystal orientation of the substrate on a clean semiconductor single crystal substrate. This is a very important technique because it is possible to grow an impurity and form a steep impurity gradient in a junction having a large dopant concentration difference.
  • This growth apparatus includes a reaction chamber provided with an epitaxial growth susceptor for placing a single crystal substrate therein, a heating means including a halogen lamp provided outside the reaction chamber, and the like. Of these, an apparatus for processing one by one is called a single wafer epitaxial growth apparatus.
  • FIG. 9 is a schematic view showing an example of a general single-wafer epitaxial growth apparatus (see JP 2004-319623 A) used conventionally.
  • This single-wafer epitaxial growth apparatus 101 has a reaction chamber 103 in which a single crystal substrate 102 on which an epitaxial layer is stacked is disposed, and introduces a source gas and a carrier gas into the reaction chamber 103.
  • the gas inlet 104 and the gas outlet 105 for discharging the gas are provided.
  • the reaction chamber 103 includes a susceptor 106 on which the single crystal substrate 102 is placed.
  • the upper wall 107 of the reaction chamber 103 is made of quartz glass.
  • a heating means 108 such as a halogen lamp for heating the single crystal substrate 102 is provided.
  • FIG. 10 shows an outline of an example of a conventional susceptor.
  • FIG. 10A is a plan view
  • FIG. 10B is a cross-sectional view of a part of the susceptor.
  • the counterbore 110 is formed on the susceptor 106, and the counterbore 110 has an outer peripheral region 111 and a central region 112 surrounded by the outer peripheral region 111.
  • a step 113 is formed at the boundary of the region 112.
  • the outer peripheral region 111 has a tapered shape, and the single crystal substrate 102 on which epitaxial growth is performed is abutted and supported.
  • the central region 112 has a step 113 so that the single crystal substrate 102 does not contact. It is formed at a position deeper than the outer peripheral region 111.
  • a through hole 114 is formed in the central region 112 in order to remove a natural oxide film on the back surface of the single crystal substrate 102 and to prevent formation of halos.
  • the susceptor 106 is formed as shown in FIG.
  • the single crystal substrate 102 is arranged in the counterbore 110, and the single crystal substrate 102 is rotated by the heating means 108 while the single crystal substrate 102 is rotated by a support shaft 109 that supports the susceptor 106 and a rotation mechanism (not shown) that rotates (rotates) the support shaft 109. 102 is heated to a predetermined temperature.
  • a source gas such as trichlorosilane diluted with a carrier gas such as hydrogen is supplied from the gas inlet 104 at a predetermined flow rate for a predetermined time. To do. In this way, an epitaxial substrate in which an epitaxial layer is stacked on the single crystal substrate 102 can be obtained.
  • the source gas is formed on the back surface of the single crystal substrate 102 from the through hole 114 formed in the central region 112 of the susceptor 106. , And deposits may be generated on the back surface of the single crystal substrate 102. Therefore, there is a problem that the flatness of the outer peripheral portion of the epitaxial substrate is deteriorated.
  • FIG. 10B also shows a deposition layer locally stacked on the outer peripheral side of the back surface of the single crystal substrate. The thickness of this deposition layer is about 0.05 to 0.3 ⁇ m although it depends on the reaction time.
  • the present invention has been made in view of the above problems, and provides an epitaxial growth susceptor capable of preventing local significant deposits from occurring on the outer peripheral side of the back surface of a single crystal substrate. With the goal.
  • the present invention provides an epitaxial growth susceptor having a counterbore for horizontally supporting a single crystal substrate in an epitaxial growth apparatus, and the counterbore is supported by contacting the single crystal substrate.
  • the counterbore outer region is tapered with an inclination angle greater than 0 ° and less than 1 ° and inclined to increase in depth toward the central region; and
  • a susceptor for epitaxial growth characterized by having a horizontal width of 3.3% or more of the diameter of a supported single crystal substrate.
  • the inclination angle of the outer peripheral region of the counterbore of the susceptor is lowered and the outer peripheral region is conventionally reduced. It is effective to expand the part where the single crystal substrate and the peripheral area of the counterbore of the susceptor overlap and expand the deposit on the back surface of the single crystal substrate gradually from the center side of the single crystal substrate. I found out.
  • the tapered outer peripheral region supported by contact with the single crystal substrate has an inclination angle in the range of greater than 0 ° and less than 1 °, and the diameter of the supported single crystal substrate is 3
  • the susceptor has a horizontal width of 3% or more, unlike the conventional product, it is possible to prevent local thick deposits from occurring on the outer peripheral side of the back surface of the single crystal substrate. For this reason, the flatness of the outer peripheral part of an epitaxial substrate is favorable, and it is possible to obtain a high quality epitaxial substrate.
  • the outer periphery of the counterbore has a tapered shape with an inclination angle greater than 0 ° and is inclined so that the depth increases toward the center region, so that the inner edge of the outer periphery region and the back surface of the single crystal substrate contact each other. In this case, it is possible to prevent the back surface of the single crystal substrate from being scratched, and since the tilt angle is less than 1 °, deposition on the outer peripheral side of the back surface can be suppressed.
  • the horizontal width of the outer peripheral region corresponding to the range from the central region to the outermost peripheral portion of the single crystal substrate supported by the outer peripheral region is 3.3% or more of the diameter of the single crystal substrate. Is preferred. If it is such, it can prevent more reliably that a thick deposit locally arises on the outer peripheral side of the back surface of a single crystal substrate.
  • the central region of the counterbore has a concave shape formed of a curved surface.
  • the supported single crystal substrate is easily bent due to its own weight, and in this case, the single crystal substrate and the central area of the counterbore are in contact with each other, and damage such as scratches and slips may occur on the back surface of the single crystal substrate.
  • the center area of the counterbore is a concave shape made of a curved surface, even if the single crystal substrate is bent, the single crystal substrate and the center area of the counterbore do not come into contact with each other, and the state of the back surface of the single crystal substrate is kept good. Can do.
  • the horizontal width of the outer periphery of the counterbore is preferably 5.5% to 7% of the diameter of the supported single crystal substrate.
  • the horizontal width of the outer peripheral region of the counterbore is 5.5% or more of the diameter of the supported single crystal substrate, it is possible to sufficiently prevent local deposition on the outer peripheral side of the back surface of the single crystal substrate. Can do.
  • the outer peripheral region does not become unnecessarily wide, that is, the central region in which the through hole is formed can be secured with a sufficient width, and the single crystal substrate can be efficiently obtained.
  • the natural oxide film on the back surface of the substrate can be removed.
  • the horizontal width of the outer peripheral region corresponding to the range from the central region to the outermost peripheral portion of the single crystal substrate supported by the outer peripheral region is 5.5% to 7% of the diameter of the single crystal substrate. Is preferred. Such an arrangement can more effectively prevent local deposition and remove the natural oxide film on the back surface of the single crystal substrate.
  • the epitaxial growth susceptor may be for a single crystal substrate having a diameter of 300 mm or more. Such a structure can be used effectively when epitaxial growth is performed on a single crystal substrate having a diameter of 300 mm or more, corresponding to the recent increase in the diameter of the single crystal substrate.
  • the depth of the inner edge of the outer peripheral region and the outer edge of the central region are equal, or less than 0.05 mm so that the depth increases from the inner edge of the outer peripheral region toward the outer edge of the central region. It is preferable that a step having a height of 2 is formed. If this is the case, there will be no sudden change in the depth direction from the outer periphery region to the central region of the counterbore, and the nanotopology of the back surface of the single crystal substrate caused by the change in the depth direction will be deteriorated. It is possible to prevent.
  • the natural oxide film on the back surface of the single crystal substrate can be effectively removed during the epitaxial growth, and significant deposits can be generated locally on the outer peripheral side of the back surface of the single crystal substrate.
  • An epitaxial substrate that can be suppressed and has a good flatness at the outer peripheral portion can be obtained.
  • it is a graph which shows an example of the relationship between the part outside 120 mm in the radial direction from the center of a board
  • it is a graph which shows an example of the result of having measured the back surface ZDD value over the perimeter of the board
  • it is a graph which shows an example of the relation between the portion outside 120mm in the radial direction from the center of the substrate, and the backside ZDD value.
  • a comparative example it is a graph which shows an example of the result of having measured the back surface ZDD value over the perimeter of the substrate in the circumference direction in the position of 148 mm in the radial direction from the center. It is the schematic which shows an example of a common conventional single wafer type epitaxial growth apparatus. It is the schematic which shows an example of the conventional susceptor. (A) Top view, (B) Cross section.
  • FIG. 1 shows an outline of an example of the susceptor for epitaxial growth of the present invention.
  • FIG. 1A is a plan view
  • FIG. 1B is a cross-sectional view of a part of the susceptor.
  • FIG. 1C is a cross-sectional view of a part of another susceptor.
  • the susceptor 6 of the present invention is formed with a counterbore 10 for accommodating the single crystal substrate 2 and supporting it horizontally.
  • the counterbore 10 has an outer peripheral region 11 and a central region 12 surrounded by the outer peripheral region 11.
  • the outer peripheral region 11 has a tapered shape, and on this outer peripheral region, the single crystal substrate 2 on which epitaxial growth is performed comes into contact and is supported horizontally.
  • the central region 12 is formed at a position deeper than the outer peripheral region 11 so that the single crystal substrate 2 does not contact.
  • a through hole 14 that penetrates the susceptor 6 is formed in the central region 12.
  • the number of the through holes 14 is not particularly limited, and it is sufficient that one or more through holes 14 are formed. However, it is preferable that a large number of the through holes 14 are formed over the entire surface of the central region 12. If formed over the entire surface of the central region 12 in this way, the natural oxide film on the back surface of the single crystal substrate 2 can be removed over the entire back surface during epitaxial growth, and halo formation can be prevented. .
  • cross-sectional shape, size, etc. of the through hole 14 are not particularly limited, and can be appropriately determined each time. These can be the same as conventional ones, for example.
  • the shape (surface shape) of the central region 12 is not particularly limited as long as it is not in contact with the single crystal substrate 2 supported by being in contact with the outer peripheral region 11.
  • a flat shape can be used.
  • FIG. 2A shows an example where the central region 12 is flat.
  • the single crystal substrate 2 is supported on the outer peripheral region 11, the single crystal substrate 2 is actually easily bent downward at the center side of the single crystal substrate 2 due to its own weight.
  • the central region 12 has a concave shape formed of a curved surface. In this case, even if the single crystal substrate 2 is bent, the center region 12 of the counterbore 10 of the susceptor 6 and the single crystal substrate 2 do not come into contact with each other, and the state of the back surface of the single crystal substrate 2 can be changed. Can keep good.
  • the outer peripheral region 11 has a tapered shape with an inclination angle ⁇ that is greater than 0 ° and less than 1 °, and is formed so that the depth increases toward the central region 12. ing.
  • the single crystal substrate 2 comes into contact with the outer peripheral portion of the back surface of the single crystal substrate 2.
  • the inclination angle ⁇ when the inclination angle ⁇ is 0 ° or less, the inner edge 15 of the outer peripheral region 11 comes into contact with the back surface of the single crystal substrate 2 and the back surface of the single crystal substrate 2 is damaged.
  • the tilt angle ⁇ when the tilt angle ⁇ is 1 ° or more, a local deposit on the outer peripheral side of the back surface of the single crystal substrate 2 (for example, a silicon deposit if trichlorosilane is used as the source gas) occurs. Therefore, in order to prevent these, the inclination angle ⁇ needs to be greater than 0 ° and less than 1 °.
  • the outer peripheral region 11 has a horizontal width of 3.3% or more of the diameter of the single crystal substrate 2.
  • the horizontal width of the outer peripheral region 11 is about 1%, and the range in which the single crystal substrate 2 and the outer peripheral region 11 overlap is narrow. Therefore, a locally thick deposit is formed on the outer peripheral side of the back surface of the single crystal substrate 2. Has occurred, adversely affecting the flatness of the outer peripheral portion of the epitaxial substrate.
  • the range of the horizontal width is expanded as compared with the conventional product as in the present invention, the range where the single crystal substrate 2 and the outer peripheral region 11 overlap is expanded, and the back surface of the single crystal substrate 2 is expanded. 1 can be generated gradually and continuously from the center side of the single crystal substrate 2 (see FIG. 1B), so that a local extremely thick deposit does not occur as in the prior art, and the outer peripheral side. No sudden change in thickness occurs.
  • the horizontal width of the outer peripheral region 11 may be 3.3% or more of the diameter of the single crystal substrate 2, and the upper limit thereof is not limited as long as the central region can be secured. Preferably it is less than 7%. If the horizontal width is in such a range, the local deposition on the outer peripheral side of the single crystal substrate can be suppressed extremely effectively, and the range of the central region 12 can be sufficiently secured. . If the range of the central region 12 can be sufficiently secured, it is possible to prevent the removal of the natural oxide film and the formation of halos over the wide range of the back surface of the single crystal substrate 2 together with the effect of the through holes 14. It becomes possible.
  • the horizontal width of the outer peripheral region 11 corresponding to the range from the central region 12 to the outermost peripheral portion of the single crystal substrate 2 supported by the outer peripheral region 11 is 3 of the diameter of the single crystal substrate 2.
  • Those having a width of not less than 3%, more preferably not less than 5.5% and not more than 7% are preferable.
  • the range in which the single crystal substrate 2 and the outer peripheral region 11 overlap can be expanded more reliably than before, and the suppression of local deposition can be further ensured.
  • the interval (play) between the outer edge of the outer peripheral region 11 and the outermost peripheral portion of the supported single crystal substrate 2 is usually very small.
  • a material that is practically adapted to the size of the single crystal substrate 2 to be processed by the counterbore of the susceptor is used.
  • the boundary between the outer peripheral region 11 and the central region 12 will be described.
  • the depths of the inner edge 15 of the outer peripheral region and the outer edge 16 of the central region coincide with each other.
  • a step 13 having a height of less than 0.05 mm is formed so that the depth increases from the inner edge 15 of the outer peripheral area toward the outer edge 16 of the central area. That is, it is preferable that the change in the depth direction from the outer peripheral region 11 to the central region 12 is suppressed to less than 0.05 mm.
  • the change in the depth direction from the outer peripheral region 11 to the central region 12 is suppressed to less than 0.05 mm. It is possible to effectively prevent the deterioration of the nanotopology caused by the displacement at the portion corresponding to the boundary between the outer peripheral region 11 and the central region 12 of the counterbore 10 on the back surface of the single crystal substrate 2.
  • a step 13 having a height of less than 0.05 mm is formed so that the depth increases from the inner edge 15 of the outer peripheral region toward the outer edge 16 of the central region.
  • the through hole 14 in the central region 12 can be relatively spaced from the back surface of the single crystal substrate 2, and it is effective that a transfer corresponding to the through hole 14 is formed on the back surface of the single crystal substrate 2. It is possible to prevent.
  • the susceptor 6 of the present invention can be adapted to various single crystal substrates 2, for example, the size of the susceptor 6 itself is adapted to the size of the single crystal substrate 2 to be supported. Can do. Naturally, it can be made to correspond to a single crystal substrate having a diameter of 300 mm or more, and in response to the recent demand, it can be used for manufacturing an epitaxial substrate having a large diameter.
  • the material and the like of the susceptor 6 itself are not particularly limited, and may be made of an appropriate material depending on the single crystal substrate that supports the susceptor 6 itself.
  • a graphite base material coated with SiC can be mentioned.
  • the single crystal substrate 2 When the single crystal substrate 2 is supported using the susceptor 6 of the present invention as described above and epitaxial growth is performed, the single crystal substrate 2 can be disposed, for example, in a single wafer epitaxial growth apparatus 1 as shown in FIG. .
  • the reaction chamber 3, gas inlet 4, gas outlet 5, upper wall 7, heating means 8, support shaft 9, etc. other than the susceptor 6 of the present invention are not particularly limited, Things can be used.
  • the procedure itself for performing epitaxial growth can be performed by a method similar to the conventional method.
  • Example 2 Using the single wafer epitaxial growth apparatus of FIG. 3 equipped with the susceptor of the present invention, the single crystal substrate was epitaxially grown, and then the deposited layer on the back surface of the obtained epitaxial substrate was evaluated.
  • a silicon single crystal substrate having a diameter of 300 mm was prepared as a single crystal substrate, and trichlorosilane was used as a source gas and hydrogen gas was used as a carrier gas.
  • the central region has a plurality of through-holes formed on the entire concave surface having a curved surface, and the outer peripheral region has an inclination angle of 0.5 ° or 0.75 °, and the outer peripheral region is horizontal.
  • the horizontal width of the outer peripheral region corresponding to the range from the central region of the susceptor to the outermost peripheral portion of the single crystal substrate is 3.1%, 5.4%, and 6.4% of the diameter of the single crystal substrate, respectively. Met.
  • an optical interference type flatness measuring device for the evaluation of the growth thickness of the deposition layer on the back surface of the epitaxial substrate, an optical interference type flatness measuring device is used, and an edge vicinity curvature shape measurement method (a shape parameter called ZDD) is obtained by second-order differentiation of the surface displacement amount by radius. ) was applied. Since ZDD is a second-order differential of the moving radius, it represents an acceleration change in the back surface displacement with respect to the radius.
  • FIG. 4 shows the relationship between the susceptor shape and the obtained back surface ZDD value.
  • 4 is an example of a value at a position of 148 mm in the radial direction from the center.
  • the both it is suppressed to the range of 0 nm / mm 2 of -5 nm / mm 2.
  • the absolute value of the back surface ZDD value is smaller than that of a comparative example which will be described later, and the silicon deposition layer can be remarkably suppressed from growing rapidly at the measurement location.
  • the tilt angle is 0.5 ° and the horizontal width is 5.7% or 6.7%
  • the back surface ZDD value is 0, which prevents local rapid silicon deposition on the back surface outer peripheral side. It can be seen that it is particularly excellent.
  • FIG. 5 shows an example of the relationship between the portion outside 120 mm in the radial direction from the center of the substrate and the back surface ZDD value. This is a case where a susceptor having an inclination angle of 0.5 ° in the outer peripheral region and a horizontal width of 5.7% is used. From this figure, the magnitude of the degree of deposition in the radial direction of the substrate can be read.
  • the horizontal axis is the substrate radius (mm)
  • the vertical axis is the ZDD (nm / mm 2 ) on the back surface of the epitaxial substrate.
  • the back surface ZDD on the vertical axis corresponds to a second-order differentiation of the surface displacement amount by the radius, and represents an acceleration change of the displacement amount.
  • FIG. 5 relates to the back surface
  • the + direction represents the displacement toward the front side of the substrate
  • the ⁇ direction represents the displacement toward the back side of the substrate.
  • FIG. 6 shows the result of measuring the back surface ZDD value in the circumferential direction over the entire circumference of the substrate at a position of 148 mm in the radial direction from the center.
  • the location where the back surface ZDD value fluctuates greatly over the entire circumference of the back surface of the substrate is not seen.
  • the deposition layer was not locally thickly laminated over the entire circumference of the back surface of the substrate, and a back surface having a uniform amount of displacement was obtained.
  • a single-wafer epitaxial growth apparatus provided with a susceptor having a tilt angle and a horizontal width of the outer peripheral region different from those of the present invention was used to perform epitaxial growth on a silicon single crystal substrate similar to the example.
  • the operating conditions other than the susceptor are the same as in the example.
  • the inclination angle of the outer peripheral region is 0.5 to 4 ° and the horizontal width is 1.1 to 6.7% (the range from the central region of the susceptor to the outermost peripheral portion of the single crystal substrate).
  • the horizontal width of the outer peripheral area corresponding to the range of 0.8 to 6.4%) was combined.
  • naturally combinations in the scope of the present invention are excluded.
  • the investigation of the deposit layer on the back surface was conducted in the same manner as in the example.
  • FIG. 4 The relationship between the susceptor shape and the obtained backside ZDD value is shown in FIG. 4 as in the example. As shown in FIG. 4, all are ⁇ 9 nm / mm 2 or less, and the absolute value of the back surface ZDD value is larger than that of the example, and it can be seen that the deposit grows rapidly at the measurement location. 7 and 8 shown below, it is well understood that the deposition layer grows locally on the outer peripheral side of the substrate.
  • FIG. 7 is a graph showing an example of the relationship between a portion outside 120 mm in the radial direction from the center of the substrate and the back surface ZDD value when the inclination angle is 1 ° and the horizontal width is 1.1%.
  • FIG. 8 shows the result of measuring the back surface ZDD value in the circumferential direction over the entire circumference of the substrate at a position of 148 mm in the radial direction from the center. As shown in FIG. 7, it can be seen that on the outer peripheral side of the substrate (near 148 mm), the back surface ZDD value greatly changes locally, that is, the deposition layer has grown rapidly. Further, as shown in FIG.
  • the epitaxial growth susceptor of the present invention can prevent local significant silicon deposition on the outer peripheral side of the back surface of the epitaxially grown single crystal substrate. become. Therefore, an epitaxial substrate having a good flatness at the outer peripheral portion can be obtained.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 本発明は、エピタキシャル成長装置において単結晶基板を水平に支持するためのザグリを有するエピタキシャル成長用サセプタであって、ザグリは、単結晶基板が当接して支持される外周領域と、該外周領域に囲まれており、単結晶基板と接触しない中央領域を有しており、ザグリの中央領域には、エピタキシャル成長用サセプタを貫通する1つ以上の貫通孔が形成されており、ザグリの外周領域は、0°より大きく1°未満の範囲の傾斜角で、中央領域に向かって深さが増すように傾斜しているテーパ形状であり、かつ、支持される単結晶基板の直径の3.3%以上の水平幅を有するものであるエピタキシャル成長用サセプタを提供する。これにより、単結晶基板の裏面の外周側において、局所的に著しいデポが発生するのを防止することができるエピタキシャル成長用サセプタが提供される。

Description

エピタキシャル成長用サセプタ
 本発明は、単結晶基板上にエピタキシャル層を積層するエピタキシャル成長装置において、エピタキシャル成長時に単結晶基板を支持するためのエピタキシャル成長用サセプタ(以下では、単にサセプタと言うことがある)に関する。
 
 エピタキシャル成長技術は、バイポーラトランジスタやMOSLSI等の集積回路の製造に用いられる単結晶薄膜層を気相成長させる技術であり、清浄な半導体単結晶基板上に基板の結晶方位に合せて均一な単結晶薄膜を成長させたり、ドーパント濃度差が大きい接合の急峻な不純物勾配を形成することができるので、極めて重要な技術である。
 このようなエピタキシャル成長を行うための装置としては、縦型(パンケーキ型)、バレル型(シリンダー型)、さらに横型の3種類が一般的である。これらの成長装置の基本的な原理は共通している。この成長装置は単結晶基板を載置するためのエピタキシャル成長用サセプタを内部に備えた反応室や、反応室の外部に設けられるハロゲンランプ等からなる加熱手段等を備えて構成されており、縦型のうち1枚ずつ処理する装置を枚葉式エピタキシャル成長装置と呼んでいる。
 ここで、例えばこの枚葉式エピタキシャル成長装置について図9を参照して説明する。図9は、従来より用いられている一般的な枚葉式エピタキシャル成長装置(特開2004-319623号公報等参照)の一例を示す概略図である。
 この枚葉式エピタキシャル成長装置101は、表面にエピタキシャル層が積層される単結晶基板102が内部に配置される反応室103を有しており、該反応室103に原料ガス・キャリアガスを導入するためのガス導入口104とガスを排出するガス排出口105が設けられている。また、反応室103内には単結晶基板102を載置するサセプタ106を具備する。なお、反応室103の上壁107は石英ガラスからなっている。
 また、少なくとも、反応室103の外部には、単結晶基板102を加熱する例えばハロゲンランプ等の加熱手段108を備えている。
 ここで、上記サセプタ106についてさらに説明する。図10に従来のサセプタの一例の概略を示す。図10(A)が平面図であり、図10(B)はサセプタの一部の範囲における断面図である。
 図10に示すように、サセプタ106にはザグリ110が形成されており、該ザグリ110は外周領域111と、該外周領域111に囲まれた中央領域112を有しており、外周領域111と中央領域112の境界には段差113が形成されている。
 外周領域111はテーパ形状であり、表面にエピタキシャル成長が施される単結晶基板102が当接して支持されるようになっているが、中央領域112は、単結晶基板102が接触しないよう段差113を介して外周領域111よりも深い位置に形成されている。また、中央領域112には、単結晶基板102の裏面の自然酸化膜の除去、さらにはハローの形成の防止等のために貫通孔114が形成されている。
 上記のような図9に示す従来のサセプタ106を備えた枚葉式エピタキシャル成長装置101を用い、単結晶基板102上にエピタキシャル層を形成する場合は、図10(B)のように、サセプタ106のザグリ110内に単結晶基板102を配し、サセプタ106を支持する支持軸109およびそれを回転(自転)させる不図示の回転機構によって単結晶基板102を回転させつつ、加熱手段108によって単結晶基板102を所定の温度に加熱する。そして、反応室103内に、例えばシリコン単結晶層をエピタキシャル成長させるのであれば、水素等のキャリアガスで希釈したトリクロロシラン等の原料ガスを、所定時間、所定流量でガス導入口104から供給することにより行う。
 このようにして、単結晶基板102上にエピタキシャル層を積層させたエピタキシャル基板を得ることができる。
 しかしながら、上記のような従来のサセプタ106を用いて単結晶基板102を支持してエピタキシャル成長を施すと、サセプタ106の中央領域112に形成された貫通孔114から、単結晶基板102の裏面に原料ガスが回り込み、単結晶基板102の裏面にデポが発生することがある。そのため、エピタキシャル基板の外周部のフラットネスが悪化してしまうという問題があった。
 
 そこで、本発明者がエピタキシャル成長後の基板について鋭意研究を行ったところ、特に、エピタキシャル基板の裏面の外周側において、局所的に、著しいデポが見られることがわかった。さらには、この裏面外周側でのデポは、単結晶基板とサセプタのザグリの外周領域とが当接する位置の付近(単結晶基板とザグリの外周領域の水平幅とが重なる部分)で集中的に発生しており、その結果、局所的な厚み変化がエピタキシャル基板の外周側にもたらされていることを見出した。図10(B)に、単結晶基板の裏面の外周側に局所的に積層されたデポ層も示す。このデポ層の厚さは、反応時間にもよるが、0.05~0.3μm程度である。
 本発明は、上記のような問題点に鑑みてなされたもので、単結晶基板の裏面の外周側において、局所的に著しいデポが発生するのを防止することができるエピタキシャル成長用サセプタを提供することを目的とする。
 上記課題を解決するために、本発明は、エピタキシャル成長装置において単結晶基板を水平に支持するためのザグリを有するエピタキシャル成長用サセプタであって、前記ザグリは、前記単結晶基板が当接して支持される外周領域と、該外周領域に囲まれており、前記単結晶基板と接触しない中央領域を有しており、前記ザグリの中央領域には、前記エピタキシャル成長用サセプタを貫通する1つ以上の貫通孔が形成されており、前記ザグリの外周領域は、0°より大きく1°未満の範囲の傾斜角で、前記中央領域に向かって深さが増すように傾斜しているテーパ形状であり、かつ、前記支持される単結晶基板の直径の3.3%以上の水平幅を有するものであることを特徴とするエピタキシャル成長用サセプタを提供する。
 まず、本発明者が調査を行った結果、単結晶基板の裏面の外周側の局所的なデポを防ぐにあたっては、サセプタのザグリの外周領域の傾斜角を低角化するとともに、外周領域を従来品よりも拡張し、単結晶基板とサセプタのザグリの外周領域とが重なる部分を拡げ、単結晶基板の裏面でのデポを単結晶基板のより中央側から徐々に連続的に発生させることが有効であることを見出した。
 すなわち、本発明のように、単結晶基板が当接して支持される、テーパ形状の外周領域が、0°より大きく1°未満の範囲の傾斜角で、支持される単結晶基板の直径の3.3%以上の水平幅を有するサセプタであれば、従来品の場合とは異なり、単結晶基板の裏面の外周側で、局所的に厚いデポが生じるのを防止することができる。このため、エピタキシャル基板の外周部のフラットネスが良好であり、高品質のエピタキシャル基板を得ることが可能である。
 また、ザグリの中央領域には、エピタキシャル成長用サセプタを貫通する1つ以上の貫通孔が形成されているので、エピタキシャル成長時に、単結晶基板の裏面の自然酸化膜を効果的に除去することができる。
 さらに、ザグリの外周領域は、0°より大きい傾斜角で、中央領域に向かって深さが増すように傾斜しているテーパ形状であるため、外周領域の内縁と単結晶基板の裏面とが接触することもなく単結晶基板の裏面に傷が付くのを防ぐことができるし、かつ、1°未満の範囲の傾斜角であるため、裏面の外周側のデポを抑制することができる。
 このとき、特には、前記中央領域から前記外周領域に支持された前記単結晶基板の最外周部までの範囲に対応する外周領域の水平幅が、前記単結晶基板の直径の3.3%以上であるのが好ましい。
 このようなものであれば、単結晶基板の裏面の外周側で局所的に厚いデポが生じるのをより確実に防止することができる。
 このとき、前記ザグリの中央領域は、曲面からなる凹形状であるのが好ましい。
 支持される単結晶基板は自重により撓みやすく、この場合、単結晶基板とザグリの中央領域とが接触し、単結晶基板裏面に傷やスリップ等のダメージが及ぶことがある。
 しかしながら、ザグリの中央領域が曲面からなる凹形状であれば、単結晶基板が撓んでも、単結晶基板とザグリの中央領域とが接触することなく、単結晶基板裏面の状態を良好に保つことができる。
 また、前記ザグリの外周領域の水平幅は、前記支持される単結晶基板の直径の5.5%以上7%以下であるのが好ましい。
 このように、ザグリの外周領域の水平幅が、支持される単結晶基板の直径の5.5%以上であれば、十分に、単結晶基板の裏面の外周側における局所的なデポを防ぐことができる。また、7%以下であれば、外周領域が必要以上に幅広になることもなく、すなわち貫通孔が形成されている中央領域を十分な広さで確保することができ、効率良く、単結晶基板の裏面の自然酸化膜の除去を行うことができる。
 さらには、前記中央領域から前記外周領域に支持された前記単結晶基板の最外周部までの範囲に対応する外周領域の水平幅が、前記単結晶基板の直径の5.5%以上7%以下であるのが好ましい。
 このようなものは、局所的なデポの防止、単結晶基板の裏面の自然酸化膜の除去を一層効果的に行うことができる。
 また、前記エピタキシャル成長用サセプタは、直径300mm以上の単結晶基板用のものとすることができる。
 このようなものであれば、近年の単結晶基板の直径の拡大化に対応して、直径300mm以上の単結晶基板にエピタキシャル成長を施すときに有効に使用可能なものとなる。
 前記ザグリにおいて、前記外周領域の内縁と前記中央領域の外縁の深さが一致しているか、または、前記外周領域の内縁から前記中央領域の外縁に向かって深さが増すように0.05mm未満の高さの段差が形成されているものであるのが好ましい。
 このようなものであれば、ザグリの外周領域から中央領域にかけての急激な深さ方向の変化はなく、その急激な深さ方向の変化を起因とする単結晶基板の裏面のナノトポロジーの悪化を防止することが可能である。
 本発明のエピタキシャル成長用サセプタであれば、エピタキシャル成長時に単結晶基板の裏面の自然酸化膜を効果的に除去できるとともに、単結晶基板の裏面の外周側において、局所的に著しいデポが発生するのを極めて抑制することが可能であり、外周部のフラットネスが良好なエピタキシャル基板を得ることができる。
 
本発明のサセプタの一例を示す概略図である。(A)平面図、(B)断面図である。(C)本発明の他のサセプタの一例を示す断面図である (A)中央領域が平坦な本発明のサセプタの一例、(B)中央領域が曲面で凹形状の本発明のサセプタの一例を示す概略図である。 本発明のサセプタを備えた枚葉式エピタキシャル成長装置の一例を示す概略図である。 実施例と比較例におけるサセプタ形状と裏面ZDD値との関係を示した結果である。 実施例において、基板の中心から半径方向に120mmよりも外側の部分と、裏面ZDD値との関係の一例を示すグラフである。 実施例において、中心から半径方向に148mmの位置において、円周方向に、裏面ZDD値を基板の全周にわたって測定した結果の一例を示すグラフである。 比較例において、基板の中心から半径方向に120mmよりも外側の部分と、裏面ZDD値との関係の一例を示すグラフである。 比較例において、中心から半径方向に148mmの位置において、円周方向に、裏面ZDD値を基板の全周にわたって測定した結果の一例を示すグラフである。 一般的な従来の枚葉式エピタキシャル成長装置の一例を示す概略図である。 従来のサセプタの一例を示す概略図である。(A)平面図、(B)断面図である。
 以下では、本発明の実施の形態について説明するが、本発明はこれに限定されるものではない。
 図1に、本発明のエピタキシャル成長用サセプタの一例の概略を示す。図1(A)が平面図であり、図1(B)はサセプタの一部の範囲における断面図である。また、図1(C)は他のサセプタの一部の範囲における断面図である。
 図1に示すように、まず、本発明のサセプタ6には、内部に単結晶基板2を収容し、水平に支持するためのザグリ10が形成されている。そして、このザグリ10は、外周領域11と、該外周領域11に囲まれた中央領域12を有している。
 外周領域11はテーパ形状であり、この外周領域上に、エピタキシャル成長が施される単結晶基板2が当接して水平に支持されるようになっている。一方、中央領域12は、単結晶基板2が接触しないように、外周領域11よりも深い位置に形成されている。
 ここで、中央領域12について述べる。この中央領域12には、サセプタ6を貫通する貫通孔14が形成されている。この貫通孔14の数は特に限定されず、1つ以上形成されていれば良いが、中央領域12の全面にわたって多数形成されていると好ましい。このように中央領域12の全面にわたって形成されていれば、エピタキシャル成長時に、単結晶基板2の裏面の自然酸化膜を裏面全面にわたって除去することができ、ハローの形成を防止することが可能だからである。
 なお、貫通孔14の断面形状、大きさ等も特に限定されず、その都度、適宜決定することができる。これらは例えば従来と同様のものとすることができる。
 また、中央領域12の形状(面形状)であるが、これは、外周領域11に当接して支持される単結晶基板2と接触していなければ良く、特に限定されない。例えば平坦な形状とすることが可能である。図2(A)に中央領域12が平坦な場合の一例を示す。
 ただし、単結晶基板2を外周領域11に支持した場合、実際には単結晶基板2は、自重によって、単結晶基板2の中央側が下方に撓みやすい。このような場合を考慮すると、図2(B)に示すように、中央領域12が曲面からなる凹形状であるのが好ましい。
 このようなものであれば、単結晶基板2が撓んだとしても、サセプタ6のザグリ10の中央領域12と単結晶基板2とが接触することもなく、単結晶基板2の裏面の状態を良好に保つことができる。
 次に外周領域11について述べる。外周領域11は、図1(B)に示すように、傾斜角θが0°より大きく1°未満で傾斜したテーパ形状となっており、中央領域12に向かって深さが増すように形成されている。単結晶基板2を支持する場合、単結晶基板2の裏面の外周部と当接する。
 ここで、傾斜角θが0°以下であると、外周領域11の内縁15が単結晶基板2の裏面と接触してしまい、単結晶基板2の裏面に傷が生じてしまう。一方、傾斜角θが1°以上であると、単結晶基板2の裏面外周側の局所的なデポ(例えば、原料ガスにトリクロロシランを用いるのであれば、シリコンのデポ)が発生してしまう。したがって、これらを防ぐために、傾斜角θが0°より大きく1°未満なものとする必要がある。
 さらには、この外周領域11は、その水平幅が単結晶基板2の直径の3.3%以上となっている。従来品では、外周領域11の水平幅は1%程度で、単結晶基板2と外周領域11とが重なる範囲が狭く、そのために、単結晶基板2の裏面の外周側で、局所的に厚いデポが発生してしまい、エピタキシャル基板の外周部のフラットネスに悪影響を与えていた。
 しかしながら、本発明のように、水平幅の範囲が従来品に比べて拡大されたものであれば、単結晶基板2と外周領域11とが重なる範囲が拡大されており、単結晶基板2の裏面でのデポを単結晶基板2のより中央側から徐々に連続的に発生させることができるため(図1(B)参照)、従来のように局所的な著しく厚いデポも発生せず、外周側において急激な厚さ変化が生じることもない。
 上記外周領域11の水平幅は単結晶基板2の直径の3.3%以上であれば良く、中央領域が確保できるのであれば、その上限等は限定されないが、特には、5.5%以上7%未満であるのが好ましい。水平幅がこのような範囲であれば、極めて効果的に、単結晶基板の外周側の局所的なデポを抑制することができるとともに、中央領域12の範囲も十分に確保することが可能である。中央領域12の範囲が十分に確保できるのであれば、貫通孔14による効果と合わせて、単結晶基板2の裏面の広い範囲にわたって、自然酸化膜の除去、さらにはハローの形成を防止することが可能になる。
 また、特には、水平方向において、中央領域12から外周領域11で支持された単結晶基板2の最外周部までの範囲に対応する外周領域11の水平幅が、単結晶基板2の直径の3.3%以上、さらには5.5%以上7%以下の幅を有するものが好ましい。このようなものであれば、単結晶基板2と外周領域11が重なる範囲を従来に比べてより確実に拡大することができ、局所的なデポの抑制を一層確かなものとすることができる。
 なお、外周領域11の外縁と支持された単結晶基板2の最外周部との間隔(あそび)は、通常、極わずかである。一般に、生産性等の面から、現実的には、サセプタのザグリが処理する単結晶基板2のサイズに適合したものが用いられる。
 また、外周領域11と中央領域12の境界について述べると、図1(B)に示すように、外周領域の内縁15と前記中央領域の外縁16の深さが一致しているか、あるいは、図1(C)に示すように外周領域の内縁15から前記中央領域の外縁16に向かって深さが増すように0.05mm未満の高さの段差13が形成されているものが好ましい。すなわち、外周領域11から中央領域12にかけての深さ方向の変化が0.05mm未満に抑えられているものが良い。
 本発明のように外周領域11の傾斜角が1°未満の場合、上記外周領域11から中央領域12にかけての深さ方向の変化を0.05mm未満に抑えたものとすることで、エピタキシャル成長時に、単結晶基板2の裏面の、ザグリ10の外周領域11と中央領域12の境界に相当する部分に変位が生じてナノトポロジーの悪化が生じるのを効果的に防ぐことができる。
 なお、図1(C)のように、外周領域の内縁15から前記中央領域の外縁16に向かって深さが増すように0.05mm未満の高さの段差13が形成されているものであれば、単結晶基板2の裏面から、中央領域12の貫通孔14を比較的距離をおくことができ、単結晶基板2の裏面に、貫通孔14に対応した転写が形成されることを効果的に防ぐことが可能である。
 また、本発明のサセプタ6は種々の単結晶基板2に対応したものとすることができ、例えば、そのサセプタ6自身の大きさは支持する単結晶基板2の大きさに合わせたものとすることができる。当然、直径300mm以上の単結晶基板に対応させたものとすることも可能であり、近年の需要に応えて、直径が大きなエピタキシャル基板を製造するためのものとできる。
 その他、サセプタ6自身の材質等は特に限定されることもなく、これも支持する単結晶基板等によって、適切なものからなるものとすることができる。例えば、グラファイト基材にSiCコートしたものが挙げられる。
 そして、以上のような本発明のサセプタ6を用いて単結晶基板2を支持し、エピタキシャル成長を行うときは、例えば図3に示すような枚葉式エピタキシャル成長装置1に配設して行うことができる。
 このエピタキシャル成長装置1においては、本発明のサセプタ6以外の反応室3、ガス導入口4、ガス排出口5、上壁7、加熱手段8、支持軸9等は特に限定されず、従来と同様のものを用いることができる。また、エピタキシャル成長を施すための手順自体は、従来と同様の方法で行うことができる。
 
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれに限定されない。
(実施例)
 本発明のサセプタを備えた図3の枚葉式のエピタキシャル成長装置を用い、単結晶基板にエピタキシャル成長を施した後、得られたエピタキシャル基板の裏面のデポ層について評価を行った。
 単結晶基板として直径300mmのシリコン単結晶基板を用意し、原料ガスにトリクロロシラン、キャリアガスに水素ガスを用いた。
 サセプタとしては、中央領域は曲面からなる段差がない凹形状の全面にわたって貫通孔が複数形成されたものであり、外周領域の傾斜角が0.5°または0.75°で、外周領域の水平幅が、用意したシリコン単結晶基板の直径の3.4%(外周領域の水平幅/シリコン単結晶基板の直径=0.034)、5.7%(0.057)、6.7%(0.067)のいずれかのものを用意した。なお、サセプタの中央領域から、単結晶基板の最外周部までの範囲に対応する外周領域の水平幅は、それぞれ、単結晶基板の直径の3.1%、5.4%、6.4%であった。
 また、エピタキシャル基板の裏面でのデポ層の成長厚さの評価については、光学干渉式フラットネス測定器を用い、表面変位量を半径で二階微分したエッジ近傍曲率形状測定法(ZDDと呼ばれる形状パラメータ)を適用した。ZDDは動径の二階微分であるため、半径に対する加速度的な裏面変位量変化を表している。
 サセプタ形状と、得られた裏面ZDD値との関係を図4に示す。なお、図4の裏面ZDD値は、中心から半径方向に148mmの位置における値の一例である。
 このように、いずれも0nm/mmから-5nm/mmの範囲内に抑えられている。後述する比較例に比べて裏面ZDD値の絶対値が小さく、上記測定箇所において、シリコンのデポ層が急激に成長するのを著しく抑制できていることが分かる。
 また、特に、傾斜角が0.5°で、水平幅が5.7%、6.7%の場合に裏面ZDD値が0であり、裏面外周側の局所的な急激なシリコンのデポを防ぐにあたって特に優れていることが分かる。
 さらに、図5に基板の中心から半径方向に120mmよりも外側の部分と、裏面ZDD値との関係の一例を示す。これは、外周領域の傾斜角0.5°、水平幅が5.7%のサセプタを用いた場合である。この図より、基板の半径方向におけるデポの度合いの大小が読み取れる。
 図5において、横軸は基板半径(mm)であり、縦軸はエピタキシャル基板裏面のZDD(nm/mm)である。縦軸の裏面ZDDは、上記のように、表面変位量を半径で二階微分したものに相当し、変位量の加速度的な変化を表している。この図5は裏面に関するものなので、+方向は基板の表側に向かった変位を表し、-方向は基板の裏側に向かった変位を表している。
 従来のサセプタを用いた場合に急激に厚くデポが生じる半径145~148mmの範囲であっても、裏面ZDD値の変動は小さく、局所的な著しいデポ層の厚さの増加は見られなかった。
 さらに、中心から半径方向に148mmの位置において、円周方向に裏面ZDD値を基板の全周にわたって測定した結果を図6に示す。
 このように、基板の裏面の全周にわたって裏面ZDD値が急激に大きく変動している箇所は見られない。すなわち、基板の裏面の全周にわたって、デポ層が局所的に厚く積層されることはなく、均一な変位量を持った裏面が得られた。
 図5、6のこれらの傾向は、傾斜角、水平幅が異なる他の本発明のサセプタを用いた場合においても同様であった。
 
(比較例)
 本発明とは外周領域の傾斜角と水平幅が異なるサセプタを備えた枚葉式エピタキシャル成長装置を用い、実施例と同様のシリコン単結晶基板にエピタキシャル成長を施した。サセプタ以外の操業条件は実施例と同様である。
 なお、図4に示すように、外周領域の傾斜角を0.5~4°、水平幅を1.1~6.7%(サセプタの中央領域から、単結晶基板の最外周部までの範囲に対応する外周領域の水平幅では、0.8~6.4%)の範囲で組み合わせて行った。ただし、当然本発明の範囲における組み合わせは除いている。
 また、裏面のデポ層についての調査も実施例と同様にして行った。
 サセプタ形状と、得られた裏面ZDD値との関係を、実施例と同様に図4に示す。
 図4に示すように、いずれも-9nm/mm以下となっており、実施例と比べて裏面ZDD値の絶対値が大きく、その測定箇所でデポが急激に成長していることが分かる。これは、以下に示す図7、8からも、基板の外周側で局所的にデポ層が成長していることがよく分かる。
 図7は、傾斜角1°、水平幅が1.1%の場合においての、基板の中心から半径方向において120mmよりも外側の部分と、裏面ZDD値との関係の一例を示すグラフである。また、図8は、中心から半径方向に148mmの位置において、円周方向に裏面ZDD値を基板の全周にわたって測定した結果である。
 図7に示すように、基板の外周側(148mm付近)において、局所的に裏面ZDD値が大きく変化、すなわち、急激にデポ層が厚く成長してしまっていることが分かる。
 さらには図8に示すように、円周方向において裏面ZDD値に大きな変動が見られ、不均一な厚さでデポ層が積層されてしまっていることが分かる。このように不均一にシリコンのデポが行われると、当然基板の外周部のフラットネスが悪化する。
 
 以上のように、実施例および比較例から分かるように、本発明のエピタキシャル成長用サセプタであれば、エピタキシャル成長する単結晶基板の裏面の外周側において、局所的な著しいシリコンのデポを防止することが可能になる。したがって外周部のフラットネスが良好なエピタキシャル基板を得ることができる。
 
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (7)

  1.  エピタキシャル成長装置において単結晶基板を水平に支持するためのザグリを有するエピタキシャル成長用サセプタであって、
     前記ザグリは、前記単結晶基板が当接して支持される外周領域と、
     該外周領域に囲まれており、前記単結晶基板と接触しない中央領域を有しており、
     前記ザグリの中央領域には、前記エピタキシャル成長用サセプタを貫通する1つ以上の貫通孔が形成されており、
     前記ザグリの外周領域は、0°より大きく1°未満の範囲の傾斜角で、前記中央領域に向かって深さが増すように傾斜しているテーパ形状であり、かつ、前記支持される単結晶基板の直径の3.3%以上の水平幅を有するものであることを特徴とするエピタキシャル成長用サセプタ。
     
  2.  前記中央領域から前記外周領域に支持された前記単結晶基板の最外周部までの範囲に対応する外周領域の水平幅が、前記単結晶基板の直径の3.3%以上であることを特徴とする請求項1に記載のエピタキシャル成長用サセプタ。
     
  3.  前記ザグリの中央領域は、曲面からなる凹形状であることを特徴とする請求項1または請求項2に記載のエピタキシャル成長用サセプタ。
     
  4.  前記ザグリの外周領域の水平幅は、前記支持される単結晶基板の直径の5.5%以上7%以下であることを特徴とする請求項1から請求項3のいずれか一項に記載のエピタキシャル成長用サセプタ。
     
  5.  前記中央領域から前記外周領域に支持された前記単結晶基板の最外周部までの範囲に対応する外周領域の水平幅が、前記単結晶基板の直径の5.5%以上7%以下であることを特徴とする請求項1から請求項4のいずれか一項に記載のエピタキシャル成長用サセプタ。
     
  6.  前記エピタキシャル成長用サセプタは、直径300mm以上の単結晶基板用のものであることを特徴とする請求項1から請求項5のいずれか一項に記載のエピタキシャル成長用サセプタ。
     
  7.  前記ザグリにおいて、前記外周領域の内縁と前記中央領域の外縁の深さが一致しているか、または、前記外周領域の内縁から前記中央領域の外縁に向かって深さが増すように0.05mm未満の高さの段差が形成されているものであることを特徴とする請求項1から請求項6のいずれか一項に記載のエピタキシャル成長用サセプタ。
PCT/JP2008/003621 2007-12-28 2008-12-05 エピタキシャル成長用サセプタ WO2009084154A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020107013934A KR101516164B1 (ko) 2007-12-28 2008-12-05 에피텍셜 성장용 서셉터
US12/746,021 US20110073037A1 (en) 2007-12-28 2008-12-05 Epitaxial growth susceptor
DE112008003535T DE112008003535T5 (de) 2007-12-28 2008-12-05 Suszeptor für das epitaxiale Wachstum
JP2009547876A JP4661982B2 (ja) 2007-12-28 2008-12-05 エピタキシャル成長用サセプタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-340749 2007-12-28
JP2007340749 2007-12-28

Publications (1)

Publication Number Publication Date
WO2009084154A1 true WO2009084154A1 (ja) 2009-07-09

Family

ID=40823890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003621 WO2009084154A1 (ja) 2007-12-28 2008-12-05 エピタキシャル成長用サセプタ

Country Status (6)

Country Link
US (1) US20110073037A1 (ja)
JP (1) JP4661982B2 (ja)
KR (1) KR101516164B1 (ja)
DE (1) DE112008003535T5 (ja)
TW (1) TWI419255B (ja)
WO (1) WO2009084154A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102828238A (zh) * 2012-08-24 2012-12-19 东莞市中镓半导体科技有限公司 用于改良外延过程中衬底晶片表面温场的方法
JP2016518699A (ja) * 2013-03-15 2016-06-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 強化されたプロセスの均一性および低減された基板の滑りのためのサセプタ
JP2018107289A (ja) * 2016-12-27 2018-07-05 昭和電工株式会社 サセプタ、気相成長装置及び気相成長方法
JP2020198420A (ja) * 2019-05-28 2020-12-10 信越半導体株式会社 エピタキシャルウェーハの製造方法及びサセプタ

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10593521B2 (en) * 2013-03-12 2020-03-17 Applied Materials, Inc. Substrate support for plasma etch operations
SG11201701467RA (en) * 2014-09-05 2017-03-30 Applied Materials Inc Upper dome for epi chamber
KR20170054447A (ko) * 2014-09-05 2017-05-17 어플라이드 머티어리얼스, 인코포레이티드 기판들의 열적 프로세싱을 위한 서셉터 및 예열 링
EP3275008B1 (en) * 2015-03-25 2022-02-23 Applied Materials, Inc. Chamber components for epitaxial growth apparatus
US11702748B2 (en) * 2017-03-03 2023-07-18 Lam Research Corporation Wafer level uniformity control in remote plasma film deposition
CN113644017A (zh) * 2020-04-27 2021-11-12 上海新昇半导体科技有限公司 一种对晶圆进行定位的方法和半导体制造设备
CN113699586B (zh) * 2021-08-27 2022-07-26 江苏第三代半导体研究院有限公司 一种带空气桥结构的托盘及外延生长方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758041A (ja) * 1993-08-20 1995-03-03 Toshiba Ceramics Co Ltd サセプタ
JP2003318116A (ja) * 2002-04-25 2003-11-07 Shin Etsu Handotai Co Ltd サセプタおよび半導体ウェーハの製造方法
JP2004063779A (ja) * 2002-07-29 2004-02-26 Komatsu Electronic Metals Co Ltd エピタキシャルウェーハ製造装置及びサセプタ構造
JP2004319623A (ja) * 2003-04-14 2004-11-11 Shin Etsu Handotai Co Ltd サセプタ及び気相成長装置
JP2007123803A (ja) * 2005-09-30 2007-05-17 Toshiba Ceramics Co Ltd 半導体ウエハ支持部材及び半導体ウエハ支持部材の評価方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100937343B1 (ko) * 2001-11-30 2010-01-20 신에쯔 한도타이 가부시키가이샤 서셉터, 기상 성장 장치, 에피택셜 웨이퍼의 제조 장치,에피택셜 웨이퍼의 제조 방법 및 에피택셜 웨이퍼
TW200802552A (en) * 2006-03-30 2008-01-01 Sumco Techxiv Corp Method of manufacturing epitaxial silicon wafer and apparatus thereof
US20080314319A1 (en) * 2007-06-19 2008-12-25 Memc Electronic Materials, Inc. Susceptor for improving throughput and reducing wafer damage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758041A (ja) * 1993-08-20 1995-03-03 Toshiba Ceramics Co Ltd サセプタ
JP2003318116A (ja) * 2002-04-25 2003-11-07 Shin Etsu Handotai Co Ltd サセプタおよび半導体ウェーハの製造方法
JP2004063779A (ja) * 2002-07-29 2004-02-26 Komatsu Electronic Metals Co Ltd エピタキシャルウェーハ製造装置及びサセプタ構造
JP2004319623A (ja) * 2003-04-14 2004-11-11 Shin Etsu Handotai Co Ltd サセプタ及び気相成長装置
JP2007123803A (ja) * 2005-09-30 2007-05-17 Toshiba Ceramics Co Ltd 半導体ウエハ支持部材及び半導体ウエハ支持部材の評価方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102828238A (zh) * 2012-08-24 2012-12-19 东莞市中镓半导体科技有限公司 用于改良外延过程中衬底晶片表面温场的方法
CN102828238B (zh) * 2012-08-24 2015-11-04 东莞市中镓半导体科技有限公司 用于改良外延过程中衬底晶片表面温场的方法
JP2016518699A (ja) * 2013-03-15 2016-06-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 強化されたプロセスの均一性および低減された基板の滑りのためのサセプタ
JP2018107289A (ja) * 2016-12-27 2018-07-05 昭和電工株式会社 サセプタ、気相成長装置及び気相成長方法
JP2020198420A (ja) * 2019-05-28 2020-12-10 信越半導体株式会社 エピタキシャルウェーハの製造方法及びサセプタ

Also Published As

Publication number Publication date
KR20100102131A (ko) 2010-09-20
TW200945485A (en) 2009-11-01
TWI419255B (zh) 2013-12-11
KR101516164B1 (ko) 2015-05-04
JPWO2009084154A1 (ja) 2011-05-12
DE112008003535T5 (de) 2010-12-09
JP4661982B2 (ja) 2011-03-30
US20110073037A1 (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP4661982B2 (ja) エピタキシャル成長用サセプタ
CN107851560B (zh) 基座、外延生长装置、及外延晶圆
US8021968B2 (en) Susceptor and method for manufacturing silicon epitaxial wafer
JP4798163B2 (ja) エピタキシャル成長用サセプタ
JP5158093B2 (ja) 気相成長用サセプタおよび気相成長装置
TWI417988B (zh) Pneumatic growth device base
WO2011105010A1 (ja) 気相成長用半導体基板支持サセプタおよびエピタキシャルウェーハ製造装置およびエピタキシャルウェーハの製造方法
JP5834632B2 (ja) サセプタ、該サセプタを用いた気相成長装置およびエピタキシャルウェーハの製造方法
JP2010016183A (ja) 気相成長装置、エピタキシャルウェーハの製造方法
WO2009116233A1 (ja) シリコンエピタキシャルウェーハ及びその製造方法
JP3004846B2 (ja) 気相成長装置用サセプタ
JP2011165964A (ja) 半導体装置の製造方法
JP5161748B2 (ja) 気相成長用サセプタ及び気相成長装置並びにエピタキシャルウェーハの製造方法
JP2009147105A (ja) エピタキシャル成長方法
JP5040333B2 (ja) 気相成長用サセプタ及び気相成長装置並びに気相成長方法
JP5440589B2 (ja) 気相成長装置及びエピタキシャルウェーハの製造方法
WO2009093417A1 (ja) サセプタ及び気相成長装置並びに気相成長方法
JPWO2009060914A1 (ja) エピタキシャルウェーハ
JP6968670B2 (ja) サセプタ、エピタキシャルウェーハの製造方法
JP6587354B2 (ja) サセプタ
KR20210122475A (ko) 서셉터 및 이를 포함하는 웨이퍼의 제조 장치
JP2013191889A (ja) シリコンエピタキシャルウェーハ
JP2009272465A (ja) シリコンウェーハ及びエピタキシャル基板の製造方法。
JP4720692B2 (ja) 気相成長用サセプタ、気相成長装置及び気相成長方法
JP6493982B2 (ja) サセプタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08869130

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009547876

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12746021

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107013934

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120080035350

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112008003535

Country of ref document: DE

Date of ref document: 20101209

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08869130

Country of ref document: EP

Kind code of ref document: A1