WO2009116233A1 - シリコンエピタキシャルウェーハ及びその製造方法 - Google Patents
シリコンエピタキシャルウェーハ及びその製造方法 Download PDFInfo
- Publication number
- WO2009116233A1 WO2009116233A1 PCT/JP2009/000889 JP2009000889W WO2009116233A1 WO 2009116233 A1 WO2009116233 A1 WO 2009116233A1 JP 2009000889 W JP2009000889 W JP 2009000889W WO 2009116233 A1 WO2009116233 A1 WO 2009116233A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon
- substrate
- oxide film
- susceptor
- silicon oxide
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/20—Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02658—Pretreatments
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68735—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile
Definitions
- the present invention relates to a method of manufacturing a silicon epitaxial wafer by placing a substrate on a susceptor and growing a silicon epitaxial layer in an epitaxial growth apparatus, and a silicon epitaxial wafer manufactured by the method.
- Epitaxial growth technology is a technology for vapor-phase growth of single crystal thin film layers used in the manufacture of integrated circuits such as bipolar transistors and MOSLSI, and is a uniform single crystal thin film that conforms to the crystal orientation of the substrate on a clean semiconductor single crystal substrate. This is a very important technique because it can grow a crystal and can form a steep impurity gradient in a junction having a large dopant concentration difference.
- This growth apparatus includes a reaction chamber provided with an epitaxial growth susceptor for placing a single crystal silicon substrate therein, a heating means including a halogen lamp provided outside the reaction chamber, and the like.
- An apparatus for processing one by one of the molds is called a single wafer epitaxial growth apparatus.
- FIG. 4 is a schematic view showing an example of a general single wafer epitaxial growth apparatus conventionally used.
- This single-wafer epitaxial growth apparatus 41 has a reaction chamber 43 in which a silicon substrate 42 on which an epitaxial layer is stacked is disposed, and is used for introducing a source gas and a carrier gas into the reaction chamber 43.
- a gas inlet 44 and a gas outlet 45 for discharging the gas are provided.
- the reaction chamber 43 is provided with a susceptor 46 on which the silicon substrate 42 is placed.
- a heating means 48 such as a halogen lamp for heating the silicon substrate 42 is provided.
- a general method of forming an epitaxial layer on the silicon substrate 42 using the single wafer epitaxial growth apparatus 41 shown in FIG. 4 will be described.
- the single crystal silicon substrate 42 is placed on the susceptor 46, and the susceptor The substrate 42 is heated to a predetermined temperature by the heating means 48 while the silicon single crystal substrate 42 is rotated by a support shaft 49 that supports 46 and a rotation mechanism (not shown) that rotates (spins) the support shaft 49.
- a raw material gas such as trichlorosilane diluted with a carrier gas such as hydrogen is supplied from the gas inlet 44 at a predetermined flow rate for a predetermined time.
- a silicon epitaxial wafer in which an epitaxial layer is laminated on the substrate 42 can be obtained.
- JP-A-59-50095 discloses various susceptors. Such susceptors can be roughly divided into a type that supports almost the entire back surface of the substrate and a type that supports only a part of the substrate (for example, Japanese Patent Application Laid-Open No. 59-50095 and Japanese Patent Application Laid-Open No. 5-238882, JP-A-7-58039, JP-A-2004-319623).
- the bottom surface of the counterbore is flat, or the columnar convex part having a diameter smaller than the diameter of the substrate to be placed is formed on the bottom surface of the counterbore, And those having a meshed portion in contact with the substrate.
- this type of susceptor is in contact with almost the entire back surface of the substrate, there is a problem in that the mounting surface (back surface) of the substrate is damaged. Furthermore, if scratches remain on the back surface of the substrate, it causes dust generation in the subsequent device manufacturing process.
- Japanese Patent Application Laid-Open No. 2005-235906 discloses a susceptor that forms an inclined surface on the outer periphery of a counterbore and supports the substrate so that an edge portion of the substrate contacts the inclined surface in order to reduce scratches generated on the back surface of the substrate. Is disclosed. Furthermore, Japanese Unexamined Patent Application Publication No. 2003-1000085 discloses that a silicon oxide film is formed on the back surface of the substrate so that the back surface of the substrate is not damaged by lift pins. However, even if the substrate supporting method is devised in this way, the problem of dust generation in the device manufacturing process still occurs.
- the present invention has been made in view of such problems, and an object thereof is to provide a silicon epitaxial wafer that can reduce dust generation in a device manufacturing process and a method for manufacturing the same.
- a silicon oxide film is formed on the entire back surface of the silicon substrate.
- the present invention also relates to a silicon epitaxial wafer in which an epitaxial layer is grown on a silicon substrate, wherein at least the edge portion and the outer periphery of the back main surface of the silicon substrate are free from contact scratches caused by a susceptor.
- a silicon epitaxial wafer is provided, and in particular, the back surface of the silicon substrate is preferably free from contact scratches by the susceptor over the entire surface.
- the epitaxial layer by forming the epitaxial layer by placing the substrate having the silicon oxide film on the back main surface excluding the edge portion of the substrate on the susceptor via the silicon oxide film, at least the edge portion of the silicon substrate and An epitaxial layer can be grown without causing contact scratches with the susceptor over the entire area from the outer periphery of the back main surface to 1 mm inside or the entire back surface, and also suppresses dust generation from the substrate in the subsequent steps. be able to. Therefore, the yield and quality of wafer manufacturing and further device manufacturing can be improved.
- the removal region of the silicon oxide film is at most 1 mm from the outer periphery to the inner side of the back main surface.
- the silicon oxide film to be removed is at most 1 mm inward from the outer periphery of the back main surface, so that the back surface of the silicon substrate is grown during the growth of the epitaxial layer. Can suppress autodoping.
- the step of removing the silicon oxide film is preferably performed by mirror polishing, and the edge portion of the silicon substrate is preferably a mirror surface.
- the silicon oxide film at the edge portion can be accurately removed by mirror polishing, and the silicon epitaxial wafer free from dust generation can be manufactured because the edge portion of the silicon substrate is a mirror surface. .
- the step of forming the silicon oxide film is preferably performed by a CVD method.
- a CVD silicon oxide film can be easily formed, and after growing an epitaxial layer, a silicon oxide film can be easily formed. Can be removed.
- an epitaxial layer can be grown on the back surface of the silicon substrate without causing contact scratches with the susceptor. Dust can be suppressed. Therefore, it is possible to improve the yield of wafer manufacture and further device manufacture and the quality of wafer products.
- Sectional drawing which showed in detail the contact relationship with a susceptor in the method of manufacturing the silicon epitaxial wafer of this invention.
- the schematic diagram which looked at the substrate from the back.
- Dust generation in epitaxial wafer manufacturing and subsequent device manufacturing generates dust directly from the polysilicon deposited on the edge and scratches on the substrate, as well as silicon oxide film inside the scratches by film formation / removal process such as silicon oxide film Remains and dust is generated by peeling. Therefore, various susceptors have been developed conventionally. However, no matter how much the support method of the substrate by the susceptor is changed, the problem of dust generation in the device manufacturing process cannot be solved.
- the inventor has conducted intensive research on the scratches on the substrate that cause the generation of dust.
- contact scratches with the susceptor have been prevented by supporting the vicinity of the outer periphery of the back surface of the silicon substrate (inside the edge portion) with the susceptor.
- scratches occur at the contact point with the susceptor.
- a susceptor that supports in contact with the outer periphery of the back surface of the substrate when the substrate is placed and heated to 1100 ° C. in a hydrogen atmosphere, the susceptor and the substrate are locally adhered, and then the temperature is lowered. The adhesion point peels off, and the peeled portion becomes a scratch.
- the occurrence position of the scratch depends on the contact angle with the susceptor. For example, in the case of a susceptor having a 1 ° inclination of the installation portion of the substrate formed on the outer periphery of the counterbore, the scratch occurs within a width of 1 mm from the back main surface. If the angle of the installation portion is made shallower, the contact point with the susceptor becomes further inside than the outer periphery of the back main surface, and scratches are also generated by peeling at the contact point.
- the present inventor has further researched and manufactured a silicon epitaxial wafer without damaging the back surface of the substrate on which the epitaxial layer is grown.
- the present invention was completed by conceiving that the substrate should not be in direct contact and polysilicon should not be grown.
- FIG. 1 is a cross-sectional view showing in detail the contact relationship with a susceptor in the method for producing a silicon epitaxial wafer of the present invention.
- FIG. 3 is a figure for demonstrating the process flow of the manufacturing method of the silicon epitaxial wafer concerning this invention.
- a silicon oxide film 4 is formed on the entire back surface of the silicon substrate W prepared in step A.
- the silicon substrate W prepared at this time is not particularly limited.
- the formation of the silicon oxide film 4 is not particularly limited and can be performed by a thermal oxidation method, but is preferably performed by a CVD method (Chemical Vapor Deposition).
- CVD Chemical Vapor Deposition
- the silicon oxide film created by the CVD method on the back surface is dense, so the outside of the dopant contained in the substrate during the growth of the epitaxial layer.
- the conditions of the CVD method are not limited, and for example, a CVD method performed under normal pressure can be applied.
- step B as shown in FIGS. 1 and 2, the silicon oxide film 4 formed on at least the edge portion 3 of the silicon substrate W is removed.
- FIG. 2 is a schematic view of the substrate W as seen from the back immediately after the removal of the silicon oxide film is completed.
- the silicon oxide film may be removed further to the inner side than the edge portion, but it is necessary to leave a portion in contact with the lowest susceptor. This is because the silicon oxide film is for preventing the susceptor and the substrate from coming into direct contact.
- the silicon oxide film is removed too much to the inside of the substrate, for example, if the substrate contains a dopant such as boron in a high concentration, a large amount of dopant diffuses out from the back surface when growing the epitaxial layer. As a result, autodoping of the silicon epitaxial layer may proceed. Therefore, when an epitaxial layer is grown on a substrate where autodoping is a concern, it is preferable that the removal area of the silicon oxide film is 1 mm from the outer periphery 1a of the back main surface to 1b inward. Thus, when the substrate contains a dopant, autodoping of the growing epitaxial layer can be suppressed by not removing the silicon oxide film formed on the back main surface so much to the inside.
- a dopant such as boron in a high concentration
- the removal of the silicon oxide film 4 is performed, for example, by immersing the silicon oxide film on the remaining silicon oxide film in HF or by superposing the main surfaces of the front and back surfaces of a plurality of substrates on which the silicon oxide film is formed on the back surface. For example, it can be performed by immersing the edge portion in an HF aqueous solution in a batch system of 100 sheets.
- it is preferable to perform the step B of removing the silicon oxide film by mirror polishing.
- the oxide film By removing the silicon oxide film 4 formed on the edge portion 3 of the silicon substrate W by mirror polishing, the oxide film can be surely removed, and a silicon epitaxial wafer without polysilicon growth can be manufactured in the epitaxial growth process. it can. Moreover, since the edge portion is smoothed, abnormal growth of polysilicon called nodules at the edge portion can be prevented in the epitaxial process.
- step C the silicon substrate W is placed on the susceptor 16 via the silicon oxide film 4 formed in step B.
- the susceptor 16 having a columnar convex portion formed at the center of the counterbore of the susceptor as shown in FIG. 3C can be used.
- the susceptor used in the present invention may have, for example, a ring-shaped convex portion formed at the center.
- the susceptor 16 used in the present invention must support the substrate W via the silicon oxide film 4.
- a recess is further formed inside the recess, which is a counterbore, and a susceptor that supports the edge part or the edge part or the back main surface of the substrate W from the outer periphery to 1 mm inward is used.
- a susceptor that supports the edge part or the edge part or the back main surface of the substrate W from the outer periphery to 1 mm inward is used.
- a susceptor having a cylindrical or ring diameter of the convex portion that is about 1 mm to 2 mm smaller than the remaining silicon oxide film is used. It is preferable to do.
- the susceptor is placed on the silicon substrate W so that the substrate W is supported at the center of the counterbore.
- step D the epitaxial layer 5 is grown on the surface 2 of the silicon substrate W while the silicon substrate W is held by the susceptor 16 via the silicon oxide film 4.
- the epitaxial layer 5 is formed by, for example, arranging a susceptor as described above in a reaction chamber of a single wafer type epitaxial growth apparatus introduced in FIG. (Hydrogen) alone, while rotating the substrate W, the temperature is raised to 1130 ° C., which is the reaction temperature of the source gas, and then the growth temperature of the epitaxial layer is set to about 1130 ° C. And hydrogen can be grown by supplying them from the gas inlet at a constant flow rate. The reaction time and the flow rate of the source gas are appropriately changed according to the thickness of the epitaxial layer to be formed.
- a step E in which the silicon oxide film 4 is entirely removed from the back surface is performed to manufacture the silicon epitaxial wafer 10. If it is necessary to leave the silicon oxide film 4 on the back surface of the substrate W, this step E may be omitted.
- a substrate having a silicon oxide film on the back main surface of the substrate W is placed on the susceptor via the silicon oxide film to form an epitaxial layer, whereby contact scratches with the susceptor are formed on the back surface of the silicon substrate.
- the epitaxial layer can be grown without generation of dust, and dust generation from the substrate can be suppressed in the subsequent processes. Therefore, the yield and quality of wafer manufacturing and further device manufacturing can be improved. Furthermore, since no silicon oxide film remains on the edge portion, unnecessary polysilicon growth during epitaxial layer growth can be suppressed.
- the silicon epitaxial wafer manufactured by the method of the present invention is a silicon epitaxial wafer 10 in which an epitaxial layer 5 is grown on a silicon substrate W, from at least the edge portion 3 of the silicon substrate W and the outer periphery 1a of the back main surface.
- the region up to 1 mm inside 1 b is free from contact scratches caused by the susceptor.
- Such a silicon epitaxial wafer having no contact scratch with the susceptor can suppress dust generation from the substrate even in the subsequent process. Therefore, the yield and quality of wafer manufacturing and further device manufacturing can be improved.
- the back surface of the silicon substrate of the silicon epitaxial wafer 10 is free from contact scratches by the susceptor over the entire surface, and such a silicon epitaxial wafer can surely suppress dust generation from contact scratches by the susceptor of the substrate.
- the silicon epitaxial wafer preferably has a mirror surface at the edge of the silicon substrate W, which can surely prevent the growth of polysilicon and the growth of nodules and crowns, and further from the edge of the substrate. Dust generation can be prevented.
- Examples 1 and 2 A silicon epitaxial wafer was manufactured according to the flow shown in FIG.
- a silicon single crystal substrate having a diameter of 300 mm, p-type, boron-doped (6 ⁇ 10 18 atoms / cm 3 ) p + silicon single crystal and an edge portion 3 having a width of 0.5 mm was prepared.
- the back main surface 1 of the substrate W has a diameter of 299 mm.
- a CVD silicon oxide film having a thickness of 3500 mm (350 nm) was formed on the entire back surface of the silicon substrate W by a CVD method under normal pressure.
- the CVD oxide film formed in the region from the outer periphery of the edge portion of the substrate and the back main surface to 1 mm inside was removed by mirror polishing. Therefore, the diameter of the CVD oxide film 4 formed on the back main surface of the substrate was about 297 mm.
- the silicon substrate W was placed on the susceptor 16 via the silicon oxide film 4.
- a counterbore having a diameter of 302 mm and a cylindrical convex portion having a diameter of 280 mm and a height of 0.09 mm at the center of the counterbore was used (see FIG. 3C).
- the susceptor in Example 2 has a counterbore diameter of 302 mm and a ring-shaped convex part having an outer diameter of 296 mm, an inner diameter of 279 mm, and a height of 0.09 mm at the center of the counterbore (not used). (Illustrated).
- the carrier gas hydrogen
- the temperature is raised to 1130 ° C., which is the reaction temperature of the source gas, to grow the epitaxial layer.
- the temperature was about 1130 ° C., and the reaction gas was supplied from the gas inlet at a flow rate of trichlorosilane (SiHCl 3 ) 10 SLM and hydrogen (H 2 ) 50 SLM.
- SiHCl 3 trichlorosilane
- H 2 hydrogen
- the CVD oxide film 4 formed on the back surface of the substrate W was removed with HF.
- a silicon epitaxial wafer in which the entire back surface of the substrate W was free from contact scratches by the susceptor could be manufactured.
- a substrate W having the same specifications as the substrate W prepared in the example was prepared (no backside CVD oxide film).
- the substrate W was placed on a step portion having an inclination (an angle of about 1 °) in the counterbore of the susceptor so that the substrate was supported within a range of about 1 mm from the outer periphery of the back main surface of the substrate.
- the carrier gas hydrogen
- the substrate W is rotated, the temperature is raised to 1130 ° C., which is the reaction temperature of the source gas, to grow the epitaxial layer.
- the temperature was about 1130 ° C., and the reaction gas was supplied from the gas inlet at a flow rate of trichlorosilane (SiHCl 3 ) 10 SLM and hydrogen (H 2 ) 50 SLM. Then, an epitaxial layer having a thickness of about 5 ⁇ m was formed on the substrate W.
- SiHCl 3 trichlorosilane
- H 2 hydrogen
- a substrate W having the same specifications as the substrate W prepared in Comparative Example 1 was prepared.
- the substrate W was placed on a susceptor having a ring-shaped convex portion having a counterbore diameter of 302 mm, an outer diameter of 280 mm, an inner diameter of 279 mm, and a height of 0.09 mm at the center of the counterbore.
- the carrier gas hydrogen
- the substrate W is rotated, the temperature is raised to 1130 ° C., which is the reaction temperature of the source gas, to grow the epitaxial layer.
- the temperature was about 1130 ° C., and the reaction gas was supplied from the gas inlet at a flow rate of trichlorosilane (SiHCl 3 ) 10 SLM and hydrogen (H 2 ) 50 SLM. Then, an epitaxial layer having a thickness of about 5 ⁇ m was formed on the substrate W.
- SiHCl 3 trichlorosilane
- H 2 hydrogen
- Comparative Example 3 First, a substrate W having the same specifications as the substrate W prepared in Comparative Example 1 was prepared. Next, a CVD silicon oxide film having a thickness of 3500 mm (350 nm) was formed on the entire back surface of the silicon substrate by a CVD method under normal pressure.
- the silicon substrate was placed on the susceptor via a silicon oxide film.
- a susceptor having a columnar convex part with a counterbore diameter of 302 mm and a center part of the counterbore having a diameter of 296 mm and a height of 0.09 mm was used.
- the carrier gas hydrogen
- the temperature is raised to 1130 ° C., which is the reaction temperature of the source gas, to grow the epitaxial layer.
- the temperature was about 1130 ° C., and the reaction gas was supplied from the gas inlet at a flow rate of trichlorosilane (SiHCl 3 ) 10 SLM and hydrogen (H 2 ) 50 SLM.
- SiHCl 3 trichlorosilane
- H 2 hydrogen
- the CVD oxide film formed on the back surface of the substrate W was removed with HF.
- a silicon epitaxial wafer was manufactured.
- a large amount of polysilicon was generated during the growth of the epitaxial layer, and a product that could be shipped as a product could not be obtained.
- an epitaxial layer can be grown on the back surface of the silicon substrate without causing contact scratches with the susceptor. Therefore, dust generation from the substrate can also be suppressed in the subsequent processes, and the yield of wafer manufacturing and further device manufacturing and the quality of wafer products can be improved.
- the present invention is not limited to the above embodiment.
- the above embodiment is merely an example, and the present invention has the same configuration as that of the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
この枚葉式エピタキシャル成長装置41は、表面にエピタキシャル層が積層されるシリコン基板42が内部に配置される反応室43を有しており、該反応室43に原料ガス・キャリアガスを導入するためのガス導入口44とガスを排出するガス排出口45が設けられている。また、反応室43内にはシリコン基板42を載置するサセプタ46を具備する。
また、少なくとも、反応室43の外部には、シリコン基板42を加熱する例えばハロゲンランプ等の加熱手段48を備えている。
しかし、このようなタイプのサセプタは基板の裏面のほぼ全面と接触するため、基板の載置面(裏面)を傷つけてしまうという問題点があった。さらに基板の裏面に傷が残っていると、後のデバイス製造工程において発塵の原因となった。
しかし、このようなタイプのサセプタは基板の裏主面の全体を傷つけることはないが、一部分でしか基板を支持していないため、接触部での傷が深かったり、基板が撓んだり、基板のエッジ部からスリップが発生したりといった問題があった。
しかし、このように基板の支持方法を工夫しても、デバイス製造工程における発塵の問題は、依然として発生していた。
このように、シリコン基板がドーパントを含有する場合、除去するシリコン酸化膜は、多くても裏主面の外周から内側に向かって1mmまでとすることで、エピタキシャル層の成長中にシリコン基板の裏面からのオートドープを抑制することができる。
このように、鏡面研磨によりエッジ部のシリコン酸化膜を精度良く除去することができ、また、シリコン基板のエッジ部が鏡面であることにより、さらに発塵のないシリコンエピタキシャルウェーハを製造することができる。
このように、CVD法によりシリコン基板の裏面全面にシリコン酸化膜を形成することにより、簡単にCVDシリコン酸化膜を形成することができる上に、エピタキシャル層を成長させた後、簡単にシリコン酸化膜を除去することができる。
現在、直径300mmを越すシリコンエピタキシャルウェーハを製造するには、シリコン基板の裏主面の外周付近(エッジ部より内側)をサセプタで支持することにより、サセプタとの接触傷の発生を防止してきた。しかし、このような支持方法でもサセプタとの接触点で傷が発生してしまう。
基板裏主面の外周と接触して支持するタイプのサセプタでは、基板を載置して水素雰囲気中で1100℃まで昇温すると、サセプタと基板が局所的に張り付き、次に温度を下げることで接着点が剥がれ、剥がれた部分が傷となるのである。
図1は、本発明のシリコンエピタキシャルウェーハを製造する方法においてサセプタとの接触関係を詳細に示した断面図である。また、図3は、本発明にかかるシリコンエピタキシャルウェーハの製造方法の工程フローを説明するための図である。
このとき用意するシリコン基板Wは特に限定されない。
このように、CVD法でシリコン基板の裏面全面にシリコン酸化膜を形成することにより、簡単にCVDシリコン酸化膜を形成することができる上に、エピタキシャル層を成長させた後、シリコンエピタキシャルウェーハを傷つけずに簡単にシリコン酸化膜を除去することができる。また例えば基板がドーパントを含んでいる場合、裏面(エピタキシャル層を形成しない面)にCVD法で作成されたシリコン酸化膜は緻密であるため、エピタキシャル層の成長中に基板に含んだドーパントの外方拡散を防止することができ、いわゆるエピタキシャル層のオートドープによる抵抗率変化を抑制することができる。
上記CVD法の条件は限定されず、例えば常圧下で行うCVD法を適用することができる。
このときシリコン酸化膜は、エッジ部よりもさらに内側まで除去しても良いが、最低サセプタと接触する部分は残しておく必要がある。このシリコン酸化膜は、サセプタと基板が直接接触しないようにするためのものであるからである。
このように、基板がドーパントを含む場合、裏主面に形成されたシリコン酸化膜をあまり内側まで除去しないことにより、成長中のエピタキシャル層のオートドープを抑制できる。
シリコン基板Wのエッジ部3に形成されたシリコン酸化膜4を鏡面研磨により除去することで、確実に酸化膜を除去して、エピタキシャル成長工程でポリシリコンの成長のないシリコンエピタキシャルウェーハを製造することができる。しかもエッジ部が平滑化するので、エピタキシャル工程において、エッジ部にノジュールと呼ばれるポリシリコンの異常成長を防止することができる。
このときサセプタ16は、図3(C)のようにサセプタのザグリの中央に円柱状の凸部が形成されているものを使用することができる。また、本発明で使用するサセプタは、例えばリング状の凸部が中央に形成されているものであってもよい。
しかし本発明で使用するサセプタ16は、基板Wをシリコン酸化膜4を介して支持するものでなければならない。そのため、ザグリである凹部の内側にさらに凹部が形成されており、ザグリの段差で、エッジ部、又は、基板Wの裏主面の外周から内側に向かって1mmまでの範囲で支持するサセプタは使用できない。
従って、ザグリの中央に円柱状やリング状の凸部が形成されているサセプタにおいても、その凸部の円柱若しくはリングの直径は、残留させたシリコン酸化膜より約1mmから2mm程度小さいサセプタを使用することが好ましい。
エピタキシャル層5は、例えば、図4で紹介したような枚葉式のエピタキシャル成長装置の反応室に上述のようなサセプタを配置して、裏面に酸化膜を形成したシリコン基板を保持してキャリアガス(水素)のみを供給し、基板Wを回転させながら、原料ガスの反応温度である1130℃にまで昇温させて、次に、エピタキシャル層の成長温度を約1130℃とし、反応ガスとしてのトリクロロシランと水素を一定の流量でガス導入口から供給することにより成長させることができる。反応時間及び、原料ガスの流量は、形成するエピタキシャル層の厚さに応じて適宜変更する。
さらに、エッジ部にシリコン酸化膜が残留していないので、エピタキシャル層成長時の無用なポリシリコンの成長を抑制することができる。
(実施例1、2)
図3に示すフローでシリコンエピタキシャルウェーハの製造を行った。
次に、シリコン基板Wの裏面全面に常圧下のCVD法により厚さ3500Å(350nm)のCVDシリコン酸化膜を形成した。
続いて、鏡面研磨により、基板のエッジ部及び裏主面の外周から1mm内側までの領域に形成されたCVD酸化膜を除去した。従って、基板の裏主面に形成されたCVD酸化膜4の直径は約297mmとなった。
このとき実施例1でのサセプタは、ザグリの直径が302mmで該ザグリの中央に直径が280mmで高さが0.09mmの円柱状の凸部を有するものを使用した(図3(C)参照)。また、実施例2でのサセプタは、ザグリの直径が302mmで該ザグリの中央に外径が296mm、内径が279mmで高さが0.09mmのリング状の凸部を有するものを使用した(不図示)。
これにより、基板Wの裏面全面にサセプタによる接触傷がないシリコンエピタキシャルウェーハが製造できた。
まず、実施例で準備した基板Wと同様の仕様の基板Wを準備した(裏面CVD酸化膜なし)。次に、サセプタのザグリ内に傾斜(約1°の角度)を持つ段差部分に基板Wを載置し、基板の裏主面外周から約1mm以内の範囲で基板を支持するようにした。
続いて、枚葉式のエピタキシャル成長装置の反応室にキャリアガス(水素)のみを供給し、基板Wを回転させながら、原料ガスの反応温度である1130℃にまで昇温させて、エピタキシャル層の成長温度を約1130℃とし、反応ガスとしてトリクロロシラン(SiHCl3)10SLM、水素(H2)50SLM、の流量でガス導入口から供給した。そして、基板W上に約5μmの厚さのエピタキシャル層を形成した。
まず、比較例1で準備した基板Wと同様の仕様の基板Wを準備した。次に、ザグリの直径が302mmで該ザグリの中央に外径が280mm、内径が279mmで高さが0.09mmのリング状の凸部を有するサセプタに基板Wを載置した。
続いて、枚葉式のエピタキシャル成長装置の反応室にキャリアガス(水素)のみを供給し、基板Wを回転させながら、原料ガスの反応温度である1130℃にまで昇温させて、エピタキシャル層の成長温度を約1130℃とし、反応ガスとしてトリクロロシラン(SiHCl3)10SLM、水素(H2)50SLM、の流量でガス導入口から供給した。そして、基板W上に約5μmの厚さのエピタキシャル層を形成した。
まず、比較例1で準備した基板Wと同様の仕様の基板Wを準備した。
次に、シリコン基板の裏面全面に常圧下のCVD法により厚さ3500Å(350nm)のCVDシリコン酸化膜を形成した。
このときサセプタは、ザグリの直径が302mmで該ザグリの中央に直径が296mmで高さが0.09mmの円柱状の凸部を有するものを使用した。
これにより、シリコンエピタキシャルウェーハを製造したが、エッジ部にCVD酸化膜が残留していたため、エピタキシャル層成長中にポリシリコンが大量に発生し、製品として出荷できるものを得ることができなかった。
Claims (7)
- シリコン基板をサセプタに載置してエピタキシャル層を成長させることによりシリコンエピタキシャルウェーハを製造する方法において、少なくとも、
前記シリコン基板の裏面全面にシリコン酸化膜を形成する工程と、
前記シリコン基板の少なくともエッジ部に形成されたシリコン酸化膜を除去する工程と、
前記シリコン酸化膜を介して前記サセプタ上に前記シリコン基板を載置する工程とを含み、
該サセプタで前記シリコン酸化膜を介して前記シリコン基板を保持したまま、前記シリコン基板上にエピタキシャル層を成長させることを特徴とするシリコンエピタキシャルウェーハの製造方法。
- 前記シリコン基板がドーパントを含有する場合、前記シリコン酸化膜の除去工程において、前記シリコン酸化膜の除去領域を多くても裏主面の外周から内側に向かって1mmまでとすることを特徴とする請求項1に記載のシリコンエピタキシャルウェーハの製造方法。
- 前記シリコン酸化膜を除去する工程は、鏡面研磨により行うことを特徴とする請求項1又は請求項2に記載のシリコンエピタキシャルウェーハの製造方法。
- 前記シリコン酸化膜を形成する工程は、CVD法により行うことを特徴とする請求項1乃至請求項3のいずれか1項に記載のシリコンエピタキシャルウェーハの製造方法。
- シリコン基板上にエピタキシャル層を成長させたシリコンエピタキシャルウェーハであって、前記シリコン基板の少なくともエッジ部及び裏主面の外周から1mm内側までの領域は、サセプタによる接触傷がないものであることを特徴とするシリコンエピタキシャルウェーハ。
- 前記シリコン基板の裏面は、全面にわたってサセプタによる接触傷がないものであることを特徴とする請求項5に記載のシリコンエピタキシャルウェーハ。
- 前記シリコン基板のエッジ部は、鏡面であることを特徴とする請求項5又は請求項6に記載のシリコンエピタキシャルウェーハ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/866,946 US8216920B2 (en) | 2008-03-17 | 2009-02-27 | Silicon epitaxial wafer and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-068069 | 2008-03-17 | ||
JP2008068069A JP5347288B2 (ja) | 2008-03-17 | 2008-03-17 | シリコンエピタキシャルウェーハの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009116233A1 true WO2009116233A1 (ja) | 2009-09-24 |
Family
ID=41090648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/000889 WO2009116233A1 (ja) | 2008-03-17 | 2009-02-27 | シリコンエピタキシャルウェーハ及びその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8216920B2 (ja) |
JP (1) | JP5347288B2 (ja) |
KR (1) | KR101559977B1 (ja) |
TW (1) | TWI435377B (ja) |
WO (1) | WO2009116233A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5571409B2 (ja) * | 2010-02-22 | 2014-08-13 | 株式会社荏原製作所 | 半導体装置の製造方法 |
WO2011125305A1 (ja) * | 2010-04-08 | 2011-10-13 | 信越半導体株式会社 | シリコンエピタキシャルウエーハ、シリコンエピタキシャルウエーハの製造方法、及び半導体素子又は集積回路の製造方法 |
RU2013145617A (ru) * | 2011-03-29 | 2015-05-10 | Наткор Текнолоджи, Инк. | Способ регулирования толщины пленки оксида кремния |
DE112012005302T5 (de) * | 2012-01-19 | 2014-09-11 | Shin-Etsu Handotai Co., Ltd. | Verfahren zur Fertigung eines Epitaxialwafers |
JP5845143B2 (ja) * | 2012-06-29 | 2016-01-20 | 株式会社Sumco | エピタキシャルシリコンウェーハの製造方法、および、エピタキシャルシリコンウェーハ |
DE102015223807A1 (de) | 2015-12-01 | 2017-06-01 | Siltronic Ag | Verfahren zur Herstellung einer Halbleiterscheibe mit epitaktischer Schicht in einer Abscheidekammer, Vorrichtung zur Herstellung einer Halbleiterscheibe mit epitaktischer Schicht und Halbleiterscheibe mit epitaktischer Schicht |
CN110942986A (zh) * | 2018-09-21 | 2020-03-31 | 胜高股份有限公司 | 形成于硅晶圆的表面的氧化膜的去除方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005005490A (ja) * | 2003-06-12 | 2005-01-06 | Sumitomo Mitsubishi Silicon Corp | 半導体ウェーハの製造方法 |
JP2005235906A (ja) * | 2004-02-18 | 2005-09-02 | Shin Etsu Handotai Co Ltd | ウェーハ保持具及び気相成長装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5950095A (ja) | 1982-09-10 | 1984-03-22 | ジェミニ リサーチ, インコーポレイテッド | 化学反応器 |
US5242501A (en) * | 1982-09-10 | 1993-09-07 | Lam Research Corporation | Susceptor in chemical vapor deposition reactors |
JPH05238882A (ja) | 1992-02-28 | 1993-09-17 | Toshiba Mach Co Ltd | 気相成長用サセプタ |
JPH0758039A (ja) | 1993-08-20 | 1995-03-03 | Toshiba Ceramics Co Ltd | サセプタ |
JP3693470B2 (ja) * | 1997-08-08 | 2005-09-07 | 東芝セラミックス株式会社 | 保護膜付きシリコンウェーハの製造方法およびその製造装置 |
JP2000237955A (ja) * | 1999-02-18 | 2000-09-05 | Speedfam-Ipec Co Ltd | 端面研磨装置におけるウエハ吸着部への液体の供給および真空引き機構 |
JP4137407B2 (ja) * | 2001-05-21 | 2008-08-20 | 日本オプネクスト株式会社 | 光半導体装置の製造方法 |
JP2003100855A (ja) * | 2001-09-27 | 2003-04-04 | Shin Etsu Handotai Co Ltd | シリコン単結晶ウェーハ処理装置、シリコン単結晶ウェーハおよびシリコンエピタキシャルウェーハの製造方法 |
JP2003142405A (ja) * | 2001-10-31 | 2003-05-16 | Mitsubishi Electric Corp | 半導体基板の製造方法 |
JP4019998B2 (ja) * | 2003-04-14 | 2007-12-12 | 信越半導体株式会社 | サセプタ及び気相成長装置 |
EP1643544A4 (en) * | 2003-06-26 | 2009-07-01 | Shinetsu Handotai Kk | METHOD FOR MANUFACTURING EPITAXIAL SILICON WAFER AND EPITAXIAL SILICON WAFER |
US8852349B2 (en) * | 2006-09-15 | 2014-10-07 | Applied Materials, Inc. | Wafer processing hardware for epitaxial deposition with reduced auto-doping and backside defects |
JP5260023B2 (ja) * | 2007-10-19 | 2013-08-14 | 三菱重工業株式会社 | プラズマ成膜装置 |
JP5444607B2 (ja) * | 2007-10-31 | 2014-03-19 | 株式会社Sumco | エピタキシャル膜形成装置用のサセプタ、エピタキシャル膜形成装置、エピタキシャルウェーハの製造方法 |
-
2008
- 2008-03-17 JP JP2008068069A patent/JP5347288B2/ja active Active
-
2009
- 2009-02-27 US US12/866,946 patent/US8216920B2/en not_active Expired - Fee Related
- 2009-02-27 WO PCT/JP2009/000889 patent/WO2009116233A1/ja active Application Filing
- 2009-02-27 KR KR1020107020637A patent/KR101559977B1/ko active IP Right Grant
- 2009-03-16 TW TW098108479A patent/TWI435377B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005005490A (ja) * | 2003-06-12 | 2005-01-06 | Sumitomo Mitsubishi Silicon Corp | 半導体ウェーハの製造方法 |
JP2005235906A (ja) * | 2004-02-18 | 2005-09-02 | Shin Etsu Handotai Co Ltd | ウェーハ保持具及び気相成長装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2009224594A (ja) | 2009-10-01 |
KR101559977B1 (ko) | 2015-10-13 |
US20100327415A1 (en) | 2010-12-30 |
US8216920B2 (en) | 2012-07-10 |
TWI435377B (zh) | 2014-04-21 |
KR20100123722A (ko) | 2010-11-24 |
TW201005803A (en) | 2010-02-01 |
JP5347288B2 (ja) | 2013-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4798163B2 (ja) | エピタキシャル成長用サセプタ | |
JP4589283B2 (ja) | エピタキシャルシリコンウェハの製造方法 | |
US8021968B2 (en) | Susceptor and method for manufacturing silicon epitaxial wafer | |
JP5347288B2 (ja) | シリコンエピタキシャルウェーハの製造方法 | |
KR101144825B1 (ko) | 실리콘 에피택셜 웨이퍼의 제조 방법 및 실리콘 에피택셜 웨이퍼 | |
JP5472308B2 (ja) | エピタキシャルウェーハの製造方法および製造装置 | |
JP4661982B2 (ja) | エピタキシャル成長用サセプタ | |
US7479187B2 (en) | Method for manufacturing silicon epitaxial wafer | |
JP5299359B2 (ja) | エピタキシャル成長装置 | |
JP5273150B2 (ja) | シリコンエピタキシャルウェーハの製造方法 | |
JP5040333B2 (ja) | 気相成長用サセプタ及び気相成長装置並びに気相成長方法 | |
JP2013123004A (ja) | シリコンエピタキシャルウェーハの製造方法 | |
CN112201568A (zh) | 一种用于硅片的外延生长的方法和设备 | |
JP2013191889A (ja) | シリコンエピタキシャルウェーハ | |
JP2005197380A (ja) | ウェーハ支持装置 | |
JP5459257B2 (ja) | シリコンエピタキシャルウェーハの製造方法 | |
JP2011014771A (ja) | エピタキシャル成長方法 | |
JP2008294217A (ja) | 気相成長装置及び気相成長方法 | |
JP2002231634A (ja) | シリコンエピタキシャルウェーハ及びシリコンエピタキシャルウェーハの製造方法 | |
JP5206613B2 (ja) | エピタキシャルウェーハ用サセプタ、およびその製造方法、並びにそれを用いたエピタキシャル成長装置 | |
JP2010021441A (ja) | エピタキシャル基板ウェーハ | |
JP2004335528A (ja) | シリコンエピタキシャルウェーハ及びシリコンエピタキシャルウェーハの製造方法 | |
CN115747962A (zh) | 晶圆的外延生长方法及设备 | |
JP2010027880A (ja) | エピタキシャルウェーハの製造方法。 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09723194 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12866946 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20107020637 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09723194 Country of ref document: EP Kind code of ref document: A1 |