WO2012063529A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2012063529A1
WO2012063529A1 PCT/JP2011/066885 JP2011066885W WO2012063529A1 WO 2012063529 A1 WO2012063529 A1 WO 2012063529A1 JP 2011066885 W JP2011066885 W JP 2011066885W WO 2012063529 A1 WO2012063529 A1 WO 2012063529A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gan
type gan
opening
semiconductor device
Prior art date
Application number
PCT/JP2011/066885
Other languages
English (en)
French (fr)
Inventor
誠司 八重樫
木山 誠
満徳 横山
井上 和孝
政也 岡田
雄 斎藤
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US13/884,221 priority Critical patent/US8890239B2/en
Priority to DE112011103695T priority patent/DE112011103695T5/de
Priority to CN2011800537054A priority patent/CN103201844A/zh
Publication of WO2012063529A1 publication Critical patent/WO2012063529A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7788Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7789Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface the two-dimensional charge carrier gas being at least partially not parallel to a main surface of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode

Definitions

  • the present invention relates to a semiconductor device used for high-power switching and a manufacturing method thereof, and more particularly to a semiconductor device using a GaN-based semiconductor among nitride semiconductors and a manufacturing method thereof.
  • a high current switching element is required to have a high reverse breakdown voltage and a low on-resistance.
  • a field effect transistor (FET: Field Effect Transistor) using a group III nitride semiconductor is excellent in terms of high breakdown voltage, high temperature operation and the like because of its large band gap.
  • vertical transistors using GaN-based semiconductors are attracting attention as high-power control transistors.
  • an opening is provided in a GaN-based semiconductor, and a mobility is increased by providing a regrowth layer including a channel of a two-dimensional electron gas (2DEG: 2 Dimensional Electron Gas) on the wall surface of the opening.
  • 2DEG 2 Dimensional Electron Gas
  • a low on-resistance and an excellent withstand voltage performance can be obtained.
  • a vertical semiconductor device used as a high-current switching element needs to have good high-frequency characteristics as well as low on-resistance and high breakdown voltage performance.
  • the drain electrode into which electrons from the channel located in the opening flow in and the source electrode located on the epitaxial surface so as to face the drain electrode have a large area in order to obtain a low on-resistance.
  • the source electrode has a large area in order to obtain a low contact resistance with the epitaxial surface layer.
  • the source electrode and the drain electrode constitute a parallel plate capacitor and act as a parasitic capacitance between the source and drain electrodes.
  • An object of the present invention is to provide a semiconductor device capable of improving high-frequency characteristics in a vertical semiconductor device provided with an opening and having a channel in the opening, and a method for manufacturing the same.
  • the semiconductor device of the present invention is a vertical semiconductor device including a GaN-based stacked body provided with an opening.
  • the GaN-based stacked body has an n-type GaN-based drift layer / p-type GaN-based barrier layer / n-type GaN-based contact layer sequentially toward the surface layer side, and the opening portion extends from the surface layer to the n-type GaN.
  • a regrowth layer including an electron transit layer and an electron supply layer, and an n-type GaN-based contact layer, a regrowth layer, and a p-type GaN-based barrier that reach the system drift layer and cover the opening
  • a source electrode positioned around the opening so as to be in contact with the layer; a drain electrode positioned centered on the opening with the source electrode and the GaN-based laminate sandwiched therebetween; and a gate positioned on the regrowth layer An electrode.
  • a capacitor in which a dielectric material is disposed between the source electrode as one electrode and the drain electrode as the other electrode is provided with a capacity reduction structure that reduces the capacity of the capacitor.
  • the source electrode and the drain electrode face each other, and a capacitor having a predetermined capacity is formed by the GaN-based stacked body filled therebetween. This is a parasitic capacitance, which degrades the high frequency characteristics. Since the configuration of the present invention includes the capacitance reduction structure, the parasitic capacitance can be reduced. As a result, the frequency limit of current gain or power gain can be expanded.
  • Capacitance C ( ⁇ ⁇ S) where the capacitor having the predetermined capacity is approximated as a parallel plate capacitor, and the dielectric constant of the material filled between the electrodes is ⁇ , the area of the electrodes is S, and the distance between the electrodes is d. / D.
  • the capacitance reduction structure is a structure that reduces (K1) the dielectric constant ⁇ , or (K2) the area S of the electrode that overlaps in plan view with respect to the capacitance C.
  • the GaN-based laminate is formed on a conductive GaN-based substrate, the drain electrode is positioned on the conductive GaN-based substrate, and the source electrode and the conductive GaN-based substrate are planarly arranged.
  • the n-type GaN-based drift layer is limited to a region including the bottom of the opening, and the n-type GaN-based drift layer is surrounded around the limited n-type GaN-based drift layer.
  • a low dielectric constant material having a dielectric constant lower than the dielectric constant can be filled. As a result, the parasitic capacitance is reduced and the high frequency characteristics can be improved.
  • the dielectric constant ⁇ is the product ⁇ r ⁇ ⁇ o of the relative dielectric constant ⁇ r representing the ratio to the vacuum and the dielectric constant ⁇ o of the vacuum.
  • the dielectric constant refers to the relative dielectric constant.
  • the low dielectric constant material may be at least one of air, an insulating film, a non-doped GaN-based semiconductor, and a GaN-based wide gap semiconductor having a larger band gap than the n-type GaN-based drift layer.
  • the capacity reduction structure is different from the above, and the GaN-based laminate is formed on a high-resistance (insulating) GaN-based substrate, and the drain electrode is limited to a region including the bottom of the opening in plan view. It is located in the high-resistance GaN-based substrate and can contact the n-type GaN-based drift layer.
  • one source electrode is positioned around the opening, and the other drain electrode is limited to a region including the bottom of the opening and is positioned in the high-resistance GaN-based substrate.
  • the electrodes of the parallel plate capacitor have no overlapping portion in plan view. For this reason, although the capacity does not become zero, it significantly decreases and the high frequency characteristics can be improved.
  • the drain electrode that is located in the high-resistance GaN-based substrate is positioned so as to have a portion that is exposed on the back surface of the high-resistance GaN-based substrate, or has a portion that is exposed on the back surface of the high-resistance GaN-based substrate. Can be positioned so that there is no.
  • external wiring can be conductively connected from the back surface side of the high-resistance GaN-based substrate, and the wiring of the semiconductor device can be configured compactly.
  • external wiring is connected from the side of the GaN-based laminate, but it may be advantageous depending on the application.
  • the method for manufacturing a semiconductor device of the present invention is a method for manufacturing a vertical semiconductor device including a GaN-based stacked body provided with an opening.
  • the manufacturing method includes a step of forming a GaN-based laminate including an n-type GaN-based drift layer / a p-type GaN-based barrier layer / an n-type GaN-based contact layer on a conductive GaN-based substrate, and an n-type A step of forming an opening from the GaN-based contact layer into the n-type GaN-based drift layer, a step of forming a regrowth layer including an electron transit layer and an electron supply layer so as to cover the opening, And a step of forming a source electrode in contact with the n-type GaN-based contact layer, the regrowth layer, and the p-type GaN-based barrier layer.
  • the n-type GaN-based drift layer of the GaN-based stacked body is formed only in the region including the bottom of the opening, and around the n-type GaN-based drift layer.
  • a material having a dielectric constant lower than that of the n-type GaN-based drift layer is formed.
  • an insulating layer is formed, and then an opening is provided in the insulating layer in the region including the bottom of the opening, and the n-type GaN-based drift is formed in the opening of the insulating layer.
  • Layers can be selectively grown.
  • a semiconductor device having a low parasitic capacitance can be easily manufactured using an existing method. That is, while forming an n-type GaN-based drift layer in the region below the opening through which electrons flow, an insulating layer is formed with an insulating film such as SiO 2 having a low dielectric constant to reduce parasitic capacitance. A semiconductor device can be easily manufactured.
  • the n-type GaN-based drift layer In the step of forming the n-type GaN-based drift layer, (1) an i-type GaN-based semiconductor layer is formed, and then an n-type impurity is implanted into a region that includes the bottom of the opening, or (2 ) After forming an n-type GaN-based semiconductor layer, p-type impurities are then implanted into a region that will be around the region including the bottom of the opening so as to offset the n-type impurities in the n-type GaN-based semiconductor layer can do.
  • p-type impurities are then implanted into a region that will be around the region including the bottom of the opening so as to offset the n-type impurities in the n-type GaN-based semiconductor layer can do.
  • n-type GaN-based drift layer forming step (1) an n-type GaN-based semiconductor layer is formed, and then a resist pattern is formed in which the region including the bottom of the opening is masked and the other region is the opening. Then, the n-type GaN-based semiconductor layer in the resist pattern opening is removed by etching, and then the GaN-based semiconductor layer or i-type having a larger band gap than the n-type GaN-based drift layer is removed in the region removed by the etching.
  • Forming a GaN-based semiconductor layer or (2) forming a GaN-based semiconductor layer or i-type GaN-based semiconductor layer having a band gap larger than that of the n-type GaN-based drift layer, and then forming a region including the bottom of the opening.
  • the resist pattern is formed by masking the other areas removed and using the area including the bottom of the opening as the opening.
  • the GaN-based semiconductor layer or i-type GaN-based semiconductor layer is larger band gap in the emission opening is removed by etching, then, it can be a region that is removed by the etching to form the n-type GaN-based drift layer.
  • an insulating layer is formed, and then an opening of the insulating layer is provided in a region that includes the bottom of the opening, and the n-type GaN-based drift is formed in the opening of the insulating layer.
  • an insulating protective film is formed on the regrowth layer, and then the insulating layer is formed from the back surface of the conductive GaN substrate or from the insulating protective film.
  • a trench to be exposed can be formed, and the insulating layer can be removed by wet etching from the trench and filled with air.
  • a vertical semiconductor device including a GaN-based stacked body provided with an opening is manufactured.
  • This manufacturing method includes a step of preparing a high-resistance GaN-based substrate having a drain electrode provided in a limited region, and an n-type GaN-based drift layer / p-type GaN-based barrier layer sequentially on the high-resistance GaN-based substrate.
  • Forming a regrowth layer including an electron transit layer and an electron supply layer and forming a source electrode in contact with the n-type GaN-based contact layer, regrowth layer, and p-type GaN-based barrier layer around the opening
  • the drain electrode region is limited to a range including the bottom of the opening in plan view.
  • FIG. 1 is a cross-sectional view showing a vertical GaN-based FET (semiconductor device) in Embodiment 1 of the present invention (cross-sectional view taken along the line II of FIG. 3). It is sectional drawing of the semiconductor device which shows the modification of vertical GaN-type FET of FIG.
  • FIG. 2 is a plan view of the vertical GaN-based FET of FIG. 1.
  • FIG. 4 is a plan view showing a vertical GaN-based FET having the same cross-sectional view as FIG. 1 and having a form different from that of FIG. 3.
  • FIG. 2 shows a method for manufacturing the vertical GaN-based FET of FIG.
  • FIG. 5B is a view showing a method of manufacturing the vertical GaN-based FET of FIG. 1 and a state in which an opening is provided by etching the insulating layer using a resist pattern as a mask after the state shown in FIG. 5A.
  • FIG. 5B is a view showing a method of manufacturing the vertical GaN-based FET of FIG. 1, and showing a state in which an n ⁇ -type GaN drift layer is further epitaxially grown in the opening after the state shown in FIG. 5B.
  • FIG. 5C It is a figure which shows the manufacturing method of the vertical GaN-type FET of FIG. 1, and shows the state after lift-off, further removing a resist pattern after the state shown to FIG. 5C. It is a figure which shows the state in which the p-type GaN barrier layer and the n + type GaN contact layer were formed. It is a figure which shows the state which provided the opening part by the etching. It is a figure which shows the step which provides the opening part by RIE, and has shown the state which has arrange
  • FIG. 14 is a cross-sectional view of a semiconductor device belonging to a fourth embodiment of the present invention, showing a modification of the semiconductor device shown in FIG. 13. It is a figure which shows the influence which the thickness has on the power gain cut-off frequency and the current gain cut-off frequency when the thickness of the silicon oxide layer disposed around the n ⁇ -type GaN drift layer limited in the embodiment is changed.
  • FIG. 1 is a cross-sectional view showing a vertical GaN-based FET (semiconductor device) 10 according to Embodiment 1 of the present invention.
  • the vertical GaN-based FET 10 includes a conductive GaN substrate 1 and an n ⁇ -type GaN drift layer 4 / p-type GaN barrier layer 6 / n + -type GaN contact layer 7 grown epitaxially thereon.
  • the n ⁇ -type GaN drift layer 4 is an n-type GaN-based drift layer
  • the p-type GaN barrier layer 6 is a p-type GaN-based barrier layer
  • the n + -type GaN contact layer 7 is an n-type GaN-based contact layer.
  • the n ⁇ -type GaN drift layer 4 is almost limited to the range of the opening 28 in a plan view and does not spread over the whole.
  • the n - outside the -type GaN drift layer 4, the n - -type GaN drift layer insulating layer 31 the dielectric constant ⁇ is lower than 4 is filled.
  • the insulating layer 31 is disposed between the conductive GaN substrate 1 and the p-type GaN barrier layer 6 on the outside of the n ⁇ -type GaN drift layer 4 positioned so as to be centered on the bottom 28 b of the opening.
  • the insulating layer 31 may be anything as long as it has a dielectric constant lower than that of the n ⁇ -type GaN drift layer 4.
  • An example is silicon oxide SiO 2 .
  • the relative dielectric constant (1 MHz) of silicon oxide SiO 2 is 3.8 while the relative dielectric constant of semiconductor GaN is 9.5. For this reason, the capacity of the capacitor having the source electrode S and the drain electrode D as two electrodes is almost halved. As a result, the high frequency characteristics are improved.
  • the n ⁇ -type GaN drift layer 4 / p-type GaN barrier layer 6 / n + -type GaN contact layer 7 limited by the insulating layer 31 constitutes a GaN-based stacked body 15.
  • a buffer layer made of an AlGaN layer or a GaN layer may be inserted between the GaN substrate 1 and the n ⁇ -type GaN drift layer 4.
  • the GaN substrate 1 may be a so-called thick GaN substrate, or a substrate having a GaN layer in ohmic contact with the support base.
  • GaN substrate or the like during the growth of the GaN-based laminate, and in the subsequent process, except for a predetermined thickness portion such as the GaN substrate, only a thin GaN layer base remains in the product state. There may be.
  • These GaN substrates, substrates having a GaN layer in ohmic contact with the support base, and underlying GaN layers left thin on the product may be simply referred to as GaN substrates.
  • the insulating substrate is described in Embodiment 4, there is a difference between the conductive and insulating forms of the GaN substrate, but the other substrate forms are the same as those of the conductive substrate.
  • the drain electrode can be provided on the front or back surface of the thin GaN layer, depending on the manufacturing process and the structure of the product.
  • the supporting base or the substrate is conductive.
  • the drain electrode can be directly provided on the back surface (lower surface) or front surface (upper surface) of the supporting base or substrate.
  • the p-type GaN-based barrier layer is the p-type GaN barrier layer 6 in the present embodiment, but a p-type AlGaN layer may be used.
  • the GaN layer described above may be used as another GaN-based semiconductor layer depending on the case.
  • the GaN-based layered body 15, through the n + -type GaN contact layer 7 to the p-type GaN barrier layer 6 n - opening 28 leading to the -type GaN drift layer 4 is provided.
  • the opening portion 28 is formed by a wall surface (side surface) 28a and a bottom portion 28b.
  • An epitaxially grown regrowth layer 27 is formed so as to cover the wall surface 28a and bottom 28b of the opening 28 and the surface layer (n + -type GaN contact layer 7) of the GaN-based stacked body 15.
  • the regrowth layer 27 includes an i (intrinsic) type GaN electron transit layer 22 and an AlGaN electron supply layer 26.
  • An intermediate layer such as AlN may be inserted between the i-type GaN electron transit layer 22 and the AlGaN electron supply layer 26.
  • the source electrode S is electrically connected to the regrowth layer 27, the n + -type contact layer 7, and the p-type GaN barrier layer 6 on the GaN-based stacked body 15. In FIG. 1, the source electrode S extends downward and contacts the end surface of the regrowth layer 27 and the n + -type contact layer 7 on its side surface, and contacts the p-type GaN barrier layer 6 on its tip portion. You have an electrical connection.
  • the drain electrode D is located on the back surface of the conductive GaN substrate 1.
  • the p-type GaN barrier layer 6 is necessary for improving the withstand voltage performance at the off time and for improving the pinch-off characteristics.
  • the p-type GaN barrier layer 6 can stably improve the above-mentioned breakdown voltage performance and pinch-off characteristics.
  • Another advantage that the p-type GaN barrier layer 6 is electrically connected to the source electrode S occurs in a depletion layer that can form a pn junction between the p-type GaN barrier layer 6 and the n ⁇ -type drift layer 4 at the time of reverse bias. It can absorb holes. This prevents a decrease in breakdown voltage due to the remaining holes, and a good breakdown voltage performance can be continuously obtained over a long period of time.
  • the insulating film 9 is located under the gate electrode G so as to cover the regrowth layer 27.
  • the insulating film 9 is arranged to suppress a gate leakage current when a positive voltage is applied to the gate electrode, and a large current operation is facilitated. Further, since the threshold voltage can be shifted in the positive direction, it is easy to obtain normally-off. However, the insulating film 9 may be omitted and is not essential.
  • a two-dimensional electron gas (2DEG: 2 Dimensional Electron Gas) is generated in the regrowth layer 27 at the interface on the AlGaN electron supply layer 26 side in the i-type GaN electron transit layer 22.
  • a two-dimensional electron gas is generated at the interface on the AlGaN layer side in the i-type GaN electron transit layer 22 due to natural polarization, piezo polarization, or the like due to the difference in lattice constant.
  • Electrons take a path from the source electrode S through the two-dimensional electron gas to the n ⁇ -type GaN drift layer 4 to the drain electrode D.
  • the i-type GaN electron transit layer 22 and the AlGaN electron supply layer 26 in the regrowth layer 27 are continuously grown in the same growth tank, the density of impurity levels at the interface can be kept low. For this reason, it is possible to flow a large current (per area) with a low on-resistance while providing the opening 28 and flowing a large current in the thickness direction.
  • parasitic capacitance is formed between the source electrode S and the drain electrode D or the conductive GaN substrate 1, and the high frequency characteristics are not good.
  • the high frequency characteristics are determined by, for example, a limit frequency (power gain cutoff frequency) f maz at which the power gain Gu cannot be obtained and / or a limit frequency (current gain cutoff frequency) fT at which the current gain
  • n ⁇ -type GaN drift layer 4 Since the n ⁇ -type GaN drift layer 4 is positioned so as to be centered on the opening 28 and include the bottom 28b, the electron flow is not hindered by the insulating layer 31 during the ON operation, and the n ⁇ -type GaN drift layer 4, the conductive GaN substrate 1 / the drain electrode D is reached. Then, n - an outer mold GaN drift layer 4, between the conductive GaN substrate 1 and the p-type GaN barrier layer 6, n - insulating layer 31 having a lower dielectric constant than the -type GaN drift layer 4 is Be placed. For this reason, the parasitic capacitance is reduced, and the high frequency characteristics can be improved.
  • the n ⁇ -type GaN drift layer 4 has an n-type impurity concentration of, for example, 1 ⁇ 10 15 (1E15) cm ⁇ 3 to 1 ⁇ 10 17 (1E17) cm ⁇ 3 and a thickness of, for example, 1.0 ⁇ m to 10. It should be 0 ⁇ m or less.
  • the p-type impurity concentration of the p-type GaN barrier layer 6 is preferably about 1 ⁇ 10 17 (1E17) cm ⁇ 3 to 1 ⁇ 10 19 (1E19) cm ⁇ 3 .
  • an impurity that forms an acceptor in a GaN-based semiconductor such as Mg is used as the p-type impurity.
  • the thickness of the p-type GaN barrier layer 6 varies depending on the thickness of the n ⁇ -type GaN drift layer and the like. For this reason, the thickness range cannot be determined unconditionally. However, a typical thickness can be about 0.3 ⁇ m to 1 ⁇ m in view of the thickness used in many specifications. If it is thinner than this, sufficient pressure resistance performance and pinch-off characteristics cannot be obtained, so it may be regarded as the lower limit of the thickness. Since the p-type GaN barrier layer 6 has a thickness of about 0.3 ⁇ m to 1 ⁇ m, if the Mg concentration is too high, the p-type GaN barrier layer 6 moves linearly toward the end face of the p-type GaN barrier layer 6.
  • the n + -type GaN contact layer 7 preferably has an n-type impurity concentration of about 5 ⁇ 10 17 (5E17) cm ⁇ 3 to 5 ⁇ 10 19 (5E19) cm ⁇ 3 .
  • the thickness is preferably about 0.1 ⁇ m to 0.6 ⁇ m, and the length is preferably 0.5 ⁇ m to 5 ⁇ m.
  • the n ⁇ -type GaN drift layer 4 is preferably widely arranged on the bottom 28 b side of the opening 28. That is, the insulating layer 31 is preferably disposed on the substrate 1 side. However, the insulating layer 31 may be disposed on the side in contact with the p-type GaN barrier layer 6.
  • FIG. 3 is a plan view of the vertical GaN-based semiconductor device 10 shown in FIG. 1, and FIG. 1 is a cross-sectional view taken along the line II in FIG.
  • the opening 28 has a hexagonal shape, and the periphery of the gate electrode 12 per unit area is obtained by covering the periphery thereof with the source electrode S and avoiding the gate wiring 12 to form the closest packing (honeycomb structure). Take longer. The on-resistance can also be lowered from the surface of such a shape. Further, from the large area of the source electrode S that can be read from the plan view, it is possible to know the significance of the parasitic capacitance that has been described so far, with the source electrode S and the drain electrode D or the conductive GaN substrate as two electrodes.
  • FIG. 4 is a plan view showing an opening array and an electrode structure of a vertical GaN-based FET according to the present invention, which has a cross-sectional structure similar to that of FIG. 1 but has a planar structure different from that shown in FIG.
  • a vertical GaN-based FET having the electrode structure shown in FIG. 4 is also an embodiment of the present invention. Even if the openings 28 are formed in an elongated rectangular shape and the elongated rectangular openings 28 are arranged densely, the perimeter of the opening per area can be increased, and as a result, the current density can be improved. .
  • the gate electrode G and the source electrode S have a shape that extends to the other side so as to be orthogonal to the gate pad 13 and the source pad 14 that are parallel in the longitudinal direction, and are interdigitated. .
  • a configuration in which the gate electrode G and the source electrode S are arranged in a comb shape is more common.
  • an insulating layer 31 a having a dielectric constant smaller than that of the n ⁇ -type GaN drift layer 4 is formed on the conductive GaN substrate 1.
  • a resist pattern M1 is provided, and then an insulating layer opening 31h is provided in a range where the n ⁇ -type GaN drift layer 4 is to be formed by wet etching (FIG. 5B).
  • the opening 31h of the insulating layer is preferably in a range including the bottom 28b of the opening 28.
  • the n ⁇ -type GaN drift layer 4 is grown on the conductive GaN substrate and in the opening 31h of the insulating layer using the resist pattern M1.
  • An n ⁇ -type GaN deposition layer 4f deposited on the resist pattern M1 on the same occasion is also formed.
  • the n ⁇ -type GaN deposition layer 4f is lifted off when the resist pattern M1 is removed.
  • the p-type GaN barrier layer 6 is formed under conditions (growth rate, etc.) in which the epitaxial growth spreads on the insulating layer 31 with the n ⁇ -type GaN drift layer 4 as the center. .
  • the n + -type GaN contact layer 7 is grown to complete the stacked body 15.
  • a GaN-based buffer layer (not shown) may be inserted between the GaN substrate 1 and the n ⁇ -type GaN drift layer 4.
  • MOCVD metal organic chemical vapor deposition
  • the GaN substrate 1 when a gallium nitride film is grown on the conductive substrate by the MOCVD method, trimethylgallium is used as a gallium source.
  • High purity ammonia is used as the nitrogen raw material.
  • Purified hydrogen is used as the carrier gas.
  • the purity of high purity ammonia is 99.999% or more, and the purity of purified hydrogen is 99.999995% or more.
  • the conductive substrate a conductive gallium nitride substrate having a diameter of 2 inches is used.
  • the opening 28 is formed by RIE (reactive ion etching).
  • RIE reactive ion etching
  • FIGS. 8A and 8B after forming a resist pattern M2 on the surfaces of the epitaxial layers 4, 6, and 7, the opening is widened while the resist pattern M2 is etched back by RIE to widen the opening. .
  • the slope of the opening 28, that is, the end face of the laminate 15 is damaged by being irradiated with ions. In the damaged portion, a dangling bond, a high density region of lattice defects, and the like are generated, and conductive impurities from the RIE apparatus or from a portion that cannot be specified reach the damaged portion to cause enrichment.
  • the occurrence of the damaged portion causes an increase in drain leakage current and needs to be repaired.
  • hydrogen and ammonia at a predetermined level, it is possible to obtain dangling bond repair, removal of impurities, and inactivation when the regrowth layer 27 described later is grown.
  • the wafer is introduced into an MOCVD apparatus, and as shown in FIG. 9, an electron transit layer 22 made of undoped GaN and an electron supply layer 26 made of undoped AlGaN.
  • a regrowth layer 27 containing GaN is grown.
  • thermal cleaning is performed in an (NH 3 + H 2 ) atmosphere, and then an organometallic raw material is supplied while introducing (NH 3 + H 2 ).
  • restoration of the damaged portion, removal of conductive impurities, and passivation are performed.
  • the wafer is taken out of the MOCVD apparatus, and an insulating film 9 is grown as shown in FIG. Thereafter, again using photolithography and electron beam evaporation, the source electrode S is formed on the surface of the epitaxial layer and the drain electrode D is formed on the back surface of the GaN-based substrate 1 as shown in FIG.
  • FIG. 11 is a sectional view showing a vertical GaN-based FET (semiconductor device) 10 according to the second embodiment of the present invention.
  • the n ⁇ -type GaN drift layer 4 is limited to a range including the bottom 28 b of the opening 28, and the periphery of the limited n ⁇ -type GaN drift layer 4 is an air layer 30. Air can be seen to be almost the same, with a dielectric constant just a little higher than vacuum. Therefore, the relative dielectric constant is about 1, which is smaller than that of any material. Since the relative permittivity of the n ⁇ -type GaN drift layer 4 is roughly 10, the use of air can greatly reduce the parasitic capacitance.
  • FIG. 1 shows that the entire thickness around the n ⁇ -type GaN drift layer 4 is replaced with an insulator having a lower dielectric constant
  • FIG. 2 shows that the entire thickness may be partially replaced.
  • the entire thickness around the n ⁇ -type GaN drift layer 4 shown in FIG. 11 is not the air layer 30, the thickness is partially set as the air layer 30, and the remaining thickness is set as the n ⁇ -type GaN drift layer 4. Also good.
  • the manufacturing method of the semiconductor device of this embodiment is performed in the following steps. First, the process proceeds in common with the manufacturing method of the semiconductor device of the first embodiment up to the state shown in FIG.
  • Intermittent trenches are provided in layer 7 / p-type GaN barrier layer 6. For this purpose, a resist pattern having an opening in the trench is formed, and then a trench reaching the insulating layer 31 is formed by dry or wet etching.
  • the same resist pattern or a new resist pattern is formed, an etching solution is injected from the trench, and the insulating layer 31 is removed by wet etching.
  • the insulating layer 31 is preferably left with a predetermined minute thickness on both the wall surface and the bottom without removing the entire thickness.
  • the formation of the metal layer that closes the trench is preferably performed in an arrangement or posture in which the trench is shielded at an angle.
  • FIG. 12 is a cross-sectional view showing a vertical GaN-based FET (semiconductor device) 10 according to the third embodiment of the present invention.
  • the n ⁇ -type GaN drift layer 4 is limited to a range including the bottom portion 28 b of the opening 28, and the periphery of the limited n ⁇ -type GaN drift layer 4 is an impurity such as an i-type GaN layer.
  • Intrinsic semiconductor layer 32 that does not contain is disposed over the entire thickness of n ⁇ -type GaN drift layer 4. By reducing the n-type impurity, the intrinsic semiconductor layer 32 has a low dielectric constant.
  • the semiconductor layer 32 having a reduced n-type impurity concentration such as i-type GaN may be a GaN-based semiconductor 32 (for example, AlInGaN) having a band gap larger than that of the n ⁇ -type GaN drift layer 4.
  • the GaN-based semiconductor 32 having a band gap larger than that of the n ⁇ -type GaN drift layer 4 has a dielectric constant smaller than that of the n ⁇ -type GaN drift layer 4 as in the case of the intrinsic GaN-based semiconductor having a low impurity concentration.
  • the GaN-based semiconductor 32 having a band gap larger than that of the n ⁇ -type GaN drift layer 4 may include an n-type impurity in the n ⁇ -type category. I-type GaN layer 32 or the band gap is low n-type impurity of the the n - -type GaN drift layer GaN-based semiconductor 32 is greater than 4, n - may not replace the entire thickness of the surrounding -type GaN drift layer 4 . As described above, it is only necessary to partially occupy the thickness around the n ⁇ -type GaN drift layer 4, and the n ⁇ -type GaN drift layer 4 may extend from the rest.
  • FIG. 13 is a cross-sectional view showing a vertical GaN-based FET (semiconductor device) 10 according to the fourth embodiment of the present invention.
  • the vertical GaN-based FET 10 includes an insulating GaN substrate 11 and an n ⁇ -type GaN drift layer 4 / p-type GaN barrier layer 6 / n + -type GaN contact layer 7 grown epitaxially thereon.
  • the n ⁇ -type GaN drift layer 4 is not limited to the range including the bottom 28b of the opening 28.
  • the present embodiment is characterized in that the drain electrode D is formed in the high-resistance GaN substrate or the insulating substrate 11.
  • the drain electrode D is limited to a range facing the bottom 28 b of the opening 28 and penetrates the insulating GaN substrate 11. Due to the arrangement structure of the drain electrode D, there is no portion where the conductive portion such as the drain electrode D or the conductive substrate overlaps the source electrode S in a plan view. As a result, the image of a parallel plate capacitor is not established. As a result, the parasitic capacitance is greatly reduced and the high frequency characteristics are improved. Since the drain electrode D penetrates the insulating substrate 11 and is also exposed on the back surface of the insulating substrate 11, the wiring can be taken from the back surface of the insulating substrate 11. As a result, a compact wiring structure can be formed.
  • the insulating GaN-based substrate 11 can be easily obtained by forming the drain electrode D in a predetermined region of the insulating GaN-based substrate 11 using existing equipment and a metal layer forming method. it can.
  • FIG. 14 shows a modification of the semiconductor device of FIG. 13 (modification of the fourth embodiment), which is one embodiment of the present invention.
  • the drain electrode D is formed in the high-resistance GaN substrate or the insulating substrate 11, and the drain electrode D is limited to the range facing the bottom portion 28 b of the opening 28.
  • the drain electrode D is in contact with the GaN-based stacked body 15, but is not exposed on the back surface of the insulating GaN substrate 11. For this reason, the wiring connected to the drain electrode D needs to be accessed from the GaN-based laminate 15 side.
  • the S (RF) parameter was simulated by changing the thickness of the insulating layer 31.
  • the form of the semiconductor device 10 is as follows.
  • n ⁇ -type GaN drift layer 4 The thickness of the n ⁇ -type GaN drift layer including the bottom 28b of the opening 28 is set to 5 ⁇ m, and the n-type impurity concentration is the same for all the specimens, 1 ⁇ 10 16 ( 1E16) cm ⁇ 3 .
  • the insulating layer 31 disposed around the n ⁇ -type GaN drift layer 4 was made of SiO 2 (relative dielectric constant 3.8).
  • the n - -type GaN drift layer 4 of lower thickness (substrate side) portion only to the upper (opening side) of the n - -type GaN drift layer 4 has a extending Embodiment (FIG. 2 reference).
  • the thickness of the insulating layer 31 was changed from zero (same as a conventional semiconductor device) to a range of 3.5 ⁇ m. When the thickness is 3.5 ⁇ m, 70% of the total thickness of the n ⁇ -type GaN drift layer 4 is replaced with SiO 2 .
  • 2 ) was determined by computer simulation, and the cutoff frequency at which the power gain and the current gain were 1 was determined.
  • the results are shown in FIG. According to FIG. 15, the current gain cutoff frequency fT tends to hardly change or slightly decrease as the insulating layer 31 increases.
  • the power cut-off frequency f max rises in a thicker range with the silicon oxide thickness of 1.5 ⁇ m as the bottom. In particular, when the thickness of silicon oxide is 3.5 ⁇ m, the highest power cutoff frequency f max is shown. In the example, silicon oxide is considered only up to a range that occupies 70% of the total thickness of the n ⁇ -type GaN drift layer 4.
  • the power cutoff frequency f max is further expanded, and the current gain cutoff frequency fT is considered to show a balanced value.
  • the thickness of the insulating layer 31 in FIG. 2 is increased to be the same as the thickness of the n ⁇ -type GaN drift layer 4 as shown in FIG. The frequency f max can be obtained.
  • the periphery of the n ⁇ -type GaN drift layer located at the bottom of the opening between the source electrode and the drain electrode or the conductive substrate Is formed of an insulating layer, a semiconductor, or the like having a lower dielectric constant, thereby reducing parasitic capacitance and improving high-frequency characteristics.
  • the drain electrode limited to the area
  • GaN substrate 4 n ⁇ type GaN drift layer, 6 p type GaN barrier layer, 7 n + type GaN contact layer, 9 insulating film, 10 semiconductor device (vertical GaN-based FET), 11 insulating (high resistance) substrate , 12 gate wiring, 13 gate pad, 14 source pad, 15 GaN-based stacked body, 22 GaN electron transit layer, 26 AlGaN electron supply layer, 27 regrowth layer, 28 opening, 28a opening wall, 28b opening Bottom, 30 Air layer, 31 Insulating layer (SiO 2 ), 31h Insulating layer opening, 32 i-type GaN layer or GaN-based semiconductor whose band gap is larger than GaN, D drain electrode, G gate electrode, K Edge of opening Or corner, M1 resist pattern, S source electrode.
  • SiO 2 Insulating layer
  • 31h Insulating layer opening 32 i-type GaN layer or GaN-based semiconductor whose band gap is larger than GaN
  • D drain electrode D drain electrode
  • G gate electrode K Edge of opening Or corner
  • M1 resist pattern S

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

開口部にチャネルを備える縦型半導体装置において、高周波特性を向上することができる半導体装置およびその製造方法を提供する。 n型GaN系ドリフト層4/p型GaN系バリア層6/n型GaN系コンタクト層7、を有し、開口部28は表層からn型GaN系ドリフト層内にまで届いており、該開口部を覆うように位置する電子走行層22および電子供給層26を含む再成長層27と、ソース電極Sと、ドレイン電極Dと、再成長層上に位置するゲート電極Gとを備え、ソース電極を一方の電極とし、またドレイン電極を他方の電極としてコンデンサを構成するとみて、該コンデンサの容量を低下させる容量低下構造を備えることを特徴とする。

Description

半導体装置およびその製造方法
  本発明は、大電力のスイッチングに用いられる、半導体装置およびその製造方法、とくに窒化物半導体のうちGaN系半導体を用いた半導体装置およびその製造方法に関するものである。
  大電流用のスイッチング素子には、高い逆方向耐圧と低いオン抵抗とが求められる。III族窒化物半導体を用いた電界効果トランジスタ(FET:Field  Effect  Transistor)は、バンドギャップが大きいことから、高耐圧、高温動作などの点で優れている。とくにGaN系半導体を用いた縦型トランジスタは、大電力の制御用トランジスタとして注目されている。たとえば、特許文献1ではGaN系半導体に開口部を設けて、その開口部の壁面に二次元電子ガス(2DEG:2  Dimensional  Electron  Gas)のチャネルを含む再成長層を設けることで、移動度を高めオン抵抗を低くした縦型GaN系FETの提案がなされている。この縦型GaN系FETでは、耐圧性能やピンチオフ特性を改善するためにp型GaNバリア層などを配置する構造が提案されている。
特開2006-286942号公報
  上記の縦型GaN系FETでは、低いオン抵抗と優れた耐圧性能を得ることができる。
しかし、高電流のスイッチング素子として用いられる縦型半導体装置には、低いオン抵抗および高耐圧性能とともに、良好な高周波特性を備えることが必要である。
  上記開口部に位置するチャネルからの電子が流入するドレイン電極と、そのドレイン電極に対向するようにエピタキシャル表層に位置するソース電極とは、低いオン抵抗を得るために、大きな面積をとる。とくにソース電極は、エピタキシャル表層と低い接触抵抗を得るために広い面積となる。この結果、ソース電極とドレイン電極とは平行平板コンデンサを構成し、ソース・ドレイン電極間の寄生容量として作用する。この寄生容量は、電力利得などの周波数限界を小さくするなどして、高周波特性を劣化させる。
  本発明は、開口部が設けられ、当該開口部にチャネルを備える縦型半導体装置において、高周波特性を向上することができる半導体装置およびその製造方法を提供することを目的とする。
  本発明の半導体装置は、開口部が設けられたGaN系積層体を備える縦型の半導体装置である。この半導体装置では、GaN系積層体は、表層側へと順次、n型GaN系ドリフト層/p型GaN系バリア層/n型GaN系コンタクト層、を有し、開口部は表層からn型GaN系ドリフト層内にまで届いており、該開口部を覆うように位置する、電子走行層および電子供給層を含む再成長層と、n型GaN系コンタクト層、再成長層およびp型GaN系バリア層に接するように、前記開口部の周囲に位置するソース電極と、ソース電極とGaN系積層体を挟んで、開口部に中心を合わせて位置するドレイン電極と、再成長層上に位置するゲート電極とを備える。そして、ソース電極を一方の電極とし、またドレイン電極を他方の電極としてその間に誘電材料が配置されたコンデンサを構成するとみて、該コンデンサの容量を低下させる構造である容量低下構造を備えることを特徴とする。
  厚み方向に大電流を流す縦型の半導体装置では、低いオン抵抗を確保するためにソース電極等の面積を制限することは難しい。この結果、従来の半導体装置では、ソース電極とドレイン電極とが対向して、その間に充填されるGaN系積層体により所定容量のコンデンサが形成される。これは寄生容量であり、高周波特性を劣化させる。
  本発明の構成では容量低下構造を備えるので、寄生容量を低下させることができる。この結果、電流利得または電力利得の周波数限界を拡大することができる。
  上記の所定容量のコンデンサを平行平板コンデンサと近似して、電極間に充填された材料の誘電率をε、電極の面積をS、電極間の距離をdとして、容量C=(ε・S)/d、と見積もる。上記の容量低下構造は、この容量Cについて、(K1)誘電率εを低下させる構造、か、または(K2)平面的にみて重複する部分の電極の面積Sを減少する構造である。
  上記容量低下構造であって、GaN系積層体は導電性GaN系基板上に形成され、ドレイン電極は該導電性GaN系基板に位置し、ソース電極と導電性GaN系基板とは、平面的に見て重複していて、n型GaN系ドリフト層は、開口部の底部を含む領域に限定されており、その限定されたn型GaN系ドリフト層の周りに、該n型GaN系ドリフト層の誘電率よりも低い誘電率を有する低誘電率材料を充填することができる。
  これによって、寄生容量は低下して、高周波特性を向上させることができる。なお、誘電率εは、真空に対する比を表す比誘電率εおよび真空の誘電率εの積ε・εであり、材料間の誘電率の比較をする場合、比誘電率で説明すれば十分である。以後の説明では、とくに断らない限り、誘電率といえば比誘電率をさしている。
  上記低誘電率材料が、空気、絶縁膜、ノンドープGaN系半導体、および前記n型GaN系ドリフト層よりも大きいバンドギャップを有するGaN系ワイドギャップ半導体のうちの、少なくとも1つとすることができる。
  これによって、約9.5の比誘電率を有するGaN系ドリフト層を、空気(比誘電率約1)、SiO(比誘電率3.5~4.0)などに置き換えることで、容量を低下させることができる。
  上記と異なる容量低下構造であって、GaN系積層体は高抵抗(絶縁性)GaN系基板上に形成され、ドレイン電極は、平面的にみて開口部の底部を含む領域に限定されるように高抵抗GaN系基板内に位置し、n型GaN系ドリフト層に接することができる。
  この構成によれば、一方のソース電極は開口部の周囲に位置し、他方のドレイン電極は開口部の底部を含む領域に限定されて、高抵抗GaN系基板内に位置する。この配置では、平行平板コンデンサの電極は平面的にみて重複部分がない。このため、容量はゼロにはならないが大幅に低下し、高周波特性を向上させることができる。
  高抵抗GaN系基板内に限定されて位置するドレイン電極を、高抵抗GaN系基板の裏面に露出する部分を持つように位置させるか、または、高抵抗GaN系基板の裏面に露出する部分を持たないように位置させることができる。
  基板の裏面に露出する部分を持つドレイン電極の場合、高抵抗GaN系基板の裏面側から外部配線を導電接続することができ、半導体装置の配線をコンパクトに構成することができる。基板の裏面に露出する部分を持たない場合、GaN系積層体の側から外部配線を接続することになるが、用途によっては好都合の場合もある。
  本発明の半導体装置の製造方法は、開口部が設けられたGaN系積層体を備える縦型の半導体装置の製造方法である。この製造方法は、導電性GaN系基板上に、順次、n型GaN系ドリフト層/p型GaN系バリア層/n型GaN系コンタクト層、を含むGaN系積層体を形成する工程と、n型GaN系コンタクト層からn型GaN系ドリフト層内に届く開口部を形成する工程と、開口部を覆うように、電子走行層および電子供給層を含む再成長層を形成する工程と、開口部の周囲に、n型GaN系コンタクト層、再成長層およびp型GaN系バリア層に接するようにソース電極を形成する工程とを備える。そして、GaN系積層体のn型GaN系ドリフト層の形成工程では、開口部の底部を含む領域に限定して該n型GaN系ドリフト層を形成し、当該n型GaN系ドリフト層の周囲に、そのn型GaN系ドリフト層の誘電率よりも低い誘電率を有する材料を形成することを特徴とする。
  この方法によって、寄生容量を低下させた半導体装置を既存の製造装置を用いて簡単に製造することができる。
  n型GaN系ドリフト層の形成工程では、絶縁層を形成し、次いで、開口部の底部を含むことになる領域の絶縁層に開口部を設け、その絶縁層の開口部内にn型GaN系ドリフト層を選択成長させることができる。
  この方法によって、既存の方法を用いて簡単に寄生容量の低い半導体装置を製造することができる。すなわち、電子が流れる開口部の下方領域にn型GaN系ドリフト層を形成しながら、その周囲を誘電率の低いSiOなどの絶縁膜で絶縁層を形成して、寄生容量の低減をはかった半導体装置を簡単に製造することができる。
  上記のn型GaN系ドリフト層の形成工程では、(1)i型GaN系半導体層を形成し、次いで、開口部の底部を含むことになる領域にn型不純物を注入するか、または(2)n型GaN系半導体層を形成し、次いで、開口部の底部を含む領域の周りになることになる領域にp型不純物を、n型GaN系半導体層におけるn型不純物を相殺するように注入することができる。
  この方法で、寄生容量の小さい半導体装置を簡単に得ることができる。
  上記のn型GaN系ドリフト層の形成工程では、(1)n型GaN系半導体層を形成し、次いで開口部の底部を含む領域をマスクしてその他の領域を開口部とするレジストパターンを形成し、そのレジストパターン開口部におけるn型GaN系半導体層をエッチングによって除去し、次いで、そのエッチングによって除去された領域に、n型GaN系ドリフト層よりもバンドギャップが大きいGaN系半導体層もしくはi型GaN系半導体層を形成する、か、または(2)n型GaN系ドリフト層よりもバンドギャップが大きいGaN系半導体層もしくはi型GaN系半導体層を形成し、次いで開口部の底部を含む領域を除いたその他の領域をマスクして開口部の底部を含む領域を開口部とするレジストパターンを形成し、そのレジストパターン開口部におけるバンドギャップが大きいGaN系半導体層もしくはi型GaN系半導体層をエッチングによって除去し、次いで、そのエッチングによって除去された領域に、n型GaN系ドリフト層を形成することができる。
  上記の方法によって、寄生容量の小さい半導体装置を比較的簡単に得ることができる。
  n型GaN系ドリフト層の形成工程では、絶縁層を形成し、次いで、開口部の底部を含むことになる領域に絶縁層の開口部を設け、該絶縁層の開口部内にn型GaN系ドリフト層を選択成長させ、その後、再成長層を形成したあと、該再成長層上に絶縁性保護膜を形成し、次いで、導電性GaN基板の裏面から、または絶縁性保護膜から、絶縁層を露出させるトレンチを形成し、該トレンチからの湿式エッチングにより絶縁層を除去して空気を充填させることができる。
  上記の方法によって、比誘電率が小さい(約1)の空気層をn型GaN系ドリフト層の周りに配置した半導体装置を簡単に製造することができる。
  本発明の別の半導体装置の製造方法は、開口部が設けられたGaN系積層体を備える縦型の半導体装置を製造する。この製造方法は、ドレイン電極が領域を限定して設けられた高抵抗GaN系基板を準備する工程と、高抵抗GaN系基板上に、順次、n型GaN系ドリフト層/p型GaN系バリア層/n型GaN系コンタクト層、を含むGaN系積層体を形成する工程と、n型GaN系コンタクト層からn型GaN系ドリフト層内に届く開口部を形成する工程と、開口部を覆うように、電子走行層および電子供給層を含む再成長層を形成する工程と、開口部の周囲に、n型GaN系コンタクト層、再成長層およびp型GaN系バリア層に接するようにソース電極を形成する工程とを備える。そして、ドレイン電極の領域は、平面的にみて開口部の底部を含む範囲に限定されていることを特徴とする。
  この方法によって、ともに導電性部分であるソース電極とドレイン電極とが平面的にみて重複しないか、または重複部分が非常に小さい、半導体装置を比較的容易に製造することができる。
  本発明によれば、開口部が設けられ、当該開口部にチャネルを備える縦型半導体装置において、寄生容量を小さくすることで高周波特性を向上することができる。
本発明の実施の形態1における縦型GaN系FET(半導体装置)を示す断面図である(図3のI-I線に沿う断面図)。 図1の縦型GaN系FETの変形例を示す半導体装置の断面図である。 図1の縦型GaN系FETの平面図である。 図1と同じ断面図を呈し、図3と別の形態の縦型GaN系FETを示す平面図である。 図1の縦型GaN系FETの製造方法を示し、支持基体上にn型GaNドリフト層よりも小さい誘電率を有する絶縁層を形成したあとレジストパターンを形成した状態を示す図である。 図1の縦型GaN系FETの製造方法を示し、図5Aに示す状態の後に、さらにレジストパターンをマスクにして絶縁層をエッチングして開口部を設けた状態を示す図である。 図1の縦型GaN系FETの製造方法を示し、図5Bに示す状態の後に、さらに開口部にn型GaNドリフト層をエピタキシャル成長した状態を示す図である。 図1の縦型GaN系FETの製造方法を示し、図5Cに示す状態の後に、さらにレジストパターンを除去しながらリフトオフした後の状態を示す図である。 p型GaNバリア層およびn型GaNコンタクト層を形成した状態を示す図である。 エッチングによって開口部を設けた状態を示す図である。 RIEによって開口部を設ける段階を示し、レジストパターンを配置した状態を示す図である。 RIEによって開口部を設ける段階を示し、図8Aに示す状態の後に、さらにイオンを照射しながら開口を掘り下げて開口を拡大(後退)させてゆく状態を示す図である。 開口部に、再成長層を形成した状態を示す図である。 再成長層上に絶縁膜を成長させた状態を示す図である。 本発明の実施の形態2における縦型GaN系FET(半導体装置)を示す断面図である。 本発明の実施の形態3における縦型GaN系FET(半導体装置)を示す断面図である。 本発明の実施の形態4における縦型GaN系FET(半導体装置)を示す断面図である。 図13に示す半導体装置の変形例を示し、本発明の実施の形態4に属する半導体装置の断面図である。 実施例において限定されたn型GaNドリフト層の周囲に配置する酸化ケイ素層の厚みを変えたとき、その厚みが電力利得遮断周波数および電流利得遮断周波数に及ぼす影響を示す図である。
(実施の形態1)
  図1は、本発明の実施の形態1における縦型GaN系FET(半導体装置)10を示す断面図である。縦型GaN系FET10は、導電性のGaN基板1と、その上にエピタキシャル成長した、n型GaNドリフト層4/p型GaNバリア層6/n型GaNコンタクト層7、を備える。ここで、n型GaNドリフト層4がn型GaN系ドリフト層であり、p型GaNバリア層6がp型GaN系バリア層、n型GaNコンタクト層7がn型GaN系コンタクト層である。n型GaNドリフト層4は、平面的に見てほぼ開口部28の範囲に限定されていて、全体に広がっていない。n型GaNドリフト層4の外側には、そのn型GaNドリフト層4よりも誘電率εが小さい絶縁層31が充填されている。すなわち開口部の底部28bに中心を合わせて位置するn型GaNドリフト層4の外側であって、導電性GaN基板1とp型GaNバリア層6との間に、絶縁層31が配置される。絶縁層31は、n型GaNドリフト層4よりも誘電率が低ければ何でもよい。
たとえば酸化珪素SiOを挙げることができる。半導体GaNの比誘電率が9.5であるのに対して、酸化珪素SiOの比誘電率(1MHz)は3.8である。このため、ソース電極Sとドレイン電極Dとを二電極とするコンデンサの容量は、ほぼ半減する。この結果、高周波特性は向上する。
  上記の、絶縁層31によって周囲限定されたn型GaNドリフト層4/p型GaNバリア層6/n型GaNコンタクト層7は、GaN系積層体15を構成する。GaN基板1の種類によっては、GaN基板1とn型GaNドリフト層4との間にAlGaN層またはGaN層からなるバッファ層を挿入してもよい。
  なお、GaN基板1は、導電性であれば、いわゆる一体物の厚手のGaN基板でも、または支持基体上にオーミック接触するGaN層を有する基板であってもよい。さらに、GaN系積層体の成長時にGaN基板等の上に形成して、その後の工程で、GaN基板等の所定厚み部分を除いて、製品の状態では薄いGaN層下地のみが残っているものであってもよい。これら、GaN基板、支持基体上にオーミック接触するGaN層を有する基板、製品に薄く残された下地のGaN層などを、単にGaN基板と略称する場合もある。絶縁性基板は、実施の形態4において触れるが、GaN基板の形態として導電性かまたは絶縁性かの違いはあるが、その他の基板の形態としては、上記導電性基板の場合と変わりはない。
  上記の薄い下地の導電性GaN層の場合、ドレイン電極は、製造工程および製品の構造によるが、薄いGaN層の表面または裏面に設けることができる。本実施の形態では、GaN基板または支持基体等が製品に残る場合、当該支持基体または基板は、導電性とする。導電性の場合は、ドレイン電極は、その支持基体または基板の裏面(下面)またはおもて面(上面)に直接設けることができる。
  また、p型GaN系バリア層は、本実施の形態ではp型GaNバリア層6としているが、p型AlGaN層を用いてもよい。積層体15を構成するその他の層についても、場合に応じて、上記に示したGaN層を他のGaN系半導体層としてよい。
  GaN系積層体15には、n型GaNコンタクト層7からp型GaNバリア層6まで貫通してn型GaNドリフト層4内に至る開口部28が設けられている。開口部28は、壁面(側面)28aと底部28bとで形成されている。その開口部28の壁面28aおよび底部28bと、GaN系積層体15の表層(n型GaNコンタクト層7)とを被覆するように、エピタキシャル成長した再成長層27が形成されている。再成長層27は、i(intrinsic)型GaN電子走行層22およびAlGaN電子供給層26で構成される。
i型GaN電子走行層22とAlGaN電子供給層26との間にAlN等の中間層を挿入してもよい。ソース電極Sは、GaN系積層体15上において、再成長層27、n型コンタクト層7、およびp型GaNバリア層6に電気的に接続する。図1では、ソース電極Sは、下方に延在して、その側面で再成長層27の端面およびn型コンタクト層7に接触し、その先端部でp型GaNバリア層6に接触して電気的接続を得ている。ドレイン電極Dは導電性GaN基板1の裏面に位置する。
  p型GaNバリア層6は、オフ時の耐圧性能向上、およびピンチオフ特性向上のために必要である。とくにソース電極Sと電気的に接続されることで、p型GaNバリア層6は、上記のオフ時の耐圧性能向上、およびピンチオフ特性向上を安定して奏することができる。p型GaNバリア層6がソース電極Sと電気的に接続されるもう一つの利点は、逆バイアス時にp型GaNバリア層6とn型ドリフト層4とのpn接合にできる空乏層で発生する正孔を吸収できることである。これによって、正孔が残存することによる耐圧低下が防止され、良好な耐圧性能を継続して長期間、安定に得ることができる。
  再成長層27を覆って、ゲート電極Gの下に絶縁膜9が位置している。この絶縁膜9は、ゲート電極に正電圧を印加したときのゲートリーク電流を抑制するために配置されていて、大電流動作がしやすくなる。また、しきい値電圧をより正方向にシフトできるため、ノーマリーオフを得やすくなる。ただし、この絶縁膜9は、なくてもよく、必須ではない。
  動作オン時には、再成長層27において、i型GaN電子走行層22内のAlGaN電子供給層26側の界面に、二次元電子ガス(2DEG:2  Dimensional  Electron  Gas)が生成する。格子定数の違いに起因する自然分極やピエゾ分極等によって二次元電子ガスがi型GaN電子走行層22内のAlGaN層側の界面に生じる。電子は、ソース電極Sからその二次元電子ガスを経てn型GaNドリフト層4からドレイン電極Dにいたる経路をとる。再成長層27におけるi型GaN電子走行層22とAlGaN電子供給層26とは、同じ成長槽内で連続して成長されるため、界面における不純物準位等の密度は低く抑えられる。このため、開口部28を設けて厚み方向に大電流を流す形態をとりながら、低いオン抵抗で大電流(面積当たり)を流すことができる。
  上記のように、従来の縦型半導体装置では、ソース電極Sと、ドレイン電極Dまたは導電性GaN基板1との間に寄生容量が形成され、高周波特性が芳しくなかった。高周波特性は、たとえば電力利得Guが得られなくなる限界周波数(電力利得遮断周波数)fmazおよび/または電流利得|h21が得られなくなる限界周波数(電流利得遮断周波数)fTによって判断される。これら電力利得遮断周波数fmazや電流利得遮断周波数fTが高いほど、高周波特性が優れている。
  開口部28に中心を合わせ、底部28bを含むようにn型GaNドリフト層4が位置することで、オン動作時、電子流は絶縁層31に妨げられることなく、そのn型GaNドリフト層4を通って、導電性GaN基板1/ドレイン電極Dに到達する。そして、n型GaNドリフト層4の外側であって、導電性GaN基板1とp型GaNバリア層6との間には、n型GaNドリフト層4よりも誘電率が低い絶縁層31が配置される。このため寄生容量は小さくなり、高周波特性を向上することができる。
  n型GaNドリフト層4は、n型不純物濃度を、たとえば1×1015(1E15)cm-3以上1×1017(1E17)cm-3以下として、厚みは、たとえば1.0μm以上10.0μm以下とするのがよい。
  p型GaNバリア層6のp型不純物濃度は、1×1017(1E17)cm-3~1×1019(1E19)cm-3程度とするのがよい。p型不純物には、MgなどのGaN系半導体中にアクセプタを形成する不純物が用いられる。また、p型GaNバリア層6の厚みは、n型GaNドリフト層の厚み等によって変わる。このため、厚み範囲は一概に決めることはできない。しかし、代表的な厚みについては、多くの仕様において用いられる厚みという点から、0.3μm~1μm程度をあげることができる。これより薄いと、十分な耐圧性能やピンチオフ特性を得られないので、厚みの下限とみてもよい。このp型GaNバリア層6は、この0.3μm~1μm程度の厚みを持つことから、あまり高濃度のMg濃度を含有させると、p型GaNバリア層6の端面に向かって直線的に移動してチャネルに悪影響(オン抵抗の増大)を及ぼす。また、チャネルOFF時のn型GaNドリフト層とのpn接合での逆方向特性(耐圧性能)を劣化させる。
  n型GaNコンタクト層7のn型不純物濃度は5×1017(5E17)cm-3~5×1019(5E19)cm-3程度とするのがよい。また厚みは、0.1μm~0.6μm程度とし、長さは、0.5μm以上5μm以下とするのがよい。
  図2に示すように、絶縁層31の厚みは、n型GaNドリフト層4の全厚みと合わせる必要はなく、n型GaNドリフト層4の何割かの厚みであってもよい。誘電率の低い誘電体(絶縁層31)で置き換える限り、電極間の誘電体の厚み比率を変化させても、容量は低下する。製造上、図2に示すように、開口部28の底部28bの側にn型GaNドリフト層4を広く配置するのがよい。すなわち絶縁層31は、基板1側に配置するのがよい。ただ、絶縁層31は、p型GaNバリア層6に接する側に配置してもよい。
  図3は、図1に示した縦型GaN系半導体装置10の平面図であり、図1は本図におけるI-I線に沿う断面図である。図3によれば、開口部28を六角形とし、ゲート配線12を避けながら、その周囲をほぼソース電極Sで覆って、最密充填(ハニカム構造)とすることにより単位面積当たりのゲート電極周囲長を長く取れる。このような形状の面からも、オン抵抗を下げることができる。また、平面図から読み取れるソース電極Sの大きな広さから、これまで繰り返し説明してきた、ソース電極Sとドレイン電極Dまたは導電性GaN基板とを二つの電極とする寄生容量の重大さを知ることができる。
  電流は、ソース電極Sから、直接に、またはn型GaNコンタクト層7を経由して、再成長層27内のチャネル(電子走行層22)に入り、GaNドリフト層4を経て、ドレイン電極Dへと流れる。ソース電極Sおよびその配線と、ゲート電極G、ゲート配線12およびゲートパッド13から構成されるゲート構成体とが、相互に干渉しないために、ソース配線は、図示しない層間絶縁膜上に設けられる。層間絶縁膜にはビアホールが設けられ、そのビアホールに充填された導電部を含むソース電極Sは、層間絶縁膜上のソース導電層(図示せず)と導電接続される。このような構造によって、ソース電極Sを含むソース構成体は、大電力用の素子に好適な、低い電気抵抗および高い移動度、を持つことができる。
  図4は、図1と同じような断面構造を有しながら、平面構造は図3に示すものと異なる、本発明の縦型GaN系FETの開口部配列および電極構造を示す平面図である。この図4に示す電極構造等を有する縦型GaN系FETも本発明の実施の形態例である。開口部28を細長い矩形状にして、その細長い矩形状の開口部28を密に配置することでも、上記の面積当たりの開口部周囲長を大きくでき、この結果、電流密度を向上させることができる。この場合、ゲート電極Gとソース電極Sとは、長手方向を並行させたゲートパッド13とソースパッド14とに直交するように相手側へ延び出て、相互に櫛歯状に入り組む形状を呈する。高周波用の縦型GaN系FETとしては、図4に示すように、ゲート電極Gとソース電極Sとが櫛歯状に配置される形態のほうが普通である。
  次に、本実施の形態における半導体装置10の製造方法を説明する。図5Aに示すように、導電性GaN基板1上に、誘電率がn型GaNドリフト層4よりも小さい絶縁層31aを形成する。このあとレジストパターンM1を設け、次いで湿式エッチングによって、n型GaNドリフト層4が形成されることになる範囲に絶縁層の開口部31hを設ける(図5B)。この絶縁層の開口部31hは開口部28の底部28bを含む範囲の大きさとするのがよい。このあと、レジストパターンM1を用いて、図5Cに示すように、導電性GaN基板上であって絶縁層の開口部31hの中にn型GaNドリフト層4を成長する。レジストパターンM1上にも同じ機会に堆積したn型GaN堆積層4fができる。このn型GaN堆積層4fは、レジストパターンM1を除去するときにリフトオフされる。
  このあと、図6に示すように、n型GaNドリフト層4を中心にして絶縁層31の上にもエピタキシャル成長が広がる条件(成長速度など)をとりながら、p型GaNバリア層6を形成する。次いで、n型GaNコンタクト層7を成長して、積層体15を完成する。上述のように、GaN基板1とn型GaNドリフト層4との間にGaN系バッファ層(図示せず)を挿入してもよい。
  上記の層の形成は、MOCVD(有機金属化学気相成長)法などを用いるのがよい。たとえばMOCVD法で成長することで、結晶性の良好な積層体15を形成できる。GaN基板1の形成において、導電性基板上に窒化ガリウム膜をMOCVD法によって成長させる場合、ガリウム原料として、トリメチルガリウムを用いる。窒素原料としては高純度アンモニアを用いる。キャリアガスとしては純化水素を用いる。高純度アンモニアの純度は99.999%以上、純化水素の純度は99.999995%以上である。n型ドーパント(ドナー)のSi原料には水素ベースのシランを用い、p型ドーパント(アクセプタ)のMg原料にはシクロペンタジエニルマグネシウムを用いるのがよい。
  導電性基板としては、直径2インチの導電性窒化ガリウム基板を用いる。温度1030℃、圧力100Torrで、アンモニアおよび水素の雰囲気中で、基板クリーニングを実施する。その後、1050℃に昇温して、圧力200Torr、窒素原料とガリウム原料の比率であるV/III比=1500で窒化ガリウム層を成長させる。
  次に、図7に示すように、開口部28をRIE(反応性イオンエッチング)によって形成する。図8Aおよび図8Bに示すように、エピタキシャル層4,6,7の表面にレジストパターンM2を形成した後、RIEによって、レジストパターンM2をエッチングして後退させながら開口を広げて開口部28を設ける。このRIE工程において、開口部28の斜面、すなわち積層体15の端面は、イオン照射を受けて損傷される。損傷部では、ダングリンドボンド、格子欠陥の高密度領域などが発生し、その損傷部にRIE装置由来または特定できていない部分からの導電性不純物が到達して富化が生じる。この損傷部の発生は、ドレインリーク電流の増大をもたらすので、修復する必要がある。水素やアンモニアを所定レベル含むことで、このあと説明する再成長層27の成長時に、ダングリンドボンド等の修復、および不純物の除去や不活性化を得ることができる。
  次いで、レジストパターンM2を除去し、ウエハを洗浄した後、当該ウエハをMOCVD装置に導入して、図9に示すように、アンドープGaNからなる電子走行層22、およびアンドープAlGaNからなる電子供給層26を含む再成長層27を成長する。このアンドープGaN層22およびAlGaN層26の成長においては、(NH+H)雰囲気において熱クリーニングを行い、引き続き(NH+H)を導入しつつ有機金属原料を供給する。この再成長層27の形成前の熱クリーニング時または形成時に、上記の損傷部の修復、導電性不純物の除去やパッシベーション化を進行させる。
  次いで、上記ウエハをMOCVD装置から取り出し、図10に示すように、絶縁膜9を成長させる。その後、再びフォトリソグラフィと電子ビーム蒸着法を用いて、図1に示すように、ソース電極Sをエピタキシャル層表面に、ドレイン電極DをGaN系基板1の裏面に形成する。
(実施の形態2)
  図11は、本発明の実施の形態2における縦型GaN系FET(半導体装置)10を示す断面図である。本実施の形態では、n型GaNドリフト層4は、開口部28の底部28bを含む範囲に限定され、その限定されたn型GaNドリフト層4の周囲は空気層30とされている。空気は、誘電率が真空より少し高いだけで、ほぼ同じとみることができる。したがって比誘電率は約1であり、どのような物質よりも小さい誘電率である。n型GaNドリフト層4の比誘電率は、大雑把に10であるので、空気とすることで、寄生容量を大幅に減少させることができる。
  図1においてn型GaNドリフト層4の周囲の全厚みを、より誘電率が低い絶縁体で置換したのを、図2において全厚みを部分的に置換してもよいことを示した。同様に、図11に示したn型GaNドリフト層4の周囲の全厚みを空気層30としないで、その厚みを部分的に空気層30として残りの厚みをn型GaNドリフト層4としてもよい。
  本実施の形態の半導体装置の製造方法は、次の工程で行う。まず、実施の形態1の半導体装置の製造方法と、図10に示す状態まで共通に進行する。図10に示す中間製品に対して、n型GaNドリフト層4の周囲の絶縁層31が露出するように、導電性GaN基板1、または絶縁膜9/再成長層27/n型GaNコンタクト層7/p型GaNバリア層6、に断続的なトレンチを設ける。このために、そのトレンチに開口部を持つレジストパターンを形成し、その後、ドライまたはウェットエッチングによって、絶縁層31内にまで届くトレンチを形成する。そのあと、同じレジストパターンまたは新たなレジストパターンを形成して、上記のトレンチからエッチング液を注入して、ウェットエッチングによって絶縁層31を除去する。絶縁層31は、全厚みを除去しないで、壁面および底部ともに所定の微小厚み残すのがよい。また、トレンチを塞ぐ金属層の形成では、角度を付けてトレンチが遮蔽される配置または姿勢で行うのがよい。
(実施の形態3)
  図12は、本発明の実施の形態3における縦型GaN系FET(半導体装置)10を示す断面図である。本実施の形態では、n型GaNドリフト層4は、開口部28の底部28bを含む範囲に限定され、その限定されたn型GaNドリフト層4の周囲は、i型GaN層などの不純物を含まない真性半導体層32がn型GaNドリフト層4の全厚みに配置されている。n型不純物を低くすることで、真性半導体層32は、その誘電率が低くなる。その結果、寄生容量を低くでき、高周波特性を向上させることができる。
  上記のi型GaNなどのn型不純物濃度を低減された半導体層32は、バンドギャップがn型GaNドリフト層4よりも大きいGaN系半導体32(たとえば、AlInGaN)であってもよい。バンドギャップがn型GaNドリフト層4よりも大きいGaN系半導体32は、不純物濃度が低い真性GaN系半導体と同様に、誘電率がn型GaNドリフト層4よりも小さい。バンドギャップがn型GaNドリフト層4よりも大きいGaN系半導体32を周囲に配置することで、寄生容量を低下させることができ、高周波特性を向上することができる。バンドギャップがn型GaNドリフト層4よりも大きいGaN系半導体32は、n型の範疇でn型不純物を含んでもよい。
  上記のn型不純物が低いi型GaN層32またはバンドギャップがn型GaNドリフト層4よりも大きいGaN系半導体32は、n型GaNドリフト層4の周囲の全厚みを置き換えなくてもよい。上述のように、n型GaNドリフト層4の周囲において、厚みを部分的に占めるだけでよく、残りはn型GaNドリフト層4が延在してもよい。
(実施の形態4)
  図13は、本発明の実施の形態4における縦型GaN系FET(半導体装置)10を示す断面図である。縦型GaN系FET10は、絶縁性GaN基板11と、その上にエピタキシャル成長した、n型GaNドリフト層4/p型GaNバリア層6/n型GaNコンタクト層7、を備える。実施の形態1~3における半導体装置と異なり、本実施の形態では、n型GaNドリフト層4は開口部28の底部28bを含む範囲に限定されない。
  本実施の形態では、高抵抗GaN基板または絶縁性基板11内にドレイン電極Dが形成されている点に特徴を有する。とくにドレイン電極Dは、開口部28の底部28bに面する範囲に限定され、絶縁性GaN基板11を貫通している。このドレイン電極Dの配置構造によって、平面的にみてドレイン電極Dや導電性基板などの導電性部分が、ソース電極Sと重なる部分はなくなる。この結果、平行平板コンデンサという描像は成立しなくなる。この結果、寄生容量は大きく低下して、高周波特性は向上する。
  上記のドレイン電極Dは、絶縁性基板11を貫通しており、絶縁性基板11の裏面にも露出するので、配線を絶縁性基板11の裏面からとることができる。この結果、コンパクトな配線構造を形成することができる。
  上記の絶縁性GaN系基板11は、既存の設備および金属層形成方法を用いて、ドレイン電極Dを絶縁性GaN系基板11の所定領域内に限定して形成することで、容易に得ることができる。
  図14は、図13の半導体装置の変形例(実施の形態4の変形例)であり、本発明の実施の形態の一つである。この変形例では、高抵抗GaN基板または絶縁性基板11内にドレイン電極Dが形成され、そのドレイン電極Dは、開口部28の底部28bに面する範囲に限定されている点で、図13の半導体装置に共通する。したがって平面的にみてドレイン電極Dや導電性基板などの導電性部分が、ソース電極Sと重なる部分はない。この結果、寄生容量は大きく低下して、高周波特性は向上する。
  しかし、本変形例では、ドレイン電極Dは、GaN系積層体15に接しているが、絶縁性GaN基板11の裏面に露出していない。このため、ドレイン電極Dに接続する配線は、GaN系積層体15の側からアクセスする必要がある。
  実施の形態1の図2に示した半導体装置について、絶縁層31の厚さを変化させてS(RF)パラメータのシミュレーションを行った。半導体装置10の形態は次のとおりである。
  n型GaNドリフト層4:開口部28の底部28bを含むn型GaNドリフト層の厚みを5μmとし、そのn型不純物濃度は、すべての試験体に対して同一の、1×1016(1E16)cm-3とした。
  n型GaNドリフト層4の周囲に配置する絶縁層31は、SiO(比誘電率3.8)とした。また、その配置は、n型GaNドリフト層4の厚みの下側(基板側)部分のみとして、上側(開口部側)はn型GaNドリフト層4が延在する形態とした(図2参照)。絶縁層31の厚みは、ゼロ(従来の半導体装置と同じ)から3.5μmの範囲に変化させた。厚み3.5μmの場合、n型GaNドリフト層4の全厚みの70%をSiOで置き換えたことになる。
  コンピュータシミュレーションによって、電力利得(Gu)および電流利得(|h21)の周波数依存性を求め、電力利得および電流利得が1となる遮断周波数を求めた。
結果を、図15に示す。図15によれば、電流利得遮断周波数fTは、絶縁層31の増大につれてほとんど変わらないか、または少し低下する傾向がみられる。しかし、電力遮断周波数fmaxは、酸化ケイ素の厚み1.5μmを底にして、より厚い範囲で上昇する。
とくに酸化ケイ素の厚み3.5μmでは、最高の電力遮断周波数fmaxを示す。
  実施例では、酸化ケイ素は、n型GaNドリフト層4の全厚みの70%を占める範囲までしか検討していない。酸化ケイ素の比率をこれより高めることで、より一層、電力遮断周波数fmaxは拡大し、電流利得遮断周波数fTもこれに均衡のとれた値を示すものと考えられる。製造上の制御は難しいが、図2における絶縁層31の厚みをより厚くして、たとえば図1に示すようにn型GaNドリフト層4の厚みと同じにすることで、より一層高い電力遮断周波数fmaxを得ることができる。
  上記開示された本発明の実施形態の構造は、あくまで例示であって、本発明の範囲はこれらの記載の範囲に限定されるものではない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味及び範囲内でのすべての変更を含むものである。
  本発明の半導体装置等によれば、開口部を有する縦型の半導体装置において、ソース電極とドレイン電極または導電性基板との間の、開口部の底部に位置するn型GaNドリフト層の周囲を、より誘電率の低い絶縁層、半導体等で形成することで、寄生容量を下げて高周波特性を向上させることができる。また、別の構成であるが、絶縁性基板内に開口部の底部に対面する領域に限定されたドレイン電極を設けることで、やはり寄生容量を減少させて高周波特性を向上させることができる。
  1  GaN基板、4  n型GaNドリフト層、6  p型GaNバリア層、7  n型GaNコンタクト層、9  絶縁膜、10  半導体装置(縦型GaN系FET)、11  絶縁性(高抵抗)基板、12  ゲート配線、13  ゲートパッド、14  ソースパッド、15  GaN系積層体、22  GaN電子走行層、26  AlGaN電子供給層、  27  再成長層、28  開口部、28a 開口部の壁面、28b  開口部の底部、30  空気層、31  絶縁層(SiO)、31h 絶縁層の開口部、32  i型GaN層またはバンドギャップがGaNより大きいGaN系半導体、D  ドレイン電極、G  ゲート電極、K  開口部の稜線または角部、M1  レジストパターン、S  ソース電極。

Claims (11)

  1.   開口部が設けられたGaN系積層体を備える縦型の半導体装置であって、
      前記GaN系積層体は、表層側へと順次、n型GaN系ドリフト層/p型GaN系バリア層/n型GaN系コンタクト層、を有し、前記開口部は表層から前記n型GaN系ドリフト層内にまで届いており、
      該開口部を覆うように位置する、電子走行層および電子供給層を含む再成長層と、
      前記n型GaN系コンタクト層、前記再成長層および前記p型GaN系バリア層に接するように、前記開口部の周囲に位置するソース電極と、
      前記ソース電極と前記GaN系積層体を挟んで、前記開口部に中心を合わせて位置するドレイン電極と、
      前記再成長層上に位置するゲート電極とを備え、
      前記ソース電極を一方の電極とし、かつ前記ドレイン電極を他方の電極としてその間に誘電材料が配置されたコンデンサを構成するとみて、該コンデンサの容量を低下させる構造である容量低下構造を備えることを特徴とする、半導体装置。
  2.   前記容量低下構造であって、前記GaN系積層体は導電性GaN系基板上に形成され、前記ドレイン電極は該導電性GaN系基板に位置し、前記ソース電極と前記導電性GaN系基板とは、平面的に見て重複していて、前記n型GaN系ドリフト層は、前記開口部の底部を含む領域に限定されており、その限定されたn型GaN系ドリフト層の周りに、該n型GaN系ドリフト層の誘電率よりも低い誘電率を有する低誘電率材料が充填されていることを特徴とする、請求項1に記載の半導体装置。
  3.   前記低誘電率材料が、空気、絶縁膜、ノンドープGaN系半導体、および前記n型GaN系ドリフト層よりも大きいバンドギャップを有するGaN系ワイドギャップ半導体のうちの、少なくとも1つであることを特徴とする、請求項2に記載の半導体装置。
  4.   前記容量低下構造であって、前記GaN系積層体は高抵抗GaN系基板上に形成され、前記ドレイン電極は、平面的にみて前記開口部の底部を含む領域に限定されるように前記高抵抗GaN系基板内に位置し、前記n型GaN系ドリフト層に接することを特徴とする、請求項1に記載の半導体装置。
  5.   前記ドレイン電極が、前記高抵抗GaN系基板の裏面に露出する部分を持つように位置するか、または、前記高抵抗GaN系基板の裏面に露出する部分を持たないように位置することを特徴とする、請求項4に記載の半導体装置。
  6.   開口部が設けられたGaN系積層体を備える縦型の半導体装置の製造方法であって、
      導電性GaN系基板上に、順次、n型GaN系ドリフト層/p型GaN系バリア層/n型GaN系コンタクト層、を含む前記GaN系積層体を形成する工程と、
      前記n型GaN系コンタクト層から前記n型GaN系ドリフト層内に届く前記開口部を形成する工程と、
      前記開口部を覆うように、電子走行層および電子供給層を含む再成長層を形成する工程と、
      前記開口部の周囲に、前記n型GaN系コンタクト層、前記再成長層および前記p型GaN系バリア層に接するようにソース電極を形成する工程とを備え、
      前記GaN系積層体のn型GaN系ドリフト層の形成工程では、前記開口部の底部を含む領域に限定して該n型GaN系ドリフト層を形成し、当該n型GaN系ドリフト層の周囲に、そのn型GaN系ドリフト層の誘電率よりも低い誘電率を有する材料を形成することを特徴とする、半導体装置の製造方法。
  7.   前記n型GaN系ドリフト層の形成工程では、絶縁層を形成し、次いで、前記開口部の底部を含むことになる領域の絶縁層に開口部を設け、その絶縁層の開口部内に前記n型GaN系ドリフト層を選択成長させることを特徴とする、請求項6に記載の半導体装置の製造方法。
  8.   前記n型GaN系ドリフト層の形成工程では、(1)i型GaN系半導体層を形成し、次いで、前記開口部の底部を含むことになる領域にn型不純物を注入するか、または(2)n型GaN系半導体層を形成し、次いで、前記開口部の底部を含む領域の周りになる領域にp型不純物を、前記n型GaN系半導体層におけるn型不純物を相殺するように注入することを特徴とする、請求項6に記載の半導体装置の製造方法。
  9.   前記n型GaN系ドリフト層の形成工程では、(1)n型GaN系半導体層を形成し、次いで前記開口部の底部を含む領域をマスクしてその他の領域を開口部とするレジストパターンを形成し、そのレジストパターン開口部におけるn型GaN系半導体層をエッチングによって除去し、次いで、そのエッチングによって除去された領域に、前記n型GaN系ドリフト層よりもバンドギャップが大きいGaN系半導体層もしくはi型GaN系半導体層を形成する、か、または(2)前記n型GaN系ドリフト層よりもバンドギャップが大きいGaN系半導体層もしくはi型GaN系半導体層を形成し、次いで前記開口部の底部を含む領域を除いたその他の領域をマスクして前記開口部の底部を含む領域を開口部とするレジストパターンを形成し、前記レジストパターン開口部における前記バンドギャップが大きいGaN系半導体層もしくは前記i型GaN系半導体層をエッチングによって除去し、次いで、そのエッチングによって除去された領域に、前記n型GaN系ドリフト層を形成することを特徴とする、請求項6に記載の半導体装置の製造方法。
  10.   前記n型GaN系ドリフト層の形成工程では、絶縁層を形成し、次いで、前記開口部の底部を含むことになる領域に絶縁層の開口部を設け、該絶縁層の開口部内に前記n型GaN系ドリフト層を選択成長させ、その後、前記再成長層を形成したあと、該再成長層上に絶縁性保護膜を形成し、次いで、前記導電性GaN基板の裏面から、または前記絶縁性保護膜から、前記絶縁層を露出させるトレンチを形成し、該トレンチからの湿式エッチングにより前記絶縁層を除去して空気を充填させることを特徴とする、請求項6に記載の半導体装置の製造方法。
  11.   開口部が設けられたGaN系積層体を備える縦型の半導体装置の製造方法であって、
      ドレイン電極が領域を限定して設けられた高抵抗GaN系基板を準備する工程と、
      前記高抵抗GaN系基板上に、順次、n型GaN系ドリフト層/p型GaN系バリア層/n型GaN系コンタクト層、を含むGaN系積層体を形成する工程と、
      前記n型GaN系コンタクト層から前記n型GaN系ドリフト層内に届く開口部を形成する工程と、
      前記開口部を覆うように、電子走行層および電子供給層を含む再成長層を形成する工程と、
      前記開口部の周囲に、前記n型GaN系コンタクト層、前記再成長層および前記p型GaN系バリア層に接するようにソース電極を形成する工程とを備え、
      前記ドレイン電極の領域は、平面的にみて前記開口部の底部を含む範囲に限定されていることを特徴とする、半導体装置の製造方法。
PCT/JP2011/066885 2010-11-08 2011-07-26 半導体装置およびその製造方法 WO2012063529A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/884,221 US8890239B2 (en) 2010-11-08 2011-07-26 Semiconductor device and method for producing the same
DE112011103695T DE112011103695T5 (de) 2010-11-08 2011-07-26 Halbleitervorrichtung und Herstellungsverfahren hierfür
CN2011800537054A CN103201844A (zh) 2010-11-08 2011-07-26 半导体装置及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010250076A JP2012104568A (ja) 2010-11-08 2010-11-08 半導体装置およびその製造方法
JP2010-250076 2010-11-08

Publications (1)

Publication Number Publication Date
WO2012063529A1 true WO2012063529A1 (ja) 2012-05-18

Family

ID=46050687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066885 WO2012063529A1 (ja) 2010-11-08 2011-07-26 半導体装置およびその製造方法

Country Status (5)

Country Link
US (1) US8890239B2 (ja)
JP (1) JP2012104568A (ja)
CN (1) CN103201844A (ja)
DE (1) DE112011103695T5 (ja)
WO (1) WO2012063529A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150179741A1 (en) * 2012-09-12 2015-06-25 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device
CN111063656A (zh) * 2019-05-28 2020-04-24 聚力成半导体(重庆)有限公司 半导体装置的制造方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6060669B2 (ja) * 2012-12-19 2017-01-18 富士通株式会社 電子装置及びその製造方法
JP2015032744A (ja) * 2013-08-05 2015-02-16 株式会社東芝 半導体装置および半導体装置の製造方法
EP2843708A1 (en) * 2013-08-28 2015-03-04 Seoul Semiconductor Co., Ltd. Nitride-based transistors and methods of fabricating the same
JP6271197B2 (ja) * 2013-09-20 2018-01-31 株式会社東芝 半導体装置およびその製造方法
JP2015177065A (ja) * 2014-03-14 2015-10-05 株式会社東芝 半導体装置
US10566192B2 (en) * 2014-05-07 2020-02-18 Cambridge Electronics, Inc. Transistor structure having buried island regions
US9761709B2 (en) * 2014-08-28 2017-09-12 Hrl Laboratories, Llc III-nitride transistor with enhanced doping in base layer
JP6693142B2 (ja) * 2016-01-21 2020-05-13 ソニー株式会社 半導体装置、電子部品、電子機器、および半導体装置の製造方法
JP6754782B2 (ja) * 2016-02-12 2020-09-16 パナソニック株式会社 半導体装置
GB2547661A (en) * 2016-02-24 2017-08-30 Jiang Quanzhong Layered vertical field effect transistor and methods of fabrication
WO2019097813A1 (ja) * 2017-11-16 2019-05-23 パナソニック株式会社 窒化物半導体装置
CN111886683B (zh) * 2018-03-22 2024-01-02 松下控股株式会社 氮化物半导体装置
WO2019187789A1 (ja) * 2018-03-27 2019-10-03 パナソニック株式会社 窒化物半導体装置
US11552189B2 (en) * 2019-09-25 2023-01-10 Stmicroelectronics S.R.L. High electron mobility transistor (HEMT) devices and methods
DE102019218758A1 (de) * 2019-12-03 2021-06-10 Robert Bosch Gmbh Vertikale feldeffekttransistoren und verfahren zum ausbilden eines vertikalen feldeffekttransistors
US11791388B2 (en) * 2020-02-27 2023-10-17 Taiwan Semiconductor Manufacturing Company, Ltd. Source leakage current suppression by source surrounding gate structure
US11848371B2 (en) * 2020-07-02 2023-12-19 Xerox Corporation Polarization controlled transistor
US20230078017A1 (en) * 2021-09-16 2023-03-16 Wolfspeed, Inc. Semiconductor device incorporating a substrate recess
WO2023123392A1 (en) * 2021-12-31 2023-07-06 Innoscience (Suzhou) Technology Co., Ltd. Nitride-based semiconductor device and method for manufacturing the same
WO2024011610A1 (en) * 2022-07-15 2024-01-18 Innoscience (Zhuhai) Technology Co., Ltd. Semiconductor device and method for manufacturing thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334503A (ja) * 1993-05-24 1994-12-02 Nippondenso Co Ltd 縦型misトランジスタ
JP2000349092A (ja) * 1999-05-25 2000-12-15 Intersil Corp 選択的エピタキシャル成長により形成したトレンチ壁を備えたトレンチゲート装置及びその形成方法
JP2002203967A (ja) * 2000-10-23 2002-07-19 Matsushita Electric Ind Co Ltd 半導体素子
JP2006286942A (ja) * 2005-03-31 2006-10-19 Eudyna Devices Inc 半導体装置及びその製造方法
JP2007173675A (ja) * 2005-12-26 2007-07-05 Toyota Central Res & Dev Lab Inc 半導体装置とその製造方法
WO2008126821A1 (ja) * 2007-04-09 2008-10-23 Kabushiki Kaisha Toyota Chuo Kenkyusho へテロ接合を有する半導体装置
WO2009110229A1 (ja) * 2008-03-07 2009-09-11 三菱電機株式会社 炭化珪素半導体装置およびその製造方法
JP2010232355A (ja) * 2009-03-26 2010-10-14 Toshiba Corp 半導体装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286942A (ja) 1999-03-30 2000-10-13 Aiphone Co Ltd 送受器受け構造
JP2001267567A (ja) * 2000-03-15 2001-09-28 Hitachi Ltd 半導体装置
JP2002076326A (ja) * 2000-09-04 2002-03-15 Shindengen Electric Mfg Co Ltd 半導体装置
JP4645034B2 (ja) * 2003-02-06 2011-03-09 株式会社豊田中央研究所 Iii族窒化物半導体を有する半導体素子
JP4974454B2 (ja) * 2004-11-15 2012-07-11 株式会社豊田中央研究所 半導体装置
JP4802542B2 (ja) * 2005-04-19 2011-10-26 株式会社デンソー 炭化珪素半導体装置
JP2008053448A (ja) * 2006-08-24 2008-03-06 Rohm Co Ltd Mis型電界効果トランジスタおよびその製造方法
JP2008078604A (ja) * 2006-08-24 2008-04-03 Rohm Co Ltd Mis型電界効果トランジスタおよびその製造方法
JP5252813B2 (ja) * 2007-03-15 2013-07-31 株式会社豊田中央研究所 半導体装置の製造方法
JP5496635B2 (ja) * 2008-12-19 2014-05-21 住友電工デバイス・イノベーション株式会社 半導体装置の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334503A (ja) * 1993-05-24 1994-12-02 Nippondenso Co Ltd 縦型misトランジスタ
JP2000349092A (ja) * 1999-05-25 2000-12-15 Intersil Corp 選択的エピタキシャル成長により形成したトレンチ壁を備えたトレンチゲート装置及びその形成方法
JP2002203967A (ja) * 2000-10-23 2002-07-19 Matsushita Electric Ind Co Ltd 半導体素子
JP2006286942A (ja) * 2005-03-31 2006-10-19 Eudyna Devices Inc 半導体装置及びその製造方法
JP2007173675A (ja) * 2005-12-26 2007-07-05 Toyota Central Res & Dev Lab Inc 半導体装置とその製造方法
WO2008126821A1 (ja) * 2007-04-09 2008-10-23 Kabushiki Kaisha Toyota Chuo Kenkyusho へテロ接合を有する半導体装置
WO2009110229A1 (ja) * 2008-03-07 2009-09-11 三菱電機株式会社 炭化珪素半導体装置およびその製造方法
JP2010232355A (ja) * 2009-03-26 2010-10-14 Toshiba Corp 半導体装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150179741A1 (en) * 2012-09-12 2015-06-25 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device
US9911843B2 (en) * 2012-09-12 2018-03-06 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device
US10868167B2 (en) 2012-09-12 2020-12-15 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device
US11699751B2 (en) 2012-09-12 2023-07-11 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device
CN111063656A (zh) * 2019-05-28 2020-04-24 聚力成半导体(重庆)有限公司 半导体装置的制造方法

Also Published As

Publication number Publication date
JP2012104568A (ja) 2012-05-31
CN103201844A (zh) 2013-07-10
US8890239B2 (en) 2014-11-18
DE112011103695T5 (de) 2013-09-05
US20130248876A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
WO2012063529A1 (ja) 半導体装置およびその製造方法
US10109713B2 (en) Fabrication of single or multiple gate field plates
JP5742072B2 (ja) 半導体装置およびその製造方法
US20190140088A1 (en) Nitride power transistor and manufacturing method thereof
JP5110153B2 (ja) 半導体装置およびその製造方法
US8569797B2 (en) Field effect transistor and method of manufacturing the same
JP5003813B2 (ja) 半導体装置およびその製造方法
WO2012049892A1 (ja) 半導体装置およびその製造方法
US20110156050A1 (en) Semiconductor device and method for producing the same
JP2011082397A (ja) 半導体装置およびその製造方法
WO2012056770A1 (ja) 半導体装置およびその製造方法
US11489050B2 (en) Vertical nitride semiconductor transistor device
JP2008210936A (ja) 窒化物半導体素子および窒化物半導体素子の製造方法
WO2012060206A1 (ja) 半導体装置およびその製造方法
US20080142845A1 (en) HEMT including MIS structure
JP2021114496A5 (ja)
CN111933709A (zh) 一种具有高可靠性的氮化物器件及其制备方法
TW202115911A (zh) 一種高電子遷移率電晶體(hemt)及其製造方法
WO2024000431A1 (zh) 一种半导体器件及其制造方法
WO2024116739A1 (ja) 窒化物半導体デバイスおよびその製造方法
JP5429012B2 (ja) 半導体装置およびその製造方法
KR101480068B1 (ko) 질화물 반도체 소자 및 그 제조방법
US20150069468A1 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839609

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13884221

Country of ref document: US

Ref document number: 1120111036957

Country of ref document: DE

Ref document number: 112011103695

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839609

Country of ref document: EP

Kind code of ref document: A1