WO2012057310A1 - 2ストロークエンジン - Google Patents

2ストロークエンジン Download PDF

Info

Publication number
WO2012057310A1
WO2012057310A1 PCT/JP2011/074926 JP2011074926W WO2012057310A1 WO 2012057310 A1 WO2012057310 A1 WO 2012057310A1 JP 2011074926 W JP2011074926 W JP 2011074926W WO 2012057310 A1 WO2012057310 A1 WO 2012057310A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fuel ratio
exhaust
fuel
gas
Prior art date
Application number
PCT/JP2011/074926
Other languages
English (en)
French (fr)
Inventor
義幸 梅本
功治 森山
山田 剛
Original Assignee
株式会社Ihi
株式会社ディーゼルユナイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi, 株式会社ディーゼルユナイテッド filed Critical 株式会社Ihi
Priority to CN201180051514.4A priority Critical patent/CN103180578B/zh
Priority to KR1020137013063A priority patent/KR101491632B1/ko
Priority to EP11836443.9A priority patent/EP2634398B1/en
Priority to DK11836443.9T priority patent/DK2634398T3/da
Priority to JP2012540955A priority patent/JP5452730B2/ja
Publication of WO2012057310A1 publication Critical patent/WO2012057310A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/10Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels peculiar to compression-ignition engines in which the main fuel is gaseous
    • F02D19/105Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels peculiar to compression-ignition engines in which the main fuel is gaseous operating in a special mode, e.g. in a liquid fuel only mode for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/02Engines characterised by using fresh charge for scavenging cylinders using unidirectional scavenging
    • F02B25/04Engines having ports both in cylinder head and in cylinder wall near bottom of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0647Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being liquefied petroleum gas [LPG], liquefied natural gas [LNG], compressed natural gas [CNG] or dimethyl ether [DME]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • F02D41/1443Plural sensors with one sensor per cylinder or group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/028Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation for two-stroke engines
    • F02D13/0284Variable control of exhaust valves only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0689Injectors for in-cylinder direct injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0692Arrangement of multiple injectors per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/04Two-stroke combustion engines with electronic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a two-stroke engine.
  • This application claims priority based on Japanese Patent Application No. 2010-241856 for which it applied to Japan on October 28, 2010, and uses the content here.
  • One internal combustion engine is a two-stroke engine (two-cycle engine) that is a reciprocating engine that completes one cycle of intake, compression, combustion, and exhaust each time a piston reciprocates once in a cylinder.
  • This two-stroke engine includes a two-stroke dual fuel engine capable of selecting a gas mode operation using a combustible gas (gas fuel) as a main fuel and a diesel mode operation using only heavy oil (liquid fuel) as a fuel.
  • gas fuel gas fuel
  • LNG liquefied natural gas
  • FIG. 5 is a schematic view showing an example of a conventional two-stroke dual fuel engine.
  • the two-stroke dual fuel engine 100 includes a cylindrical cylinder liner 1 (cylinder) and a hollow housing 2 in which an upper wall 2a is fitted to an intermediate portion in the longitudinal direction of the cylinder liner 1 to hold the cylinder liner 1 from the outside. And an air reservoir 3 mounted in an opening 2b provided on the side of the housing 2, and a cylinder mounted on the upper end of the cylinder liner 1 to form a combustion chamber 10 and an exhaust valve rod 5 mounted in the center. And a lid 4.
  • the cylinder liner 1 is arranged extending in the vertical direction.
  • a piston 6 is inserted so as to be able to reciprocate in the vertical direction.
  • the piston rod 7 protruding downward from the piston 6 is slidably held via a stuffing box 8 on a flange portion 2c formed at the lower portion of the housing 2.
  • a plurality of scavenging ports 1 a penetrating in the radial direction are formed at the lower end portion of the cylinder liner 1 so as to face the hollow portion 2 d of the housing 2.
  • the scavenging port 1 a allows the hollow portion 2 d of the housing 2 and the inside of the cylinder liner 1 to communicate with each other when the piston 6 is at the bottom dead center. It is a through hole for taking in A.
  • a pilot injection valve 12 for injecting liquid fuel toward the combustion chamber 10 formed below the cylinder lid 4 is mounted obliquely.
  • the pilot injection valve 12 is supplied with heavy oil (liquid fuel) sucked from the liquid fuel tank 22 by the fuel injection pump 21 through the fuel high-pressure pipe 23.
  • the piston of the fuel injection pump 21 is driven by the fuel cam 41 rotating together with the cam shaft 39.
  • the exhaust valve rod 5 is formed with an exhaust passage 5a having a lower end communicating with the combustion chamber 10 and an upper end connected to the engine exhaust path, and a circumferential upper edge portion is in contact with the lower end of the exhaust valve rod 5 and An exhaust valve 13 that can close the lower end portion is incorporated.
  • the exhaust valve rod 14 protruding upward is connected to the central portion of the exhaust valve 13.
  • the exhaust valve rod 14 penetrates the exhaust valve rod 5 slidably.
  • the exhaust valve rod 14 is moved up and down by the exhaust valve drive unit 15, and the exhaust valve 13 closes or opens the lower end of the exhaust passage 5a.
  • a plurality of gas injection valves 11 are attached to the middle portion of the cylinder liner 1 in the longitudinal direction so that the injection ports thereof face the center of the cylinder liner 1 and are located above the scavenging port 1a.
  • the gas fuel vaporized in the evaporator 32 is supplied to each gas injection valve 11 via the pressure adjustment valve 33 and the gas controller 34.
  • the gas controller 34 plays a role of performing on / off control of the supply of gas fuel to the gas injection valve 11.
  • the LNG pump 31 is driven by the electric motor 35.
  • the two-stroke dual fuel engine 100 shown in FIG. 5 includes a scavenging pressure sensor 36, a crank angle detection sensor 37, and a controller 38.
  • the scavenging pressure sensor 36 is attached to the air reservoir 3 and detects the air pressure in the air reservoir 3.
  • the crank angle detection sensor 37 is provided to face a crank angle detection gear 40 attached to one end of a cam shaft 39 that drives the fuel injection pump 21.
  • the crank angle detection sensor 37 detects the crank angle from the rotational position of the crank angle detection gear 40 and outputs a crank angle detection signal.
  • the controller 38 determines when to inject the gas fuel from the gas injection valve 11, and transmits a command signal to the gas controller 34. It is comprised so that injection start and injection stop can be controlled.
  • the controller 38 estimates the weight of the air A flowing into the cylinder liner 1 in accordance with the fluctuation of the air pressure in the air reservoir 3 detected by the scavenging pressure sensor 36, operates the gas controller 34, and performs gas injection.
  • the supply amount of the gas fuel supplied from the valve 11 into the cylinder liner 1 can be adjusted.
  • the controller 38 determines when to inject the gas fuel from the gas injection valve 11 based on the crank angle detection signal transmitted from the crank angle detection sensor 37. At the same time, a command signal is transmitted to the gas controller 34 to start the injection of gas fuel by the gas injection valve 11, and the air A and the gas fuel are mixed inside the cylinder liner 1. Further, the exhaust valve driving unit 15 raises the exhaust valve 13 to close the exhaust passage 5a. Since the gas fuel is compressed as the piston 6 moves up, it is not necessary to increase the injection pressure of the gas fuel into the cylinder liner 1.
  • the controller 38 is time to inject the gas fuel from the gas injection valve 11 based on the crank angle detection signal transmitted from the crank angle detection sensor 37. And a command signal is transmitted to the gas controller 34, and the gas fuel injection by the gas injection valve 11 is stopped.
  • the air A supplied from the supercharger (not shown) to the air reservoir 3 passes through the hollow portion 2d of the housing 2 and the scavenging port 1a of the cylinder liner 1 and this cylinder liner 1.
  • the exhaust valve drive unit 15 lowers the exhaust valve 13 to open the exhaust passage 5a. Thereafter, the premixed combustion as described above is repeated.
  • Patent Document 1 As prior art document information related to a two-stroke dual fuel engine among two-stroke engines, there is the following Patent Document 1.
  • the air-fuel ratio of the air-fuel mixture is a weight ratio between the air A and the gas fuel in the cylinder liner 1 and generally indicates the weight of the air A divided by the weight of the gas fuel.
  • the ratio is the ratio (excess air ratio) between the actual fuel / air mixture ratio (air / fuel ratio) supplied to the engine and the stoichiometric air / fuel ratio (air / fuel ratio at the time of complete combustion).
  • the air / fuel ratio is divided by the stoichiometric air / fuel ratio.
  • the appropriate air-fuel ratio range is about 1 to 2 times the stoichiometric air-fuel ratio during complete combustion.
  • the weight of the air A flowing into the cylinder liner 1 through the air reservoir 3 is based on the intake air temperature of a supercharger (not shown) arranged upstream of the air reservoir 3 in the air circulation direction, the supercharger It changes under the influence of the outlet air temperature of the air cooler that cools the air discharged from the air. For this reason, there is a possibility that the weight of the air A cannot be correctly estimated by the method of estimating the weight of the air A flowing into the cylinder liner 1 from the fluctuation of the air pressure in the air reservoir 3 as described above. Therefore, there is a difference between the target air-fuel ratio and the actual air-fuel ratio, which may make it difficult to maintain efficient and stable combustion (engine operation).
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a two-stroke engine that can obtain an appropriate air-fuel ratio during gas mode operation.
  • the two-stroke engine can execute at least a gas mode operation using a combustible gas as a main fuel, a plurality of cylinders, an exhaust valve provided in each of the plurality of cylinders, and an air-fuel ratio controller. And comprising.
  • the air-fuel ratio controller controls the average air-fuel ratio by calculating the average air-fuel ratio in the plurality of cylinders and adjusting the amount of air supplied to the plurality of cylinders during the gas mode operation. And a function of calculating the air-fuel ratio in each cylinder and controlling the air-fuel ratio by adjusting the closing timing of the exhaust valve.
  • the air-fuel ratio (the average air-fuel ratio) is a ratio obtained by dividing the air-fuel ratio of the air-fuel mixture in the cylinder (general air-fuel ratio) by the stoichiometric air-fuel ratio.
  • the two-stroke engine of the present invention includes an exhaust branch pipe connected to each of the plurality of cylinders, an exhaust main pipe collecting exhaust discharged from the plurality of cylinders via the exhaust branch pipe, and the exhaust valve.
  • An exhaust valve drive unit that opens and closes, an air relief pipe that communicates with an air supply pipe that supplies air to the plurality of cylinders at an upstream end in an air flow direction, an air relief valve that is incorporated in the air relief pipe,
  • An exhaust main pipe air-fuel ratio sensor that measures the air-fuel ratio in the exhaust main pipe
  • an exhaust branch pipe air-fuel ratio sensor that measures the air-fuel ratio in each of the exhaust branch pipes
  • a crank angle detection sensor that detects a crank angle May be.
  • the air-fuel ratio controller calculates the average air-fuel ratio from the measured value of the exhaust main pipe air-fuel ratio sensor during gas mode operation, and adjusts the opening degree of the air relief valve to adjust the average air-fuel ratio.
  • the air-fuel ratio is calculated from the control function and the measured value of the exhaust branch air-fuel ratio sensor, and the closing timing of the exhaust valve by the exhaust valve drive unit is adjusted based on the detected value of the crank angle detection sensor And controlling the air-fuel ratio.
  • the two-stroke engine of the present invention includes a turbocharger turbine that converts exhaust energy collected in the exhaust main pipe into a rotational motion, and a plurality of cylinders that are driven by the turbocharger turbine and increase the pressure of air. And a supercharger blower that supplies the turbocharger. Moreover, the air flow direction upstream end of the air supply pipe may communicate with the air outlet of the turbocharger blower.
  • downstream end of the air escape pipe in the air flow direction may communicate with the air inlet of the supercharger blower.
  • downstream end of the air escape pipe in the air flow direction may communicate with the exhaust inlet of the turbocharger turbine.
  • the average air-fuel ratio in the plurality of cylinders is calculated from the measured value of the exhaust main pipe air-fuel ratio sensor, and the average air-fuel ratio is controlled by adjusting the opening degree of the air relief valve.
  • the overall air-fuel ratio can be maintained at an appropriate value.
  • the air-fuel ratio in each cylinder is calculated from the measured value of the exhaust branch air-fuel ratio sensor, and the air-fuel ratio is controlled by adjusting the timing of closing the exhaust valve by the exhaust valve drive unit. It is possible to keep the air-fuel ratio at an appropriate value.
  • FIG. 1 is a schematic view of a two-stroke dual fuel engine in a first embodiment of the present invention. It is a graph which shows the relationship between the opening / closing timing of the scavenging port and the opening / closing timing of the exhaust valve with respect to the crank angle. It is a graph which shows the air fuel ratio at the time of diesel mode driving
  • FIG. 1 is a schematic view of a two-stroke dual fuel engine according to a first embodiment of the present invention.
  • the cylinder liner 1 the housing 2, the air reservoir 3, the cylinder lid 4, the exhaust valve rod 5, the piston 6, the piston rod 7, the stuffing box 8, and the gas injection
  • the engine body constituted by the valve 11, the pilot injection valve 12, the exhaust valve 13, the exhaust valve rod 14, and the exhaust valve drive unit 15 is equivalent to the two-stroke dual fuel engine 100 shown in FIG.
  • the same components as those of the two-stroke dual fuel engine 100 shown in FIG. 5 are denoted by the same reference numerals, and the description thereof may be omitted.
  • the structure of the means for supplying gas fuel to the gas injection valve 11 is the same as that of a conventional two-stroke dual fuel engine. After the LNG is sucked from the LNG tank 16 by the LNG pump 31 in FIG. 5, the gas fuel evaporated in the evaporator 32 is supplied to the gas injection valve 11 through the pressure adjustment valve 33 and the gas controller 34. .
  • the configuration of the means for supplying the liquid fuel to the pilot injection valve 12 is the same as that of the conventional two-stroke dual fuel engine. Liquid fuel (heavy oil) sucked from the liquid fuel tank 22 by the fuel injection pump 21 in FIG. 5 is supplied to the pilot injection valve 12 via a fuel high-pressure pipe 23.
  • the two-stroke dual fuel engine 101 shown in FIG. The plurality of cylinder liners 1 are each provided with an exhaust valve rod 5. Further, the two-stroke dual fuel engine 101 boosts the air A with the exhaust main pipe 51 that collects the exhaust G that is sent out from the combustion chamber 10 through the exhaust passage 5a and the energy of the exhaust G collected in the exhaust main pipe 51. It has a supercharger 52 and an air cooler 53 that cools the air A boosted by the supercharger 52.
  • the exhaust main pipe 51 is an exhaust pipe shared by a plurality of exhaust valve rods 5.
  • the exhaust passage 5a of each exhaust valve rod 5 is connected to the upstream ends of the plurality of exhaust branch pipes 54 in the exhaust circulation direction.
  • the exhaust main pipe 51 is connected to the downstream end of each exhaust branch pipe 54 in the exhaust circulation direction.
  • the supercharger 52 includes a turbine 55 (supercharger turbine) that converts the energy of the exhaust G collected in the exhaust main pipe 51 into a rotational motion, and a blower 56 (supercharger) that is driven by the turbine 55 and boosts the air A. Machine blower).
  • a turbine 55 supercharger turbine
  • a blower 56 supercharger
  • the downstream end of the turbine inlet pipe 57 in the exhaust flow direction is connected to the exhaust inlet of the turbine 55, and the upstream end of the turbine inlet pipe 57 in the exhaust flow direction is connected to the exhaust main pipe 51. Further, the exhaust outlet of the turbine 55 is connected to the upstream end of the turbine outlet pipe 58 in the exhaust circulation direction, and the downstream end of the turbine outlet pipe 58 in the exhaust circulation direction is opened to the atmosphere via a silencer (not shown). ing.
  • An air inlet of the blower inlet pipe 59 is connected to the downstream end of the blower inlet pipe 59 in the air flow direction.
  • the upstream end of the blower inlet pipe 59 in the air passage direction is opened to the atmosphere via an air filter (not shown). ing.
  • the air outlet of the blower 56 is connected to the upstream end of the blower outlet pipe 60 (air supply pipe) in the air flow direction.
  • the supercharger 52 has a performance capable of securing a necessary amount of air during operation using only liquid fuel (diesel mode operation) similar to a diesel engine.
  • the air cooler 53 is built in the air reservoir 3 so that the air outlet faces the housing 2 side.
  • the air inlet of the air cooler 53 and the downstream end of the blower outlet pipe 60 in the air flow direction are connected via a cooler inlet pipe 61.
  • a characteristic part of the two-stroke dual fuel engine 101 shown in FIG. 1 is that a part of the air A sent out from the air outlet of the blower 56 of the supercharger 52 is returned to the air inlet of the blower 56 during the gas mode operation.
  • the exhaust valve 13 is closed so that the air-fuel ratio can be obtained by delaying the closing timing of the exhaust valve 13 as compared with the diesel mode operation.
  • the two-stroke dual fuel engine 101 has an air release pipe whose upstream end in the air circulation direction communicates with the air outlet of the blower 56 of the supercharger 52 and whose downstream end in the air circulation direction communicates with the air inlet of the blower 56 of the supercharger 52.
  • an air release valve 63 incorporated in the air release pipe 62
  • a motor 64 that drives the valve body of the air release valve 63 to adjust the opening degree
  • an exhaust that measures the air-fuel ratio in the exhaust main pipe 51.
  • a main pipe air-fuel ratio sensor 65 and an exhaust branch pipe air-fuel ratio sensor 66 for measuring the air-fuel ratio in each exhaust branch pipe 54 are provided.
  • the two-stroke dual-fuel engine 101 detects a crank angle from a crank angle detection gear 67 fitted and attached to the crankshaft, and a rotational position of the crank angle detection gear 67, and outputs a crank angle detection signal.
  • a crank angle detection sensor 68, a command device 69 for selecting a diesel mode operation or a gas mode operation, and an air-fuel ratio controller 70 are provided.
  • the command unit 69 is configured to alternatively output either a diesel mode operation signal or a gas mode operation signal to the air-fuel ratio controller 70.
  • the air-fuel ratio controller 70 operates a motor 64 that drives the valve body of the air release valve 63 to close the air release valve 63 when receiving a diesel mode operation signal from the commander 69, and a crank angle detection sensor. Based on the detected value of 68, it has a function of transmitting a signal for opening and closing the exhaust valve 13 to the exhaust valve drive unit 15 in a steady state.
  • the steady state here refers to a state in which the range of 80 ° to 300 ° crank angle from the top dead center of the piston 6 is the open section of the exhaust valve 13.
  • represents the rotation direction of the crankshaft.
  • the air-fuel ratio controller 70 receives a gas mode operation signal from the commander 69, and from the measured value of the exhaust main pipe air-fuel ratio sensor 65 (the air-fuel ratio in the exhaust main pipe 51), a calculation formula obtained in advance by experiments. Is used to calculate the average air-fuel ratio in the plurality of cylinder liners 1 corresponding to the measured value, and the motor 64 that drives the valve body of the air relief valve 63 is operated to adjust the opening degree of the air relief valve 63. It has a function of controlling the average air-fuel ratio. Further, the air-fuel ratio controller 70 uses the calculation value obtained from an experiment in advance from the measured value of the exhaust branch air-fuel ratio sensor 66 (the air-fuel ratio in the exhaust branch pipe 54).
  • the exhaust main pipe air-fuel ratio sensor 65 and the exhaust branch pipe air-fuel ratio sensor 66 may be sensors that directly measure the air-fuel ratio, but the sensor that acquires information for the air-fuel ratio controller 70 to calculate the air-fuel ratio. That is, it may be a sensor that measures the exhaust gas concentration (for example, O 2 concentration) in the exhaust gas.
  • the air-fuel ratio controller 70 when the air-fuel ratio controller 70 receives a gas mode operation signal from the commander 69, the air-fuel ratio controller 70 converts the measured value of the exhaust main pipe air-fuel ratio sensor 65 into a measured value using a calculation formula obtained in advance through experiments. The average air-fuel ratio in the cylinder liners 1 corresponding to each other is calculated, and the motor 64 that drives the valve body of the air release valve 63 is operated so that the average air-fuel ratio approaches 1.5. It has a function to adjust the opening. Further, the air-fuel ratio controller 70 calculates the air-fuel ratio in each cylinder liner 1 corresponding to the measured value from the measured value of the exhaust branch air-fuel ratio sensor 66 using a calculation formula obtained in advance by experiment.
  • the air-fuel ratio (the average air-fuel ratio) is a ratio (excess air ratio) obtained by dividing the air-fuel ratio (general air-fuel ratio) of the air-fuel mixture in the cylinder liner 1 by the stoichiometric air-fuel ratio. That is, in order to appropriately control the air-fuel ratio (general air-fuel ratio) in the cylinder liner 1, the excess air ratio is used as a control index.
  • the open section of the scavenging port 1a is in the range of 100 ° to 260 ° in crank angle from the top dead center of the piston 6 in either the diesel mode operation or the gas mode operation.
  • the open section of the exhaust valve 13 is in the range of 80 ° to 300 ° crank angle from the top dead center of the piston 6 during diesel mode operation. Further, during the gas mode operation, the exhaust valve drive unit 15 sets the closing time of the exhaust valve 13 to a maximum crank angle of 320 °, and the open section of the exhaust valve 13 is expanded as compared with the diesel mode operation.
  • FIG. 3 is a graph showing an air amount with respect to an air-fuel ratio load during diesel mode operation and an air amount with respect to an air-fuel ratio load during gas mode operation.
  • the air-fuel ratio during the gas mode operation is set to a range of 1.0 to 2.5, which is lower than the air-fuel ratio during the diesel mode operation.
  • the air-fuel ratio controller 70 operates the motor 64 that drives the valve body of the air release valve 63 to close the air release valve 63.
  • the entire amount of air A sent from the blower 56 of the supercharger 52 flows from the air reservoir 3 through the housing 2 into the cylinder liner 1.
  • the air-fuel ratio in the diesel mode operation is in the range of 1.0 to 1.0, which is the range of the air-fuel ratio in the gas mode operation. Higher than 2.5.
  • the air-fuel ratio controller 70 transmits a signal to the exhaust valve drive unit 15 based on the detection value of the crank angle detection sensor 68, and as shown in FIG.
  • the exhaust valve 13 is controlled to open within a range of less than or equal to °.
  • the air-fuel ratio controller 70 calculates a calculation formula obtained in advance by experiments from the measured value of the exhaust main pipe air-fuel ratio sensor 65 (the air-fuel ratio in the exhaust main pipe 51). Is used to calculate the average air-fuel ratio in the plurality of cylinder liners 1 that matches the measured value, and the motor 64 that drives the valve body of the air relief valve 63 is operated so that the average air-fuel ratio approaches 1.5. Thus, the opening degree of the air relief valve 63 is increased.
  • air escape control is performed to shift from the diesel mode operation to the gas mode operation with the average air-fuel ratio of 1.5 as a target value. That is, the amount of air A flowing into each cylinder liner 1 can be reduced, and the air-fuel ratio of the entire engine can be lowered.
  • one of the plurality of cylinder liners 1 is the upper limit value of the air-fuel ratio during the gas mode operation. May exceed 5.
  • the air-fuel ratio controller 70 uses the calculation value obtained from an experiment in advance from the measured value of the exhaust branch pipe air-fuel ratio sensor 66 (the air-fuel ratio in the exhaust branch pipe 54). And a signal for delaying the closing timing of the exhaust valve 13 based on the detected value of the crank angle detection sensor 68 so that the air-fuel ratio is in the range of 1.0 to 2.5. It transmits to the drive part 15, and discharges a part of air A out of the cylinder liner 1 via the exhaust passage 5a.
  • exhaust valve closing time delay control is performed in which the calculated air-fuel ratio in each cylinder liner 1 is set to 1.0 to 2.5.
  • the air-fuel ratio can be maintained at an appropriate value.
  • the air-fuel ratio in each cylinder liner 1 can be optimized only by the exhaust branch air-fuel ratio sensor 66.
  • FIG. 4 is a schematic view of a two-stroke dual fuel engine according to the second embodiment of the present invention.
  • the engine body constituted by the valve 11, the pilot injection valve 12, the exhaust valve 13, the exhaust valve rod 14, and the exhaust valve drive unit 15 is equivalent to the two-stroke dual fuel engine 100 shown in FIG. 4, the same components as those of the two-stroke dual fuel engine 100 shown in FIG. 5 or the two-stroke dual fuel engine 101 shown in FIG. 1 are denoted by the same reference numerals, and the description thereof may be omitted.
  • the configuration of the means for supplying gas fuel to the gas injection valve 11 is the same as that of the conventional two-stroke dual fuel engine. After the LNG is sucked from the LNG tank 16 by the LNG pump 31 in FIG. 5, the gas fuel evaporated in the evaporator 32 is supplied to the gas injection valve 11 through the pressure adjustment valve 33 and the gas controller 34. .
  • the configuration of the means for supplying the liquid fuel to the pilot injection valve 12 is the same as that of the conventional two-stroke dual fuel engine. Liquid fuel (heavy oil) sucked from the liquid fuel tank 22 by the fuel injection pump 21 in FIG. 5 is supplied to the pilot injection valve 12 via a fuel high-pressure pipe 23.
  • the exhaust main pipe 51, the exhaust branch pipe 54, the turbine 55 of the supercharger 52, the blower 56 of the supercharger 52, and the air cooler 53 attached to the engine body are equivalent to the two-stroke dual fuel engine 101 shown in FIG. It is.
  • a characteristic part of the two-stroke dual fuel engine 102 shown in FIG. 4 is that a part of the air A sent from the air outlet of the blower 56 of the supercharger 52 is transferred to the turbine 55 of the same supercharger 52 during the gas mode operation.
  • the time when the exhaust valve 13 is closed is delayed as compared with that in the diesel mode operation, so that an appropriate air-fuel ratio can be obtained.
  • the upstream end in the air circulation direction communicates with the air outlet of the blower 56 of the supercharger 52, and the downstream end in the air circulation direction serves as an exhaust inlet (working gas inlet) of the turbine 55 of the supercharger 52.
  • An air release pipe 71 that communicates, an air release valve 72 incorporated in the air release pipe 71, a motor 73 that drives the valve body of the air release valve 72 to adjust the opening degree, and an empty air in the exhaust main pipe 51.
  • An exhaust main pipe air-fuel ratio sensor 65 that measures the fuel ratio
  • an exhaust branch pipe air-fuel ratio sensor 66 that measures the air-fuel ratio in each exhaust branch pipe 54 are provided.
  • the two-stroke dual fuel engine 102 detects the crank angle from the crank angle detection gear 67 fitted to the crankshaft, and the rotational position of the crank angle detection gear 67, and outputs a crank angle detection signal.
  • a crank angle detection sensor 68, a command device 69 for selecting diesel mode operation or gas mode operation, and an air-fuel ratio controller 74 are provided.
  • the command unit 69 is configured to alternatively output either a diesel mode operation signal or a gas mode operation signal to the air-fuel ratio controller 74.
  • the air-fuel ratio controller 74 operates a motor 73 that drives the valve body of the air release valve 72 to close the air release valve 72 and a crank angle detection sensor when a diesel mode operation signal is received from the command unit 69. Based on the detected value of 68, it has a function of transmitting a signal for opening and closing the exhaust valve 13 to the exhaust valve drive unit 15 in a steady state.
  • the steady state here refers to a state in which the range of 80 ° to 300 ° crank angle from the top dead center of the piston 6 is the open section of the exhaust valve 13.
  • represents the rotation direction of the crankshaft.
  • the air-fuel ratio controller 74 receives a gas mode operation signal from the commander 69, and from the measured value (the air-fuel ratio in the exhaust main pipe 51) of the exhaust main pipe air-fuel ratio sensor 65, a calculation formula obtained in advance by experiments. Is used to calculate the average air-fuel ratio in the plurality of cylinder liners 1 corresponding to the measured value, and the motor 73 that drives the valve body of the air relief valve 72 is operated to adjust the opening degree of the air relief valve 72. It has a function of controlling the average air-fuel ratio. Further, the air-fuel ratio controller 74 uses the calculation value obtained from an experiment in advance based on the measured value of the exhaust branch pipe air-fuel ratio sensor 66 (the air-fuel ratio in the exhaust branch pipe 54). And a function of controlling the air-fuel ratio by transmitting a signal for adjusting the closing timing of the exhaust valve 13 to the exhaust valve drive unit 15 based on the detected value of the crank angle detection sensor 68. Have.
  • the air-fuel ratio controller 74 when the air-fuel ratio controller 74 receives a gas mode operation signal from the commander 69, the air-fuel ratio controller 74 converts the measured value of the exhaust main pipe air-fuel ratio sensor 65 into a measured value using a calculation formula obtained in advance through experiments. The average air-fuel ratio in the cylinder liners 1 corresponding to each other is calculated, and the motor 73 that drives the valve body of the air release valve 72 is operated so that the average air-fuel ratio approaches 1.5. It has a function to adjust the opening. Further, the air-fuel ratio controller 74 calculates the air-fuel ratio in each cylinder liner 1 corresponding to the measured value from the measured value of the exhaust branch air-fuel ratio sensor 66 using a calculation formula obtained in advance by experiment.
  • the air-fuel ratio (the average air-fuel ratio) is a ratio obtained by dividing the air-fuel ratio of the air-fuel mixture in the cylinder liner 1 (general air-fuel ratio) by the stoichiometric air-fuel ratio.
  • the open section of the scavenging port 1a is in the range of 100 ° to 260 ° in crank angle from the top dead center of the piston 6 during both diesel mode operation and gas mode operation.
  • the open section of the exhaust valve 13 is in the range of 80 ° to 300 ° crank angle from the top dead center of the piston 6 during diesel mode operation. Further, during the gas mode operation, the exhaust valve drive unit 15 sets the closing time of the exhaust valve 13 to a maximum crank angle of 320 °, and the open section of the exhaust valve 13 is expanded as compared with the diesel mode operation.
  • FIG. 3 is a graph showing an air amount with respect to an air-fuel ratio load during diesel mode operation and an air amount with respect to an air-fuel ratio load during gas mode operation.
  • the air-fuel ratio during the gas mode operation is set to a range of 1.0 to 2.5, which is lower than the air-fuel ratio during the diesel mode operation.
  • the air-fuel ratio controller 74 operates the motor 73 that drives the valve body of the air release valve 72 to close the air release valve 72.
  • the entire amount of air A sent from the blower 56 of the supercharger 52 flows from the air reservoir 3 through the housing 2 into the cylinder liner 1.
  • the air-fuel ratio during the diesel mode operation is in the range of 1.0 to Higher than 2.5.
  • the air-fuel ratio controller 74 transmits a signal to the exhaust valve drive unit 15 based on the detection value of the crank angle detection sensor 68, and as shown in FIG.
  • the exhaust valve 13 is controlled to open within a range of less than or equal to °.
  • the air-fuel ratio controller 74 calculates a calculation formula obtained in advance from an experiment from the measured value (the air-fuel ratio in the exhaust main pipe 51) of the exhaust main pipe air-fuel ratio sensor 65. Is used to calculate the average air-fuel ratio in the plurality of cylinder liners 1 that matches the measured value, and the motor 73 that drives the valve body of the air relief valve 72 is operated so that the average air-fuel ratio approaches 1.5. Thus, the opening degree of the air relief valve 72 is increased.
  • air escape control is performed to shift from the diesel mode operation to the gas mode operation with the average air-fuel ratio of 1.5 as a target value. That is, the amount of air A flowing into each cylinder liner 1 can be reduced, and the air-fuel ratio of the entire engine can be lowered.
  • one of the plurality of cylinder liners 1 is the upper limit value of the air-fuel ratio during the gas mode operation. May exceed 5.
  • the air-fuel ratio controller 74 uses the calculation value obtained from an experiment in advance from the measured value of the exhaust branch pipe air-fuel ratio sensor 66 (the air-fuel ratio in the exhaust branch pipe 54). And a signal for delaying the closing timing of the exhaust valve 13 based on the detected value of the crank angle detection sensor 68 so that the air-fuel ratio is in the range of 1.0 to 2.5. It transmits to the drive part 15, and discharges a part of air A out of the cylinder liner 1 via the exhaust passage 5a.
  • exhaust valve closing time delay control is performed in which the calculated air-fuel ratio in each cylinder liner 1 is set to 1.0 to 2.5.
  • the air-fuel ratio can be maintained at an appropriate value.
  • the air-fuel ratio in each cylinder liner 1 can be optimized only by the exhaust branch air-fuel ratio sensor 66.
  • the two-stroke dual fuel engine of the present invention is not limited to the above-described embodiment, and can be modified without departing from the gist of the present invention.
  • the above-described embodiment describes a two-stroke dual fuel engine that can selectively execute a gas mode operation using a combustible gas as a main fuel and a diesel mode operation using only a liquid fuel as a fuel.
  • the present invention can be applied to any two-stroke engine that can execute at least a gas mode operation using a combustible gas as a main fuel.
  • the supercharger is provided in the two-stroke engine.
  • the supercharger may not be provided.
  • the air ratio controller controls the opening of the air relief valve by controlling the drive of the motor, but other configurations can be used if the air ratio controller can adjust the amount of air supplied to the engine cylinder. It may be used.
  • LNG is used as the combustible gas (gas fuel).
  • gas fuel gas fuel
  • the present invention is not limited to this. Hydrogen gas, hydrocarbon-based gas (methane, ethane, ethylene, propane, butane, etc.) Further, flammable gas such as alcohol gas fuel can be used.
  • the air-fuel ratio controller adjusts the opening degree of the air relief valve so that the calculated average air-fuel ratio approaches 1.5, and the calculated air-fuel ratio is 1.0-2.
  • the exhaust valve closing timing by the exhaust valve driving unit is adjusted so as to be in the range of 5.
  • the control target of the average air-fuel ratio and the air-fuel ratio may be appropriately changed according to the combustible gas used.
  • the air-fuel ratio controller expands the opening of the air relief valve so that the calculated average air-fuel ratio approaches a specific value, but depending on the combustible gas used.
  • the air-fuel ratio controller delays the closing timing of the exhaust valve by the exhaust valve drive unit so that the calculated air-fuel ratio falls within a specific numerical range, but depending on the combustible gas used, the exhaust valve You may control so that a closing time may be advanced.
  • the downstream end of the air escape pipe in the air flow direction is connected to the air inlet of the supercharger blower or the exhaust inlet of the supercharger turbine.
  • the downstream end of the air escape pipe in the air circulation direction is connected to the turbocharger blower or the turbocharger turbine.
  • the downstream end of the air escape pipe in the air circulation direction may be open to the atmosphere. . It is also possible to reduce the amount of air supplied to the cylinder and adjust the air-fuel ratio in the cylinder by releasing part of the air discharged from the supercharger to the outside of the engine through the air escape pipe. is there.
  • the crank angle detection sensor that outputs the crank angle detection signal detects the crank angle from the rotational position of the crank angle detection gear fitted to the crankshaft.
  • the crank angle may be detected from the rotational position of the crankshaft or the piston position.
  • liquid fuel injected by the pilot injection valve
  • other flammable liquids may be used.
  • the two-stroke engine of the present invention can be applied to a two-stroke engine that can execute at least a gas mode operation using a combustible gas as a main fuel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 この2ストロークエンジン(101,102)は、可燃性ガスを主燃料に用いるガスモード運転を少なくとも実行可能であり、複数のシリンダ(1)と、前記複数のシリンダ(1)にそれぞれ設けられる排気弁(13)と、空燃比制御器(70,74)と、を備える。また、この空燃比制御器(70,74)は、ガスモード運転時に、前記複数のシリンダ(1)内の平均空燃比を算出するとともに、前記複数のシリンダ(1)に供給される空気量を調節することにより前記平均空燃比を制御する機能と、各前記シリンダ(1)内の空燃比をそれぞれ算出するとともに、前記排気弁(13)の閉止時機を調節することにより前記空燃比を制御する機能とを有している。

Description

2ストロークエンジン
 本発明は、2ストロークエンジンに関する。
 本願は、2010年10月28日に日本に出願された特願2010-241856号に基づき優先権を主張し、その内容をここに援用する。
 内燃機関の一つとして、シリンダ内でピストンが1往復するごとに、吸気、圧縮、燃焼、および排気の1サイクルが完了するレシプロエンジンである、2ストロークエンジン(2サイクルエンジン)がある。この2ストロークエンジンには、可燃性ガス(ガス燃料)を主燃料に用いるガスモード運転と、重油(液体燃料)のみを燃料に用いるディーゼルモード運転とを選択できる2ストロークデュアルフューエル機関がある。なお、以下の説明では、可燃性ガスとして液化天然ガス(LNG)が用いられる場合を説明する。
 図5は、従来の2ストロークデュアルフューエル機関の一例を示す概略図である。この2ストロークデュアルフューエル機関100は、筒状のシリンダライナ1(シリンダ)と、上部壁2aがシリンダライナ1の長手方向中間部分に外側から嵌合してシリンダライナ1を保持する中空構造のハウジング2と、このハウジング2の側方に設けた開口部2bに装着された空気溜3と、シリンダライナ1の上端に装着されて燃焼室10を形成し且つ中央に排気弁筺5が装着されたシリンダ蓋4とを備えている。なお、図5において、シリンダライナ1は上下方向に延びて配置されている。
 シリンダライナ1内にはピストン6が上下方向に往復動可能に挿入されている。このピストン6から下方へ向けて突出するピストン棒7は、ハウジング2の下部に形成した鍔部2cにスタッフィングボックス8を介して摺動可能に保持されている。
 また、シリンダライナ1の下端部には、径方向に貫通する複数の掃気ポート1aが、ハウジング2の中空部2dに面するように形成されている。この掃気ポート1aは、図5に示すように、ピストン6が下死点にあるときに、ハウジング2の中空部2dとシリンダライナ1内部とを連通させ、空気溜3からシリンダライナ1内部へ空気Aを取り入れるための貫通孔である。
 シリンダ蓋4には、その下方に形成された燃焼室10へ向けて液体燃料を噴射するためのパイロット噴射弁12が斜めに装着されている。このパイロット噴射弁12には、燃料噴射ポンプ21が液体燃料タンク22から吸引した重油(液体燃料)が、燃料高圧管23を介して供給される。燃料噴射ポンプ21のピストンは、燃料カム41がカム軸39とともに回転することによって駆動される。
 排気弁筺5には、下端が燃焼室10に連通し且つ上端が機関排気経路に接続される排気通路5aが形成され、周上縁部分が排気弁筺5の下端に接して排気通路5aの下端部分を閉塞し得る排気弁13が組み込まれている。
 排気弁13の中心部分には、上方へ向けて突出する排気弁棒14が接続されている。この排気弁棒14は排気弁筺5を摺動可能に貫通している。排気弁棒14は、排気弁駆動部15によって昇降し、排気弁13が排気通路5aの下端を閉塞、あるいは開放する。
 シリンダライナ1の長手方向中間部分には複数のガス噴射弁11が、その噴射口がシリンダライナ1の中心を向き且つ掃気ポート1aの上方に位置するように装着されている。各ガス噴射弁11には、LNGポンプ31によってLNGタンク16からLNGが吸引された後、蒸発器32において気化したガス燃料が、圧力調整弁33、及びガス制御器34を経て供給される。このガス制御器34は、ガス噴射弁11に対するガス燃料の供給をオン、オフ制御する役割を担っている。また、LNGポンプ31は、電動機35によって駆動される。
 更に、図5に示す2ストロークデュアルフューエル機関100は、掃気圧力センサ36と、クランク角検出センサ37と、制御器38とを備えている。掃気圧力センサ36は、空気溜3に装着され、この空気溜3内の空気圧を検出する。クランク角検出センサ37は、燃料噴射ポンプ21を駆動するカム軸39の一端に装着されたクランク角検出歯車40と対向して設けられている。クランク角検出センサ37は、クランク角検出歯車40の回転位置からクランク角を検出して、クランク角検出信号を出力する。
 制御器38は、クランク角検出センサ37が発信するクランク角検出信号に基づき、ガス噴射弁11よりガス燃料を噴射する時期を判断するとともに、ガス制御器34に指令信号を送信し、ガス燃料の噴射開始と噴射停止とを制御し得るように構成されている。
 更に、制御器38は、掃気圧力センサ36が検出した空気溜3内の空気圧の変動に応じてシリンダライナ1へ流入する空気Aの重量を推定するとともに、ガス制御器34を作動させ、ガス噴射弁11からシリンダライナ1内へ供給されるガス燃料の供給量を調整し得るように構成されている。
 次に、図5に示す2ストロークデュアルフューエル機関100のガスモード運転時の動作を説明する。ピストン6が下死点に位置している状態では、過給機(図示せず)から空気溜3に供給された空気Aが、ハウジング2の中空部2d、シリンダライナ1の掃気ポート1aを経てこのシリンダライナ1の内部に取り入れられる。このとき、排気弁駆動部15は、排気弁13を下降させて排気通路5aを開放しており、シリンダライナ1へ流入する空気Aが、燃焼室10内に残留している燃焼ガスを、排気として排気通路5aを介して外部へ送り出す。
 ピストン6が上昇してシリンダライナ1の掃気ポート1aを塞ぐと、制御器38は、クランク角検出センサ37が発信するクランク角検出信号に基づき、ガス噴射弁11よりガス燃料を噴射する時期を判断するとともに、ガス制御器34に指令信号を送信し、ガス噴射弁11によるガス燃料の噴射が開始され、シリンダライナ1の内部で空気Aとガス燃料とが混合される。また、排気弁駆動部15は、排気弁13を上昇させて排気通路5aを閉塞する。ガス燃料は、ピストン6の上昇に伴って圧縮されるので、シリンダライナ1内へのガス燃料の噴射圧を高くしなくてもよい。
 ピストン6がシリンダライナ1のガス噴射弁11取付個所を通過するときに、制御器38は、クランク角検出センサ37が発信するクランク角検出信号に基づき、ガス噴射弁11よりガス燃料を噴射する時期を判断するとともに、ガス制御器34に指令信号を送信し、ガス噴射弁11によるガス燃料の噴射を停止する。
 ピストン6が上死点に到達し、空気Aとガス燃料との混合気体が最も圧縮されたときに、パイロット噴射弁12から燃焼室10へ向けて液体燃料を噴射すると、この液体燃料は燃焼室10の内部で自発火する。この火炎により空気Aとガス燃料との混合気体が着火爆発し、このときの爆発圧力によりピストン6が下降して、このピストン6は下死点に到達する。
 ピストン6が下死点に到達すると、過給機(図示せず)から空気溜3に供給された空気Aが、ハウジング2の中空部2d、シリンダライナ1の掃気ポート1aを経てこのシリンダライナ1の内部に取り入れられる状態になるとともに、排気弁駆動部15が、排気弁13を下降させて排気通路5aを開放する。その後、上述したような予混合燃焼が繰り返される。
 更に、図5に示す2ストロークデュアルフューエル機関100において、ガス噴射弁11でのガス燃料の噴射を止め、パイロット噴射弁12による液体燃料の噴射のみを実行すれば、ディーゼルモード運転が行われる。
 すなわち、ピストン6が上死点に到達し、空気Aが最も圧縮されたときに、パイロット噴射弁12から液体燃料を燃焼室10へ向けて噴射すると、この液体燃料は燃焼室10の内部で自発火して着火爆発し、このときの爆発圧力によりピストン6が下降する。
 なお、2ストロークエンジンのうち、2ストロークデュアルフューエル機関に関連する先行技術文献情報としては、下記の特許文献1がある。
特開2008-202545号公報
 図5に示す2ストロークデュアルフューエル機関100では、シリンダライナ1内に供給した空気Aとガス燃料との混合気をピストン6で圧縮した後、パイロット噴射弁12から燃焼室10へ液体燃料を噴射してこの混合気を着火爆発させる予混合燃焼を採用している。そのため、シリンダライナ1へのガス燃料の噴射圧を高くしなくてもよい、という利点がある。もっとも、正常な燃焼が行われるようにするには、混合気の空燃比が適正である必要がある。なお、空燃比とは、シリンダライナ1内の空気Aとガス燃料との重量比であり、一般的には空気Aの重量をガス燃料の重量で割ったものを示すが、以下、この重量比とは、エンジンに供給された実際の燃料と空気の混合比(空燃比)と理論空燃比(完全燃焼時の空燃比)との比率(空気過剰率)であって、エンジンに吸入される混合気の空燃比を理論空燃比で割ったものを示す場合がある。
 一例として、ガス燃料としてLNGを用いる場合、適正な空燃比の範囲は、完全燃焼時の理論空燃比の1~2倍程度である。
 しかしながら、空気溜3を経てシリンダライナ1へ流入する空気Aの重量は、空気溜3よりも空気流通方向上流側に配置される過給機(図示せず)の吸込み空気温度や、過給機から吐出される空気を冷却する空気冷却器の出口空気温度の影響を受けて変化する。このため、先に述べたような空気溜3内の空気圧の変動からシリンダライナ1へ流入する空気Aの重量を推定する方法では、この空気Aの重量を正しく推定できない可能性がある。よって、目標とする空燃比と実際の空燃比とに乖離が生じてしまい、効率的で安定した燃焼(機関の運転)を維持することが困難になる可能性がある。
 本発明は上述した実情に鑑みてなされたもので、ガスモード運転時に適正な空燃比が得られる2ストロークエンジンを提供することを目的としている。
 本発明によれば、2ストロークエンジンは、可燃性ガスを主燃料に用いるガスモード運転を少なくとも実行可能であり、複数のシリンダと、前記複数のシリンダにそれぞれ設けられる排気弁と、空燃比制御器と、を備える。
 また、この空燃比制御器は、ガスモード運転時に、前記複数のシリンダ内の平均空燃比を算出するとともに、前記複数のシリンダに供給される空気量を調節することにより前記平均空燃比を制御する機能と、各前記シリンダ内の空燃比をそれぞれ算出するとともに、前記排気弁の閉止時機を調節することにより前記空燃比を制御する機能とを有している。
 この場合、前記可燃性ガスとして、LNGを気化させたガスを用い、前記空燃比制御器は、ガスモード運転時に、算出された前記平均空燃比が1.5に近付くように前記複数のシリンダに供給される空気量を調節するとともに、算出された前記空燃比が1.0~2.5の範囲になるように前記排気弁の閉止時機を調節してもよい。なお、上記空燃比(上記平均空燃比)は、シリンダ内における混合気の空燃比(一般的な空燃比)を理論空燃比で割った比率である。
 また、本発明の2ストロークエンジンは、前記複数のシリンダにそれぞれ接続される排気枝管と、前記複数のシリンダから送出される排気を前記排気枝管を介して集める排気主管と、前記排気弁を開閉する排気弁駆動部と、前記複数のシリンダに空気を供給する空気供給管に空気流通方向上流端が連通している空気逃し管と、前記空気逃し管に組み込まれた空気逃し弁と、前記排気主管内の空燃比を計測する排気主管空燃比センサと、各前記排気枝管内の空燃比をそれぞれ計測する排気枝管空燃比センサと、クランク角度を検出するクランク角検出センサと、をさらに備えてもよい。
 また、前記空燃比制御器は、ガスモード運転時に、前記排気主管空燃比センサの計測値から前記平均空燃比を算出するとともに、前記空気逃し弁の開度を調節することにより前記平均空燃比を制御する機能と、前記排気枝管空燃比センサの計測値から前記空燃比をそれぞれ算出するとともに、前記クランク角検出センサの検出値に基づいて前記排気弁駆動部による前記排気弁の閉止時機を調節することにより前記空燃比を制御する機能と、を有してもよい。
 また、本発明の2ストロークエンジンは、前記排気主管に集められた排気のエネルギーを回転運動に変換する過給機タービンと、前記過給機タービンにより駆動され且つ空気を昇圧させて前記複数のシリンダに供給する過給機ブロワと、をさらに備えてもよい。
 また、前記空気供給管の空気流通方向上流端が前記過給機ブロワの空気出口に連通していてもよい。
 また、前記空気逃し管の空気流通方向下流端が前記過給機ブロワの空気入口に連通していてもよい。
 また、前記空気逃し管の空気流通方向下流端が前記過給機タービンの排気入口に連通していてもよい。
 本発明の2ストロークエンジンによれば、下記のような優れた作用効果を得ることができる。
 (1)ガスモード運転時に、排気主管空燃比センサの計測値から複数のシリンダ内の平均空燃比を算出し、空気逃し弁の開度を調節することによりこの平均空燃比を制御して、機関全体としての空燃比を適正な値に保つことができる。
 (2)また、排気枝管空燃比センサの計測値から各シリンダ内の空燃比を算出し、排気弁駆動部による排気弁の閉止時機を調節することによりこの空燃比を制御して、各シリンダの空燃比を適正な値に保つことができる。
本発明の第1の実施形態における2ストロークデュアルフューエル機関の概略図である。 クランク角に対する掃気ポートの開閉時機と排気弁の開閉時機との関係を示すグラフである。 ディーゼルモード運転時、及びガスモード運転時の空燃比を示すグラフである。 本発明の第2の実施形態における2ストロークデュアルフューエル機関の概略図である。 従来の2ストロークデュアルフューエル機関の一例を示す概略図である。
 以下、本発明の実施の形態を図面に基づき説明する。
[第1実施形態]
 図1は本発明の第1の実施形態における2ストロークデュアルフューエル機関の概略図である。本実施形態の2ストロークデュアルフューエル機関101(2ストロークエンジン)において、シリンダライナ1、ハウジング2、空気溜3、シリンダ蓋4、排気弁筺5、ピストン6、ピストン棒7、スタッフィングボックス8、ガス噴射弁11、パイロット噴射弁12、排気弁13、排気弁棒14、及び排気弁駆動部15によって構成される機関本体は、図5に示す2ストロークデュアルフューエル機関100と同等である。図1において、図5に示す2ストロークデュアルフューエル機関100の構成要素と同一の要素については同一の符号を付し、その説明を省略する場合がある。
 ガス噴射弁11ヘガス燃料を供給する手段の構成は、従来の2ストロークデュアルフューエル機関と同様である。ガス噴射弁11には、図5におけるLNGポンプ31によってLNGタンク16からLNGが吸引された後、蒸発器32において気化したガス燃料が、圧力調整弁33、及びガス制御器34を経て供給される。
 また、パイロット噴射弁12へ液体燃料を供給する手段の構成も、従来の2ストロークデュアルフューエル機関と同様である。パイロット噴射弁12には、図5における燃料噴射ポンプ21が液体燃料タンク22から吸引した液体燃料(重油)が、燃料高圧管23を介して供給される。
 図1に示す2ストロークデュアルフューエル機関101は、シリンダライナ1を複数備えている。複数のシリンダライナ1には、排気弁筺5がそれぞれ設けられている。また、2ストロークデュアルフューエル機関101は、燃焼室10から排気通路5aを経て外部へ送り出される排気Gを集める排気主管51と、この排気主管51に集められた排気Gのエネルギーで空気Aを昇圧させる過給機52と、この過給機52が昇圧させた空気Aを冷却する空気冷却器53と有している。
 排気主管51は、複数の排気弁筺5が共用する排気管である。各排気弁筺5の排気通路5aには、複数の排気枝管54の排気流通方向上流端がそれぞれ接続されている。排気主管51には、各排気枝管54の排気流通方向下流端が接続されている。
 過給機52は、排気主管51に集められた排気Gのエネルギーを回転運動に変換するタービン55(過給機タービン)と、このタービン55により駆動され且つ空気Aを昇圧させるブロワ56(過給機ブロワ)とを備えている。
 タービン55の排気入口には、タービン入口管57の排気流通方向下流端が接続され、このタービン入口管57の排気流通方向上流端は、排気主管51に接続されている。また、タービン55の排気出口には、タービン出口管58の排気流通方向上流端が接続され、このタービン出口管58の排気流通方向下流端は、消音器(図示せず)を介して大気開放されている。
 ブロワ56の空気入口には、ブロワ入ロ管59の空気流通方向下流端が接続され、このブロワ入ロ管59の空気流通方向上流端は、エアフィルタ(図示せず)を介して大気開放されている。また、ブロワ56の空気出口には、ブロワ出口管60(空気供給管)の空気流通方向上流端が接続されている。
 この過給機52は、ディーゼル機関と同様な液体燃料のみによる運転(ディーゼルモード運転)時に必要な空気量を確保できる性能を有している。
 空気冷却器53は、空気出口がハウジング2側を向くように空気溜3に内装されている。空気冷却器53の空気入口とブロワ出口管60の空気流通方向下流端とは、冷却器入口管61を介して接続されている。
 図1に示す2ストロークデュアルフューエル機関101の特徴部分は、ガスモード運転時に、過給機52のブロワ56の空気出口から送出される空気Aの一部を、このブロワ56の空気入口へ戻すとともに、排気弁13の閉止時機をディーゼルモード運転時に比べて遅らせ、適正な空燃比が得られるように構成した点にある。
 2ストロークデュアルフューエル機関101は、空気流通方向上流端が過給機52のブロワ56の空気出口に連通し且つ空気流通方向下流端が過給機52のブロワ56の空気入口に連通する空気逃し管62と、この空気逃し管62に組み込まれた空気逃し弁63と、この空気逃し弁63の弁体を駆動して開度を調整するモータ64と、排気主管51内の空燃比を計測する排気主管空燃比センサ65と、各排気枝管54内の空燃比を計測する排気枝管空燃比センサ66と、を備えている。さらに、2ストロークデュアルフューエル機関101は、クランク軸に嵌合して装着されたクランク角検出歯車67と、このクランク角検出歯車67の回転位置からクランク角を検出してクランク角検出信号を出力するクランク角検出センサ68と、ディーゼルモード運転またはガスモード運転を選択するための指令器69と、空燃比制御器70と、を備えている。
 指令器69は空燃比制御器70へ、ディーゼルモード運転信号またはガスモード運転信号のいずれかを択一的に出力するように構成されている。
 空燃比制御器70は、指令器69からディーゼルモード運転信号を受信した際に、空気逃し弁63の弁体を駆動するモータ64を作動させて空気逃し弁63を閉じる機能と、クランク角検出センサ68の検出値に基づいて、排気弁13が定常状態で開閉するための信号を排気弁駆動部15に送信する機能とを有している。
 ここで言う定常状態とは、図2に示すように、ピストン6の上死点からクランク角度で80°以上300°以下の範囲が排気弁13の開区間となる状態を示す。なお、図2においてωはクランク軸の回転方向を表している。
 また、空燃比制御器70は、指令器69からガスモード運転信号を受信した際に、排気主管空燃比センサ65の計測値(排気主管51内の空燃比)から、予め実験により得た算出式を用いて計測値に見合う複数のシリンダライナ1内の平均空燃比を算出するとともに、空気逃し弁63の弁体を駆動するモータ64を作動させて空気逃し弁63の開度を調節することにより上記平均空燃比を制御する機能を有している。
 さらに、空燃比制御器70は、排気枝管空燃比センサ66の計測値(排気枝管54内の空燃比)から、予め実験により得た算出式を用いて計測値に見合う各シリンダライナ1内の空燃比を算出するとともに、クランク角検出センサ68の検出値に基づいて排気弁13の閉止時機を調節するための信号を排気弁駆動部15に送信することにより上記空燃比を制御する機能を有している。
 なお、排気主管空燃比センサ65および排気枝管空燃比センサ66は、空燃比を直接計測するセンサであってもよいが、空燃比制御器70が空燃比を算出するための情報を取得するセンサ、すなわち排ガス中の排ガス濃度(例えばO濃度)を計測するセンサであってもよい。
 より詳細には、空燃比制御器70は、指令器69からガスモード運転信号を受信した際に、排気主管空燃比センサ65の計測値から、予め実験により得た算出式を用いて計測値に見合う複数のシリンダライナ1内の平均空燃比を算出するとともに、この平均空燃比が1.5に近付くように、空気逃し弁63の弁体を駆動するモータ64を作動させて空気逃し弁63の開度を調節する機能を有している。
 さらに、空燃比制御器70は、排気枝管空燃比センサ66の計測値から、予め実験により得た算出式を用いて計測値に見合う各シリンダライナ1内の空燃比を算出するとともに、この空燃比が1.0~2.5の範囲になるように、クランク角検出センサ68の検出値に基づいて、排気弁13の閉止時機を調節する信号を排気弁駆動部15に送信する機能を有している。
 なお、上記空燃比(上記平均空燃比)は、シリンダライナ1内における混合気の空燃比(一般的な空燃比)を理論空燃比で割った比率(空気過剰率)である。すなわち、シリンダライナ1内の空燃比(一般的な空燃比)を適切に制御するために、空気過剰率を制御指標として用いている。
 図2に示すように、掃気ポート1aの開区間は、ディーゼルモード運転時またはガスモード運転時のいずれにおいても、ピストン6の上死点からクランク角度で100°以上260°以下の範囲である。
 排気弁13の開区間は、ディーゼルモード運転時は、ピストン6の上死点からクランク角度で80°以上300°以下の範囲である。また、ガスモード運転時では、排気弁駆動部15により排気弁13の閉時機をクランク角度で最大320°とし、排気弁13の開区間をディーゼルモード運転時に比べて拡大している。
 図3はディーゼルモード運転時の空燃比の負荷に対する空気量と、ガスモード運転時の空燃比の負荷に対する空気量とを示すグラフである。ガスモード運転時の空燃比は、ディーゼルモード運転時における空燃比よりも低い1.0~2.5の範囲に設定されている。
 次に、図1に示す2ストロークデュアルフューエル機関101の動作を説明する。
 空燃比制御器70は、指令器69からディーゼルモード運転信号が送信されていると、空気逃し弁63の弁体を駆動するモータ64を作動させて空気逃し弁63を閉じる。これにより、過給機52のブロワ56が送出する空気Aの全量が、空気溜3からハウジング2を経てシリンダライナ1内に流入する。
 更に、パイロット噴射弁12から燃焼室10へ向けて液体燃料を噴射すると、図3に示すように、ディーゼルモード運転時における空燃比は、ガスモード運転時における空燃比の範囲である1.0~2.5よりも高くなる。
 空燃比制御器70は、クランク角検出センサ68の検出値に基づいて排気弁駆動部15に信号を送信し、図2に示すように、ピストン6の上死点からクランク角度で80°以上300°以下の範囲で排気弁13が開くように制御する。
 また、空燃比制御器70は、指令器69からガスモード運転信号が送信されると、排気主管空燃比センサ65の計測値(排気主管51内の空燃比)から、予め実験により得た算出式を用いて計測値に見合う複数のシリンダライナ1内の平均空燃比を算出するとともに、この平均空燃比が1.5に近付くように、空気逃し弁63の弁体を駆動するモータ64を作動させて空気逃し弁63の開度を拡げる。
 空気逃し弁63の開度が拡げられると、過給機52のブロワ56が送出する空気Aの一部は、空気溜3からハウジング2を経てシリンダライナ1内に流入するものの、空気Aの残りは、空気逃し管62を経てブロワ56の空気入口へ戻る。そのため、図3に示すように、ディーゼルモード運転から平均空燃比1.5を目標値としたガスモード運転に移行させる「空気逃し制御」が行われる。つまり、各シリンダライナ1内へ流入する空気Aの量を減少させ、機関全体としての空燃比を下げることができる。
 なお、複数のシリンダライナ1内の算出された平均空燃比が1.5であっても、複数のシリンダライナ1のうちの一つでは、ガスモード運転時の空燃比の上限値である2.5を上回っている場合がある。
 そこで、空燃比制御器70は、排気枝管空燃比センサ66の計測値(排気枝管54内の空燃比)から、予め実験により得た算出式を用いて計測値に見合う各シリンダライナ1内の空燃比を算出するとともに、この空燃比が1.0~2.5の範囲になるように、クランク角検出センサ68の検出値に基づいて、排気弁13の閉止時機を遅らせる信号を排気弁駆動部15に送信し、空気Aの一部を排気通路5aを介してシリンダライナ1外へ排出する。
 特定のシリンダライナ1内の算出された空燃比が2.5を上回っている場合には、図2に示すように、排気弁13の閉時機をクランク角度で最大320°として、排気弁13の開区間を拡大する。すなわち、図3に示すように、個々のシリンダライナ1内の算出された空燃比を1.0~2.5とする「排気弁閉時機遅延制御」が行われるので、各シリンダライナ1内の空燃比を適正な値に保つことができる。
 更に、外乱によって機関負荷が変動する場合は、上記「空気逃し制御」を行うのみでは適正な空燃比になるまでの時間が長くなる(応答性が低い)可能性があるが、上記「排気弁閉時機遅延制御」を行うことにより、適正な空燃比になるまでの時間を短縮する(応答性が高い)ことができる。
 また、排気主管空燃比センサ65が故障した場合には、排気枝管空燃比センサ66のみによって各シリンダライナ1内の空燃比の適正化を図ることができる。
[第2実施形態]
 図4は本発明の第2の実施形態における2ストロークデュアルフューエル機関の概略図である。本実施形態の2ストロークデュアルフューエル機関102(2ストロークエンジン)において、シリンダライナ1、ハウジング2、空気溜3、シリンダ蓋4、排気弁筺5、ピストン6、ピストン棒7、スタッフィングボックス8、ガス噴射弁11、パイロット噴射弁12、排気弁13、排気弁棒14、及び排気弁駆動部15によって構成される機関本体は、図5に示す2ストロークデュアルフューエル機関100と同等である。図4において、図5に示す2ストロークデュアルフューエル機関100または図1に示す2ストロークデュアルフューエル機関101の構成要素と同一の要素については同一の符号を付し、その説明を省略する場合がある。
 ガス噴射弁11へガス燃料を供給する手段の構成は、従来の2ストロークデュアルフューエル機関と同様である。ガス噴射弁11には、図5におけるLNGポンプ31によってLNGタンク16からLNGが吸引された後、蒸発器32において気化したガス燃料が、圧力調整弁33、及びガス制御器34を経て供給される。
 また、パイロット噴射弁12へ液体燃料を供給する手段の構成も、従来の2ストロークデュアルフューエル機関と同様である。パイロット噴射弁12には、図5における燃料噴射ポンプ21が液体燃料タンク22から吸引した液体燃料(重油)が、燃料高圧管23を介して供給される。
 また、機関本体に付属する排気主管51、排気枝管54、過給機52のタービン55、過給機52のブロワ56、空気冷却器53は、図1に示す2ストロークデュアルフューエル機関101と同等である。
 図4に示す2ストロークデュアルフューエル機関102の特徴部分は、ガスモード運転時に、過給機52のブロワ56の空気出口から送出される空気Aの一部を、同じ過給機52のタービン55の排気入口(作動ガス入口)へ導くとともに、排気弁13の閉止時機をディーゼルモード運転時に比べて遅らせ、適正な空燃比が得られるように構成した点にある。
 2ストロークデュアルフューエル機関102は、空気流通方向上流端が過給機52のブロワ56の空気出口に連通し且つ空気流通方向下流端が過給機52のタービン55の排気入口(作動ガス入口)に連通する空気逃し管71と、この空気逃し管71に組み込まれた空気逃し弁72と、この空気逃し弁72の弁体を駆動して開度を調整するモータ73と、排気主管51内の空燃比を計測する排気主管空燃比センサ65と、各排気枝管54内の空燃比を計測する排気枝管空燃比センサ66と、を備えている。さらに、2ストロークデュアルフューエル機関102は、クランク軸に嵌合して装着されたクランク角検出歯車67と、このクランク角検出歯車67の回転位置からクランク角を検出してクランク角検出信号を出力するクランク角検出センサ68と、ディーゼルモード運転またはガスモード運転を選択するための指令器69と、空燃比制御器74と、を備えている。
 指令器69は空燃比制御器74へ、ディーゼルモード運転信号またはガスモード運転信号のいずれかを択一的に出力するように構成されている。
 空燃比制御器74は、指令器69からディーゼルモード運転信号を受信した際に、空気逃し弁72の弁体を駆動するモータ73を作動させて空気逃し弁72を閉じる機能と、クランク角検出センサ68の検出値に基づいて、排気弁13が定常状態で開閉するための信号を排気弁駆動部15に送信する機能とを有している。
 ここで言う定常状態とは、図2に示すように、ピストン6の上死点からクランク角度で80°以上300°以下の範囲が排気弁13の開区間となる状態を示す。なお、図2においてωはクランク軸の回転方向を表している。
 また、空燃比制御器74は、指令器69からガスモード運転信号を受信した際に、排気主管空燃比センサ65の計測値(排気主管51内の空燃比)から、予め実験により得た算出式を用いて計測値に見合う複数のシリンダライナ1内の平均空燃比を算出するとともに、空気逃し弁72の弁体を駆動するモータ73を作動させて空気逃し弁72の開度を調節することにより上記平均空燃比を制御する機能を有している。
 さらに、空燃比制御器74は、排気枝管空燃比センサ66の計測値(排気枝管54内の空燃比)から、予め実験により得た算出式を用いて計測値に見合う各シリンダライナ1内の空燃比を算出するとともに、クランク角検出センサ68の検出値に基づいて排気弁13の閉止時機を調節するための信号を排気弁駆動部15に送信することにより上記空燃比を制御する機能を有している。
 より詳細には、空燃比制御器74は、指令器69からガスモード運転信号を受信した際に、排気主管空燃比センサ65の計測値から、予め実験により得た算出式を用いて計測値に見合う複数のシリンダライナ1内の平均空燃比を算出するとともに、この平均空燃比が1.5に近付くように、空気逃し弁72の弁体を駆動するモータ73を作動させて空気逃し弁72の開度を調節する機能を有している。
 さらに、空燃比制御器74は、排気枝管空燃比センサ66の計測値から、予め実験により得た算出式を用いて計測値に見合う各シリンダライナ1内の空燃比を算出するとともに、この空燃比が1.0~2.5の範囲になるように、クランク角検出センサ68の検出値に基づいて、排気弁13の閉止時機を調節する信号を排気弁駆動部15に送信する機能を有している。
 なお、上記空燃比(上記平均空燃比)は、シリンダライナ1内における混合気の空燃比(一般的な空燃比)を理論空燃比で割った比率である。
 図2に示すように、掃気ポート1aの開区間は、ディーゼルモード運転時またはガスモード運転時のいずれも、ピストン6の上死点からクランク角度で100°以上260°以下の範囲である。
 排気弁13の開区間は、ディーゼルモード運転時は、ピストン6の上死点からクランク角度で80°以上300°以下の範囲である。また、ガスモード運転時では、排気弁駆動部15により排気弁13の閉時機をクランク角度で最大320°とし、排気弁13の開区間をディーゼルモード運転時に比べて拡大している。
 図3はディーゼルモード運転時の空燃比の負荷に対する空気量と、ガスモード運転時の空燃比の負荷に対する空気量とを示すグラフである。ガスモード運転時の空燃比は、ディーゼルモード運転時における空燃比よりも低い1.0~2.5の範囲に設定されている。
 次に、図4に示す2ストロークデュアルフューエル機関102の動作を説明する。
 空燃比制御器74は、指令器69からディーゼルモード運転信号が送信されていると、空気逃し弁72の弁体を駆動するモータ73を作動させて空気逃し弁72を閉じる。これにより、過給機52のブロワ56が送出する空気Aの全量が、空気溜3からハウジング2を経てシリンダライナ1内に流入する。
 更に、パイロット噴射弁12から燃焼室10へ向けて液体燃料を噴射すると、図3に示すように、ディーゼルモード運転時における空燃比は、ガスモード運転時における空燃比の範囲である1.0~2.5よりも高くなる。
 空燃比制御器74は、クランク角検出センサ68の検出値に基づいて排気弁駆動部15に信号を送信し、図2に示すように、ピストン6の上死点からクランク角度で80°以上300°以下の範囲で排気弁13が開くように制御する。
 また、空燃比制御器74は、指令器69からガスモード運転信号が送信されると、排気主管空燃比センサ65の計測値(排気主管51内の空燃比)から、予め実験により得た算出式を用いて計測値に見合う複数のシリンダライナ1内の平均空燃比を算出するとともに、この平均空燃比が1.5に近付くように、空気逃し弁72の弁体を駆動するモータ73を作動させて空気逃し弁72の開度を拡げる。
 空気逃し弁72の開度が拡げられると、過給機52のブロワ56が送出する空気Aの一部は、空気溜3からハウジング2を経てシリンダライナ1内に流入するものの、空気Aの残りは、空気逃し管71を経てタービン55の排気入口(作動ガス入口)へ導かれる。そのため、図3に示すように、ディーゼルモード運転から平均空燃比1.5を目標値としたガスモード運転に移行させる「空気逃し制御」が行われる。つまり、各シリンダライナ1内へ流入する空気Aの量を減少させ、機関全体としての空燃比を下げることができる。
 なお、複数のシリンダライナ1内の算出された平均空燃比が1.5であっても、複数のシリンダライナ1のうちの一つでは、ガスモード運転時の空燃比の上限値である2.5を上回っている場合がある。
 そこで、空燃比制御器74は、排気枝管空燃比センサ66の計測値(排気枝管54内の空燃比)から、予め実験により得た算出式を用いて計測値に見合う各シリンダライナ1内の空燃比を算出するとともに、この空燃比が1.0~2.5の範囲になるように、クランク角検出センサ68の検出値に基づいて、排気弁13の閉止時機を遅らせる信号を排気弁駆動部15に送信し、空気Aの一部を排気通路5aを介してシリンダライナ1外へ排出する。
 特定のシリンダライナ1内の算出された空燃比が2.5を上回っている場合には、図2に示すように、排気弁13の閉時機をクランク角度で最大320°として、排気弁13の開区間を拡大する。すなわち、図3に示すように、個々のシリンダライナ1内の算出された空燃比を1.0~2.5とする「排気弁閉時機遅延制御」が行われるので、各シリンダライナ1内の空燃比を適正な値に保つことができる。
 更に、外乱によって機関負荷が変動する場合は、上記「空気逃し制御」を行うのみでは適正な空燃比になるまでの時間が長くなる(応答性が低い)可能性があるが、上記「排気弁閉時機遅延制御」を行うことにより、適正な空燃比になるまでの時間を短縮する(応答性が高い)ことができる。
 また、排気主管空燃比センサ65が故障した場合には、排気枝管空燃比センサ66のみによって各シリンダライナ1内の空燃比の適正化を図ることができる。
 なお、本発明の2ストロークデュアルフューエル機関は、上述した実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲において変更を加えることが可能である。
 例えば、上述した実施の形態では、可燃性ガスを主燃料に用いるガスモード運転と、液体燃料のみを燃料に用いるディーゼルモード運転とを選択的に実行可能な2ストロークデュアルフューエル機関が説明されている。しかしながら、可燃性ガスを主燃料に用いるガスモード運転を少なくとも実行可能な2ストロークエンジンであれば、本発明を適用することが可能である。
 また、上述した実施の形態では、2ストロークエンジンに過給機が設けられているが、この過給機が設けられない構成であってもよい。空気比制御器はモータの駆動を制御して空気逃し弁の開度を調節しているが、空気比制御器がエンジンのシリンダに供給される空気量を調整できるのであれば、他の構成を用いてもよい。
 また、上述した実施の形態では、可燃性ガス(ガス燃料)としてLNGが用いられているが、これに限定されず、水素ガス、炭化水素系ガス(メタン、エタン、エチレン、プロパン、ブタン等)、アルコール系ガス燃料等の、可燃性を有するガスを用いることができる。
 また、可燃性ガスとしてLNG以外のガスを用いる場合は、空燃比制御器の制御の態様を適宜変更してよい。上述した実施の形態では、空燃比制御器は、算出された平均空燃比が1.5に近付くように空気逃し弁の開度を調節するとともに、算出された空燃比が1.0~2.5の範囲になるように排気弁駆動部による排気弁の閉止時機を調節しているが、使用する可燃性ガスに応じて上記平均空燃比および上記空燃比の制御目標を適宜変更してよい。
 また、上述した実施の形態では、空燃比制御器は、算出された平均空燃比が特定の数値に近付くように、空気逃し弁の開度を拡げているが、使用する可燃性ガスに応じて空気逃し弁の開度を狭めるように制御してもよい。また、空燃比制御器は、算出された空燃比が特定の数値範囲になるように、排気弁駆動部による排気弁の閉止時機を遅らせているが、使用する可燃性ガスに応じて排気弁の閉止時機を早めるように制御してもよい。
 また、上述した実施の形態では、空気逃し管の空気流通方向下流端が、過給機ブロワの空気入口または過給機タービンの排気入口に接続されている。しかし、空気逃し管の空気流通方向下流端が過給機ブロワまたは過給機タービンに接続されることは必ずしも要求されず、例えば空気逃し管の空気流通方向下流端が大気開放されていてもよい。過給機から吐出される空気を空気逃し管を介して機関の外部に一部放出することによっても、シリンダに供給される空気量を減少させ、シリンダ内の空燃比を調節することが可能である。
 また、上述した実施の形態では、クランク角検出信号を出力するクランク角検出センサは、クランク軸に嵌合して装着されたクランク角検出歯車の回転位置からクランク角を検出しているが、これに限定されず、クランク軸の回転位置またはピストン位置等からクランク角を検出してもよい。
 また、パイロット噴射弁が噴射する液体燃料として重油が用いられているが、他の可燃性を有する液体を用いてもよい。
 本発明の2ストロークエンジンは、可燃性ガスを主燃料に用いるガスモード運転を少なくとも実行可能な2ストロークエンジンに適用可能である。
1  シリンダライナ(シリンダ)
13  排気弁
15  排気弁駆動部
51  排気主管
52  過給機
54  排気枝管
55  タービン(過給機タービン)
56  ブロワ(過給機ブロワ)
60  ブロワ出口管(空気供給管)
62  空気逃し管
63  空気逃し弁
65  排気主管空燃比センサ
66  排気枝管空燃比センサ
68  クランク角検出センサ
70  空燃比制御器
71  空気逃し管
72  空気逃し弁
74  空燃比制御器
101  2ストロークデュアルフューエル機関(2ストロークエンジン)
102  2ストロークデュアルフューエル機関(2ストロークエンジン)
A  空気
G  排気

Claims (6)

  1.  可燃性ガスを主燃料に用いるガスモード運転を少なくとも実行可能な2ストロークエンジンにおいて、
     複数のシリンダと、
     前記複数のシリンダにそれぞれ設けられる排気弁と、
     空燃比制御器と、を備え、
     該空燃比制御器は、ガスモード運転時に、
     前記複数のシリンダ内の平均空燃比を算出するとともに、前記複数のシリンダに供給される空気量を調節することにより前記平均空燃比を制御する機能と、
     各前記シリンダ内の空燃比をそれぞれ算出するとともに、前記排気弁の閉止時機を調節することにより前記空燃比を制御する機能と、を有している2ストロークエンジン。
  2.  前記可燃性ガスとして、LNGを気化させたガスを用い、
     前記空燃比制御器は、ガスモード運転時に、算出された前記平均空燃比が1.5に近付くように前記複数のシリンダに供給される空気量を調節するとともに、算出された前記空燃比が1.0~2.5の範囲になるように前記排気弁の閉止時機を調節する請求項1に記載の2ストロークエンジン。
  3.  前記複数のシリンダにそれぞれ接続される排気枝管と、
     前記複数のシリンダから送出される排気を前記排気枝管を介して集める排気主管と、
     前記排気弁を開閉する排気弁駆動部と、
     前記複数のシリンダに空気を供給する空気供給管に、空気流通方向上流端が連通している空気逃し管と、
     前記空気逃し管に組み込まれた空気逃し弁と、
     前記排気主管内の空燃比を計測する排気主管空燃比センサと、
     各前記排気枝管内の空燃比をそれぞれ計測する排気枝管空燃比センサと、
     クランク角度を検出するクランク角検出センサと、をさらに備え、
     前記空燃比制御器は、ガスモード運転時に、
     前記排気主管空燃比センサの計測値から前記平均空燃比を算出するとともに、前記空気逃し弁の開度を調節することにより前記平均空燃比を制御する機能と、
     前記排気枝管空燃比センサの計測値から前記空燃比をそれぞれ算出するとともに、前記クランク角検出センサの検出値に基づいて前記排気弁駆動部による前記排気弁の閉止時機を調節することにより前記空燃比を制御する機能と、を有している請求項1に記載の2ストロークエンジン。
  4.  前記排気主管に集められた排気のエネルギーを回転運動に変換する過給機タービンと、
     前記過給機タービンにより駆動され且つ空気を昇圧させて前記複数のシリンダに供給する過給機ブロワと、をさらに備え、
     前記空気供給管の空気流通方向上流端が前記過給機ブロワの空気出口に連通している請求項3に記載の2ストロークエンジン。
  5.  前記空気逃し管の空気流通方向下流端が前記過給機ブロワの空気入口に連通している請求項4に記載の2ストロークエンジン。
  6.  前記空気逃し管の空気流通方向下流端が前記過給機タービンの排気入口に連通している請求項4に記載の2ストロークエンジン。
PCT/JP2011/074926 2010-10-28 2011-10-28 2ストロークエンジン WO2012057310A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180051514.4A CN103180578B (zh) 2010-10-28 2011-10-28 二冲程发动机
KR1020137013063A KR101491632B1 (ko) 2010-10-28 2011-10-28 2스트로크 엔진
EP11836443.9A EP2634398B1 (en) 2010-10-28 2011-10-28 Two-stroke engine
DK11836443.9T DK2634398T3 (da) 2010-10-28 2011-10-28 Totaktsmotor
JP2012540955A JP5452730B2 (ja) 2010-10-28 2011-10-28 2ストロークエンジン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010241856 2010-10-28
JP2010-241856 2010-10-28

Publications (1)

Publication Number Publication Date
WO2012057310A1 true WO2012057310A1 (ja) 2012-05-03

Family

ID=45994013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074926 WO2012057310A1 (ja) 2010-10-28 2011-10-28 2ストロークエンジン

Country Status (6)

Country Link
EP (1) EP2634398B1 (ja)
JP (2) JP5452730B2 (ja)
KR (1) KR101491632B1 (ja)
CN (1) CN103180578B (ja)
DK (1) DK2634398T3 (ja)
WO (1) WO2012057310A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047705A (ja) * 2012-08-31 2014-03-17 Ihi Corp ユニフロー掃気式2サイクルエンジン
US8972151B2 (en) 2010-08-05 2015-03-03 Ihi Corporation Two-cycle engine
JP2016217346A (ja) * 2015-05-19 2016-12-22 ヴィンタートゥール ガス アンド ディーゼル アーゲー 大型ディーゼル機関を運転する方法、この方法の使用、及び大型ディーゼル機関
JP2023018664A (ja) * 2021-07-27 2023-02-08 エムエーエヌ・エナジー・ソリューションズ・フィリアル・アフ・エムエーエヌ・エナジー・ソリューションズ・エスイー・ティスクランド 大型2ストロークターボ過給式ユニフロー掃気内燃機関及びこれを動作させる方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101931840B1 (ko) * 2011-07-08 2019-03-13 바르질라 스위츠랜드 리미티드 2 행정 내연 엔진, 2 행정 내연 엔진의 작동 방법 및 2 행정 엔진의 전환 방법
DK3015679T3 (en) 2014-10-31 2019-03-11 Winterthur Gas & Diesel Ag Cylinder for a piston combustion engine, piston combustion engine and method for operating a piston combustion engine
DK3015699T3 (en) 2014-10-31 2019-03-11 Winterthur Gas & Diesel Ag Gas supply system with a control system and cylinder for a piston combustion engine, piston combustion engine and method of operation of a piston combustion engine
EP3121428B1 (de) * 2015-05-19 2019-07-17 Winterthur Gas & Diesel AG Verfahren zum betreiben eines grossdieselmotors, verwendung dieses verfahrens sowie grossdieselmotor
DK3147477T3 (en) 2015-09-23 2019-01-21 Winterthur Gas & Diesel Ag Gas supply system and cylinder liner for a piston combustion engine, piston combustion engine and method of operation of a piston combustion engine
FR3044713B1 (fr) * 2015-12-08 2017-12-01 Continental Automotive France Procede et dispositif de determination du debit d'air entrant dans le collecteur d'admission d'un moteur a deux temps
KR102338124B1 (ko) * 2016-10-17 2021-12-13 한국조선해양 주식회사 선박용 엔진
DK3404237T3 (da) * 2017-05-15 2021-04-26 Winterthur Gas & Diesel Ag Fremgangsmåde til drift af en stor dieselmotor samt stor dieselmotor
KR102439316B1 (ko) * 2017-10-24 2022-09-02 현대중공업 주식회사 선박용 엔진
DK180308B1 (en) 2019-06-13 2020-10-28 Man Energy Solutions Filial Af Man Energy Solutions Se Tyskland A large two-stroke uniflow scavenged gaseous fueled engine and method for controlling conditions in combustion chamber
EP3926154A1 (de) * 2020-06-18 2021-12-22 Winterthur Gas & Diesel AG Längsgespülter grossmotor
DK181193B1 (en) * 2021-09-28 2023-04-24 Man Energy Solutions Filial Af Man Energy Solutions Se Tyskland A large two-stroke uniflow scavenged engine and method for operating cylinders selectively according to the pre-mix process or the compression-ignition process

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354352A (ja) * 1989-07-21 1991-03-08 Toyota Motor Corp Lpgエンジンの空燃比制御装置におけるアイドル診断装置
JPH06288210A (ja) * 1993-03-31 1994-10-11 Mitsubishi Heavy Ind Ltd 大形2サイクルエンジンの排気弁油圧駆動装置
JPH08144817A (ja) * 1994-11-16 1996-06-04 Yamaha Motor Co Ltd 2サイクルエンジンの制御装置
JP2004239065A (ja) * 2003-02-03 2004-08-26 Toyota Motor Corp レシプロエンジンおよびその制御方法
JP2004257331A (ja) * 2003-02-27 2004-09-16 Toyota Motor Corp 圧縮自着火運転可能なエンジン
JP2006132440A (ja) * 2004-11-05 2006-05-25 Mitsubishi Fuso Truck & Bus Corp Egr装置
JP2008038606A (ja) * 2006-08-01 2008-02-21 Mazda Motor Corp 過給機付きエンジン
JP2008202545A (ja) 2007-02-21 2008-09-04 Mitsubishi Heavy Ind Ltd デュアルフュールエンジン
JP2010001861A (ja) * 2008-06-23 2010-01-07 Mazda Motor Corp 多気筒エンジンの空燃比制御方法
JP2010241856A (ja) 2009-04-01 2010-10-28 Asahi Kasei Chemicals Corp 樹脂組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5086737A (en) * 1989-06-29 1992-02-11 Fuji Jukogyo Kabushiki Kaisha Fuel injection timing control system for an internal combustion engine with a direct fuel injection system
JPH08177692A (ja) * 1994-12-27 1996-07-12 Yamaha Motor Co Ltd 2サイクルエンジンの点火時期補正装置
JP2002081323A (ja) * 2000-07-07 2002-03-22 Honda Motor Co Ltd 2サイクル内燃機関
JP3858992B2 (ja) * 2002-09-30 2006-12-20 三菱自動車工業株式会社 内燃エンジンの排気浄化触媒装置
US7117830B1 (en) * 2005-11-23 2006-10-10 Ford Global Technologies, Llc System and method for direct injection of gaseous fuel into internal combustion engine
JP2008064078A (ja) * 2006-09-11 2008-03-21 Denso Corp 内燃機関の制御装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354352A (ja) * 1989-07-21 1991-03-08 Toyota Motor Corp Lpgエンジンの空燃比制御装置におけるアイドル診断装置
JPH06288210A (ja) * 1993-03-31 1994-10-11 Mitsubishi Heavy Ind Ltd 大形2サイクルエンジンの排気弁油圧駆動装置
JPH08144817A (ja) * 1994-11-16 1996-06-04 Yamaha Motor Co Ltd 2サイクルエンジンの制御装置
JP2004239065A (ja) * 2003-02-03 2004-08-26 Toyota Motor Corp レシプロエンジンおよびその制御方法
JP2004257331A (ja) * 2003-02-27 2004-09-16 Toyota Motor Corp 圧縮自着火運転可能なエンジン
JP2006132440A (ja) * 2004-11-05 2006-05-25 Mitsubishi Fuso Truck & Bus Corp Egr装置
JP2008038606A (ja) * 2006-08-01 2008-02-21 Mazda Motor Corp 過給機付きエンジン
JP2008202545A (ja) 2007-02-21 2008-09-04 Mitsubishi Heavy Ind Ltd デュアルフュールエンジン
JP2010001861A (ja) * 2008-06-23 2010-01-07 Mazda Motor Corp 多気筒エンジンの空燃比制御方法
JP2010241856A (ja) 2009-04-01 2010-10-28 Asahi Kasei Chemicals Corp 樹脂組成物

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8972151B2 (en) 2010-08-05 2015-03-03 Ihi Corporation Two-cycle engine
JP2014047705A (ja) * 2012-08-31 2014-03-17 Ihi Corp ユニフロー掃気式2サイクルエンジン
CN104619981A (zh) * 2012-08-31 2015-05-13 株式会社Ihi 单流扫气式二冲程发动机
EP2891790A4 (en) * 2012-08-31 2016-06-29 Ihi Corp TWO-STROKE ENGINE WITH UNIDIRECTIONAL RINSING
US9810142B2 (en) 2012-08-31 2017-11-07 Ihi Corporation Uniflow-scavenging-type two-cycle engine
JP2016217346A (ja) * 2015-05-19 2016-12-22 ヴィンタートゥール ガス アンド ディーゼル アーゲー 大型ディーゼル機関を運転する方法、この方法の使用、及び大型ディーゼル機関
JP2021102961A (ja) * 2015-05-19 2021-07-15 ヴィンタートゥール ガス アンド ディーゼル アーゲー 大型ディーゼル機関を運転する方法、この方法の使用、及び大型ディーゼル機関
JP7125245B2 (ja) 2015-05-19 2022-08-24 ヴィンタートゥール ガス アンド ディーゼル アーゲー 大型ディーゼル機関を運転する方法、この方法の使用、及び大型ディーゼル機関
JP2023018664A (ja) * 2021-07-27 2023-02-08 エムエーエヌ・エナジー・ソリューションズ・フィリアル・アフ・エムエーエヌ・エナジー・ソリューションズ・エスイー・ティスクランド 大型2ストロークターボ過給式ユニフロー掃気内燃機関及びこれを動作させる方法
JP7230265B2 (ja) 2021-07-27 2023-02-28 エムエーエヌ・エナジー・ソリューションズ・フィリアル・アフ・エムエーエヌ・エナジー・ソリューションズ・エスイー・ティスクランド 大型2ストロークターボ過給式ユニフロー掃気内燃機関及びこれを動作させる方法

Also Published As

Publication number Publication date
JP5452730B2 (ja) 2014-03-26
EP2634398A4 (en) 2018-01-10
JP2014058984A (ja) 2014-04-03
JP5764649B2 (ja) 2015-08-19
EP2634398B1 (en) 2020-08-26
KR101491632B1 (ko) 2015-02-09
CN103180578A (zh) 2013-06-26
JPWO2012057310A1 (ja) 2014-05-12
CN103180578B (zh) 2016-05-04
EP2634398A1 (en) 2013-09-04
DK2634398T3 (da) 2020-11-09
KR20130105673A (ko) 2013-09-25

Similar Documents

Publication Publication Date Title
JP5452730B2 (ja) 2ストロークエンジン
KR101411395B1 (ko) 2사이클 엔진
US9334813B2 (en) Control system for a dual-fuel engine
JP5587091B2 (ja) 2ストロークガス機関
KR101702549B1 (ko) 2스트로크 유니플로 엔진
US8156904B2 (en) Variable volume crossover passage for a split-cycle engine
EP2729682A2 (en) A two-stroke internal combustion engine, method operating a two-stroke internal combustion engine and method of converting a two-stroke engine
RU152686U1 (ru) Топливная система для двигателя внутреннего сгорания
US9133808B2 (en) Fuel injection system and method for a combustion engine
JP2022172177A (ja) スプリットサイクルエンジン
JP5842078B1 (ja) 始動空気システムを備えた自己着火式大型低速ターボ過給式2ストローク内燃エンジン
CN103726899A (zh) 能够以液态和气态燃料运行的内燃发动机和运行这种内燃发动机的方法
KR20140138051A (ko) 이중 연료 엔진과 그 작동 방법
EP2067954A1 (en) Pre-combustion chamber engine having combustion-initiated starting
KR102574723B1 (ko) 연소 시스템 및 방법
DK177936B9 (en) A method of operating an internal combustion engine, and an internal combustion engine
US9915212B2 (en) Engine system having unknown-fuel startup strategy
JP2008002431A (ja) 内燃機関
JP2014101884A (ja) 2ストロークガス機関
US20140053817A1 (en) Internal combustion engine
JP7309111B2 (ja) エンジンシステム
DK181214B1 (en) A large two-stroke uniflow scavenged gaseous fueled engine and method for controlling supply of liquid fuel
JP7381191B2 (ja) 圧縮比制御装置及びエンジンシステム
EP2910756A1 (en) Cylinder balanced operation of internal combustion engines
WO2015092451A1 (en) Device and procedure for increasing the efficiency of internal combustion engines

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180051514.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836443

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012540955

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011836443

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137013063

Country of ref document: KR

Kind code of ref document: A