WO2012057168A1 - 電磁鋼板及びその製造方法 - Google Patents

電磁鋼板及びその製造方法 Download PDF

Info

Publication number
WO2012057168A1
WO2012057168A1 PCT/JP2011/074590 JP2011074590W WO2012057168A1 WO 2012057168 A1 WO2012057168 A1 WO 2012057168A1 JP 2011074590 W JP2011074590 W JP 2011074590W WO 2012057168 A1 WO2012057168 A1 WO 2012057168A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
steel sheet
solid content
organic resin
Prior art date
Application number
PCT/JP2011/074590
Other languages
English (en)
French (fr)
Inventor
竹田 和年
健司 小菅
達弥 高瀬
孝司 棟田
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to US13/881,804 priority Critical patent/US10669432B2/en
Priority to EP11836301.9A priority patent/EP2634288B1/en
Priority to KR1020157005414A priority patent/KR101518691B1/ko
Priority to CN201180052130.4A priority patent/CN103189544B/zh
Priority to KR1020137010262A priority patent/KR101518656B1/ko
Priority to JP2012502381A priority patent/JP5005844B2/ja
Priority to PL11836301T priority patent/PL2634288T3/pl
Publication of WO2012057168A1 publication Critical patent/WO2012057168A1/ja
Priority to HK13114430.4A priority patent/HK1187083A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material

Definitions

  • the present invention relates to an electrical steel sheet used as an iron core material for electrical equipment, for example, and a method for producing the same, and has good insulation, particularly corrosion resistance and adhesion in a wet environment, and chromic acid.
  • the present invention relates to a magnetic steel sheet having an insulating coating that does not contain bismuth and a method for producing the same.
  • a hoop-shaped electrical steel sheet is punched into a predetermined shape, and the hoop-shaped electrical steel sheets are laminated and fixed to produce an iron core. And after winding a copper wire around teeth etc., a varnish is impregnated or a powder coating is sprayed. Then, a copper wire connection terminal, flange, bearing, etc. are attached and fixed to the case.
  • a hoop-shaped electrical steel sheet is prepared in advance, or the copper wire winding process after punching is performed collectively to improve efficiency.
  • the surface of the electromagnetic steel sheet used for the iron core of electrical equipment is coated with an insulating film to reduce eddy current loss. Film properties such as punchability and heat resistance are required.
  • This insulating coating generally contains a mixture mainly composed of an inorganic acid salt such as chromate or phosphate and an organic resin. In recent years, in consideration of the environment, an insulating coating containing no chromium has been demanded.
  • the insulation coating of magnetic steel sheets is required to have higher corrosion resistance than ever before, and in particular, the improvement of corrosion resistance in a humid environment is required.
  • the electromagnetic steel sheet having a coating mainly composed of a fluororesin on its surface as an insulating coating has a problem that the cost is high and the varnish after punching does not adhere.
  • an object of the present invention is to provide an electrical steel sheet having better corrosion resistance under a wet environment and better coating properties, and a method for producing the same. There is to do.
  • the gist of the present invention is as follows. (1) On the surface of the steel plate, One or two or more mixtures or copolymers selected from the group consisting of 100 parts by mass of a metal phosphate and an acrylic resin, an epoxy resin and a polyester resin having an average particle size of 0.05 ⁇ m to 0.50 ⁇ m A mixture composed of 1 part by weight to 50 parts by weight of an organic resin consisting of: 100 parts by weight; Copolymer of fluoroolefin and ethylenically unsaturated compound as solid content: 0.5 to 10 parts by mass; An electrical steel sheet characterized by being coated with an insulating coating mixed with.
  • the steel plate On the surface of the steel plate It consists of 100 parts by mass of colloidal silica and one or more mixtures or copolymers selected from the group consisting of acrylic resins, epoxy resins and polyester resins having an average particle size of 0.05 ⁇ m to 0.50 ⁇ m.
  • An electrical steel sheet characterized by being coated with an insulating coating mixed with.
  • colloidal silica With respect to 100 parts by mass of colloidal silica, one or a mixture of two or more selected from the group consisting of acrylic resins, epoxy resins and polyester resins having an average particle size of 0.05 ⁇ m to 0.50 ⁇ m
  • Producing a treatment liquid Applying the prepared treatment liquid to the surface of the steel sheet; And a step of baking and drying the steel sheet coated with the treatment liquid at an ultimate temperature of 200 ° C. to 300 ° C. for 15 seconds to 60 seconds.
  • an electrical steel sheet coated with an insulating coating that has good corrosion resistance in a wet environment and that retains coating properties necessary for electrical steel sheets such as adhesion, space factor, and punchability. be able to.
  • the steel plate used in this embodiment is preferably a non-oriented electrical steel plate containing Si: 0.1 mass% or more and Al: 0.05 mass% or more.
  • Si content increases, the electrical resistance increases and the magnetic properties improve, but at the same time, the brittleness increases and the rollability decreases, so the content is preferably less than 4.0% by mass.
  • Al content increases, the magnetic properties are improved, but the rollability is lowered, so less than 3.0% by mass is preferable.
  • Mn, Sn, Cr, and P may be contained in the range of 0.01% by mass to 1.0% by mass.
  • other typical elements such as S, N, and C may be contained, and the content of these elements is preferably less than 100 ppm, and preferably less than 20 ppm.
  • the slab is heated to 1000 ° C. to 1250 ° C., hot-rolled and wound into a coil shape, and annealed in the range of 800 ° C. to 1050 ° C. in the state of a hot-rolled sheet as necessary.
  • a steel plate having the above components is produced.
  • the surface of the steel sheet on which the insulating film is to be formed is subjected to any pretreatment such as degreasing treatment with alkali or pickling treatment with hydrochloric acid, sulfuric acid, phosphoric acid, etc. before applying the treatment liquid described later.
  • it may be a surface state as it is after the finish annealing without performing the pretreatment.
  • the surface roughness is such that the center line average roughness (Ra) in the rolling direction and the direction perpendicular to the rolling direction is 1.0 ⁇ m or less, more preferably 0.1 ⁇ m or more and 0.5 ⁇ m. It should be finished as follows.
  • the insulating coating formed on the surface of the steel sheet will be described.
  • the insulating coating is composed mainly of a phosphate metal salt or colloidal silica.
  • the metal phosphate is a solid content when an aqueous solution containing phosphoric acid and metal ions as main components is dried, and the type of phosphoric acid is not particularly limited, Orthophosphoric acid, metaphosphoric acid, polyphosphoric acid and the like are preferable.
  • metal ions such as Li, Al, Mg, Ca, Sr, Ti, Ni, Mn, and Co are good, and particularly, ions of Al, Ca, Mn, and Ni are good.
  • orthophosphoric acid is preferably mixed with metal ion oxide, carbonate, or hydroxide.
  • the metal phosphates may be used alone or in combination of two or more. Moreover, only a phosphoric acid metal salt may be sufficient, and what added additives, such as phosphonic acid and boric acid, may be used.
  • the colloidal silica preferably has an average particle size of 5 nm to 40 nm and an Na content of 0.5% by mass or less, and more preferably an Na content of 0.01% by mass to 0.3% by mass.
  • the average particle size of the colloidal silica used in the present embodiment is a number average particle size, which is measured by a nitrogen adsorption method.
  • An organic resin made of a mixture or copolymer is thinly formed on the surface of the steel sheet as an insulating film.
  • the film thickness of the insulating coating is preferably about 0.3 ⁇ m to 3.0 ⁇ m, more preferably 0.5 ⁇ m to 1.5 ⁇ m.
  • acrylic resin epoxy resin, and polyester resin used in this embodiment
  • a commercially available organic resin emulsion may be used.
  • Particularly suitable for acrylic resins are methyl acrylate, ethyl acrylate, n-butyl acrylate, i-butyl acrylate, n-octyl acrylate, i-octyl acrylate, 2-ethylhexyl acrylate, n- Nonyl acrylate, n-decyl acrylate, n-dodecyl acrylate, etc. may be mentioned.
  • monomers having a functional group are preferably those obtained by copolymerizing acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, crotonic acid, and itaconic acid.
  • 2-hydroxylethyl (meth) acrylate, 2-hydroxylpropyl (meth) acrylate, 3-hydroxylbutyl (meth) acrylate, 2-hydroxylethyl (meth) allyl ether, etc. are copolymerized as monomers having hydroxyl groups. Are preferred.
  • an epoxy resin for example, an amine-modified epoxy resin reacted with carboxylic anhydride, specifically, bisphenol A-diglycidyl ether, caprolactone ring-opening adduct of bisphenol A-diglycidyl ether, Bisphenol F-diglycidyl ether, bisphenol S-diglycidyl ether, novolac glycidyl ether, dimer acid glycidyl ether and the like are suitable.
  • the modifying amines are isopropanolamine, monopropanolamine, monobutanolamine, monoethanolamine, diethylenetriamine, ethylenediamine, butalamine, propylamine, isophoronediamine, tetrahydrofurfurylamine, xylenediamine, hexylamine, nonylamine, triethylene. Tetramine, tetramethylenepentamine, diaminodiphenyl sulfone and the like are preferable.
  • succinic anhydride, itaconic anhydride, maleic anhydride, citraconic anhydride, phthalic anhydride, trimellitic anhydride and the like are preferable as carboxylic anhydride.
  • polyester resins include terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, succinic acid, adipic acid, sebacic acid, fumaric acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, etc.
  • Dicarboxylic acid ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyldiol 1,6-hexanediol, triethylene glycol, What reacted with glycols, such as a dipropylene glycol and polyethyleneglycol, is suitable. Further, acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, methacrylic anhydride and the like may be graft polymerized to these polyester resins.
  • the organic resin emulsion may be one or a mixture of two or more selected from the group consisting of the acrylic resin, epoxy resin, and polyester resin, and may be a copolymer of these resins.
  • the average particle size of the organic resin emulsion is in the range of 0.05 ⁇ m to 0.50 ⁇ m.
  • the average particle size of the organic resin emulsion is the number average particle size and is measured by a laser diffraction method. If the average particle size is 0.05 ⁇ m or less, it tends to agglomerate in the treatment liquid and the uniformity of the insulating coating may be reduced. If the average particle size exceeds 0.50 ⁇ m, the stability of the solution may be reduced. is there.
  • the average particle diameter of the organic resin emulsion is more preferably in the range of 0.1 ⁇ m to 0.3 ⁇ m.
  • the mixing ratio between the metal phosphate and the organic resin composed of one or more mixtures or copolymers selected from the group consisting of the acrylic resin, epoxy resin, and polyester resin described above is phosphoric acid.
  • the organic resin is used in an amount of 1 to 50 parts by mass with respect to 100 parts by mass of the metal salt. If the mixing ratio of the organic resin is less than 1 part by mass, the resin concentration is too small and aggregation is likely to occur, and the stability of the solution deteriorates. If it exceeds 50 parts by mass, the heat resistance may be inferior. Because.
  • the mixing ratio of the colloidal silica and the organic resin is 40 parts by mass to 400 parts by mass of the organic resin with respect to 100 parts by mass of the colloidal silica. This is because if the mixing ratio of the organic resin is less than 40 parts by mass, the film forming property is poor and the insulating coating may be powdered, and if it exceeds 400 parts by mass, the heat resistance may be inferior.
  • a copolymer of a fluoroolefin and an ethylenically unsaturated compound is included in the insulating coating.
  • the copolymer of a fluoroolefin and an ethylenically unsaturated compound used in the present embodiment is a copolymer obtained by copolymerizing a fluoroolefin with a monomer, oligomer or low molecular weight polymer having a radically polymerizable unsaturated group.
  • the fluoroolefin is a compound having an unsaturated hydrocarbon structure in which a fluorine atom is bonded directly to the carbon skeleton of the olefin, and at least one of the groups bonded to the carbon forming the unsaturated bond is a fluorine atom.
  • An ethylenically unsaturated compound is a compound having a vinyl group in its structure and capable of forming a copolymer with a fluoroolefin, generally called a vinyl ether, and a monomer, oligomer or low molecule having various functional groups. It is a polymer.
  • the monomer are preferably styrene, vinyl acetate, polypropylene glycol acrylate, methoxypolyethylene methacrylate, vinyl alkyl ether, vinyl alkylene ether, isoprene, acrylonitrile and the like. Not only these monomers but oligomers having a similar structure or low molecular weight polymers may be used.
  • such a monomer, oligomer, or low molecular polymer into which various functional groups are introduced may be used.
  • functional groups include alkyl groups, hydroxyl group-substituted alkylene groups, phenyl groups, benzyl groups, cycloaliphatic groups, acetyl groups, or crosslinkable reactive groups such as carboxyl groups, hydroxyl groups, epoxy groups, and amino groups. good.
  • alkyl group and alkylene group include a linear alkyl group having 1 to 10 carbon (C) connected, and examples of the alkylene group include a hydroxyl linear alkylene having a hydroxyl group at the terminal having 1 to 14 carbons. Group.
  • the functional group of the present embodiment does not include a fluoro group or other functional group having a fluorine atom.
  • ethylenically unsaturated compounds monomers, oligomers or low molecular weight polymers having these functional groups are added to glycidyl methacrylate, hydroxymethyl acrylate, N, N dimethylaminoethyl methacrylate, diacetone acrylamide, bradiene, chloroprene, etc. It is also possible to use a reaction product.
  • copolymers of fluoroolefin and ethylenically unsaturated compound may be used alone, or may be a mixture of two or more types having different functional groups or different molecular weights.
  • the particle size of the copolymer of fluoroolefin and ethylenically unsaturated compound is not particularly limited, but is preferably in the range of 0.05 ⁇ m to 0.50 ⁇ m, more preferably in the range of 0.05 ⁇ m to 0.20 ⁇ m. It is. If it is less than 0.05 ⁇ m, the solution tends to aggregate in the solution and the stability of the solution may be deteriorated. As described above, when the stability of the solution deteriorates, agglomerates are generated in the solution, and piping and pumps may be clogged when the solution is disposed. Further, when the aggregates enter the insulating film, there is a possibility that a defect occurs in the insulating film. If it exceeds 0.50 ⁇ m, it tends to peel off when an insulating coating is formed, and there is a risk of powdering. In addition, when the particle size is 0.20 ⁇ m or less, a beautiful appearance is easily obtained.
  • the mixing ratio of the copolymer of the fluoroolefin and the ethylenically unsaturated compound with respect to the mixture of the metal phosphate and the organic resin is converted to the solid content with respect to 100 parts by mass of the solid content of the mixture.
  • the mixing ratio of the copolymer of fluoroolefin and ethylenically unsaturated compound with respect to the mixture of colloidal silica and the above-mentioned organic resin is also converted into solid content with respect to 100 parts by mass of the solid content of the mixture. 0.5 parts by mass to 10 parts by mass. This is because if the mixing ratio of the copolymer is less than 0.5 parts by mass, the effect of improving the corrosion resistance does not sufficiently appear, and if it exceeds 10 parts by mass, the stability of the solution deteriorates.
  • the insulating coating may contain components other than a mixture of a metal phosphate or colloidal silica and the organic resin described above, and a copolymer of a fluoroolefin and an ethylenically unsaturated compound.
  • a metal phosphate or colloidal silica and the organic resin described above and a copolymer of a fluoroolefin and an ethylenically unsaturated compound.
  • carbonates, hydroxides, oxides, inorganic compounds such as titanates and tungstates, or organic low-molecular compounds such as polyols, cellosolves, carboxylic acids, ethers, and esters can be mixed as additives. Also good.
  • the application method is not particularly limited, a roll coater method may be used, and a spray method, a dip method, etc. An application method may be used.
  • a heating method in which the treatment liquid is dried and baked a normal radiation furnace or hot air furnace can be used, and an induction heating method or a high-frequency heating method may be used.
  • a baking time in the range of 200 ° C. to 380 ° C. is suitably 15 seconds to 60 seconds. More preferably, it is in the range of 260 ° C. to 330 ° C. in the case of an insulating coating containing a metal phosphate.
  • an insulating film containing colloidal silica 200 ° C. to 300 ° C. is appropriate, and 240 ° C. to 280 ° C. is more preferable.
  • an additive such as a surfactant may be added to the above-described treatment liquid.
  • a surfactant an aliphatic polyoxyalkylene ether surfactant is suitable, and other brighteners, preservatives, antioxidants and the like may be added.
  • an insulating coating composed of a copolymer of the above fluoroolefin and an ethylenically unsaturated compound, and a mixture of a metal phosphate or colloidal silica and a specific organic resin
  • the copolymer is dispersed in the insulating coating.
  • the dispersed copolymer of fluoroolefin and ethylenically unsaturated compound is concentrated in the vicinity of the surface layer of the insulating coating, and the surface tension of the insulating coating is substantially optimized. As a result, it is considered that the adhesion is maintained and the corrosion resistance in a wet environment is improved.
  • a 44 ⁇ m steel plate was prepared.
  • the surface roughness of the steel plate it measured using the commercially available surface roughness measuring apparatus according to JIS method (JIS B0601).
  • a phosphoric acid metal salt orthophosphoric acid and a metal hydroxide such as Al (OH) 3 , oxide, or carbonate were mixed and stirred to prepare a metal phosphate treatment solution, which was a 40% by mass aqueous solution.
  • a metal phosphate treatment solution which was a 40% by mass aqueous solution.
  • a 40% by mass magnesium chromate aqueous solution was also prepared.
  • colloidal silica a commercially available one having an average particle diameter of 15 nm and a surface modified with aluminum at a concentration of 30% by mass was used.
  • the organic resin the following 6 types of organic resins were used as emulsion solutions each having a concentration of 30% by mass. Furthermore, a suitable amount of a viscosity modifier and a surfactant was added to prepare a mixed solution shown in Table 1.
  • Acrylic resin 1 Acrylic copolymerized with 30% by weight of methyl methacrylate, 10% by weight of 2-hydroxyethyl methacrylate, 30% by weight of n-butyl acrylate, 10% by weight of styrene monomer, and 20% by weight of isobutyl acrylate Resin
  • Acrylic Resin 2 Acrylic Resin Copolymerized with 45% by Mass of Methyl Acrylate, 30% by Mass of Styrene Monomer, 20% by Mass of Isobutyl Acrylate, and 15% by Mass of Maleic Acid
  • Epoxy Resin 1 Carboxyl group-modified epoxy resin obtained by modifying bisphenol A with triethanolamine and then reacted with succinic anhydride (4)
  • Epoxy resin 2 Ethylene propylene block polymer is mixed with phenol novolac type epoxy resin, and nonylphenyl ether ethylene Oh Side-added epoxy resin made self-emulsifying (5)
  • the average particle sizes of the acrylic resin 1 and the acrylic resin 2 were 0.25 ⁇ m and 0.64 ⁇ m, respectively. Moreover, the average particle diameters of the epoxy resin 1 and the epoxy resin 2 were 0.33 ⁇ m and 0.76 ⁇ m, respectively. The average particle size of the polyester resin was 0.35 ⁇ m, and the average particle size of the aqueous polyurethane was 0.12 ⁇ m. In addition, the resin mass part shown in Table 1 is solid content conversion.
  • mixture No. 3 1.5 parts by mass of phosphonic acid as an additive was added to 100 parts by mass of manganese phosphate.
  • the copolymer 1 shown in Table 2 is a copolymer of tetrafluoroethylene and a linear alkyl vinyl ether having 6 carbon atoms
  • the copolymer 2 is a copolymer of tetrafluoroethylene and methyl vinyl ether. It is.
  • Copolymer 3 is obtained by copolymerizing chlorotrifluoroethylene, propylene alkyl vinyl ether and hydroxyhexyl vinyl ether and then substituting the hydroxyl group with a carboxyl group.
  • Copolymer 4 is obtained by copolymerizing chlorotrifluoroethylene and hydroxydodecyl vinyl ether by known methods. As a known method for copolymerization, for example, the method disclosed in Japanese Patent No.
  • the fluororesin 1 is polytetrafluoroethylene
  • the fluororesin 2 is polyvinylidene fluoride
  • the fluororesin 3 is a perfluoroalkoxyalkane.
  • a roll coater method was used to apply the treatment liquid, and the roll reduction amount and the like were adjusted so that the film thickness of the insulating coating was about 0.8 ⁇ m. Drying was performed using a radiation furnace, and the furnace temperature setting was adjusted so that the predetermined heating conditions shown in Table 2 were obtained. Although the ultimate plate temperature and baking time differed depending on the sample, the baking temperature was adjusted to be 5 seconds to 70 seconds when the heating temperature was in the range of 180 ° C. to 400 ° C.
  • the average particle diameter was measured in advance. After diluting the organic resin emulsion with distilled water, the fluororesin powder is dispersed in distilled water with an ultrasonic cleaner for about 1 minute, and is then granulated by a commercially available laser diffraction method according to the JIS method (JIS Z8826). The number average particle diameter was measured with a diameter measuring device.
  • a 5% NaCl aqueous solution was naturally dropped to a sample for 1 hour in an atmosphere at 35 ° C. in accordance with a salt spray test (JIS Z2371) of JIS method.
  • JIS Z2371 a salt spray test
  • the sample was held at a temperature of 60 ° C. and a humidity of 40% for 3 hours, held at a temperature of 40 ° C. and a humidity of 95% for 3 hours, and this was repeated as 5 cycles.
  • the rusting area of the sample was evaluated by 10 points.
  • the evaluation criteria are as follows.
  • the contact angle was measured using a contact angle meter PG-X manufactured by Matsubo.
  • the measured value is an average value measured 10 times.
  • the glossy, smooth and uniform is 5; hereinafter, the glossy but slightly inferior uniformity is 4; the slightly glossy and smooth but inferior uniformity is 3; 2 with a little inferior smoothness and inferior uniformity, and 1 with inferior gloss, uniformity and smoothness.
  • sample numbers corresponding to the examples of the present invention are shown.
  • 1-No. All 9 were found to be excellent in corrosion resistance in a wet environment. Furthermore, sample no. 1-No. No. 9 was found to have excellent insulation, adhesion and appearance in addition to corrosion resistance.
  • the corrosion resistance under a wet environment is good in the production of the laminated iron core, and the characteristics relating to other insulating coatings of the electromagnetic steel sheet are also good.
  • an electromagnetic steel sheet having excellent corrosion resistance in a wet environment and excellent properties such as adhesion, space factor, and punchability as an iron core material of an electric device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

 電磁鋼板の表面に、リン酸金属塩と特定有機樹脂とから構成される混合物、またはコロイダルシリカと特定有機樹脂から構成される混合物の固形分100質量部に対し、フルオロオレフィンとエチレン性不飽和化合物との共重合体が固形分に換算して0.5質量部~10質量部混合させた絶縁被膜を有するようにして、湿潤環境下での耐蝕性が良好で占積率、密着性等の絶縁被膜に関する特性が良好な電磁鋼板を得ることができる。

Description

電磁鋼板及びその製造方法
 本発明は、例えば電気機器の鉄芯材料として使用される電磁鋼板及びその製造方法に関し、絶縁性が良好であって、特に湿潤環境下での耐蝕性及び密着性が良好であり、かつクロム酸を含有しない絶縁被膜を持つ電磁鋼板及びその製造方法に関するものである。本願は、2010年10月29日に日本に出願された特願2010-244030号に基づき優先権を主張し、その内容をここに援用する。
 モータやトランスを製造する際には、まず、フープ状の電磁鋼板を所定形状に打抜き加工し、フープ状の電磁鋼板を積層して固着し、鉄芯を作製する。そして、銅線をティース等に巻きつけた後、ワニスに含浸したり、粉体塗料を吹き付けたりする。その後、銅線接続用のターミナルやフランジや軸受け等を取り付け、ケースに固定する。
 このような鉄芯の製造工程では、プレスなどの設備制約が大きいことから電磁鋼板を所定の形状に打抜く工程に多くの時間がかかってしまう場合が多い。
 従って、打抜き工程を効率良く行うために、フープ状の電磁鋼板をあらかじめ周到に準備したり、打抜き後の銅線巻き付け工程を一括して行ったりして、効率化を図ったりする。
 フープ状の電磁鋼板を保管する場合には、発錆を防止するために保管庫を使用するのが一般的であるが、打抜き工程を効率良く行うために保管庫から出しておく場合も多く、この場合は発錆に特に注意する必要がある。
 また、近年では中国や東南アジアに鉄芯の加工拠点を移すことにより、コストダウンを行うことが一般に行われている。このような国では、日本国内よりも湿潤環境下に工場が設置されている場合が多く、日本国内よりも湿潤環境下での耐蝕性が必要とされている。
 通常、電気機器の鉄芯に使用される電磁鋼板の表面には、渦電流損を低減すために絶縁被膜が施されており、絶縁被膜には、絶縁性の他に耐蝕性や密着性、打抜き性、耐熱性などの被膜特性が必要とされている。
 この絶縁被膜には、一般にクロム酸塩やリン酸塩などの無機酸塩と有機樹脂とを主成分とする混合物が含まれている。近年では、環境への配慮から、クロムが含まれていない絶縁被膜が求められている。
 電気機器の鉄芯の製造工程の効率化の進展に伴い、電磁鋼板の絶縁被膜にこれまで以上の耐蝕性が求められており、特に湿潤環境下での耐蝕性の向上が求められている。
 すなわち、従来の電磁鋼板用の絶縁被膜では、打抜き工程前に保管庫で発錆を抑止できる程度の耐蝕性で十分とされていたのに対し、近年では湿潤環境下でも発錆しない耐蝕性が求められている。
 また、絶縁被膜を厚く塗布することにより耐蝕性を向上させることは可能であるが、占積率が低下したり、密着性が低下したりするといった問題があった。
 さらに、表面にフッ素樹脂を主成分とする塗料を絶縁被膜とした電磁鋼板では、コストが高くなったり、打抜き後のワニスが密着しなかったりする問題があった。
特公昭50-15016号公報 特開平03-36284号公報 特公昭49-19078号公報 特開平06-330338号公報 特開平09-323066号公報 特開2002-309379号公報 特開平05-98207号公報 特開平07-41913号公報
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、湿潤環境下での耐蝕性がより優れ、被膜特性が良好な電磁鋼板及びその製造方法を提供することにある。
 本発明がその要旨とするところは、以下の通りである。
(1)鋼板の表面に、
 リン酸金属塩100質量部と、平均粒径が0.05μm~0.50μmのアクリル系樹脂、エポキシ系樹脂及びポリエステル系樹脂からなる群から選ばれる1種又は2種以上の混合物又は共重合物からなる有機樹脂1質量部~50質量部とから構成される混合物:100質量部と、
 固形分としてフルオロオレフィンとエチレン性不飽和化合物との共重合体:0.5質量部~10質量部と、
 が混合された絶縁被膜が被覆されていることを特徴とする電磁鋼板。
(2)鋼板の表面に、
 コロイダルシリカ100質量部と、平均粒径が0.05μm~0.50μmのアクリル系樹脂、エポキシ系樹脂及びポリエステル系樹脂からなる群から選ばれる1種又は2種以上の混合物又は共重合物からなる有機樹脂40質量部~400質量部とから構成される混合物:100質量部と、
 固形分としてフルオロオレフィンとエチレン性不飽和化合物との共重合体:0.5質量部~10質量部と、
 が混合された絶縁被膜が被覆されていることを特徴とする電磁鋼板。
(3)リン酸金属塩100質量部に対し、平均粒径が0.05μm~0.50μmのアクリル系樹脂、エポキシ系樹脂及びポリエステル系樹脂からなる群から選ばれる1種又は2種以上の混合物又は共重合物からなる有機樹脂を固形分で1質量部~50質量部混合する工程と、
 前記リン酸金属塩と前記有機樹脂との混合物の固形分100質量部に対し、フルオロオレフィンとエチレン性不飽和化合物との共重合体を固形分に換算して0.5質量部~10質量部混合した処理液を作製する工程と、
 前記作製した処理液を鋼板の表面に塗布する工程と、
 前記処理液が塗布された鋼板を200℃~380℃の到達温度で15秒間~60秒間焼付け乾燥する工程と、を有することを特徴とする電磁鋼板の製造方法。
(4)コロイダルシリカ100質量部に対し、平均粒径が0.05μm~0.50μmのアクリル系樹脂、エポキシ系樹脂及びポリエステル系樹脂からなる群から選ばれる1種又は2種以上の混合物又は共重合物からなる有機樹脂を固形分で40質量部~400質量部混合する工程と、
 前記コロイダルシリカと前記有機樹脂との混合物の固形分100質量部に対し、フルオロオレフィンとエチレン性不飽和化合物との共重合体を固形分に換算して0.5質量部~10質量部混合した処理液を作製する工程と、
 前記作製した処理液を鋼板の表面に塗布する工程と、
 前記処理液が塗布された鋼板を200℃~300℃の到達温度で15秒間~60秒間焼付け乾燥する工程と、を有することを特徴とする電磁鋼板の製造方法。
 本発明によれば、湿潤環境下での耐蝕性が良好であり、かつ密着性や占積率、打抜き性などの電磁鋼板として必要な被膜特性を保持する絶縁被膜が被覆された電磁鋼板を得ることができる。
 以下、本発明を実施する具体的形態について説明する。
 まず、本実施形態で使用する鋼板は、Si:0.1質量%以上、Al:0.05質量%以上含有する無方向性電磁鋼板用の鋼板が好適である。Siは、含有量が増加するに従って電気抵抗が大きくなり磁気特性が向上するが、同時に脆性が増大し圧延性が低下するため、4.0質量%未満が良い。同様に、Alの含有量が増加すると磁気特性が向上するが、圧延性が低下するため、3.0質量%未満が良い。本実施形態で用いられる鋼板では、Si、Al以外に、MnやSn、Cr、及びPも0.01質量%から1.0質量%の範囲で含有してもよい。さらに、その他のSやN、Cといった典型元素を含有してもよく、これらの元素の含有量は100ppm未満が良く、好ましくは20ppm未満が良い。
 本実施形態では、スラブを1000℃~1250℃に加熱し、熱延してコイル状に巻き取り、必要に応じて熱延板の状態で800℃から1050℃の範囲に焼鈍した後、0.15mmから0.5mmに冷間圧延し、さらに750℃~1100℃で焼鈍することにより上記成分の鋼板が製造される。
 また、絶縁被膜が形成される鋼板の表面には、後述する処理液を塗布する前に、アルカリなどによる脱脂処理や、塩酸、硫酸、リン酸などによる酸洗処理など、任意の前処理を施してもよいし、該前処理を施さず仕上げ焼鈍後のままの表面状態であってもよい。
 本実施形態で使用する鋼板では、表面粗度が、圧延方向および圧延方向に対して直角方向の中心線平均粗さ(Ra)が1.0μm以下、さらに好適には0.1μm以上0.5μm以下に仕上げるのが良い。
 次に、鋼板の表面に形成される絶縁被膜について説明する。絶縁被膜は、リン酸塩金属塩またはコロイダルシリカを主成分とする。
 ここで、リン酸金属塩とは、リン酸と金属イオンとを主成分とする水溶液を乾燥させたときに固形分となるものであり、リン酸の種類としては特に限定するものではないが、オルトリン酸、メタリン酸、ポリリン酸などが良い。
 また、金属イオンの種類としては、Li、Al、Mg、Ca、Sr、Ti、Ni、Mn、Coなどのイオンが良好であり、特に、Al、Ca、Mn、Niのイオンが良好である。リン酸金属塩溶液を調製する際には、例えば、オルトリン酸に金属イオンの酸化物、炭酸塩、又は水酸化物を混合して調製するのが良い。
 リン酸金属塩は、単独で使用しても良いし、2種以上を混合して用いても良い。また、リン酸金属塩のみであっても良いし、ホスホン酸やホウ酸などの添加剤を加えたものを用いても良い。
 一方、コロイダルシリカは、平均粒径が5nm~40nmであり、かつ、Na含有量が0.5質量%以下のものが好適であり、さらに好適には、Na含有量が0.01質量%~0.3質量%である。
 本実施形態で使用するコロイダルシリカの平均粒径とは、個数平均粒径であり、窒素吸着法により測定したものである。
 これらのリン酸金属塩又はコロイダルシリカ、及び以下に説明する平均粒径が0.05μm~0.50μmのアクリル系樹脂、エポキシ系樹脂及びポリエステル系樹脂からなる群から選ばれる1種又は2種以上の混合物又は共重合物からなる有機樹脂が、絶縁被膜として鋼板の表面に薄く形成される。なお、絶縁被膜の膜厚は、0.3μm~3.0μm程度が良好であり、さらに好適には0.5μm~1.5μmである。
 本実施形態で使用するアクリル系樹脂、エポキシ系樹脂、及びポリエステル系樹脂については、一般に市販されている有機樹脂エマルジョンを用いても良い。特に好適であるのは、アクリル系樹脂では、通常のモノマーとして、メチルアクリレート、エチルアクリレート、n-ブチルアクリレート、i-ブチルアクリレート、n-オクチルアクリレート、i-オクチルアクリレート、2-エチルヘキシルアクリレート、n-ノニルアクリレート、n-デシルアクリレート、n-ドデシルアクリレートなどが挙げられる。そのほかに、官能基を持つモノマーとして、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、クロトン酸、イタコン酸を共重合させたものが好適である。さらに、水酸基を持つモノマーとして、2-ヒドロキシルエチル(メタ)アクリレート、2-ヒドロキシルプロピル(メタ)アクリレート、3-ヒロドキシルブチル(メタ)アクリレート、2-ヒドロキシルエチル(メタ)アリルエーテルなどを共重合させたものが好適である。
 エポキシ系樹脂の場合、例えば、アミン変性エポキシ樹脂に無水カルボン酸を反応させたものが挙げられ、具体的には、ビスフェノールA-ジグリシジルエーテル、ビスフェノールA-ジグリシジルエーテルのカプロラクトン開環付加物、ビスフェノールF-ジグリシジルエーテル、ビスフェノールS-ジグリシジルエーテル、ノボラックグリシジルエーテル、ダイマー酸グリシジルエーテル等が好適である。ここで、変性するアミンとしては、イソプロパノールアミン、モノプロパノールアミン、モノブタノールアミン、モノエタノールアミン、ジエチレントリアミン、エチレンジアミン、ブタルアミン、プロピルアミン、イソホロンジアミン、テトラヒドロフルフリルアミン、キシレンジアミン、ヘキシルアミン、ノニルアミン、トリエチレンテトラミン、テトラメチレンペンタミン、ジアミノジフェニルスルホン等が好適である。また、無水カルボン酸として無水コハク酸、無水イタコン酸、無水マレイン酸、無水シトラコン酸、無水フタル酸、無水トリメリット酸等を反応させたものが好適である。
 ポリエステル系樹脂の例としては、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、コハク酸、アジピン酸、セバシン酸、フマル酸、マレイン酸、無水マレイン酸、イタコン酸、シトラコン酸等のジカルボン酸と、エチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルジオール1,6-ヘキサンジオール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール等のグリコールとを反応させたものが好適である。さらにこれらのポリエステル系樹脂に、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、メタクリル酸無水物等をグラフト重合させても良い。
 上記有機樹脂エマルジョンは、上記アクリル系樹脂、エポキシ系樹脂、及びポリエステル系樹脂からなる群から選ばれる1種または2種以上の混合物でも良く、これらの樹脂同士の共重合物でも良い。また、上記有機樹脂エマルジョンの平均粒径としては、0.05μm~0.50μmの範囲である。なお、有機樹脂エマルジョンの平均粒径とは、個数平均粒径であり、レーザー回折法により測定したものである。平均粒径が0.05μm以下では処理液中で凝集し易く、絶縁被膜の均一性が低下するおそれがあり、平均粒径が0.50μm超では溶液の安定性が低下するおそれがあるためである。溶液の安定性が劣化すると、溶液中に凝集物が発生し、溶液を処分する際に配管やポンプが詰まる場合がある。また、凝集物が絶縁被膜中に入り込むと絶縁被膜に欠陥が生じるおそれがある。上記有機樹脂エマルジョンの平均粒径は、さらに好適には、0.1μm~0.3μmの範囲である。
 リン酸金属塩と、前述したアクリル系樹脂、エポキシ系樹脂、及びポリエステル系樹脂からなる群から選ばれる1種または2種以上の混合物又は共重合物からなる有機樹脂との混合比率は、リン酸金属塩100質量部に対し、上記有機樹脂を1質量部~50質量部とする。上記有機樹脂の混合比率が1質量部未満では、樹脂の濃度が小さ過ぎて凝集が発生し易く溶液の安定性に劣化するためであり、50質量部超では、耐熱性に劣る可能性があるからである。
 また、コロイダルシリカと、上記有機樹脂との混合比率は、コロイダルシリカ100質量部に対して、上記有機樹脂を40質量部~400質量部とする。上記有機樹脂の混合比率が40質量部未満では、造膜性が悪く、絶縁被膜が発粉するおそれがあり、400質量部超では耐熱性に劣る可能性があるからである。
 本実施形態においては、以上に説明した成分以外に、フルオロオレフィンとエチレン性不飽和化合物との共重合体が絶縁被膜に含まれている。
 本実施形態で使用するフルオロオレフィンとエチレン性不飽和化合物との共重合体とは、フルオロオレフィンに、ラジカル重合性不飽和基を有するモノマー、オリゴマーまたは低分子ポリマーを共重合させたものである。ここでフルオロオレフィンとは、オレフィンの炭素骨格に直接フッ素原子が結合した不飽和炭化水素構造を持つもので、不飽和結合を形成する炭素に結合した基の少なくとも1つがフッ素原子である化合物である。具体的には、テトラフルオロエチレン、トリフルオロエチレン、ヘキサフルオロプロピレン、ビニリデンフルオライド、フッ化ビニル、トリクロロフルオロエチレン等が挙げられる。本実施形態では、これらの1種又は2種以上を用いることができる。
 また、エチレン性不飽和化合物とは、構造中にビニル基を持ち、フルオロオレフィンと共重合体を形成できるものであり、一般的にビニルエーテルと呼ばれ、各種官能基を有するモノマー、オリゴマーまたは低分子ポリマーである。モノマーの例としては、例えばスチレン、酢酸ビニル、ポリプロピレングリコールアクリレート、メトキシポリエチレンメタクリレート、ビニルアルキルエーテル、ビニルアルキレンエーテル、イソプレン、アクロニトリル等が好適である。これらのモノマーだけでなく、同様の構造を持つオリゴマー、あるいは低分子ポリマーとしたものでも良い。本実施形態ではこのようなモノマー、オリゴマー、または低分子ポリマーに各種官能基を導入したものを使用しても良い。このような官能基の例としては、アルキル基、水酸基置換アルキレン基、フェニル基、ベンジル基、環状脂肪族基、アセチル基、あるいはカルボキシル基、水酸基、エポキシ基、アミノ基などの架橋性反応基でも良い。アルキル基、アルキレン基の例としては、炭素(C)が1~10個連なった直鎖アルキル基、アルキレン基の例としては、Cが1~14個連なった末端に水酸基を持つヒドロキシル直鎖アルキレン基等である。なお、本実施形態の官能基としてはフルオロ基やその他のフッ素原子を有する官能基は含まないものとする。
 さらには、エチレン性不飽和化合物として、これらの官能基を有するモノマー、オリゴマーまたは低分子ポリマーに、グリシジルメタアクリレート、ヒドロキシメチルアクリレート、N,Nジメチルアミノエチルメタクリレート、ジアセトンアクリルアミド、ブラジエン、クロロプレン等を反応させたものを用いることも可能である。
 これらのフルオロオレフィンとエチレン性不飽和化合物とを共重合させたものでは、フッ素原子を含有する部分と、含有しない部分とが存在することになる。したがって、フッ素原子を含有する部分により耐熱性や耐水性が保持され、同時に、フッ素原子を含有しない部分に導入された官能基により、基材との密着性や可撓性が保持される。また、エチレン性不飽和化合物の部分にフルオロ基やフッ素原子を有する官能基を含有しないようにすることにより、分散性が向上し均一性に優れた絶縁被膜が得られる。
 これらのフルオロオレフィンとエチレン性不飽和化合物との共重合体は、単独で用いても良いし、官能基の異なるものや分子量の異なるものなど2種以上を混合したものでも良い。
 フルオロオレフィンとエチレン性不飽和化合物との共重合体の粒径は特に規定しないが、0.05μm~0.50μmの範囲が好適であり、さらに好適には、0.05μm~0.20μmの範囲である。0.05μm未満では溶液中で凝集し易く溶液の安定性が劣化するおそれがある。前述したように、溶液の安定性が劣化すると、溶液中に凝集物が発生し、溶液を処分する際に配管やポンプが詰まる場合がある。また、凝集物が絶縁被膜中に入り込むと絶縁被膜に欠陥が生じるおそれがある。0.50μm超では、絶縁被膜を形成した際に剥離し易く、発粉のおそれがある。また、粒径が0.20μm以下では美麗な外観が得られやすい。
 次に、リン酸金属塩と前述の有機樹脂との混合物に対する、フルオロオレフィンとエチレン性不飽和化合物との共重合体の混合比率は、前記混合物の固形分100質量部に対し、固形分に換算して0.5質量部~10質量部とする。共重合体の混合比率が0.5質量部未満では、耐蝕性を向上させる効果が十分に現れないおそれがあり、10質量部超では、溶液の安定性が劣化し、作業性が低下するおそれがあるためである。
 また、コロイダルシリカと、前述の有機樹脂との混合物に対する、フルオロオレフィンとエチレン性不飽和化合物との共重合体の混合比率も、前記混合物の固形分100質量部に対し、固形分に換算して0.5質量部~10質量部とする。共重合体の混合比率が0.5質量部未満では、耐蝕性を向上させる効果が十分に現れないためであり、10質量部超では、溶液の安定性が劣化するためである。
 さらに、絶縁被膜には、リン酸金属塩やコロイダルシリカと、前述した有機樹脂との混合物、及びフルオロオレフィンとエチレン性不飽和化合物との共重合体以外の成分が含まれていてもよい。例えば、炭酸塩、水酸化物、酸化物、チタン酸塩やタングステン酸塩などの無機化合物、あるいはポリオール、セロソルブ、カルボン酸類、エーテル類、エステル類などの有機低分子化合物を添加剤として混合しても良い。
 次に、以上に説明した成分が含まれた処理液を鋼板の表面に塗布する場合、塗布方式は特に限定するものではなく、ロールコーター方式を用いても良いし、スプレー方式、ディップ方式などの塗布方式を用いても良い。
 また、処理液を乾燥させて焼き付ける加熱方式を用いる場合は、通常の輻射炉や熱風炉が使用可能であり、誘導加熱方式や高周波加熱方式などを用いても良い。
 乾燥条件としては、例えば、200℃~380℃の範囲で焼付け時間が15秒間から60秒間が適当である。さらに好適には、リン酸金属塩を含む絶縁被膜の場合には260℃~330℃の範囲である。一方、コロイダルシリカを含む絶縁被膜の場合には、200℃~300℃が適当であり、さらに好適には、240℃~280℃である。
 さらに、上述の処理液に対して、界面活性剤などの添加剤を加えても良い。界面活性剤としては、脂肪族系ポリオキシアルキレンエーテル界面活性剤が適当で、その他光沢剤、防腐剤、酸化防止剤などを添加しても良い。
 上記フルオロオレフィンとエチレン性不飽和化合物との共重合体、及びリン酸金属塩又はコロイダルシリカと特定の有機樹脂との混合物から構成される絶縁被膜では、絶縁被膜中に共重合体が分散する。分散したフルオロオレフィンとエチレン性不飽和化合物との共重合体は絶縁被膜の表層付近に濃縮し、絶縁被膜の表面張力が実質的に最適化する。その結果、密着性を保持するとともに湿潤環境下の耐蝕性が向上すると考えられる。
 次に、本発明者らが行った実験について説明する。これらの実験における条件等は、本発明の実施可能性及び効果を確認するために採用した例であり、本発明は、これらの例に限定されるものではない。
 まず、Si:2.0質量%、Al:0.3質量%、Mn:0.3質量%を含有する板厚0.35mmで、表面粗度がRa(中心線平均粗さ)で0.44μmの鋼板を用意した。なお、鋼板の表面粗さについては、JIS法(JIS B0601)に準じた市販の表面粗度測定装置を用いて測定した。
 次に、以下の表1に示すNo.1~No.15の混合液を作製した。
Figure JPOXMLDOC01-appb-T000001
 リン酸金属塩として、オルトリン酸と、Al(OH)などの金属水酸化物、酸化物、または炭酸塩を混合撹拌してリン酸金属塩処理液を調製し、40質量%水溶液とした。なお、参考例として、40質量%のクロム酸マグネシウム水溶液も用意した。
 コロイダルシリカは、市販されている平均粒径15nmで表面をアルミニウムで改質した濃度が30質量%のものを使用した。
 さらに、有機樹脂については、以下に示した6種類の有機樹脂を、それぞれ濃度が30質量%のエマルジョン溶液とした。さらに、粘度調整剤及び界面活性剤を適量加えて、表1に示す混合液を作製した。
(1)アクリル系樹脂1:メチルメタクリレート30質量%、2-ヒドロキシエチルメタクリレートを10質量%、n-ブチルアクリレート30質量%、スチレンモノマー10質量%、及びイソブチルアクリレート20質量%を共重合させたアクリル系樹脂
(2)アクリル系樹脂2:メチルアクリレート45質量%、スチレンモノマー30質量%、イソブチルアクリレート20質量%、及びマレイン酸15質量%を共重合させたアクリル系樹脂
(3)エポキシ系樹脂1:ビスフェノールAをトリエタノールアミンで変性した後、無水コハク酸を反応させたカルボキシル基変性エポキシ系樹脂
(4)エポキシ系樹脂2:フェノールノボラック型エポキシ樹脂にエチレンプロピレンブロックポリマーを混合してノニルフェニルエーテルエチレンオキサイドを付加し、自己乳化型としたエポキシ系樹脂
(5)ポリエステル系樹脂:ジメチルテレフタレート35質量%とネオペンチルグリコール35質量%とを共重合させた後、フマル酸15質量%と無水トリメリット酸15質量%とをグラフト重合させた、カルボキシル基含有ポリエステル系樹脂
(6)水性ポリウレタン:既知の方法でヘキサメチレンジイソシアネートとポリエチレングリコールから合成された水性ポリウレタン
 なお、アクリル系樹脂1及びアクリル系樹脂2の平均粒径は、それぞれ0.25μm、0.64μmであった。また、エポキシ系樹脂1及びエポキシ系樹脂2の平均粒径は、それぞれ0.33μm、0.76μmであった。また、ポリエステル系樹脂の平均粒径は0.35μmであり、水性ポリウレタンの平均粒径は0.12μmであった。なお、表1に示す樹脂質量部は、固形分換算である。
 また、混合液No.3には、添加剤としてホスホン酸を、リン酸マンガン100質量部に対して1.5質量部添加した。
 次に、表1に示したこれらの混合液に、以下の表2に示すフルオロオレフィンとエチレン性不飽和化合物との共重合体、またはフッ素樹脂を所定量添加した処理液、及び何も添加していない処理液を作製した。なお、表2に示すフッ素樹脂添加量(質量部)は、固形分換算である。
Figure JPOXMLDOC01-appb-T000002
 表2に示す共重合体1は、テトラフルオロエチレンと炭素数6の直鎖アルキルビニルエーテルとが共重合されたものであり、共重合体2はテトラフルオロエチレンとメチルビニルエーテルとが共重合されたものである。共重合体3はクロロトリフルオロエチレンとプロピレンアルキルビニルエーテルとヒドロキシヘキシルビニルエーテルとを共重合させた後、ヒドロキシル基をカルボキシル基に置換したものである。共重合体4はクロロトリフルオロエチレンとヒドロキシドデシルビニルエーテルとをそれぞれ既知の方法で共重合させたものである。共重合させる既知の方法としては、例えば、特許3117511号公報に開示された方法が好適であり、また、カルボキシル基に置換する方法としては、特公昭58-136605号公報に開示された方法を用いることができる。フッ素樹脂1は、ポリテトラフルオロエチレンであり、フッ素樹脂2は、ポリビニリデンフルオライドである。また、フッ素樹脂3は、パーフルオロアルコキシアルカンである。
 処理液の塗布にはロールコーター方式を用い、絶縁被膜の膜厚が約0.8μmになるようロール圧下量等を調整した。乾燥は、輻射炉を用いて行い、表2に示した所定の加熱条件が得られるよう、炉温設定を調整した。到達板温及び焼付け時間は、サンプルによって異なるが、加熱温度が180℃~400℃の範囲で焼付け時間は5秒間~70秒間になるよう調整した。
 一方、平均粒径については予め測定した。有機樹脂エマルジョンについては蒸留水で希釈した後、フッ素樹脂パウダーについては、蒸留水中に約1分間超音波洗浄機で分散させた後、JIS法(JIS Z8826)に準じた市販のレーザー回折法による粒径測定装置にて数平均粒径を測定した。
 以下に、製造したNo.1~No.26のサンプルの評価方法について、詳細に説明する。
 絶縁性については、JIS法(JIS C2550)に準じて測定した層間抵抗を基に、5Ω・cm/枚未満を×とし、5Ω・cm/枚~10Ω・cm/枚を△とした。そして、10Ω・cm/枚~50Ω・cm/枚を○とし、50Ω・cm/枚以上を◎とした。
 密着性については、10mm、20mm、及び30mmの直径の金属棒に粘着テープを貼ったサンプルを巻きつけた後、粘着テープを引き剥がし、剥れた痕跡から密着性を評価した。10mmφの曲げでも剥れなかったものを10mmφOKとし、以下20mmφで剥れなかったものを20mmφOK、30mmφで剥れなかったものを30mmφOKとし、剥がれたものをOUTとした。
 湿潤環境下の耐蝕性については、まず、JIS法の塩水噴霧試験(JIS Z2371)に準じて35℃の雰囲気中で5%NaCl水溶液を1時間サンプルに自然降下させた。次に、サンプルを温度60℃、湿度40%で3時間保持し、温度40℃、湿度95%で3時間保持し、これを1サイクルとして5サイクル繰り返した。そして、サンプルの発錆面積を10点評価で行った。評価基準は、以下の通りである。
  10:錆発生が無かった
   9:錆発生が極少量(面積率0.1%以下)
   8:錆の発生した面積率=0.1%超過0.25%以下
   7:錆の発生した面積率=0.25%超過0.50%以下
   6:錆の発生した面積率=0.50%超過1%以下
   5:錆の発生した面積率=1%超過2.5%以下
   4:錆の発生した面積率=2.5%超過5%以下
   3:錆の発生した面積率=5%超過10%以下
   2:錆の発生した面積率=10%超過25%以下
   1:錆の発生した面積率=25%超過50%以下
 接触角については、マツボー社製接触角計PG-Xを用いて測定した。測定値は10回測定した平均値である。
 外観については、光沢があり、平滑で均一であるものを5とし、以下、光沢はあるが均一性に若干劣るものを4、やや光沢があり平滑ではあるが均一性に劣るものを3、光沢が少なく、平滑性にやや劣り均一性に劣るものを2、光沢、均一性、及び平滑性がすべて劣るものを1とした。
 耐熱性については、窒素雰囲気において750℃で2時間歪取り焼鈍を行った後に、鋼板表面に100gf(約0.98N)の荷重で2mm×30mmのガーゼを擦り付け、絶縁被膜の剥離状況を評価した。この結果、剥離しなかったものを5、少し剥離したものを4、はっきり剥離したものを3、剥離状況が酷いものを2、ガーゼで擦らなくても剥離したものを1とした。以下の表3に評価結果を示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、本発明の実施例に該当するサンプルNo.1~No.9はすべて湿潤環境下の耐蝕性に優れていることが判明した。さらに、サンプルNo.1~No.9は、耐蝕性に加えて、絶縁性、密着性、及び外観も優れることがわかった。また、比較例に該当するサンプルNo.10~No.25では、耐蝕性の効果が低くなっているものが多く、また、耐蝕性、絶縁性、密着性、及び外観の全てに優れたものは存在しなかった。
 以上説明したように、本発明の実施形態に係る電磁鋼板では、積層鉄芯の製造において、湿潤環境下の耐蝕性が良好であり、かつ電磁鋼板の他の絶縁被膜に関する特性も良好である。
 以上、本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、本発明の技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 本発明によれば、湿潤環境下での耐蝕性が良好であり、かつ密着性や占積率、打抜き性などの特性が優れた電磁鋼板を電気機器の鉄芯材料等として用いることができる。

Claims (4)

  1.  鋼板の表面に、
     リン酸金属塩100質量部と、平均粒径が0.05μm~0.50μmのアクリル系樹脂、エポキシ系樹脂及びポリエステル系樹脂からなる群から選ばれる1種又は2種以上の混合物又は共重合物からなる有機樹脂1質量部~50質量部とから構成される混合物:100質量部と、
     固形分としてフルオロオレフィンとエチレン性不飽和化合物との共重合体:0.5質量部~10質量部と、
     が混合された絶縁被膜が被覆されていることを特徴とする電磁鋼板。
  2.  鋼板の表面に、
     コロイダルシリカ100質量部と、平均粒径が0.05μm~0.50μmのアクリル系樹脂、エポキシ系樹脂及びポリエステル系樹脂からなる群から選ばれる1種又は2種以上の混合物又は共重合物からなる有機樹脂40質量部~400質量部とから構成される混合物:100質量部と、
     固形分としてフルオロオレフィンとエチレン性不飽和化合物との共重合体:0.5質量部~10質量部と、
     が混合された絶縁被膜が被覆されていることを特徴とする電磁鋼板。
  3.  リン酸金属塩100質量部に対し、平均粒径が0.05μm~0.50μmのアクリル系樹脂、エポキシ系樹脂及びポリエステル系樹脂からなる群から選ばれる1種又は2種以上の混合物又は共重合物からなる有機樹脂を固形分で1質量部~50質量部混合する工程と、
     前記リン酸金属塩と前記有機樹脂との混合物の固形分100質量部に対し、フルオロオレフィンとエチレン性不飽和化合物との共重合体を固形分に換算して0.5質量部~10質量部混合した処理液を作製する工程と、
     前記作製した処理液を鋼板の表面に塗布する工程と、
     前記処理液が塗布された鋼板を200℃~380℃の到達温度で15秒間~60秒間焼付け乾燥する工程と、を有することを特徴とする電磁鋼板の製造方法。
  4.  コロイダルシリカ100質量部に対し、平均粒径が0.05μm~0.50μmのアクリル系樹脂、エポキシ系樹脂及びポリエステル系樹脂からなる群から選ばれる1種又は2種以上の混合物又は共重合物からなる有機樹脂を固形分で40質量部~400質量部混合する工程と、
     前記コロイダルシリカと前記有機樹脂との混合物の固形分100質量部に対し、フルオロオレフィンとエチレン性不飽和化合物との共重合体を固形分に換算して0.5質量部~10質量部混合した処理液を作製する工程と、
     前記作製した処理液を鋼板の表面に塗布する工程と、
     前記処理液が塗布された鋼板を200℃~300℃の到達温度で15秒間~60秒間焼付け乾燥する工程と、を有することを特徴とする電磁鋼板の製造方法。
     
     
PCT/JP2011/074590 2010-10-29 2011-10-25 電磁鋼板及びその製造方法 WO2012057168A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US13/881,804 US10669432B2 (en) 2010-10-29 2011-10-25 Electrical steel sheet and method of manufacturing the same
EP11836301.9A EP2634288B1 (en) 2010-10-29 2011-10-25 Electrical steel sheet and method of manufacturing the same
KR1020157005414A KR101518691B1 (ko) 2010-10-29 2011-10-25 전자기 강판 및 그 제조 방법
CN201180052130.4A CN103189544B (zh) 2010-10-29 2011-10-25 电磁钢板及其制造方法
KR1020137010262A KR101518656B1 (ko) 2010-10-29 2011-10-25 전자기 강판 및 그 제조 방법
JP2012502381A JP5005844B2 (ja) 2010-10-29 2011-10-25 電磁鋼板及びその製造方法
PL11836301T PL2634288T3 (pl) 2010-10-29 2011-10-25 Blacha ze stali elektrotechnicznej oraz sposób jej wytwarzania
HK13114430.4A HK1187083A1 (en) 2010-10-29 2013-12-31 Electromagnetic steel sheet and process for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010244030 2010-10-29
JP2010-244030 2010-10-29

Publications (1)

Publication Number Publication Date
WO2012057168A1 true WO2012057168A1 (ja) 2012-05-03

Family

ID=45993874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074590 WO2012057168A1 (ja) 2010-10-29 2011-10-25 電磁鋼板及びその製造方法

Country Status (9)

Country Link
US (1) US10669432B2 (ja)
EP (1) EP2634288B1 (ja)
JP (1) JP5005844B2 (ja)
KR (2) KR101518656B1 (ja)
CN (1) CN103189544B (ja)
HK (1) HK1187083A1 (ja)
PL (1) PL2634288T3 (ja)
TW (1) TWI468549B (ja)
WO (1) WO2012057168A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125783A1 (ja) * 2015-02-05 2016-08-11 新日鐵住金株式会社 電磁鋼板
WO2016171104A1 (ja) * 2015-04-20 2016-10-27 旭硝子株式会社 絶縁被膜付き電磁鋼板および水系表面処理剤
KR20170085580A (ko) 2014-12-26 2017-07-24 신닛테츠스미킨 카부시키카이샤 전자 강판
KR20170088389A (ko) 2014-12-26 2017-08-01 신닛테츠스미킨 카부시키카이샤 전자 강판
JP2017141480A (ja) * 2016-02-08 2017-08-17 新日鐵住金株式会社 電磁鋼板及び電磁鋼板の製造方法
KR20180003586A (ko) 2015-05-29 2018-01-09 신닛테츠스미킨 카부시키카이샤 전자 강판의 절연 피막
US10519551B2 (en) 2014-12-26 2019-12-31 Nippon Steel Corporation Electrical steel sheet
US10549315B2 (en) 2014-12-26 2020-02-04 Nippon Steel Corporation Electrical steel sheet
WO2020166121A1 (ja) * 2019-02-14 2020-08-20 Jfeスチール株式会社 絶縁被膜付き電磁鋼板
WO2022210962A1 (ja) * 2021-03-31 2022-10-06 日本製鉄株式会社 無方向性電磁鋼板、及び、その製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011442A1 (ja) * 2010-07-23 2012-01-26 新日本製鐵株式会社 電磁鋼板及びその製造方法
CN110114431B (zh) 2016-12-23 2021-06-15 Posco公司 电工钢板粘合涂覆组分物、电工钢板产品及其制造方法
CN110832112B (zh) * 2017-07-13 2021-12-21 日本制铁株式会社 方向性电磁钢板
EP3943203B1 (en) * 2019-04-22 2024-09-11 JFE Steel Corporation Method for producing non-oriented electrical steel sheet

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919078B1 (ja) 1970-12-07 1974-05-15
JPS5015016B1 (ja) 1970-12-29 1975-06-02
JPS58136605A (ja) 1982-02-05 1983-08-13 Asahi Glass Co Ltd カルボキシル基含有含フツ素重合体の製造方法
JPH0336284A (ja) 1989-06-30 1991-02-15 Sumitomo Metal Ind Ltd 歪取焼鈍後の耐置錆性に優れた電気絶縁皮膜の形成方法
JPH0598207A (ja) 1991-10-08 1993-04-20 Asahi Glass Co Ltd 水性塗料組成物
JPH06330338A (ja) 1993-05-21 1994-11-29 Nippon Steel Corp 被膜特性の極めて良好な無方向性電磁鋼板の製造方法
JPH0741913A (ja) 1993-07-26 1995-02-10 Nippon Steel Corp 皮膜特性の優れる無方向性電磁鋼板及びその鋼板用表面処理剤
JPH07278834A (ja) * 1994-04-14 1995-10-24 Kawasaki Steel Corp 溶接性およびオイルレス打抜き性に優れた電気絶縁被膜を有する電磁鋼板
JPH09323066A (ja) 1996-06-07 1997-12-16 Kawasaki Steel Corp 歪取り焼鈍が可能で耐蝕性、耐溶剤性に優れる絶縁被膜付き電磁鋼板ならびにその絶縁被膜の形成方法
JP3117511B2 (ja) 1991-10-16 2000-12-18 旭硝子株式会社 塗料用組成物および塗装方法
JP2002309379A (ja) 2001-04-12 2002-10-23 Kawasaki Steel Corp 加工性に優れる絶縁被膜付き電磁鋼板

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563012B2 (ja) 1973-04-14 1981-01-22
JPS5530272B2 (ja) 1973-06-15 1980-08-09
JPS5443823A (en) * 1977-09-14 1979-04-06 Nippon Steel Corp Film forming method on electromagnetic steel sheet to prevent seizure at the time of strain relief annealing
JPS6038068A (ja) * 1983-08-10 1985-02-27 Sumitomo Metal Ind Ltd 電磁鋼板に絶縁皮膜を形成する方法
JPH07286283A (ja) 1994-04-18 1995-10-31 Kawasaki Steel Corp 溶接性およびオイルレス打抜性に優れた電気絶縁被膜を有する電磁鋼板
JPH07331453A (ja) * 1994-06-08 1995-12-19 Kawasaki Steel Corp 溶接性およびオイルレス打抜性に優れた電気絶縁被膜を有する電磁鋼板
US6153303A (en) * 1997-08-26 2000-11-28 Dupont Mitsui Fluorochemicals Tetrafluoroethylene copolymer composition for coating metal articles
CA2224667C (en) 1997-12-12 2007-07-03 Kawasaki Steel Corporation Solvent-resistant electrical steel sheet capable of stress relief annealing and process
US5955201A (en) 1997-12-19 1999-09-21 Armco Inc. Inorganic/organic insulating coating for nonoriented electrical steel
JP3435080B2 (ja) 1998-10-23 2003-08-11 新日本製鐵株式会社 被膜特性に優れた無方向性電磁鋼板
US6159534A (en) 1998-11-23 2000-12-12 Nippon Steel Corporation Method for producing non-oriented electromagnetic steel sheet having insulating film excellent in film properties
US6383650B1 (en) 1998-11-23 2002-05-07 Nippon Steel Corporation Non-oriented electromagnetic steel sheet having insulating film excellent in film properties
US6686432B2 (en) * 2002-02-15 2004-02-03 Ppg Industries Ohio, Inc. Alternating copolymers of isobutylene type monomers
KR20050119142A (ko) * 2003-03-26 2005-12-20 도토기키 가부시키가이샤 기능성 부재, 그것을 제조하기 위한 방법 및 코팅액
JP4456955B2 (ja) 2004-07-16 2010-04-28 富士ゼロックス株式会社 電子写真感光体、電子写真用カートリッジおよび電子写真装置
WO2006039658A2 (en) * 2004-09-30 2006-04-13 Ppg Industries Ohio, Inc. Thermosetting coating compositions comprising a copolymer formed from chlorotrifluoroethylene and methods of making copolymers formed from chlorotrifluoroethylene
CN101048461A (zh) 2004-10-27 2007-10-03 纳幕尔杜邦公司 自粘合涂料组合物
EP1830613B1 (en) * 2004-12-20 2011-04-27 Asahi Glass Company, Limited Laminate for flexible printed wiring boards
DE102006024869A1 (de) * 2006-05-24 2007-11-29 Bk Giulini Gmbh Korrosionsschutzpigmente
PL2366810T3 (pl) * 2008-11-27 2019-12-31 Nippon Steel Corporation Blacha elektrotechniczna i sposób jej wytwarzania
WO2012011442A1 (ja) 2010-07-23 2012-01-26 新日本製鐵株式会社 電磁鋼板及びその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919078B1 (ja) 1970-12-07 1974-05-15
JPS5015016B1 (ja) 1970-12-29 1975-06-02
JPS58136605A (ja) 1982-02-05 1983-08-13 Asahi Glass Co Ltd カルボキシル基含有含フツ素重合体の製造方法
JPH0336284A (ja) 1989-06-30 1991-02-15 Sumitomo Metal Ind Ltd 歪取焼鈍後の耐置錆性に優れた電気絶縁皮膜の形成方法
JPH0598207A (ja) 1991-10-08 1993-04-20 Asahi Glass Co Ltd 水性塗料組成物
JP3117511B2 (ja) 1991-10-16 2000-12-18 旭硝子株式会社 塗料用組成物および塗装方法
JPH06330338A (ja) 1993-05-21 1994-11-29 Nippon Steel Corp 被膜特性の極めて良好な無方向性電磁鋼板の製造方法
JPH0741913A (ja) 1993-07-26 1995-02-10 Nippon Steel Corp 皮膜特性の優れる無方向性電磁鋼板及びその鋼板用表面処理剤
JPH07278834A (ja) * 1994-04-14 1995-10-24 Kawasaki Steel Corp 溶接性およびオイルレス打抜き性に優れた電気絶縁被膜を有する電磁鋼板
JPH09323066A (ja) 1996-06-07 1997-12-16 Kawasaki Steel Corp 歪取り焼鈍が可能で耐蝕性、耐溶剤性に優れる絶縁被膜付き電磁鋼板ならびにその絶縁被膜の形成方法
JP2002309379A (ja) 2001-04-12 2002-10-23 Kawasaki Steel Corp 加工性に優れる絶縁被膜付き電磁鋼板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2634288A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170085580A (ko) 2014-12-26 2017-07-24 신닛테츠스미킨 카부시키카이샤 전자 강판
KR20170088389A (ko) 2014-12-26 2017-08-01 신닛테츠스미킨 카부시키카이샤 전자 강판
US10190219B2 (en) 2014-12-26 2019-01-29 Nippon Steel & Sumitomo Metal Corporation Electrical steel sheet
US10519551B2 (en) 2014-12-26 2019-12-31 Nippon Steel Corporation Electrical steel sheet
US10549315B2 (en) 2014-12-26 2020-02-04 Nippon Steel Corporation Electrical steel sheet
US10604848B2 (en) 2014-12-26 2020-03-31 Nippon Steel Corporation Electrical steel sheet
WO2016125783A1 (ja) * 2015-02-05 2016-08-11 新日鐵住金株式会社 電磁鋼板
KR20170107568A (ko) 2015-02-05 2017-09-25 신닛테츠스미킨 카부시키카이샤 전자 강판
JPWO2016125783A1 (ja) * 2015-02-05 2017-11-09 新日鐵住金株式会社 電磁鋼板
WO2016171104A1 (ja) * 2015-04-20 2016-10-27 旭硝子株式会社 絶縁被膜付き電磁鋼板および水系表面処理剤
US11332831B2 (en) 2015-05-29 2022-05-17 Nippon Steel Corporation Insulating coating for electrical steel sheet
KR20180003586A (ko) 2015-05-29 2018-01-09 신닛테츠스미킨 카부시키카이샤 전자 강판의 절연 피막
JP2017141480A (ja) * 2016-02-08 2017-08-17 新日鐵住金株式会社 電磁鋼板及び電磁鋼板の製造方法
JPWO2020166121A1 (ja) * 2019-02-14 2021-02-18 Jfeスチール株式会社 絶縁被膜付き電磁鋼板
CN113423868A (zh) * 2019-02-14 2021-09-21 杰富意钢铁株式会社 带绝缘被膜的电磁钢板
EP3926072A4 (en) * 2019-02-14 2022-03-23 JFE Steel Corporation ELECTROMAGNETIC STEEL SHEET WITH INSULATION COATING FILM ATTACHED
WO2020166121A1 (ja) * 2019-02-14 2020-08-20 Jfeスチール株式会社 絶縁被膜付き電磁鋼板
JP7080255B2 (ja) 2019-02-14 2022-06-03 Jfeスチール株式会社 絶縁被膜付き電磁鋼板
WO2022210962A1 (ja) * 2021-03-31 2022-10-06 日本製鉄株式会社 無方向性電磁鋼板、及び、その製造方法

Also Published As

Publication number Publication date
KR101518691B1 (ko) 2015-05-11
EP2634288B1 (en) 2017-11-29
KR20150038540A (ko) 2015-04-08
US10669432B2 (en) 2020-06-02
JPWO2012057168A1 (ja) 2014-05-12
CN103189544A (zh) 2013-07-03
HK1187083A1 (en) 2014-03-28
TWI468549B (zh) 2015-01-11
US20130209789A1 (en) 2013-08-15
CN103189544B (zh) 2015-08-12
EP2634288A1 (en) 2013-09-04
TW201224204A (en) 2012-06-16
JP5005844B2 (ja) 2012-08-22
KR101518656B1 (ko) 2015-05-07
PL2634288T3 (pl) 2018-05-30
EP2634288A4 (en) 2015-01-21
KR20130094827A (ko) 2013-08-26

Similar Documents

Publication Publication Date Title
JP5005844B2 (ja) 電磁鋼板及びその製造方法
JP5093411B2 (ja) 樹脂モールドされる積層鉄芯に使用される電磁鋼板及びその製造方法
CN107250431B (zh) 电磁钢板及电磁钢板的制造方法
JP4729136B2 (ja) 電磁鋼板及びその製造方法
JP5423465B2 (ja) 電磁鋼板および電磁鋼板の製造方法
EP3255177B1 (en) Electrical steel sheet
JP5471849B2 (ja) 電磁鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012502381

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137010262

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011836301

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011836301

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13881804

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE