WO2016125783A1 - 電磁鋼板 - Google Patents

電磁鋼板 Download PDF

Info

Publication number
WO2016125783A1
WO2016125783A1 PCT/JP2016/053041 JP2016053041W WO2016125783A1 WO 2016125783 A1 WO2016125783 A1 WO 2016125783A1 JP 2016053041 W JP2016053041 W JP 2016053041W WO 2016125783 A1 WO2016125783 A1 WO 2016125783A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
steel sheet
coating
oxide
fluorine
Prior art date
Application number
PCT/JP2016/053041
Other languages
English (en)
French (fr)
Inventor
竹田 和年
健司 小菅
達弥 高瀬
孝司 棟田
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2016573373A priority Critical patent/JP6500918B2/ja
Priority to US15/545,760 priority patent/US20180022927A1/en
Priority to BR112017015374-2A priority patent/BR112017015374B1/pt
Priority to KR1020177024344A priority patent/KR102031780B1/ko
Priority to EP16746614.3A priority patent/EP3255177B1/en
Priority to CN201680008987.9A priority patent/CN107208271B9/zh
Priority to PL16746614T priority patent/PL3255177T3/pl
Publication of WO2016125783A1 publication Critical patent/WO2016125783A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • B05D1/06Applying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • the present invention relates to an electromagnetic steel sheet.
  • a hoop-shaped electromagnetic steel sheet is punched into a predetermined shape, and then the punched electromagnetic steel sheets are laminated to form an iron core. Wrap a copper wire around the core teeth. Subsequently, after impregnating the iron core with varnish and the like, a terminal and a flange for connecting a copper wire are attached and fixed to the case to manufacture a motor and a transformer.
  • powder coating refers to coating the entire iron core by allowing the coating powder dispersed in powder form to adhere to the iron core by static electricity and then drying and curing.
  • Electrodeposition coating is a method in which paint particles dispersed in water are electrically attached to an iron core, and then dried and cured to coat the entire iron core.
  • the aqueous coating is to coat the entire iron core by spraying the coating liquid or immersing it in the coating liquid to adhere the coating liquid to the iron core and then drying and curing it.
  • powder coating, electrodeposition coating, water-based coating, etc. may cause rust from the gap between the coating and the iron core if the adhesion between the coating and the iron core is low. is important.
  • the upper and lower surfaces on which the iron cores are laminated are surface-treated steel plate surfaces, whereas the side surfaces on which the iron cores are laminated are exposed because the punched steel itself is exposed. It has different characteristics from the upper and lower surfaces.
  • the surface of the electrical steel sheet is provided with an insulating coating for reducing eddy current loss.
  • the insulating coating is required to have coating properties such as corrosion resistance, adhesion to a steel sheet, punchability, and heat resistance.
  • such an insulating film is composed mainly of salts such as chromate and phosphate, oxides such as colloidal silica and mica, organic resins such as acrylic resin and epoxy resin, or a mixture thereof. Is known.
  • an organic material such as dichromate and vinyl acetate-acrylic resin copolymer, butadiene-styrene copolymer or acrylic resin is used.
  • a technique for forming an insulating film using a treatment liquid mainly composed of a resin emulsion is disclosed.
  • an aqueous chromic acid solution, an emulsion type resin, and an organic reducing agent are further included.
  • an easily soluble aluminum compound, a divalent metal (Me) oxide, and the like, and H 3 BO 3 , the molar ratio of Me 2+ / Al 3+ in the chromic acid solution is 0 to 7.0, and the molar ratio of (Al 3+ + Me 2+ ) / CrO 3 is 0.2 to 0.5.
  • a technique for forming an insulating film using a treatment liquid having a molar ratio of H 3 BO 3 / CrO 3 of 0.1 to 1.5 is disclosed.
  • JP-A-06-330338 a phosphate having a specific composition, one or more of boric acid and colloidal silica, and an organic resin having a specific particle size are used.
  • a technique for blending an emulsion with a specific ratio and baking it on a steel sheet is disclosed.
  • Japanese Patent Application Laid-Open No. 09-323066 discloses an electrical steel sheet having an insulating coating on its surface containing an ethylene-unsaturated carboxylic acid copolymer, an epoxy resin, a silane coupling agent, and silica in specific ratios. ing.
  • JP-A No. 2002-309379 discloses excellent slipperiness and adhesion with an outermost layer coating containing no chromium-based compound and containing 40 to 90% by mass of a fluorine resin and an organic resin.
  • An electrical steel sheet for punching is disclosed.
  • Japanese Patent Application Laid-Open No. 2002-309379 discloses that the fluorine resin contained in the outermost layer film is polytetrafluoroethylene, and the organic resin contained in the outermost layer film is a polyethersulfone resin, polyphenylene sulfide resin, polyetherketone. And a mixture of one or more of the polysulfone resins.
  • JP-A No. 05-98207 discloses a copolymer of a fluoroolefin and an ethylenically unsaturated compound, the unit based on the fluoroolefin is 30 to 70%, and the hydroxyl value is A technique relating to an aqueous coating composition containing a fluorine copolymer having an acid value of 30 to 200 mg KOH / g, an acid value of 2 to 200 mg KOH / g, and a number average molecular weight of 3000 to 40000 is disclosed.
  • Japanese Patent Application Laid-Open No. 07-41913 discloses a technique related to an electrical steel sheet having an insulating coating composed of a phosphate and an organic resin.
  • WO 2012/57168 discloses a copolymer of a fluoroolefin and an ethylenically unsaturated compound with respect to a mixture of a metal phosphate and an acrylic resin, epoxy resin or polyester resin having a specific particle size.
  • a technique for forming an insulating film having good adhesion to an electromagnetic steel sheet by mixing at a specific ratio is disclosed.
  • Japanese Patent Publication No. 50-15013 Japanese Patent Laid-Open No. 03-36284, Japanese Patent Laid-Open No. 06-330338, Japanese Patent Laid-Open No. 09-323066, Japanese Patent Laid-Open No. 2002-309379, Japanese Patent Laid-Open No. 05-98207.
  • the coating properties of the insulating coating There was a difference in the paintability of the exposed metal parts.
  • the coating film thickness of the insulating coating part becomes excessively thin and the corrosion resistance is inferior, conversely, the film thickness of the laminated side surface becomes excessively thick and the adhesion is inferior, and the insulating coating part is uniformly coated. In some cases, coating unevenness may occur, and further, the effect of improving the corrosion resistance by powder coating, electrodeposition coating, and water-based coating may be hardly obtained.
  • the insulating coating whose main component is a high molecular weight fluorine resin is used.
  • the cost is high and the coating after punching does not adhere.
  • a high molecular weight fluorine resin has poor dispersibility. For this reason, there has been a problem that the fluororesin becomes a large mass when stirred for a long time, and unevenness of the concentration of the fluororesin occurs on the edge coating surface.
  • an object of the present invention is to improve the paintability of the electromagnetic steel sheet, improve the corrosion resistance in a wet environment, and further improve the insulating properties.
  • An object of the present invention is to provide an electrical steel sheet having good coating properties such as adhesion, appearance and heat resistance.
  • the present inventors have solved the above-mentioned problems by containing a fluorine-containing material having a low molecular weight as a main component of the insulating coating.
  • the gist is in the electrical steel sheet shown below.
  • (1) including one or more of inorganic salts, oxides and organic resins, Inorganic salts and / or oxides are contained in total of 50% by mass or more based on the total mass of the insulating film,
  • the fluorine concentration is 2 ppm to 130 ppm, and
  • a metal phosphate of one or more metal elements of aluminum, zinc, calcium, cobalt, strontium, zirconium, titanium, nickel, barium, magnesium and manganese an acrylic resin
  • 1 to 50 parts by mass of one or two or more of epoxy resin and polyester resin or a copolymer or a copolymer are contained in total of 50% by mass or more based on the total mass of the insulating film.
  • the present invention contains an inorganic salt and / or oxide in a total amount of 50% by mass or more based on the total mass of the insulating film, or contains a metal phosphate and an organic resin in the insulating film.
  • a specific fluorine concentration to the insulating coating containing 50% by mass or more of the total mass, the coatability during electrodeposition coating, powder coating or aqueous coating is good and wet. It is an object of the present invention to provide an electrical steel sheet having an insulating coating that also has excellent properties such as corrosion resistance, insulation, adhesion, appearance, heat resistance and the like in the environment.
  • the present invention relates to an electromagnetic steel sheet used as an iron core material for electrical equipment.
  • the present invention relates to an electrical steel sheet that does not contain a chromium-based compound, has good insulation, adhesion, and corrosion resistance in a wet environment, and includes an insulating coating having appropriate paintability. .
  • the electrical steel sheet according to the present embodiment does not contain a chromium-based compound and has an insulating coating having a fluorine concentration of 2 ppm to 130 ppm on the steel sheet surface.
  • the insulating coating contains, for example, a mixture of inorganic salts and / or oxides in a total amount of 50% by mass or more with respect to the total mass of the insulating coating, or a metal phosphate, acrylic resin, epoxy resin and A total of 50% by mass or more of an organic resin such as a polyester resin is contained with respect to the total mass of the insulating film.
  • the electrical steel sheet on which the insulating coating is formed contains at least Si: 0.1% or more and less than 4.0%, Al: 0.05% or more and less than 3.0%, and the balance.
  • Non-oriented electrical steel sheets in which is Fe and impurities can be suitably used.
  • Si increases the electric resistance and improves the magnetic properties as the addition amount increases, but on the other hand, it lowers the rollability, so it is preferably less than 4.0% by mass.
  • Al improves the magnetic properties as the addition amount increases, but is preferably less than 3.0% by mass in order to reduce the rollability.
  • the electrical steel sheet used in the present embodiment may contain elements such as Mn, Sn, Cr and P in addition to Si and Al in a content in the range of 0.01% by mass to 3.0% by mass. .
  • the electrical steel sheet used in the present embodiment may contain other elements such as S, N, and C at a content of less than 100 ppm, and preferably less than 20 ppm.
  • the steel component slab is heated to 1000 to 1250 ° C., hot-rolled and wound into a coil shape, and in the temperature range of 800 ° C. to 1050 ° C. in the state of a hot-rolled sheet as necessary.
  • the steel sheet cold-rolled to 0.15 to 0.5 mm and further annealed at 750 to 1100 ° C. can be used as the electrical steel sheet.
  • the surface of the electrical steel sheet on which the insulating coating is formed may be subjected to any pretreatment before the treatment liquid described later is applied.
  • degreasing treatment with alkali, hydrochloric acid, sulfuric acid or phosphoric acid A pickling treatment or the like may be performed.
  • the surface of the electrical steel sheet before the treatment liquid described below is applied may be the surface as it is after finish annealing without being subjected to such pretreatment.
  • the inorganic salt used for the insulating coating in the present embodiment is an acid salt containing acids such as sulfuric acid, nitric acid and carbonic acid and metal ions in an amount of 50% by mass or more based on the total mass of the inorganic salt.
  • the oxide used for the insulating coating is specifically a metal oxide, silica, alumina or the like, and more specifically, colloidal silica, zinc oxide, calcium oxide, cobalt oxide, zirconium oxide, oxidation. Such as titanium and magnesium oxide.
  • an inorganic salt and an oxide may be used independently and may be used as a 2 or more types of mixture.
  • the type of phosphoric acid contained in the metal phosphate used for the insulating coating in the present embodiment is not particularly limited, but orthophosphoric acid, metaphosphoric acid, polyphosphoric acid, and the like are preferable.
  • the types of metal ions contained in the metal phosphate Li, Al, Mg, Ca, Sr, Ti, Ni, Mn, Co, Zn, Zr and Ba are preferable, and Al, Zn, Ca, Co, Sr, Zr, Ti, Ni, Ba, Mg, and Mn are more preferable, and Al, Ca, Mn, and Ni are more preferable.
  • a metal phosphate may be used independently and may be used as a 2 or more types of mixture. Furthermore, it may be used simultaneously with additives such as phosphonic acid or boric acid.
  • colloidal silica having, for example, an average particle diameter of 5 to 40 nm and an Na content of 0.5% by mass or less is used. it can.
  • the Na content is more preferably 0.01 to 0.3% by mass.
  • the average particle diameter of the colloidal silica used in the present embodiment and the average particle diameter of the organic resin described later are the number average value of the diameters of the primary particles (number average particles when the particle shape is approximated to a sphere). Diameter).
  • the average particle size of colloidal silica can be measured by, for example, a nitrogen adsorption method, and the average particle size of organic resin can be measured by, for example, a laser diffraction method.
  • the fluorine concentration in the insulating film needs to be 2 to 130 ppm.
  • the fluorine concentration in the insulating coating is preferably 5 ppm or more, and more preferably 8 ppm or more. Further, the fluorine concentration in the insulating coating is preferably 100 ppm or less, more preferably 50 ppm or less, and particularly preferably 30 ppm or less.
  • the method for measuring the fluorine concentration in the insulating coating is not particularly limited, but for example, an ion chromatography method can be suitably used.
  • an interfering element is present in the component of the insulating coating
  • a highly sensitive measurement method combining an ion chromatographic method and a lanthanum / alizarin complexone method described in JP-A-7-198704 is used. It is also possible to use it.
  • the fluorine concentration in the insulating coating can be accurately quantified.
  • a coating containing a mixture of inorganic salts and / or oxides in a total amount of 50% by mass or more with respect to the total mass of the insulating coating is formed thinly on the surface of the electrical steel sheet, and the fluorine concentration of the coating is 2 The specific concentration is ⁇ 130 ppm.
  • the present invention provides, for example, a thin film on the surface of the electrical steel sheet containing a metal phosphate and an organic resin in a total amount of 50% by mass or more based on the total mass of the insulating film, and the fluorine concentration of the film. To a specific concentration of 2 to 130 ppm.
  • the thickness of these insulating coatings is preferably 0.3 to 3.0 ⁇ m, more preferably 0.5 to 1.5 ⁇ m.
  • the acrylic resin, epoxy resin, and polyester resin used for the insulating coating may be emulsions of resins that are generally available on the market.
  • Acrylic resins include methyl acrylate, ethyl acrylate, n-butyl acrylate, i-butyl acrylate, n-octyl acrylate, i-octyl acrylate, 2-ethylhexyl acrylate, n-nonyl acrylate, n-decyl acrylate, and n- Dodecyl acrylate or the like is used as a monomer, and a monomer having a functional group such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, crotonic acid and itaconic acid, or 2-hydroxylethyl (meth) acrylate, Copolymerized monomers having hydroxyl groups such as 2-hydroxylpropyl (meth) acrylate, 3-hydroxylbutyl (meth) acrylate, and 2-hydroxylethyl (meth) allyl ether It can be more preferably used.
  • an amine-modified epoxy resin reacted with carboxylic anhydride can be used.
  • an amine-modified epoxy resin reacted with carboxylic anhydride
  • Epoxy resins such as isopropanolamine, monopropanolamine, monobutanolamine, monoethanolamine, diethylenetriamine, ethylenediamine, butalamine, propylamine, isophoronediamine, tetrahydrofurfurylamine, xylenediamine, hexylamine, nonylamine, triethylenetetramine, tetramethylene Modification with an amine such as pentamine and diaminodiphenylsulfone Click acid, itaconic anhydride, maleic anhydride, citraconic anhydride, it may be suitably used those obtained by reacting a carboxylic anhydride such as phthalic anhydride and trimellitic anhydride.
  • polyester resin examples include terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, succinic acid, adipic acid, sebacic acid, fumaric acid, maleic acid, maleic anhydride, itaconic acid, and citraconic acid.
  • Dicarboxylic acid ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyldiol 1,6-hexanediol, triethylene glycol, diethylene glycol, Polyester resins obtained by reacting glycols such as propylene glycol and polyethylene glycol can be suitably used. Furthermore, you may use what graft-polymerized acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, methacrylic anhydride, etc. to the polyester resin mentioned above.
  • the organic resin emulsion may be a single emulsion of the above organic resin or an emulsion of a mixture of two or more of the above organic resins.
  • the average particle size of the organic resin emulsion is preferably 0.05 to 0.50 ⁇ m. An average particle size of less than 0.05 ⁇ m is not preferable because the organic resin is likely to aggregate in the treatment liquid and the uniformity of the insulating coating may be reduced. Moreover, when the average particle diameter is more than 0.50 ⁇ m, the stability of the treatment liquid may be lowered, which is not preferable. Further, the average particle size of the organic resin emulsion is more preferably 0.1 to 0.3 ⁇ m.
  • the mixing ratio of the organic resin is 100 mass of metal phosphate.
  • the amount is preferably 1 to 50 parts by mass with respect to parts.
  • the mixing ratio of the organic resin is less than 1 part by mass, the concentration of the organic resin is excessively low, aggregation of the organic resin is likely to occur, and the stability of the treatment liquid may be deteriorated.
  • the mixing ratio of the organic resin is more than 50 parts by mass, the heat resistance of the insulating coating may be lowered, which is not preferable.
  • the mixing ratio of the organic resin is more preferably 6 to 25 parts by mass with respect to 100 parts by mass of the metal phosphate.
  • the mixing ratio of the organic resin is the oxide
  • the amount is preferably 1 to 100 parts by mass with respect to 100 parts by mass.
  • the mixing ratio of the organic resin is less than 1 part by mass, it is not preferable because the film forming property of the insulating coating is poor and there is a possibility of powdering from the insulating coating.
  • the mixing ratio of the organic resin is more than 100 parts by mass, the heat resistance of the insulating coating may be lowered, which is not preferable.
  • the mixing ratio of the organic resin is more preferably 5 to 80 parts by mass with respect to 100 parts by mass of the oxide.
  • a fluorine-containing material is added to the insulating coating in order to set the fluorine concentration to 2 to 130 ppm.
  • the fluorine-containing material an emulsion in which a low-molecular fluorine compound, fluorine rubber and fluorine resin are finely dispersed in an aqueous solution can be suitably used.
  • the fluorine-containing material may be appropriately added and mixed without being emulsified.
  • Fluorine surfactants fluorine oil, etc. can be used as the low molecular fluorine compound.
  • fluorine-based surfactants include perfluorobutane sulfonate, perfluoroalkyl ethylene oxide adducts, perfluoroalkyl group-containing phosphate ester-type neutralized amines, and the like. Chlorotrifluoroethylene low polymer, perfluoropolyether low polymer, perfluoroalkyl polyether low polymer, fluorine-modified silicone, and the like.
  • the fluoro rubber a vinylidene fluoride copolymer can be suitably used.
  • the vinylidene fluoride copolymer includes vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene-propylene copolymer, And vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer.
  • fluororesin examples include fluoroethylene-vinyl ether copolymers such as polytetrafluoroethylene, polychlorotrifluoroethylene and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymers, tetrafluoroethylene-ethylene copolymers, tetrafluoroethylene- Hexafluoropropylene copolymer, polyvinylidene fluoride, ethylene-chlorotrifluoroethylene copolymer, and the like can be used. Also, various modified products of the above-mentioned fluororesin, copolymers with other copolymerizable resins, and the like can be used.
  • the above-mentioned low molecular fluorine compounds, fluorine rubbers, fluorine resins and copolymers thereof mean fluorine-containing materials having a relatively low molecular weight, that is, so-called oligomers.
  • the molecular weight of the low-molecular fluorine compound, fluorine rubber, fluorine resin and copolymers thereof is preferably 200 or more, more preferably 1,000 or more, and preferably 100,000 or less. 20,000 or less is more preferable.
  • low molecular fluorine compounds, fluorine rubbers, fluorine resins and copolymers thereof may be used alone or in combination of two or more types having different introduced functional groups or different molecular weights. Also good.
  • the fluorine-containing materials described above those that dissolve in water can be directly mixed with the treatment liquid.
  • the fluororubber and the fluororesin are emulsified and mixed with the treatment liquid using a fluorosurfactant or the like.
  • the particle size at the time of emulsification is not particularly limited, but for example, a range of 0.05 to 0.50 ⁇ m is preferable, and a range of 0.05 to 0.20 ⁇ m is more preferable.
  • the particle size of the primary particles is less than 0.05 ⁇ m, the fluorine-containing material tends to aggregate in the solution, which may reduce the stability of the solution.
  • the formed insulating coating When it exceeds 50 ⁇ m, the formed insulating coating is liable to peel off and there is a possibility of powdering. In particular, when the stability of the solution is lowered, aggregates are generated in the solution, which may cause clogging of pipes or pumps, or may cause the aggregates to enter the insulating film and cause a film defect, which is not preferable. On the other hand, when the particle size of the primary particles is 0.20 ⁇ m or less, the formed insulating coating is more preferable because it can easily obtain a beautiful appearance.
  • the particle size of the fluorine-containing material when emulsified is specifically the number average particle size, for example, a commercially available laser diffraction / scattering particle size distribution according to the JIS method (JIS Z8825-1). It can be measured by using a measuring device.
  • the mixing ratio of these fluorine-containing materials and the substance that is the main component of the insulating coating (a mixture of one or more of inorganic materials, oxides and organic resins, or metal phosphates and organic resins)
  • the fluorine concentration is a predetermined concentration.
  • the mixture ratio of fluorine-containing material is less than 0.3 parts by mass, fluorine may not be uniformly distributed in the insulating coating, which is not preferable, and when the mixture ratio of fluorine-containing material is more than 50 parts by mass, A portion having a high fluorine concentration is partially formed in the insulating coating, and the paintability may be lowered, which is not preferable.
  • the mixing ratio of the fluorine-containing material is more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the solid content of the substance that is the main component of the insulating coating.
  • the “main component” means that the corresponding component is contained in an amount of 50% by mass or more based on the total mass of the insulating coating.
  • organic insulating low molecular compounds such as polyols, cellosolves, carboxylic acids, ethers and esters may be further added to the insulating coating as additives.
  • the electrical steel sheet having an insulating coating formed on the surface is manufactured by heating and baking and drying. be able to.
  • the application method is not particularly limited.
  • the treatment liquid may be applied to the surface of the electrical steel sheet using a roll coater method, or may be applied to the surface of the electrical steel sheet using an application method such as a spray method or a dip method.
  • the heating method for baking and drying the treatment liquid is not particularly limited.
  • a normal radiant furnace or hot air furnace can be used, and an induction heating system or a high-frequency heating system may be used.
  • the heating temperature is preferably in the range of 200 to 380 ° C., and the baking time is preferably 15 to 60 seconds.
  • the heating temperature is less than 200 ° C., the moisture contained in the insulating film is not sufficiently dehydrated, and when the heating temperature exceeds 380 ° C., the contained organic resin starts to burn, which is not preferable.
  • the baking time is less than 15 seconds, it is difficult to heat evenly, which is not preferable.
  • the baking time exceeds 60 seconds, it is not preferable because it is industrially expensive.
  • the heating temperature is more preferably in the range of 260 to 330 ° C.
  • the heating temperature is more preferably in the range of 200 to 300 ° C.
  • the range of 240 to 280 ° C is more preferable.
  • an additive such as a surfactant may be added to the above-described treatment liquid.
  • a surfactant for example, an aliphatic polyoxyalkylene ether surfactant is preferable, and in addition, a brightener, an antiseptic, an antioxidant, and the like may be added.
  • the fluorine-containing material imparts water and oil repellency to the surface of the insulating coating by being unevenly distributed in the vicinity of the surface layer in the insulating coating.
  • the surface coating with the fluorine-containing material is made a partial coating, and the wet coating environment is optimized while optimizing the powder coating property or the electrodeposition coating property in the insulating coating. It is considered that the corrosion resistance below can be improved.
  • orthophosphoric acid is used as the phosphoric acid metal salt, and orthophosphoric acid and each metal hydroxide, oxide or carbonate such as Mg (OH) 2 , Al (OH) 3, etc.
  • Each metal phosphate solution was prepared by dissolving in water so as to have a concentration of 40% by mass and mixing and stirring.
  • fine particles of titanium oxide, magnesium oxide and zirconium hydroxide as inorganic salts or oxides (mass average particle diameter of less than 1 ⁇ m) (commercially available), and the surface is modified with aluminum, and the average particle diameter is 15 nm.
  • Colloidal silica (commercially available) having a concentration of 30% by mass was used.
  • These inorganic salts or oxides were dispersed in water to a concentration of 40% by mass to prepare an inorganic solution.
  • it is estimated that a part of the hydroxide (zirconium hydroxide) is changed to an oxide (zirconium oxide) by heating during coating and drying.
  • each compound listed in Table 1 was added as a fluorine-containing material so that the fluorine concentration in Table 1 was obtained.
  • the ratio of the metal ion in Table 1 is a mass part ratio
  • the content ratio of the organic resin and the fluorine-containing material is in terms of solid content.
  • the fluorine concentration was analyzed by combustion ion chromatography.
  • measurement was performed with a commercially available ion chromatographic analyzer in accordance with the JIS method (JIS K0102).
  • Insulation properties are based on the interlayer resistance measured according to the JIS method (JIS C2550), and less than 5 ⁇ ⁇ cm 2 / sheet is defined as “x”, and 5 ⁇ ⁇ cm 2 / sheet to 10 ⁇ ⁇ cm 2 / sheet ⁇ and ", 10 ⁇ ⁇ cm 2 / sheet or more 50 ⁇ ⁇ cm less than 2 / sheet as" ⁇ ", was evaluated 50 ⁇ ⁇ cm 2 / sheet or more as" ⁇ ". In addition, regarding the insulation, a sample having an evaluation of “ ⁇ ” or “ ⁇ ” was accepted.
  • Adhesion was evaluated based on the trace of the insulating coating after the steel sheet sample with adhesive tape was wound around each metal rod having a diameter of 10 mm, 20 mm, and 30 mm and the adhesive tape was peeled off from the steel sheet sample.
  • the case where the insulating coating was not peeled even when bent at 10 mm ⁇ was designated as “10 mm ⁇ OK”
  • the case where the insulating coating was not peeled off even at 20 mm ⁇ was designated as “20 mm ⁇ OK”
  • the case where the insulating coating was not peeled off even at 30 mm ⁇ was designated as “30 mm ⁇ OK”, “30 mm ⁇ OUT” was obtained by peeling off the insulating coating by bending at 30 mm ⁇ .
  • a sample having an evaluation of “10 mm ⁇ OK”, “20 mm ⁇ OK” or “30 mm ⁇ OK” was accepted.
  • the corrosion resistance in a wet environment was evaluated according to a salt spray test of JIS method (JIS Z2371).
  • JIS Z2371 a salt spray test of JIS method
  • a 5% NaCl aqueous solution is naturally dropped into a sample for 1 hour in an atmosphere of 35 ° C., and then held for 3 hours at a temperature of 60 ° C. and a humidity of 40%, and for 3 hours at a temperature of 40 ° C. and a humidity of 95%.
  • the rusting area was evaluated by 10 points.
  • the evaluation criteria are as follows. For corrosion resistance, a sample with an evaluation of 7 points or more was accepted.
  • a polyester-type low-temperature commercial powder coating solution was sprayed on a sample so as to have an average film thickness of 50 ⁇ m with a tribogun, and was cured by heating at 160 ° C. for 15 minutes. Thereafter, the coated sample was allowed to elapse for 100 hours by spraying with salt water, and then a cross-cut adhesion test was performed to evaluate powder coating properties.
  • " ⁇ " indicates that there was no peeling
  • " ⁇ ” indicates that the film was peeled slightly
  • indicates that the film was peeled but adhered
  • rust was generated. What floated was evaluated as "x”.
  • a sample having an evaluation of “ ⁇ ” or “ ⁇ ” was accepted.
  • an epoxy-acrylic high weather resistance electrodeposition coating solution was sampled in a 25 ° C. bath so as to have an average film thickness of 20 ⁇ m. Painted on. The coated sample was washed with water to remove excess paint, and then heated and dried at 160 ° C. for 20 minutes. Thereafter, the coated sample was allowed to elapse for 80 hours by spraying with salt water, and then a cross-cut adhesion test was performed to evaluate the electrodeposition coating property.
  • Water-based paintability was evaluated by visual observation of a commercial product of an acrylic resin-based water-based paint type sprayed to an average film thickness of 10 ⁇ m and dried at room temperature. “5” indicates that the appearance of the coating is glossy and uniform, and “4” indicates that it is glossy but slightly inferior in uniformity. “,” And “2” was evaluated as “2”, and “1” was evaluated as a result of unevenness overall. For water-based paintability, a sample having an evaluation of “3” or higher was accepted.
  • Appearance is “5” when the insulating coating is glossy and smooth and uniform, and “4” is the glossy but slightly inferior uniformity, and is slightly glossy and smooth but uniform. No. 2 was evaluated as “2”, and those with poor gloss, uniformity and smoothness were evaluated as “1”. In addition, the external appearance set the sample whose evaluation is "4" or more as the pass.
  • the heat resistance was obtained by rubbing a 2 mm ⁇ 30 mm gauze with a load of 100 gf (about 0.98 N) on the surface of the magnetic steel sheet after performing strain relief annealing at 750 ° C. for 2 hours in a nitrogen atmosphere. Evaluation was made based on the state of peeling of the insulating coating. “5” indicates that the gauze was not peeled off, “4” indicates that it was slightly peeled off, “3” if it was clearly peeled off, “2” if it was severely peeled off, even without rubbing with gauze The peeled material was evaluated as “1”. For heat resistance, a sample having an evaluation of “4” or higher was regarded as acceptable.
  • Table 2 summarizes the evaluation results of the above electrical steel sheets.
  • Examples 1 to 9 of the present invention were found to be excellent in powder coating property, electrodeposition coating property, and water-based coating.
  • Examples 1 to 9 of the present invention are excellent in all of insulation, adhesion, corrosion resistance, appearance, and heat resistance in addition to powder coating properties, electrodeposition coating properties, and water-based coating properties. I understood. Specifically, in Examples 1 to 9, the insulation, adhesion, corrosion resistance, powder coating property, electrodeposition coating property, water-based coating property, equivalent to or better than those of the reference example provided with an insulating coating containing a chromium-based compound, It was found to have appearance and heat resistance.
  • Comparative Examples 1 to 4 often have low powder coating properties, electrodeposition coating properties, and aqueous coating properties, and also have insulation, adhesion, corrosion resistance, powder coating properties, electrodeposition coating properties, and appearance. None of them were excellent in heat resistance.
  • Comparative Example 1 does not contain a fluorine-containing material, so that the powder coating property and the electrodeposition coating property are low and the appearance is not good.
  • the comparative example 2 shows that powder coating property, electrodeposition coating property, and aqueous coating property are low, and adhesiveness is also bad.
  • the comparative example 3 does not contain an inorganic salt or oxide or a metal phosphate, it can be seen that the corrosion resistance and appearance are not good.
  • the organic resin is not contained in Comparative Example 4, it can be seen that the powder coating property, the electrodeposition coating property and the aqueous coating property are low, and the adhesion is poor.
  • the electrical steel sheet according to the embodiment of the present invention has good paintability of powder coating, electrodeposition coating, or aqueous coating in the production of a laminated iron core, and as an insulating coating of the electrical steel sheet. Good characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

 無機塩、酸化物および有機樹脂のうちの1種または2種以上を含み、無機塩および/または酸化物を、絶縁皮膜の総質量に対して合計50質量%以上含有し、ふっ素濃度が2ppm~130ppmであり、かつ、クロム系化合物を含有しない絶縁被膜を鋼板表面に有する、電磁鋼板。この電磁鋼板は、塗装性に優れた絶縁被膜を持つ。

Description

電磁鋼板
 本発明は、電磁鋼板に関する。
 一般的に、電磁鋼板を用いてモータおよびトランスなどの電気機器を製造する場合、まず、フープ状の電磁鋼板を所定形状に打抜き加工した後、打ち抜いた電磁鋼板を積層させて鉄芯とし、鉄芯のティース等に銅線を巻きつける。続いて、鉄芯へのワニスの含浸等を行った後に、銅線接続用のターミナルおよびフランジなどを取り付け、ケースに固定することでモータおよびトランスなどが製造される。
 このような鉄芯の製造工程において、最近では、鉄芯のケースへの固定を省略し、積層された鉄芯の外側に粉体塗装、電着塗装または水性塗装を施すことで耐蝕性および耐久性を高めることが行われている。
 ここで、粉体塗装とは、粉状に分散させた塗料粉末を、静電気により鉄芯に付着させ、その後、乾燥硬化させることで鉄芯全体を塗装するものである。電着塗装とは、水中に分散させた塗料粒子を、電気的に鉄芯に付着させ、その後、乾燥硬化させることで鉄芯全体を塗装するものである。水性塗装とは、塗装液を吹き付けたり、塗装液に浸漬させることにより、塗装液を鉄芯に付着させ、その後、乾燥硬化させることで鉄芯全体を塗装するものである。
 ただし、粉体塗装、電着塗装および水性塗装などは、塗装と鉄芯との密着性が低い場合、塗装と鉄芯との隙間から発錆する可能性があるため、鉄芯との密着性が重要である。
 一方、鉄芯の積層された上下面は、表面処理された鋼板表面であるのに対し、鉄芯の積層された側面部は、打抜き加工された鋼そのものが露出しているため、鉄芯の上下面とは異なる特性となっている。
 また、一般に、電磁鋼板の表面には渦電流損低減のために絶縁被膜が施されている。絶縁被膜には、絶縁性の他に、耐蝕性、鋼板との密着性、打抜き性および耐熱性などの被膜特性が必要とされる。
 通常、このような絶縁被膜の構成としては、クロム酸塩およびりん酸塩などの塩、コロイダルシリカおよびマイカなどの酸化物、アクリル樹脂およびエポキシ樹脂などの有機樹脂、または、これらの混合物を主成分とするものが知られている。
 例えば、電磁鋼板の絶縁被膜に関する技術としては、以下の特公昭50-15013号公報において、重クロム酸塩と、酢酸ビニル-アクリル樹脂共重合物、ブタジエン-スチレン共重合物またはアクリル樹脂等の有機樹脂エマルジョンとを主成分とする処理液を用いて絶縁被膜を形成する技術が開示されている。また、以下の特開平03-36284号公報では、クロム酸水溶液と、エマルジョンタイプの樹脂と、有機還元剤とを含み、さらに易溶性アルミニウム化合物、2価金属(Me)の酸化物等、およびHBOを含み、クロム酸溶液中のMe2+/Al3+のモル比が0~7.0であり、かつ(Al3++Me2+)/CrOのモル比が0.2~0.5であり、HBO/CrOのモル比が0.1~1.5である処理液を用いて絶縁被膜を形成する技術が開示されている。
 また、近年では、環境問題に対する意識の高まりから、6価クロムを含有するクロム系化合物の水溶液を用いないで絶縁被膜を形成する技術の開発が進められている。このような技術としては、例えば、以下の特開平06-330338号公報において、特定組成のりん酸塩と、ホウ酸およびコロイダルシリカのうちのいずれか1種以上と、特定粒径の有機樹脂のエマルジョンとを特定割合で配合し、鋼板に焼き付ける技術が開示されている。この技術によれば、クロム系化合物を含まない処理液を用いながらも、クロム系化合物を含有する従来の絶縁被膜と同等の被膜特性を有し、かつ、歪み取り焼鈍後に優れたすべり性を保持することができる。
 また、以下の特開平09-323066号公報には、エチレン-不飽和カルボン酸共重合体、エポキシ樹脂、シランカップリング剤およびシリカを特定比率で含有する絶縁被膜を表面に有する電磁鋼板が開示されている。
 また、以下の特開2002-309379号公報には、クロム系化合物を含有せず、かつ、40~90質量%のふっ素樹脂および有機樹脂を含有する最表層被膜を備える滑り性および密着性に優れた打抜き加工用の電磁鋼板が開示されている。また、特開2002-309379号公報には、最表層被膜に含まれるふっ素樹脂がポリテトラフルオロエチレンであり、最表層被膜に含まれる有機樹脂が、ポリエーテルスルホン樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルケトンおよびポリスルホン樹脂のうちの1種または2種以上の混合物であることも開示されている。
 また、ふっ素樹脂に関して、以下の特開平05-98207号公報には、フルオロオレフィンとエチレン性不飽和化合物との共重合体であり、フルオロオレフィンに基づく単位が30~70%であり、水酸基価が30~200mgKOH/gであり、酸価が2~200mgKOH/gであり、数平均分子量が3000~40000であるふっ素共重合体を含む水性塗料組成物に関する技術が開示されている。
 また、特開平07-41913号公報には、りん酸塩と有機樹脂とから構成される絶縁被膜を有する電磁鋼板に関する技術が開示されている。さらに、国際公開第2012/57168号には、りん酸金属塩と特定粒径のアクリル樹脂、エポキシ樹脂またはポリエステル樹脂との混合物に対して、フルオロオレフィンおよびエチレン性不飽和化合物との共重合体を特定割合で混合することで、電磁鋼板に対する密着性が良好な絶縁被膜を形成する技術が開示されている。
 国際公開第2012/011442号には、りん酸金属塩と、特定粒径のアクリル樹脂、エポキシ樹脂またはポリエステル樹脂との混合物もしくは共重合物を含む第1成分と、特定粒径のフッ素樹脂のディスパージョンまたはパウダーからなる第2成分とを含む絶縁被膜が形成された電磁鋼板に関する技術が開示されている。
特公昭50-15013号公報 特開平03-36284号公報 特開平06-330338号公報 特開平09-323066号公報 特開2002-309379号公報 特開平05-98207号公報 特開平07-41913号公報 国際公開第2012/57168号 国際公開第2012/011442号
 ここで、電気機器の鉄芯製造工程では、粉体塗装、電着塗装または水性塗装する際に良好な密着性を確保し、かつ、鉄芯の積層側面と、鉄芯の上下面の鋼板表面部分との両方が同様の塗装性を保持することが求められている。
 しかしながら、上記の特公昭50-15013号公報、特開平03-36284号公報、特開平06-330338号公報、特開平09-323066号公報、特開2002-309379号公報、特開平05-98207号公報、特開平07-41913号公報、国際公開第2012/57168号、および、国際公開第2012/011442号に開示された技術を用いた従来の電磁鋼板では、絶縁被膜の塗装性と、積層側面の金属露出部分の塗装性とに差があった。そのため、絶縁被膜部分の塗装膜厚が過剰に薄くなって耐蝕性が劣ったり、逆に積層側面の膜厚が過剰に厚くなって密着性が劣ったり、また、絶縁被膜部分が均一に塗装されずに塗装むらが発生したり、さらには、粉体塗装、電着塗装および水性塗装による耐蝕性向上効果がほとんど得られなかったりすることがあった。
 さらに、上記の特開2002-309379号公報、特開平05-98207号公報、および、国際公開第2012/011442号に開示されるように、表面に分子量の高いふっ素樹脂を主成分とする絶縁被膜を形成した電磁鋼板では、コストが高くなったり、打抜き後の塗装が密着しなかったりする問題があった。また、分子量の高いふっ素樹脂は、分散性が悪い。そのため、長時間撹拌すると該ふっ素樹脂が大きな固まりとなり、縁被膜表面において、該ふっ素樹脂の濃度むらが発生するという問題があった。
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、電磁鋼板の塗装性を向上させ、湿潤環境下での耐蝕性を向上させるとともに、さらに絶縁性、密着性、外観および耐熱性といった被膜特性が良好な電磁鋼板を提供することにある。
 本発明者らは、分子量が低いふっ素含有物を絶縁被膜の主成分として含有させることによって、上記課題を解決した。その要旨は、下記に示す電磁鋼板にある。
 (1)無機塩、酸化物および有機樹脂のうちの1種または2種以上を含み、
 無機塩および/または酸化物を、絶縁皮膜の総質量に対して合計50質量%以上含有し、
 ふっ素濃度が2ppm~130ppmであり、かつ、
 クロム系化合物を含有しない絶縁被膜を鋼板表面に有する、電磁鋼板。
 (2)りん酸金属塩と、アクリル系樹脂、エポキシ系樹脂およびポリエステル樹脂のうちの1種または2種以上の混合物もしくは共重合物とを、絶縁皮膜の総質量に対して合計50質量%以上含有する、上記(1)に記載の電磁鋼板。
 (3)酸化物と、アクリル系樹脂、エポキシ系樹脂およびポリエステル樹脂のうちの1種または2種以上の混合物もしくは共重合物とを、絶縁皮膜の総質量に対して合計50質量%以上含有する、上記(1)に記載の電磁鋼板。
 (4)アルミニウム、亜鉛、カルシウム、コバルト、ストロンチウム、ジルコニウム、チタン、ニッケル、バリウム、マグネシウムおよびマンガンのうちの1種または2種以上の金属元素のりん酸金属塩100質量部と、アクリル系樹脂、エポキシ系樹脂およびポリエステル樹脂のうちの1種または2種以上の混合物もしくは共重合物1~50質量部とを、絶縁皮膜の総質量に対して合計50質量%以上含有する、上記(2)に記載の電磁鋼板。
 (5)コロイダルシリカ、酸化亜鉛、酸化カルシウム、酸化コバルト、酸化ジルコニウム、酸化チタンおよび酸化マグネシウムのうちの1種または2種以上の酸化物100質量部と、アクリル系樹脂、エポキシ系樹脂およびポリエステル樹脂のうちの1種または2種以上の混合物もしくは共重合物1~100質量部とを、絶縁皮膜の総質量に対して合計50質量%以上含有する、上記(3)に記載の電磁鋼板。
 以上説明したように、本発明は、無機塩および/または酸化物を、絶縁皮膜の総質量に対して合計50質量%以上含有する、または、りん酸金属塩と有機樹脂とを、絶縁皮膜の総質量に対して合計50質量%以上含有する絶縁被膜に対して、特定のふっ素濃度を付与することにより、電着塗装、粉体塗装または水性塗装時の塗装性が良好であり、かつ、湿潤環境下での耐蝕性、絶縁性、密着性、外観および耐熱性などの特性も良好な絶縁被膜を有する電磁鋼板を提供するものである。
 以下、本発明を実施する具体的形態について説明する。
 本発明は、電気機器などの鉄芯材料として使用される電磁鋼板に関する。特に、本発明は、クロム系化合物を含有せず、絶縁性、密着性、および、湿潤環境下での耐蝕性が良好であり、適度な塗装性を有する絶縁被膜を備える電磁鋼板に関するものである。
 本実施形態に係る電磁鋼板は、クロム系化合物を含有せず、ふっ素濃度が2ppm~130ppmである絶縁被膜を鋼板表面に有する。また、絶縁被膜は、例えば、無機塩および/または酸化物の混合物を、絶縁皮膜の総質量に対して合計50質量%以上含有するか、りん酸金属塩と、アクリル系樹脂、エポキシ系樹脂およびポリエステル樹脂などの有機樹脂とを、絶縁皮膜の総質量に対して合計50質量%以上含有する。
 まず、本実施形態において絶縁被膜が形成される電磁鋼板について説明する。
 本実施形態にて絶縁被膜が形成される電磁鋼板は、質量%で、Si:0.1%以上4.0%未満、Al:0.05%以上3.0%未満を少なくとも含有し、残部がFeおよび不純物である無方向性電磁鋼板を好適に用いることができる。Siは、添加量の増加に従って電気抵抗を増加させ、磁気特性を向上させるが、一方で圧延性を低下させるため、4.0質量%未満が好ましい。同様に、Alも添加量の増加に従って磁気特性を向上させるが、圧延性を低下させるため、3.0質量%未満が好ましい。本実施形態で使用される電磁鋼板は、Si、Al以外に、Mn、Sn、CrおよびPなどの元素を0.01質量%~3.0質量%の範囲の含有量で含有してもよい。また、本実施形態で使用される電磁鋼板は、その他に、S、NおよびCなどの元素を100ppm未満の含有量で含有してもよく、好ましくは20ppm未満で含有してもよい。
 本実施形態では、例えば、上記鋼成分のスラブを1000~1250℃に加熱し、熱延してコイル状に巻き取り、必要に応じて熱延板の状態で800℃から1050℃の温度範囲で焼鈍した後、0.15~0.5mmに冷延し、さらに750~1100℃で焼鈍したものを電磁鋼板として使用することができる。
 また、絶縁被膜が形成される電磁鋼板の表面は、後述する処理液が塗布される前に、任意の前処理が施されてもよく、例えば、アルカリなどによる脱脂処理、塩酸、硫酸またはりん酸などによる酸洗処理などが施されてもよい。また、後述する処理液が塗布される前の電磁鋼板の表面は、このような前処理が施されずに、仕上げ焼鈍後のままの表面であってもよい。
 次に、本実施形態において電磁鋼板の表面に形成される絶縁被膜について説明する。
 本実施形態にて絶縁被膜に用いられる無機塩とは、硫酸、硝酸および炭酸などの酸と、金属イオンとを、無機塩の総質量に対して50質量%以上含有するものであり、具体的には、硫酸ストロンチウム、硫酸アルミニウム、硫酸マグネシウム、硫酸カルシウム、硝酸アルミニウム、硝酸鉄、炭酸ジルコニウム、炭酸ジルコニウムアンモニウム複合塩、炭酸バリウム、炭酸マグネシウム、酸化亜鉛、酸化カルシウム、酸化ジルコニウム、酸化マグネシウム、酸化チタン、酸化コバルトなどである。また、絶縁被膜に用いられる酸化物とは、具体的には、金属酸化物、シリカ、アルミナなどであり、より具体的には、コロイダルシリカ、酸化亜鉛、酸化カルシウム、酸化コバルト、酸化ジルコニウム、酸化チタン、酸化マグネシウムなどである。
 なお、無機塩および酸化物は、単独で使用されてもよく、2種以上の混合物として使用されてもよい。
 また、本実施形態にて絶縁被膜に用いられるりん酸金属塩に含まれるりん酸の種類としては、特に限定されるものではないが、オルトりん酸、メタりん酸およびポリりん酸などが好ましい。また、上記りん酸金属塩に含まれる金属イオンの種類としては、Li、Al、Mg、Ca、Sr、Ti、Ni、Mn、Co、Zn、ZrおよびBaなどが好ましく、また、Al、Zn、Ca、Co、Sr、Zr、Ti、Ni、Ba、MgおよびMnがより好ましく、Al、Ca、MnおよびNiがさらに好ましい。りん酸金属塩の溶液を調製する場合、例えば、オルトりん酸などのりん酸に、上記金属イオンの酸化物、炭酸塩または水酸化物を混合して調製することが好ましい。
 なお、りん酸金属塩は、単独で使用されてもよく、2種以上の混合物として使用されてもよい。さらに、ホスホン酸またはホウ酸などの添加剤と同時に使用されてもよい。
 本実施形態にて絶縁被膜に用いられる酸化物の具体例のうち、コロイダルシリカは、例えば、平均粒径が5~40nmであり、Na含有量が0.5質量%以下のものを用いることができる。また、Na含有量は、0.01~0.3質量%がより好適である。
 本実施形態にて用いられるコロイダルシリカの平均粒径、および、後述する有機樹脂の平均粒径とは、粒子の形状を球形と近似した場合における1次粒子の直径の個数平均値(個数平均粒径)である。なお、コロイダルシリカの平均粒径は、例えば、窒素吸着法により測定することができ、有機樹脂の平均粒径は、例えば、レーザー回折法により測定することができる。
 本実施形態では、絶縁被膜中のふっ素濃度は、2~130ppmであることが必要である。絶縁被膜中のふっ素濃度は、5ppm以上であることが好ましく、8ppm以上であることがより好ましい。また、絶縁被膜中のふっ素濃度は、100ppm以下であることが好ましく、50ppm以下であることがより好ましく、30ppm以下であることが特に好ましい。
 絶縁被膜中のふっ素濃度の測定方法は、特に限定されるものではないが、例えば、イオンクロマトグラフ法を好適に用いることができる。なお、絶縁被膜の成分中に妨害元素が存在するときには、例えば、特開平7-198704号公報に記載されているイオンクロマトグラフ法とランタン・アリザリンコンプレクソン法とを組み合わせた高感度な測定方法を用いることも可能である。これらの分析方法を用いることにより、絶縁被膜中のふっ素濃度を正確に定量することが可能である。
 本発明は、例えば、無機塩および/または酸化物の混合物を、絶縁皮膜の総質量に対して合計50質量%以上含有する被膜を電磁鋼板の表面に薄く形成し、該被膜のふっ素濃度を2~130ppmの特定濃度とするものである。また、本発明は、例えば、りん酸金属塩と、有機樹脂とを、絶縁皮膜の総質量に対して合計50質量%以上含有する被膜を電磁鋼板の表面に薄く形成し、該被膜のふっ素濃度を2~130ppmの特定濃度とするものである。これらの絶縁被膜の膜厚は、0.3~3.0μmが好ましく、0.5~1.5μmがより好ましい。
 本実施形態にて絶縁被膜に用いられるアクリル系樹脂、エポキシ系樹脂およびポリエステル樹脂は、一般に市販されている各樹脂のエマルジョンを用いてもよい。
 アクリル系樹脂としては、メチルアクリレート、エチルアクリレート、n-ブチルアクリレート、i-ブチルアクリレート、n-オクチルアクリレート、i-オクチルアクリレート、2-エチルヘキシルアクリレート、n-ノニルアクリレート、n-デシルアクリレート、およびn-ドデシルアクリレートなどをモノマーとして使用し、さらにアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、クロトン酸およびイタコン酸などの官能基を持つモノマー、または、2-ヒドロキシルエチル(メタ)アクリレート、2-ヒドロキシルプロピル(メタ)アクリレート、3-ヒロドキシルブチル(メタ)アクリレート、および、2-ヒドロキシルエチル(メタ)アリルエーテルなどの水酸基を持つモノマーを共重合させたものをより好適に用いることができる。
 また、エポキシ系樹脂としては、例えば、アミン変性エポキシ樹脂に無水カルボン酸を反応させたものを用いることができる。具体的には、ビスフェノールA-ジグリシジルエーテル、ビスフェノールA-ジグリシジルエーテルのカプロラクトン開環付加物、ビスフェノールF-ジグリシジルエーテル、ビスフェノールS-ジグリシジルエーテル、ノボラックグリシジルエーテル、および、ダイマー酸グリシジルエーテル等のエポキシ樹脂に、イソプロパノールアミン、モノプロパノールアミン、モノブタノールアミン、モノエタノールアミン、ジエチレントリアミン、エチレンジアミン、ブタルアミン、プロピルアミン、イソホロンジアミン、テトラヒドロフルフリルアミン、キシレンジアミン、ヘキシルアミン、ノニルアミン、トリエチレンテトラミン、テトラメチレンペンタミン、および、ジアミノジフェニルスルホン等のアミンを作用させて変性させ、無水コハク酸、無水イタコン酸、無水マレイン酸、無水シトラコン酸、無水フタル酸および無水トリメリット酸等の無水カルボン酸を反応させたものを好適に用いることができる。
 ポリエステル樹脂としては、例えば、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、コハク酸、アジピン酸、セバシン酸、フマル酸、マレイン酸、無水マレイン酸、イタコン酸およびシトラコン酸等のジカルボン酸と、エチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルジオール1,6-ヘキサンジオール、トリエチレングリコール、ジプロピレングリコールおよびポリエチレングリコール等のグリコールとを反応させたポリエステル樹脂を好適に用いることができる。さらに、上述したポリエステル樹脂に、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸およびメタクリル酸無水物等をグラフト重合させたものを用いてもよい。
 有機樹脂のエマルジョンは、上記有機樹脂の1種のエマルジョンであってもよく、上記有機樹脂の2種以上の混合物のエマルジョンであってもよい。また、有機樹脂のエマルジョンの平均粒径としては、0.05~0.50μmが好ましい。平均粒径が0.05μm未満である場合、処理液中で有機樹脂が凝集し易く、絶縁被膜の均一性が低下する可能性があるため好ましくない。また、平均粒径が0.50μm超である場合、処理液の安定性が低下する可能性があるため好ましくない。さらに、有機樹脂のエマルジョンの平均粒径は、0.1~0.3μmであることがより好ましい。
 りん酸金属塩と、アクリル系樹脂、エポキシ系樹脂およびポリエステル樹脂のうちの1種または2種以上の有機樹脂とを絶縁被膜に含有させる場合、有機樹脂の混合比率は、りん酸金属塩100質量部に対して、1~50質量部であることが好ましい。有機樹脂の混合比率が1質量部未満である場合、有機樹脂の濃度が過剰に低く、有機樹脂の凝集が発生し易く処理液の安定性に劣る可能性があるため好ましくない。また、有機樹脂の混合比率が50質量部超である場合、絶縁被膜の耐熱性が低下する可能性があるため好ましくない。さらに、有機樹脂の混合比率は、りん酸金属塩100質量部に対して、6~25質量部であることがより好ましい。
 また、コロイダルシリカなどの酸化物と、アクリル系樹脂、エポキシ系樹脂およびポリエステル樹脂のうちの1種または2種以上の有機樹脂とを絶縁被膜に混合する場合、有機樹脂の混合比率は、酸化物100質量部に対して、1~100質量部であることが好ましい。有機樹脂の混合比率が1質量部未満である場合、絶縁被膜の造膜性が悪く、絶縁被膜から発粉する可能性があるため好ましくない。また、有機樹脂の混合比率が100質量部超である場合、絶縁被膜の耐熱性が低下する可能性があるため好ましくない。さらに、有機樹脂の混合比率は、酸化物100質量部に対して、5~80質量部であることがより好ましい。
 本実施形態に係る電磁鋼板の絶縁被膜において、ふっ素濃度を2~130ppmとするために、例えば、ふっ素含有物を絶縁被膜に添加する。ふっ素含有物としては、低分子ふっ素化合物、ふっ素ゴムおよびふっ素樹脂などが水溶液中に微細分散したエマルジョン形態のものを好適に用いることができる。また、水に対する溶解性があるふっ素含有物を用いる場合は、エマルジョン化せずに、該ふっ素含有物を適宜添加し、混合するだけでもよい。
 低分子ふっ素化合物としては、ふっ素系界面活性剤、ふっ素油などを用いることができる。具体的には、ふっ素系界面活性剤としては、パーフルオロブタンスルホン酸塩、パーフルオロアルキルエチレンオキシド付加物、パーフルオロアルキル基含有りん酸エステル型アミン中和物などを挙げることができ、ふっ素油としては、クロロトリフルオロエチレン低重合体、パーフルオロポリエーテル低重合体、パーフルオロアルキルポリエーテル低重合体、ふっ素変性シリコーン等を挙げることができる。
 ふっ素ゴムとしては、フッ化ビニリデン系共重合体を好適に用いることができる。具体的には、フッ化ビニリデン系共重合体としては、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-テトラフルオロエチレン-プロピレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体などを挙げることができる。
 ふっ素樹脂としては、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレンおよびテトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体等のフルオロエチレン-ビニルエーテル共重合体、テトラフルオロエチレン-エチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリフッ化ビニリデン、ならびにエチレン-クロロトリフルオロエチレン共重合体などを用いることができる。また、上述したふっ素樹脂の各種変性体、または、他の共重合可能な樹脂との共重合体等も使用可能である。
 上述した低分子ふっ素化合物、ふっ素ゴム、ふっ素樹脂およびこれらの共重合体とは、ふっ素含有物の中でも、比較的分子量が低いもの、すなわち、いわゆるオリゴマーと呼ばれるものを意味する。低分子ふっ素化合物、ふっ素ゴム、ふっ素樹脂およびこれらの共重合体の分子量は、200以上であることが好ましく、1,000以上であることがより好ましく、また、100,000以下であることが好ましく、20,000以下であることがより好ましい。また、低分子ふっ素化合物、ふっ素ゴム、ふっ素樹脂およびこれらの共重合体は、単独で用いてもよく、導入した官能基が異なるものや、分子量の異なるものなどを2種以上混合して用いてもよい。
 なお、上記のふっ素含有物の中で水に溶解するものについては、直接、処理液に混合することが可能である。ただし、ふっ素ゴムおよびふっ素樹脂は、ふっ素系界面活性剤等を用いて、エマルジョン化して処理液に混合することが好ましい。エマルジョン化の際の粒径は特に規定しないが、例えば、0.05~0.50μmの範囲が好適であり、0.05~0.20μmの範囲がより好適である。1次粒子の粒径が0.05μm未満である場合、ふっ素含有物が溶液中で凝集し易く、溶液の安定性を低下させる可能性があるため好ましくなく、1次粒子の粒径が0.50μm超である場合、形成された絶縁被膜が剥離し易くなり、発粉の可能性があるため好ましくない。特に、溶液の安定性が低下した場合、溶液中に凝集物が発生して、配管またはポンプが詰まったり、凝集物が絶縁被膜中に入り込んで被膜欠陥となったりする恐れがあるため好ましくない。一方、1次粒子の粒径が0.20μm以下である場合、形成された絶縁被膜は、美麗な外観を得やすいため、より好ましい。なお、エマルジョン化した場合のふっ素含有物の粒径は、具体的には、個数平均粒径であり、例えば、JIS法(JIS Z8825-1)に準拠して市販のレーザー回折・散乱式粒度分布測定装置を用いることで測定することができる。
 これらふっ素含有物と、絶縁被膜の主成分となる物質(無機物、酸化物および有機樹脂のうちの1種または2種以上の混合物、または、りん酸金属塩および有機樹脂)との混合比率は、ふっ素濃度が所定の濃度になるのであれば特に限定されない。ただし、絶縁被膜の主成分となる物質の固形分100質量部に対し、ふっ素含有物を0.3~50質量部で絶縁被膜に混合することが好適である。ふっ素含有物の混合比率が0.3質量部未満である場合、絶縁被膜中にふっ素が均一に分布しない可能性があるため好ましくなく、ふっ素含有物の混合比率が50質量部超である場合、絶縁被膜中に部分的にふっ素濃度が高い部分が生じ、塗装性が低下する可能性があるため好ましくない。さらに、ふっ素含有物の混合比率は、絶縁被膜の主成分となる物質の固形分100質量部に対し、0.5~5質量部であることがより好ましい。なお、「主成分」とは、該当する成分が、絶縁被膜の総質量に対して50質量%以上含有されることを意味する。
 また、本実施形態では、絶縁被膜に対して、上述した絶縁被膜の主成分となる物質、および、ふっ素含有物以外の成分を添加することも可能である。例えば、ポリオール、セロソルブ、カルボン酸類、エーテル類およびエステル類などの有機低分子化合物を添加剤として絶縁被膜にさらに含有させてもよい。
 本実施形態では、上述した組成の電磁鋼板に対して、上述した成分を含有する処理液を塗布した後、加熱して焼付け乾燥することによって、表面に絶縁被膜が形成された電磁鋼板を製造することができる。
 本実施形態では、処理液を電磁鋼板の表面に塗布する場合、塗布方式は特に限定されない。例えば、ロールコーター方式を用いて処理液を電磁鋼板の表面に塗布してもよく、スプレー方式、ディップ方式などの塗布方式を用いて電磁鋼板の表面に塗布してもよい。
 また、処理液を焼付け乾燥させるための加熱方式も特に限定されない。例えば、通常の輻射炉または熱風炉を用いることが可能であり、また、誘導加熱方式または高周波加熱方式などを用いてもよい。
 処理液の焼付け乾燥条件としては、例えば、加熱温度については200~380℃の範囲が好ましく、焼付け時間としては15~60秒間が好ましい。加熱温度が200℃未満の場合、絶縁被膜中に含有される水分の脱水が十分行われないため好ましくなく、加熱温度が380℃を超える場合、含有される有機樹脂が燃焼し始めるため好ましくない。さらに、焼付け時間が15秒未満である場合、均等に加熱することが困難になるため好ましくなく、焼付け時間が60秒を超える場合、工業的にコストがかかり過ぎるため好ましくない。さらに、処理液にりん酸金属塩が含まれる場合、加熱温度は、260~330℃の範囲がより好ましく、処理液にコロイダルシリカが含まれる場合、加熱温度は、200~300℃の範囲がより好ましく、240~280℃の範囲がさらに好ましい。
 さらに、上述の処理液に対して、界面活性剤などの添加剤が添加されてもよい。界面活性剤としては、例えば、脂肪族系ポリオキシアルキレンエーテル界面活性剤が好ましく、その他、光沢剤、防腐剤、酸化防止剤などが添加されてもよい。
 本発明において、ふっ素含有物は、絶縁被膜中において、表層付近に偏在化することにより、絶縁被膜の表面に撥水撥油性を付与する。ただし、表面を完全にふっ素含有物で被覆した場合、塗料に対する親和性が低下し、被膜密着性が低下するという問題が生じる。そのため、本発明では、ふっ素濃度を特定の範囲とすることで、ふっ素含有物による表面の被覆を部分的な被覆とし、絶縁被膜における粉体塗装性または電着塗装性を最適化しつつ、湿潤環境下における耐蝕性を向上することができると考えられる。
 まず、Si:2.4質量%、Al:0.3質量%、Mn:0.5質量%を含有し、残部がFeおよび不純物であり、板厚0.35mmの無方向性電磁鋼板を用意した。
 次に、りん酸金属塩としてオルトりん酸を用い、オルトりん酸と、Mg(OH)、Al(OH)などの各金属水酸化物、酸化物または炭酸塩とを、りん酸金属塩の濃度が40質量%となるように水に溶解させ、混合撹拌して、各りん酸金属塩溶液を調製した。
 また、無機塩または酸化物として酸化チタン、酸化マグネシウム、水酸化ジルコニウムの微粒子タイプ(質量平均粒子径1μm未満)(市販品)、および、表面がアルミニウムで改質され、平均粒径が15nmである濃度30質量%のコロイダルシリカ(市販品)を使用した。これらの無機塩または酸化物を濃度が40質量%となるように水に分散させ、無機溶液を調製した。なお、水酸化物(水酸化ジルコニウム)の一部は、塗布乾燥時の加熱により、酸化物(酸化ジルコニウム)に変化しているものと推測される。
 さらに、各有機樹脂については、以下に示した4種類の40質量%エマルジョン溶液を使用した。
 (1)アクリル系樹脂
 メチルメタクリレート30質量%、2-ヒドロキシエチルメタクリレート10質量%、n-ブチルアクリレート30質量%、スチレンモノマー10質量%、イソブチルアクリレート20質量%を共重合させたアクリル系樹脂のエマルジョン
 (2)エポキシ系樹脂
 ビスフェノールAをトリエタノールアミンで変性させた後、無水コハク酸を反応させたカルボキシル基変性エポキシ樹脂のエマルジョン
 (3)ポリエステル樹脂
 ジメチルテレフタレート35質量%と、ネオペンチルグリコール35質量%とを共重合させた後、フマル酸15質量%および無水トリメリット酸15質量%をグラフト重合させたカルボキシル基含有ポリエステル樹脂のエマルジョン
 さらに、ふっ素含有物として、表1に記載の各化合物を表1中のふっ素濃度となるように混合添加した。
Figure JPOXMLDOC01-appb-T000001
 
 表1において、「A」~「F」は、以下のふっ素含有物を表し、「-」は、該当する化合物を用いなかったことを表す。
  A:ふっ化ビニリデン-ヘキサフルオロプロピレン
  B:テトラフルオロエチレン-ビニルエーテル共重合低重合体
  C:パーフルオロブタンスルホン酸塩
  D:パーフルオロアルキルポリエーテル低重合体
  E:ふっ素変性シリコーン
  F:クロロトリフルオロエチレン低重合体
 なお、表1中の金属イオンの比率は、質量部比率であり、有機樹脂およびふっ素含有物の含有割合は、固形分換算である。
 上記組成の電磁鋼板の表面に、表1で示す混合比率の処理液を塗布し、表2中に示す乾燥温度で焼付けることにより、実施例1~9、比較例1~4および参考例の電磁鋼板を得た。電磁鋼板の表面への処理液の塗布には、ロールコーター方式を用い、絶縁被膜の膜厚が約0.8μmになるようにロール圧下量等を調整した。また、乾燥は、輻射炉を用いて行った。到達板温および焼付け時間は、サンプルによって異なるが、到達板温が200~360℃となり、焼付け時間が10~60秒間となるように調整した。
 ふっ素濃度は、燃焼イオンクロマト法にて分析した。分析手法としてはJIS法(JIS K0102)に準じ、市販のイオンクロマト分析装置で測定した。
 また、以下にて、製造したサンプルの評価方法を詳細に説明する。
 絶縁性は、JIS法(JIS C2550)に準じて測定した層間抵抗を基に、5Ω・cm/枚未満を「×」とし、5Ω・cm/枚以上10Ω・cm/枚未満を「△」とし、10Ω・cm/枚以上50Ω・cm/枚未満を「○」とし、50Ω・cm/枚以上を「◎」として評価した。なお、絶縁性は、評価が「◎」または「○」のサンプルを合格とした。
 密着性は、10mm、20mm、30mmの直径の各金属棒に粘着テープを貼った鋼板サンプルを巻きつけ、鋼板サンプルから粘着テープを引き剥がした後の絶縁被膜の剥れた痕跡にて評価した。10mmφの曲げでも絶縁被膜が剥れなかったものを「10mmφOK」とし、20mmφでも絶縁被膜が剥れなかったものを「20mmφOK」とし、30mmφでも絶縁被膜が剥れなかったものを「30mmφOK」とし、30mmφの曲げで絶縁被膜が剥がれたものを「30mmφOUT」とした。なお、密着性は、評価が「10mmφOK」、「20mmφOK」または「30mmφOK」のサンプルを合格とした。
 湿潤環境下における耐蝕性は、JIS法の塩水噴霧試験(JIS Z2371)に準じて評価した。まず、35℃の雰囲気中で5%NaCl水溶液を1時間サンプルに自然降下さ、その後、温度60℃、湿度40%での3時間保持と、温度40℃、湿度95%での3時間保持とを1サイクルとして、5サイクル繰り返した後、発錆面積を10点評価で行った。評価基準は、以下の通りである。なお、耐蝕性は、評価が7点以上のサンプルを合格とした。
  10:錆発生が無かった
   9:錆発生が極少量(面積率0.1%以下)
   8:錆の発生した面積率=0.1%超過0.25%以下
   7:錆の発生した面積率=0.25%超過0.50%以下
   6:錆の発生した面積率=0.50%超過1%以下
   5:錆の発生した面積率=1%超過2.5%以下
   4:錆の発生した面積率=2.5%超過5%以下
   3:錆の発生した面積率=5%超過10%以下
   2:錆の発生した面積率=10%超過25%以下
   1:錆の発生した面積率=25%超過50%以下
 粉体塗装性については、まず、ポリエステル系低温タイプの市販品の粉体塗装液をトリボガンで平均膜厚50μmになるように、サンプルに吹き付け、160℃で15分間加熱硬化させた。その後、塗装されたサンプルを塩水噴霧で100hr経時させた後、碁盤目密着試験を行うことで、粉体塗装性を評価した。碁盤目密着試験で剥離の無かったものを「◎」、若干剥離したものを「○」、剥離はしているものの塗膜が密着しているものを「△」、錆が発生し、塗膜が浮いているものを「×」と評価した。なお、粉体塗装性は、評価が「◎」または「○」であるサンプルを合格とした。
 電着塗装については、まず、市販の脱脂液にて表面調整処理をした後、エポキシ-アクリル系の高耐候性電着塗装液を、25℃の浴中で平均膜厚20μmになるようにサンプルに塗装した。塗装後のサンプルを水洗して余剰の塗料を洗浄した後、160℃で20分間加熱乾燥させた。その後、塗装されたサンプルを塩水噴霧で80hr経時させた後、碁盤目密着試験を行うことで、電着塗装性を評価した。碁盤目密着試験で剥離の無かったものを「◎」、若干剥離したものを「○」、剥離はしているものの塗膜が密着しているものを「△」、錆が発生し、塗膜が浮いているものを「×」と評価した。なお、電着塗装性は、評価が「◎」または「○」であるサンプルを合格とした。
 水性塗装性は、まず、アクリル樹脂系水性塗料タイプの市販品を平均膜厚10μmになるようスプレーし、常温乾燥させたものを目視で評価した。塗装外観に光沢があり、均一であるものを「5」とし、以下、光沢はあるが均一性に若干劣るものを「4」とし、均一性に劣るが全体的に塗装できたものを「3」とし、均一性に劣り、かつ、部分的に薄くなったものを「2」とし、全体的にムラが発生したものを「1」と評価した。なお、水性塗装性は、評価が「3」以上であるサンプルを合格とした。
 外観は、絶縁被膜に光沢があり、平滑で均一であるものを「5」とし、以下、光沢はあるが均一性に若干劣るものを「4」とし、やや光沢があり平滑ではあるが均一性に劣るものを「3」とし、光沢が少なく、平滑性にやや劣り均一性に劣るものを「2」とし、光沢、均一性、平滑性の劣るものを「1」として評価した。なお、外観は、評価が「4」以上であるサンプルを合格とした。
 耐熱性は、窒素雰囲気において、750℃で2時間歪取り焼鈍を行った後に、電磁鋼板の表面に対して、100gf(約0.98N)の荷重で2mm×30mmのガーゼを擦り付け、その際の絶縁被膜の剥離状況にて評価した。ガーゼを擦り付けた際に剥離しなかったものを「5」、少し剥離したものを「4」、はっきり剥離したものを「3」、剥離状況が酷いものを「2」、ガーゼで擦らなくても剥離したものを「1」と評価した。なお、耐熱性は、評価が「4」以上であるサンプルを合格とした。
 以上の電磁鋼板の評価結果を表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000002
 表2で示す結果を参照することより、本発明の効果が明らかとなった。
 表2の結果によれば、本発明の実施例1~9は、粉体塗装性、電着塗装性および水性塗装製に優れていることが判明した。また、本発明の実施例1~9は、粉体塗装性、電着塗装性および水性塗装製に加えて、絶縁性、密着性、耐蝕性、外観および耐熱性のいずれについても優れていることがわかった。具体的には、実施例1~9は、クロム系化合物を含む絶縁被膜を備える参考例と同等以上の絶縁性、密着性、耐蝕性、粉体塗装性、電着塗装性、水性塗装性、外観および耐熱性を有することがわかった。
 一方、比較例1~4は、粉体塗装性、電着塗装性および水性塗装性が低いものが多く、また、絶縁性、密着性、耐蝕性、粉体塗装性、電着塗装性、外観および耐熱性の全てに優れたものは存在しなかった。
 具体的には、比較例1は、ふっ素含有物が含まれていないため、粉体塗装性および電着塗装性が低く、外観も良好ではないことがわかる。また、比較例2は、ふっ素濃度が本発明の範囲を超えているため、粉体塗装性、電着塗装性および水性塗装性が低く、密着性も悪いことがわかる。また、比較例3は、無機塩もしくは酸化物、または、りん酸金属塩が含有されていないため、耐蝕性および外観が良好ではないことがわかる。さらに、比較例4は、有機樹脂が含有されていないため、粉体塗装性、電着塗装性および水性塗装性が低く、密着性も悪いことがわかる。
 以上説明したように、本発明の実施形態に係る電磁鋼板は、積層鉄芯の製造における粉体塗装、電着塗装または水性塗装の塗装性が良好であり、かつ、電磁鋼板の絶縁被膜としての特性が良好である。
 以上、本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。

Claims (5)

  1.  無機塩、酸化物および有機樹脂のうちの1種または2種以上を含み、
     無機塩および/または酸化物を、絶縁皮膜の総質量に対して合計50質量%以上含有し、
     ふっ素濃度が2ppm~130ppmであり、かつ、
     クロム系化合物を含有しない絶縁被膜を鋼板表面に有する、電磁鋼板。
  2.  りん酸金属塩と、アクリル系樹脂、エポキシ系樹脂およびポリエステル樹脂のうちの1種または2種以上の混合物もしくは共重合物とを、絶縁皮膜の総質量に対して合計50質量%以上含有する、請求項1に記載の電磁鋼板。
  3.  酸化物と、アクリル系樹脂、エポキシ系樹脂およびポリエステル樹脂のうちの1種または2種以上の混合物もしくは共重合物とを、絶縁皮膜の総質量に対して合計50質量%以上含有する、請求項1に記載の電磁鋼板。
  4.  アルミニウム、亜鉛、カルシウム、コバルト、ストロンチウム、ジルコニウム、チタン、ニッケル、バリウム、マグネシウムおよびマンガンのうちの1種または2種以上の金属元素のりん酸金属塩100質量部と、アクリル系樹脂、エポキシ系樹脂およびポリエステル樹脂のうちの1種または2種以上の混合物もしくは共重合物1~50質量部とを、絶縁皮膜の総質量に対して合計50質量%以上含有する、請求項2に記載の電磁鋼板。
  5.  コロイダルシリカ、酸化亜鉛、酸化カルシウム、酸化コバルト、酸化ジルコニウム、酸化チタンおよび酸化マグネシウムのうちの1種または2種以上の酸化物100質量部と、アクリル系樹脂、エポキシ系樹脂およびポリエステル樹脂のうちの1種または2種以上の混合物もしくは共重合物1~100質量部とを、絶縁皮膜の総質量に対して合計50質量%以上含有する、請求項3に記載の電磁鋼板。
     
PCT/JP2016/053041 2015-02-05 2016-02-02 電磁鋼板 WO2016125783A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2016573373A JP6500918B2 (ja) 2015-02-05 2016-02-02 電磁鋼板
US15/545,760 US20180022927A1 (en) 2015-02-05 2016-02-02 Electrical steel sheet
BR112017015374-2A BR112017015374B1 (pt) 2015-02-05 2016-02-02 Chapa de aço elétrica
KR1020177024344A KR102031780B1 (ko) 2015-02-05 2016-02-02 전자 강판
EP16746614.3A EP3255177B1 (en) 2015-02-05 2016-02-02 Electrical steel sheet
CN201680008987.9A CN107208271B9 (zh) 2015-02-05 2016-02-02 电磁钢板
PL16746614T PL3255177T3 (pl) 2015-02-05 2016-02-02 Elektrotechniczna blacha stalowa

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-021081 2015-02-05
JP2015021081 2015-02-05

Publications (1)

Publication Number Publication Date
WO2016125783A1 true WO2016125783A1 (ja) 2016-08-11

Family

ID=56564124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053041 WO2016125783A1 (ja) 2015-02-05 2016-02-02 電磁鋼板

Country Status (9)

Country Link
US (1) US20180022927A1 (ja)
EP (1) EP3255177B1 (ja)
JP (1) JP6500918B2 (ja)
KR (1) KR102031780B1 (ja)
CN (1) CN107208271B9 (ja)
BR (1) BR112017015374B1 (ja)
PL (1) PL3255177T3 (ja)
TW (1) TWI579408B (ja)
WO (1) WO2016125783A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106816248A (zh) * 2016-12-07 2017-06-09 麦格昆磁(天津)有限公司 混胶磁粉及其制备方法
JP2017160536A (ja) * 2016-03-02 2017-09-14 Jfeスチール株式会社 絶縁被膜付き電磁鋼板
JPWO2023063369A1 (ja) * 2021-10-13 2023-04-20

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11377569B2 (en) * 2010-07-23 2022-07-05 Nippon Steel Corporation Electrical steel sheet and method for manufacturing the same
KR102114810B1 (ko) 2017-12-26 2020-05-25 주식회사 포스코 전기강판 접착 코팅 조성물, 전기강판 적층체 및 전기강판 제품의 제조 방법
WO2020088764A1 (de) * 2018-10-31 2020-05-07 Thyssenkrupp Electrical Steel Gmbh Verfahren zur herstellung eines kornorientierten stahlflachprodukts für elektromagnetische anwendungen, stahlflachprodukt für elektromagnetische anwendungen und transformator-kern-stapel hergestellt aus einem solchen stahlflachprodukt
KR20230092809A (ko) * 2021-12-17 2023-06-26 주식회사 포스코 전기강판용 절연피막 조성물, 이를 포함하는 전기강판, 및 이의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220683A (ja) * 2000-02-04 2001-08-14 Kawasaki Steel Corp 絶縁被膜付き電磁鋼板
WO2012011442A1 (ja) * 2010-07-23 2012-01-26 新日本製鐵株式会社 電磁鋼板及びその製造方法
WO2012057168A1 (ja) * 2010-10-29 2012-05-03 新日本製鐵株式会社 電磁鋼板及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3840983A (en) 1973-04-30 1974-10-15 Ford Motor Co Method of manufacture of a dynamoelectric machine laminated armature structure
JPH02200434A (ja) * 1989-01-30 1990-08-08 Sumitomo Electric Ind Ltd 熱収縮物品
JPH06104905B2 (ja) 1989-06-30 1994-12-21 住友金属工業株式会社 歪取焼鈍後の耐置錆性に優れた電気絶縁皮膜の形成方法
JPH0598207A (ja) 1991-10-08 1993-04-20 Asahi Glass Co Ltd 水性塗料組成物
JP3117846B2 (ja) 1993-07-26 2000-12-18 新日本製鐵株式会社 皮膜特性の優れる無方向性電磁鋼板及びその鋼板用表面処理剤
JP2944849B2 (ja) 1993-05-21 1999-09-06 新日本製鐵株式会社 被膜特性の極めて良好な無方向性電磁鋼板の製造方法
JPH09323066A (ja) 1996-06-07 1997-12-16 Kawasaki Steel Corp 歪取り焼鈍が可能で耐蝕性、耐溶剤性に優れる絶縁被膜付き電磁鋼板ならびにその絶縁被膜の形成方法
JP4268344B2 (ja) * 2001-04-12 2009-05-27 Jfeスチール株式会社 加工性に優れる絶縁被膜付き電磁鋼板
US8673091B2 (en) * 2007-08-03 2014-03-18 Ppg Industries Ohio, Inc Pretreatment compositions and methods for coating a metal substrate
KR101648657B1 (ko) * 2012-04-13 2016-08-16 제이에프이 스틸 가부시키가이샤 강제 도장 부재

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220683A (ja) * 2000-02-04 2001-08-14 Kawasaki Steel Corp 絶縁被膜付き電磁鋼板
WO2012011442A1 (ja) * 2010-07-23 2012-01-26 新日本製鐵株式会社 電磁鋼板及びその製造方法
WO2012057168A1 (ja) * 2010-10-29 2012-05-03 新日本製鐵株式会社 電磁鋼板及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3255177A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017160536A (ja) * 2016-03-02 2017-09-14 Jfeスチール株式会社 絶縁被膜付き電磁鋼板
CN106816248A (zh) * 2016-12-07 2017-06-09 麦格昆磁(天津)有限公司 混胶磁粉及其制备方法
JPWO2023063369A1 (ja) * 2021-10-13 2023-04-20
WO2023063369A1 (ja) * 2021-10-13 2023-04-20 日本製鉄株式会社 無方向性電磁鋼板、鉄心およびモータコア、ならびに鉄心およびモータコアの製造方法

Also Published As

Publication number Publication date
CN107208271B9 (zh) 2019-11-26
US20180022927A1 (en) 2018-01-25
KR102031780B1 (ko) 2019-10-14
EP3255177B1 (en) 2020-07-29
KR20170107568A (ko) 2017-09-25
BR112017015374A2 (ja) 2018-01-16
JP6500918B2 (ja) 2019-04-17
PL3255177T3 (pl) 2020-12-14
TW201638385A (zh) 2016-11-01
EP3255177A1 (en) 2017-12-13
EP3255177A4 (en) 2018-07-18
BR112017015374B1 (pt) 2021-12-21
JPWO2016125783A1 (ja) 2017-11-09
TWI579408B (zh) 2017-04-21
CN107208271B (zh) 2019-10-01
CN107208271A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
JP6500918B2 (ja) 電磁鋼板
TWI468549B (zh) Electromagnetic steel plate and manufacturing method thereof
JP4644317B2 (ja) 絶縁被膜を有する電磁鋼板及びその製造方法
CN107250431B (zh) 电磁钢板及电磁钢板的制造方法
JP5093411B2 (ja) 樹脂モールドされる積層鉄芯に使用される電磁鋼板及びその製造方法
JP5423465B2 (ja) 電磁鋼板および電磁鋼板の製造方法
JP2006169568A (ja) 絶縁被膜付き電磁鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746614

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573373

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016746614

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15545760

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017015374

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177024344

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017015374

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170718