WO2012055222A1 - 明火加热炉炉温控制方法及控制设备 - Google Patents
明火加热炉炉温控制方法及控制设备 Download PDFInfo
- Publication number
- WO2012055222A1 WO2012055222A1 PCT/CN2011/073363 CN2011073363W WO2012055222A1 WO 2012055222 A1 WO2012055222 A1 WO 2012055222A1 CN 2011073363 W CN2011073363 W CN 2011073363W WO 2012055222 A1 WO2012055222 A1 WO 2012055222A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- furnace temperature
- value
- control
- feedforward
- output component
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000001105 regulatory effect Effects 0.000 claims abstract description 16
- 230000001276 controlling effect Effects 0.000 claims abstract description 8
- 238000012544 monitoring process Methods 0.000 claims abstract description 4
- 238000004364 calculation method Methods 0.000 claims description 27
- 230000008859 change Effects 0.000 claims description 27
- 238000005070 sampling Methods 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 230000010354 integration Effects 0.000 claims description 4
- 230000007704 transition Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 108010053481 Antifreeze Proteins Proteins 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 239000013072 incoming material Substances 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0224—Process history based detection method, e.g. whereby history implies the availability of large amounts of data
- G05B23/0227—Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
- G05B23/0235—Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D11/00—Process control or regulation for heat treatments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
- F23N1/022—Regulating fuel supply conjointly with air supply using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D19/00—Arrangements of controlling devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D21/00—Arrangements of monitoring devices; Arrangements of safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D21/00—Arrangements of monitoring devices; Arrangements of safety devices
- F27D21/0014—Devices for monitoring temperature
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B11/00—Automatic controllers
- G05B11/01—Automatic controllers electric
- G05B11/36—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
- G05B11/42—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0265—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/1919—Control of temperature characterised by the use of electric means characterised by the type of controller
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D7/00—Control of flow
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/18—Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
- F23N2005/181—Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using detectors sensitive to rate of flow of air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/18—Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
- F23N2005/185—Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using detectors sensitive to rate of flow of fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2223/00—Signal processing; Details thereof
- F23N2223/14—Differentiation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2223/00—Signal processing; Details thereof
- F23N2223/34—Signal processing; Details thereof with feedforward processing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2223/00—Signal processing; Details thereof
- F23N2223/36—PID signal processing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2223/00—Signal processing; Details thereof
- F23N2223/52—Fuzzy logic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2225/00—Measuring
- F23N2225/08—Measuring temperature
- F23N2225/14—Ambient temperature around burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2225/00—Measuring
- F23N2225/08—Measuring temperature
- F23N2225/16—Measuring temperature burner temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D19/00—Arrangements of controlling devices
- F27D2019/0003—Monitoring the temperature or a characteristic of the charge and using it as a controlling value
Definitions
- the invention relates to the field of smelting equipment, in particular to an oven fire heating furnace temperature control method and a control device. Background technique
- Continuous annealing horizontal furnace is a relatively common heating furnace.
- the furnace is divided into several areas along the traveling direction of the strip steel, and the furnace temperature is controlled by the partition.
- the accuracy of the furnace temperature measurement seriously affects the quality and performance of the product.
- the accuracy of the furnace temperature is critical, and the decrease in the accuracy of the furnace temperature directly leads to unqualified product performance.
- the general temperature control system has a large power design of the burner, which leads to a large thermal hysteresis and thermal inertia during temperature regulation, so that the furnace temperature curve in the steady state is equal amplitude oscillation, and the transition time is long in the non-steady state, which seriously affects Product performance and finished product rate.
- the usual furnace temperature control method is double cross PID control.
- This method achieves the purpose of controlling the furnace temperature by the ratio of gas to air and the ratio of each other.
- This kind of control method works well for systems with less thermal hysteresis, but the thermal inertia and thermal hysteresis in the furnace are generally larger, and the furnace temperature control is more difficult.
- the PID control method one is the pursuit of rapid In response, there is another kind of pursuit of stability. If the pursuit of rapid response, the transition time will be shortened, but the overshoot will become larger, the furnace temperature is difficult to stabilize; if the pursuit of stability, the steady state furnace temperature accuracy is good, but the furnace temperature transition time is bound to be very long, so that the control falls into a A dilemma.
- PID adjustment is a kind of steady-state adjustment method after all, and there is no pre-judgment for the forward-looking situation of the incoming material and the change of the temperature set value. There are not many adjustment methods for the non-steady-state lag, and the adjustment effect is not good.
- the feed control compensates for the unsteady hysteresis control.
- the object of the present invention is to overcome the problems in the above furnace temperature control and to provide an open flame heating furnace temperature control method and control apparatus.
- a method for controlling an oven temperature of an open flame heating furnace comprising: monitoring a furnace temperature to obtain a furnace temperature feedback value;
- the deviation value DVi obtains the second multi-feedforward output component FF T ;
- the PID control parameters are searched based on the fuzzy control rule, and the adjustment control parameter OP 1 is generated according to the PID control parameters ;
- the gas flow regulating valve and the air flow regulating valve are controlled by the adjustment control parameter OPi in combination with the first multi-feedforward output component FF V and the second multi-feedforward output component FF T as final control output values.
- the furnace temperature difference calculation module is connected to the thermocouple's analog-to-digital conversion module, and the furnace temperature difference calculation module stores the furnace temperature setting value, and the furnace temperature difference calculation module calculates the furnace temperature setting value according to the furnace temperature feedback value and the furnace temperature setting value.
- the difference from the furnace temperature feedback value and the difference is taken as the deviation value DV 1;
- the furnace temperature change slope calculation module is connected to the furnace temperature difference calculation module, and calculates the difference between the furnace temperature set value and the furnace temperature feedback value in the unit time, that is, the slope of the furnace temperature change value as the deviation value DV 2 ;
- the speed regulator of the open flame heating furnace unit is used for obtaining the speed V of the open fire heating furnace unit;
- the first multi-feedforward module is connected to the speed regulator, and obtains the first multi-feedforward output component FF V according to the speed V of the open flame heating furnace unit;
- the second multi-feedforward module is connected to the furnace temperature difference calculation module, and according to the difference between the furnace temperature setting value and the furnace temperature feedback value, the deviation value DVi obtains the second multi-feedforward output component FF T ;
- the adjustment control parameter generation module is connected to the furnace temperature difference calculation module and the furnace temperature change slope calculation module, and according to the deviation values DV 1 and DV 2 , finds the PID control parameter based on the fuzzy control rule, and generates the adjustment control parameter OP 1 according to the PID control parameter. ;
- the flow controller is connected to the adjustment control parameter generation module, the first multi-feedforward module and the second multi-feedforward module, and the first multi-feedforward output component FF V and the second multi-feedforward output component FF are combined by the adjustment control parameter OPi T produces the final control output value;
- Gas flow regulating valve connected to the flow controller, regulates the gas flow according to the final control output value the amount
- a gas flow detector connected to the flow controller to detect current gas flow and feedback; an air flow regulating valve connected to the flow controller to regulate air flow based on the final control output value;
- An air flow detector connected to the flow controller, detects the current air flow and feeds back.
- the control method and the control device of the invention adopt the fuzzy control algorithm, and do not need to establish the transfer function of the forward channel, and have certain adaptability and rapidity for the system with non-linearity, time-varying and regularity, and the unit has good advantages.
- the steady-state control effect is better; the multi-feedforward control has a better effect on the incoming material and the temperature set value change.
- the present invention designs a fuzzy control algorithm for the characteristics of the continuous annealing furnace temperature control, and is good at using fuzzy control.
- Steady-state control and multi-feedforward control are good at non-steady-state control.
- the basic idea of the furnace temperature control method and the control device of the open flame heating furnace of the present invention is to obtain the numerical value of the furnace temperature deviation and the trend of the furnace temperature change by the furnace temperature change amount and the furnace temperature change rate, design a fuzzy control algorithm and a fuzzy control rule, and utilize Fuzzy control is good at steady-state control and feedforward control. It is good at non-steady-state control. Different multi-feedforward compensation values and fuzzy control rules are used for different situations. Different PID parameter combinations are adopted to achieve fast response when large deviations occur. Quickly adjust and reduce the transition time. When the deviation is small, the adjustment trend is slowed down, the overshoot is reduced, the furnace temperature can be stabilized quickly, and the furnace temperature control accuracy is improved.
- Fig. 1 is a flow chart showing a method of controlling the temperature of an open flame heating furnace according to the present invention.
- Fig. 2 is a structural view showing an oven temperature control apparatus for an open flame heating furnace according to the present invention.
- Figure 3 discloses the basic control logic of the furnace temperature control method of the open flame furnace of the present invention. Detailed description of the invention
- the present invention discloses a method for controlling the temperature of an open flame furnace, comprising the following steps:
- the deviation value DVi is assigned to the set ⁇ negative large, negative, negative small, zero, small , center, Zhengda ⁇ , and use the set ⁇ NB, NM, NS, ZE, PS, PM, PB ⁇ .
- the slope of the furnace temperature change value is set as a fuzzy control subset as the deviation value DV 2
- the deviation value DV 2 is classified into the set ⁇ negative, negative small, zero, small, medium ⁇ , and Expressed using the set ⁇ NM, NS, ZE, PS, PM ⁇ .
- the step S104 is implemented as follows: According to the open flame unit speed V, the first multi-feedforward output component FF V is obtained based on Table 1 below :
- FFvi to FF V7 is a set of set parameters.
- the deviation value DVi obtains the second multi-feedforward output component FF T .
- the step S105 is implemented as follows: According to the difference DVi between the furnace temperature set value and the furnace temperature feedback value, the two feedforward output components FF T are obtained based on the following Table 2 :
- the range of the difference DV 1 between the different furnace temperature set value and the furnace temperature feedback value corresponds to a different second multi-feedforward output component FF T .
- ⁇ to FF T7 is a set of set parameters.
- the PID control parameters are searched based on the fuzzy control rule, and the adjustment control parameter OPi is generated according to the PID control parameters.
- the fuzzy control rules are as
- the results of fuzzy rule rules include NB, NM, NS, ZE, PS, PM, and PB, according to the mode.
- Each fuzzy rule result corresponds to a set of values of parameters P, I, and D, that is, parameter basic values, where Pl-P7, 11-17, and D1-D7 are predetermined parameter basic values.
- the value of the PID parameter base value is:
- the PID control parameters are calculated according to the following formula:
- PID(k) Kp[e(k)-e(k-l)]+Kie(k)+Kd(e(k)_2e(k-l)+(k-2)),
- Kp the proportional link
- e(k) the deviation of the kth sampling period
- Ki KpT/Ti o
- Kd KpTd/T
- T the sampling period
- Ti the integration time
- Td the differentiation time
- the adjustment control parameter 0Pi is obtained according to the PID control parameters.
- the adjustment control parameter O oPi is combined with the first multi-feedforward output component FF V and the second multi-feedforward output component FF T as a final control output value Q for the gas flow regulating valve and the air flow regulating valve
- the present invention also discloses an open flame heating furnace temperature control device, the equipment package
- Thermocouple 201 includes furnace temperature difference calculation module 202, furnace II temperature change slope calculation module 203, open flame o o
- thermocouple 201 is placed close to the burner 200, and the thermocouple 201 is used to monitor the furnace temperature II, the thermocouple has
- the analog to digital conversion module 201b outputs a furnace temperature feedback value. o o
- the furnace temperature difference calculation module 202 is connected to the analog to digital conversion module 201b of the thermocouple 201.
- the furnace temperature difference calculation module 202 stores the furnace temperature setting value, and the furnace temperature difference calculation module 202 calculates the furnace according to the furnace temperature feedback value and the furnace temperature setting value.
- the difference between the temperature set value and the furnace temperature feedback value is used as the deviation value DVi.
- the deviation value DV ⁇ of the furnace temperature set value and the furnace temperature feedback value is set to a fuzzy control subset
- the deviation value DVi is included in the set ⁇ negative large, negative, negative small, zero, small , center, Zhengda ⁇ , and use the set ⁇ NB, NM, NS, ZE, PS, PM, PB ⁇ .
- the furnace temperature change slope calculation module 203 is connected to the furnace temperature difference calculation module 202, and the furnace temperature change slope calculation module 203 calculates the difference between the furnace temperature set value and the furnace temperature feedback value, that is, the slope of the furnace temperature change value as a deviation.
- the value is DV 2 .
- the deviation value DV 2 is classified into the set ⁇ negative, negative small, zero, small, medium ⁇ , and Expressed using the set ⁇ NM, NS, ZE, PS, PM ⁇ .
- the speed regulator 204 of the open flame heating furnace unit is used to obtain the speed V of the open flame heating furnace unit.
- the first multi-feedforward module 205 is coupled to the speed regulator 204 to obtain a first multi-feedforward output component FF V based on the open flame unit speed V.
- the first multi-feedforward module 205 derives a first multi-feedforward output component FF V based on the open flame unit speed V based on Table 1 below :
- FF V7 is a set of set parameters.
- the second multi-feedforward module 206 is connected to the furnace temperature difference calculation module 202. According to the difference between the furnace temperature set value and the furnace temperature feedback value, the deviation value DVi obtains the second multi-feedforward output component FF T . In one embodiment, the second multi-feedforward module 206 obtains the second multi-feedforward output component FF T based on the difference DVi between the furnace temperature setpoint and the furnace temperature feedback value based on Table 2 below :
- FF T7 is a set of set parameters.
- the adjustment control parameter generation module 207 is connected to the furnace temperature difference calculation module 202 and the furnace temperature change slope calculation module 203, and according to the deviation values DV 1 and DV 2 , searches for PID control parameters based on the fuzzy control rules, and generates adjustment control parameters according to the PID control parameters.
- the fuzzy control rule as follows:
- the fuzzy rule rule results include NB, NM, NS, ZE, PS, PM, and PB. According to the results of the fuzzy rule, the basic values of the PID parameters are obtained based on Table 4 below:
- Each fuzzy rule result corresponds to a set of values of parameters P, I, and D, that is, parameter basic values, where Pl-P7, 11-17, and D1-D7 are predetermined parameter basic values.
- the value of the PID parameter base value is:
- the PID control parameters are calculated according to the following formula:
- PID(k) Kp[e(k)-e(k-l)]+Kie(k)+Kd(e(k)_2e(k-l)+(k-2)),
- the adjustment control parameter generation module 207 obtains the adjustment control parameter OPi based on the PID control parameter.
- the flow controller 208 is connected to the adjustment control parameter generation module 207, the first multi-feedforward module 205 and the second multi-feedforward module 206, and combines the first multi-feedforward output component FF V and the second multi-front by the adjustment control parameter OPi
- the feed output component FF T produces the final control output value.
- a gas flow regulating valve 209 connected to the flow controller 208, regulates the gas flow based on the final control output value.
- the gas flow detector 210 connected to the flow controller 208, detects the current gas flow and feeds back.
- An air flow regulating valve 211 is coupled to the flow controller 208 to regulate the air flow based on the final control output value.
- An air flow detector 212 coupled to the flow controller 208, detects the current air flow and feeds back.
- the basic control logic of the open flame heating furnace temperature control method of the present invention is to obtain the value of the furnace temperature deviation and the tendency of the furnace temperature to change by the furnace temperature change amount and the furnace temperature change rate.
- fuzzy control is good at steady-state control and multi-feedforward control is good at non-steady-state control. Different multi-feedforward compensation values and fuzzy control rules are adopted for different situations, and different PID parameter combinations are adopted to achieve large deviation.
- Quick response, quick adjustment, and reduced transition time When the deviation is small, the adjustment trend is slowed down, the overshoot is reduced, the furnace temperature can be stabilized quickly, and the furnace temperature control accuracy is improved.
- Fig. 3 discloses the basic control logic of the furnace temperature control method of the open flame heating furnace of the present invention.
- the basic idea of the furnace temperature control method and the control device of the open flame heating furnace of the present invention is to obtain the numerical value of the furnace temperature deviation and the trend of the furnace temperature change by the furnace temperature change amount and the furnace temperature change rate, design a fuzzy control algorithm and a fuzzy control rule, and utilize Fuzzy control is good at steady-state control and feedforward control. It is good at non-steady-state control. Different multi-feedforward compensation values and fuzzy control rules are used for different situations. Different PID parameter combinations are adopted to achieve fast response when large deviations occur. Quickly adjust and reduce the transition time. When the deviation is small, the adjustment trend is slowed down, the overshoot is reduced, the furnace temperature can be stabilized quickly, and the furnace temperature control accuracy is improved.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Thermal Sciences (AREA)
- Combustion & Propulsion (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Medical Informatics (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- Feedback Control In General (AREA)
- Control Of Temperature (AREA)
- Regulation And Control Of Combustion (AREA)
- Tunnel Furnaces (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
- Control Of Heat Treatment Processes (AREA)
- Control Of Combustion (AREA)
- Furnace Details (AREA)
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11835496.8A EP2634519B1 (en) | 2010-10-27 | 2011-04-27 | Device for controlling furnace temperature of burning heating furnace |
US13/881,682 US9383745B2 (en) | 2010-10-27 | 2011-04-27 | Method and device for controlling furnace temperature of burning heating furnace |
MX2013004723A MX342765B (es) | 2010-10-27 | 2011-04-27 | Metodo para controlar la temperatura de horno de calentamiento a fuego directo y dispositivo de control. |
KR1020137013108A KR101443281B1 (ko) | 2010-10-27 | 2011-04-27 | 가열로 연소의 노 온도를 제어하는 방법 및 장치 |
JP2013535246A JP5536286B2 (ja) | 2010-10-27 | 2011-04-27 | 燃焼加熱炉の炉温の制御方法および制御装置 |
RU2013124036/02A RU2557113C2 (ru) | 2010-10-27 | 2011-04-27 | Способ управления температурой печи для печи с непосредственным подогревом и устройство управления |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010521573.0 | 2010-10-27 | ||
CN2010105215730A CN102455135B (zh) | 2010-10-27 | 2010-10-27 | 明火加热炉炉温控制设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012055222A1 true WO2012055222A1 (zh) | 2012-05-03 |
Family
ID=45993118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/073363 WO2012055222A1 (zh) | 2010-10-27 | 2011-04-27 | 明火加热炉炉温控制方法及控制设备 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9383745B2 (zh) |
EP (1) | EP2634519B1 (zh) |
JP (1) | JP5536286B2 (zh) |
KR (1) | KR101443281B1 (zh) |
CN (1) | CN102455135B (zh) |
MX (1) | MX342765B (zh) |
RU (1) | RU2557113C2 (zh) |
WO (1) | WO2012055222A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105911862A (zh) * | 2016-05-13 | 2016-08-31 | 中南大学 | 一种电加热炉温度控制方法 |
CN110160081A (zh) * | 2019-05-27 | 2019-08-23 | 国电科学技术研究院有限公司 | 一种火力发电机组中锅炉的主控前馈构造方法及装置 |
CN112430727A (zh) * | 2020-10-15 | 2021-03-02 | 宝钢日铁汽车板有限公司 | 一种连续退火炉炉温预警方法及系统 |
CN112711237A (zh) * | 2020-12-29 | 2021-04-27 | 华润电力技术研究院有限公司 | 一种火电机组自动控制品质在线评估方法和系统 |
CN115576194A (zh) * | 2022-10-14 | 2023-01-06 | 中冶南方工程技术有限公司 | 基于脉冲燃烧连续退火炉的煤气总管压力控制方法 |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103952529B (zh) * | 2014-05-08 | 2015-08-12 | 济钢集团有限公司 | 一种步进式加热炉基于热平衡的炉温优化方法 |
CN104390354A (zh) * | 2014-10-17 | 2015-03-04 | 中国石油天然气股份有限公司 | 油田负压式加热炉的温度精确控制装置及方法 |
CN104407642B (zh) * | 2014-12-01 | 2016-09-07 | 杭州电子科技大学 | 一种基于迭代学习控制的连铸坯感应加热过程温控方法 |
CN104807036B (zh) * | 2015-04-13 | 2018-01-19 | 山西太钢不锈钢股份有限公司 | 一种连续式燃气加热炉的温度控制方法 |
CN104898432A (zh) * | 2015-06-16 | 2015-09-09 | 中冶华天南京电气工程技术有限公司 | 高压炉顶调压阀组的模糊pid控制系统 |
CA3012298C (en) | 2016-01-28 | 2021-03-02 | Jfe Steel Corporation | Steel sheet temperature control device and temperature control method |
JP6146553B1 (ja) * | 2016-01-28 | 2017-06-14 | Jfeスチール株式会社 | 鋼板の温度制御装置及び温度制御方法 |
CN105867128B (zh) * | 2016-04-18 | 2019-10-15 | 中国神华能源股份有限公司 | 一种非均衡偏差控制方法、装置及火电厂自动控制系统 |
CN105807615A (zh) * | 2016-05-13 | 2016-07-27 | 东北林业大学 | 模糊前馈反馈控制器 |
CN106440827B (zh) * | 2016-10-20 | 2018-06-19 | 志圣科技(广州)有限公司 | 一种无氧化烤炉气水冷降温斜率控制方法 |
WO2018206515A1 (en) * | 2017-05-07 | 2018-11-15 | Feracitas Oy | Improvement for glass tempering furnace control system |
CN107158935B (zh) * | 2017-05-19 | 2019-12-24 | 中国神华能源股份有限公司 | 控制scr脱硝热解炉温度的方法及装置 |
CN107092284A (zh) * | 2017-06-07 | 2017-08-25 | 重庆大学 | 一种导爆索热熔的温度控制技术 |
CN107450622A (zh) * | 2017-08-18 | 2017-12-08 | 曹阳 | 加热炉炉温智能控制系统及控制方法 |
KR102053656B1 (ko) * | 2018-03-30 | 2019-12-09 | 효성화학 주식회사 | 파이어 히터의 연료 조절 시스템 |
CN108343971A (zh) * | 2018-04-12 | 2018-07-31 | 阮红艺 | 一种垃圾处理炉 |
CN109357539A (zh) * | 2018-09-26 | 2019-02-19 | 中材海外工程有限公司 | 新型智能水泥熟料烧成控制系统 |
CN109913636A (zh) * | 2019-04-17 | 2019-06-21 | 福建船政交通职业学院 | 一种热处理炉温度控制方法和系统 |
CN111240190A (zh) * | 2020-04-14 | 2020-06-05 | 福建三钢闽光股份有限公司 | 一种基于可变模糊区间时间序列的pid控制器 |
CN111856938B (zh) * | 2020-07-28 | 2022-04-08 | 中国农业科学院油料作物研究所 | 自适应模糊控制的微波反应器智能化温度控制方法及装置 |
CN112378268B (zh) * | 2020-11-13 | 2023-03-31 | 水滴智能装备技术(苏州)有限公司 | 一种加热炉在线式炉温控制系统和控制方法 |
CN112695193B (zh) * | 2020-12-17 | 2022-05-13 | 中冶南方工程技术有限公司 | 一种保证热轧加热炉烧嘴高效工作的协调控制方法 |
CN112925198B (zh) * | 2021-01-23 | 2022-06-14 | 西安热工研究院有限公司 | 一种一维多象限燃煤机组主汽温模糊控制方法 |
CN113587120B (zh) * | 2021-07-29 | 2023-08-29 | 光大环保技术研究院(深圳)有限公司 | 一种等离子灰渣熔融炉的控制方法 |
CN113867438A (zh) * | 2021-09-27 | 2021-12-31 | 湖南省计量检测研究院 | 一种润滑油蒸发损失测定仪电热炉温度的测控方法及系统 |
CN114198914B (zh) * | 2021-11-18 | 2023-04-28 | 邯郸钢铁集团有限责任公司 | 一种基于动态跟踪斜率思想的热风炉自动燃烧控制方法 |
CN114911280B (zh) * | 2022-05-30 | 2024-06-07 | 西门子(中国)有限公司 | 湿度控制方法和装置 |
CN115130769B (zh) * | 2022-07-07 | 2024-03-01 | 青岛恒小火软件有限公司 | 一种高炉喷煤制粉系统温度智能自适应方法 |
CN118168348B (zh) * | 2024-05-14 | 2024-07-12 | 常州陆铭光电科技有限公司 | 一种炉膛双光谱温度监测系统及监测方法 |
CN118567416B (zh) * | 2024-07-24 | 2024-10-18 | 湖南超弦科技股份有限公司 | 一种硅片生产管式炉plc均衡控温方法及相关设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09316545A (ja) * | 1996-05-28 | 1997-12-09 | Nippon Steel Corp | 連続焼鈍炉の板温制御方法 |
JPH1183005A (ja) * | 1997-09-08 | 1999-03-26 | Toshiba Corp | 炉温燃焼制御装置 |
CN1510360A (zh) * | 2002-12-20 | 2004-07-07 | 北京众和达自控技术开发有限公司 | 用于加热炉出口温度的综合控制方法及其装置 |
CN1690892A (zh) * | 2004-04-30 | 2005-11-02 | 深圳市佳运通电子有限公司 | 油田加热炉自动控制系统 |
CN101464096A (zh) * | 2008-12-11 | 2009-06-24 | 江苏金源锻造股份有限公司 | 燃气加热炉温度多点传感与智能控制方法 |
CN101693945A (zh) * | 2009-09-29 | 2010-04-14 | 中冶南方(武汉)自动化有限公司 | 一种热处理炉脉冲燃烧的温度控制方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2031765C (en) * | 1989-12-08 | 1996-02-20 | Masahide Nomura | Method and system for performing control conforming with characteristics of controlled system |
JP2607734Y2 (ja) * | 1992-05-12 | 2002-07-08 | 株式会社ガスター | 給湯器の制御装置 |
JP2746115B2 (ja) * | 1994-04-15 | 1998-04-28 | 株式会社ノーリツ | 給湯器のファンモータ制御装置 |
FR2741939B1 (fr) * | 1995-12-01 | 1998-02-20 | Gaz De France | Installation de production d'eau chaude sanitaire par chaudiere a gaz et procede de regulation de la temperature d'eau chaude sanitaire dans une telle installation |
JPH09241731A (ja) * | 1996-03-11 | 1997-09-16 | Kawasaki Steel Corp | 連続焼鈍炉の操業方法 |
JP3235643B2 (ja) * | 1996-12-11 | 2001-12-04 | 東京都 | 汚泥焼却炉の燃焼制御方法およびその装置 |
JP3802965B2 (ja) * | 1997-03-21 | 2006-08-02 | ヴイ.ウリヤノフ セルゲイ | 非線形の物理的な制御対象の最適制御のための自己組織化方法及び装置 |
US6882992B1 (en) * | 1999-09-02 | 2005-04-19 | Paul J. Werbos | Neural networks for intelligent control |
PL1906092T3 (pl) * | 2006-09-30 | 2014-11-28 | Powitec Intelligent Tech Gmbh | Sposób regulacji procesu spalania |
JP5144963B2 (ja) * | 2007-06-05 | 2013-02-13 | 新日鉄住金エンジニアリング株式会社 | 鋼帯連続熱処理炉の温度制御方法 |
CN201144265Y (zh) * | 2007-12-26 | 2008-11-05 | 中冶集团北京冶金设备研究设计总院 | 一种连续热处理炉温度控制系统 |
US8160730B2 (en) * | 2008-03-03 | 2012-04-17 | Xinsheng Lou | Fuzzy logic control and optimization system |
JP5316765B2 (ja) | 2008-12-08 | 2013-10-16 | 大同特殊鋼株式会社 | 熱処理炉の雰囲気制御方法 |
CN101749730B (zh) * | 2008-12-09 | 2011-05-18 | 上海交技发展股份有限公司 | 一种燃煤热载体炉高精度温度调节燃烧控制方法 |
CN101739004A (zh) * | 2009-11-11 | 2010-06-16 | 中冶北方工程技术有限公司 | 烧结机点火炉的Fuzzy-PID复合控制系统 |
US9063551B2 (en) * | 2013-02-14 | 2015-06-23 | Intellihot Green Technologies, Inc. | Adaptive heating control system for a water heater |
-
2010
- 2010-10-27 CN CN2010105215730A patent/CN102455135B/zh active Active
-
2011
- 2011-04-27 RU RU2013124036/02A patent/RU2557113C2/ru active
- 2011-04-27 EP EP11835496.8A patent/EP2634519B1/en active Active
- 2011-04-27 WO PCT/CN2011/073363 patent/WO2012055222A1/zh active Application Filing
- 2011-04-27 JP JP2013535246A patent/JP5536286B2/ja active Active
- 2011-04-27 MX MX2013004723A patent/MX342765B/es active IP Right Grant
- 2011-04-27 KR KR1020137013108A patent/KR101443281B1/ko active IP Right Grant
- 2011-04-27 US US13/881,682 patent/US9383745B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09316545A (ja) * | 1996-05-28 | 1997-12-09 | Nippon Steel Corp | 連続焼鈍炉の板温制御方法 |
JPH1183005A (ja) * | 1997-09-08 | 1999-03-26 | Toshiba Corp | 炉温燃焼制御装置 |
CN1510360A (zh) * | 2002-12-20 | 2004-07-07 | 北京众和达自控技术开发有限公司 | 用于加热炉出口温度的综合控制方法及其装置 |
CN1690892A (zh) * | 2004-04-30 | 2005-11-02 | 深圳市佳运通电子有限公司 | 油田加热炉自动控制系统 |
CN101464096A (zh) * | 2008-12-11 | 2009-06-24 | 江苏金源锻造股份有限公司 | 燃气加热炉温度多点传感与智能控制方法 |
CN101693945A (zh) * | 2009-09-29 | 2010-04-14 | 中冶南方(武汉)自动化有限公司 | 一种热处理炉脉冲燃烧的温度控制方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105911862A (zh) * | 2016-05-13 | 2016-08-31 | 中南大学 | 一种电加热炉温度控制方法 |
CN105911862B (zh) * | 2016-05-13 | 2018-08-24 | 中南大学 | 一种电加热炉温度控制方法 |
CN110160081A (zh) * | 2019-05-27 | 2019-08-23 | 国电科学技术研究院有限公司 | 一种火力发电机组中锅炉的主控前馈构造方法及装置 |
CN112430727A (zh) * | 2020-10-15 | 2021-03-02 | 宝钢日铁汽车板有限公司 | 一种连续退火炉炉温预警方法及系统 |
CN112711237A (zh) * | 2020-12-29 | 2021-04-27 | 华润电力技术研究院有限公司 | 一种火电机组自动控制品质在线评估方法和系统 |
CN115576194A (zh) * | 2022-10-14 | 2023-01-06 | 中冶南方工程技术有限公司 | 基于脉冲燃烧连续退火炉的煤气总管压力控制方法 |
Also Published As
Publication number | Publication date |
---|---|
RU2013124036A (ru) | 2014-12-10 |
JP5536286B2 (ja) | 2014-07-02 |
US20140364994A1 (en) | 2014-12-11 |
KR101443281B1 (ko) | 2014-09-23 |
RU2557113C2 (ru) | 2015-07-20 |
EP2634519A1 (en) | 2013-09-04 |
EP2634519B1 (en) | 2019-03-20 |
JP2014500939A (ja) | 2014-01-16 |
KR20130083455A (ko) | 2013-07-22 |
CN102455135A (zh) | 2012-05-16 |
CN102455135B (zh) | 2013-11-20 |
EP2634519A4 (en) | 2018-01-03 |
US9383745B2 (en) | 2016-07-05 |
MX342765B (es) | 2016-10-12 |
MX2013004723A (es) | 2013-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012055222A1 (zh) | 明火加热炉炉温控制方法及控制设备 | |
CN102453792B (zh) | 连续退火炉炉压控制方法及控制设备 | |
CN103397171B (zh) | 一种确定钢坯加热炉炉温设定值的方法 | |
CN101482732A (zh) | 混合煤气热值的稳定控制方法 | |
CN112650169B (zh) | 基于焓值及燃料在线热值计算的发电机组主参数控制系统 | |
JP6409876B2 (ja) | 制御装置 | |
JP4849961B2 (ja) | 熱分析装置 | |
CN206301228U (zh) | 控制设备以及具有控制设备的调温设备 | |
CN113587120B (zh) | 一种等离子灰渣熔融炉的控制方法 | |
JP5698219B2 (ja) | 前炉内の温度を制御するシステム及び方法 | |
JP2001021141A (ja) | 加熱炉の燃焼制御方法及び装置 | |
CN111443594B (zh) | 一种基于估算模型的锅炉氧量跟踪控制方法 | |
CN105278359B (zh) | 一种通过单变量控制单元达成多变量控制的控制器 | |
TW202012857A (zh) | 熱水器之恆溫控制裝置及其恆溫控制方法 | |
TWI807507B (zh) | 加熱爐之溫度控制方法 | |
TWI621001B (zh) | 藉由單變數控制單元達成多變數控制之控制器 | |
CN114442478B (zh) | 一种控制发烟设备输出稳定co浓度的增量式pid方法 | |
JP3627957B2 (ja) | 炉排ガスのco濃度の制御装置 | |
JP6248698B2 (ja) | ボイラ装置 | |
JPH02264302A (ja) | プロセス制御装置 | |
SU709664A1 (ru) | Способ автоматического управлени процессом пиролиза | |
JP2012187602A (ja) | 熱間圧延ラインにおける圧延材の上反り防止方法及び装置 | |
Jing et al. | A Decoupling Control Method of Ceramic Roller Kiln Temperature Based on Thermal Balance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11835496 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013535246 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011835496 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/004723 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137013108 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2013124036 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13881682 Country of ref document: US |