WO2012055222A1 - 明火加热炉炉温控制方法及控制设备 - Google Patents

明火加热炉炉温控制方法及控制设备 Download PDF

Info

Publication number
WO2012055222A1
WO2012055222A1 PCT/CN2011/073363 CN2011073363W WO2012055222A1 WO 2012055222 A1 WO2012055222 A1 WO 2012055222A1 CN 2011073363 W CN2011073363 W CN 2011073363W WO 2012055222 A1 WO2012055222 A1 WO 2012055222A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace temperature
value
control
feedforward
output component
Prior art date
Application number
PCT/CN2011/073363
Other languages
English (en)
French (fr)
Inventor
刘永锋
钱国强
顾华中
陈嵘
王志成
吕春国
文德建
章培莉
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to EP11835496.8A priority Critical patent/EP2634519B1/en
Priority to US13/881,682 priority patent/US9383745B2/en
Priority to MX2013004723A priority patent/MX342765B/es
Priority to KR1020137013108A priority patent/KR101443281B1/ko
Priority to JP2013535246A priority patent/JP5536286B2/ja
Priority to RU2013124036/02A priority patent/RU2557113C2/ru
Publication of WO2012055222A1 publication Critical patent/WO2012055222A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0235Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0014Devices for monitoring temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N2005/181Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using detectors sensitive to rate of flow of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N2005/185Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using detectors sensitive to rate of flow of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/14Differentiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/34Signal processing; Details thereof with feedforward processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/36PID signal processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/52Fuzzy logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/14Ambient temperature around burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/16Measuring temperature burner temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0003Monitoring the temperature or a characteristic of the charge and using it as a controlling value

Definitions

  • the invention relates to the field of smelting equipment, in particular to an oven fire heating furnace temperature control method and a control device. Background technique
  • Continuous annealing horizontal furnace is a relatively common heating furnace.
  • the furnace is divided into several areas along the traveling direction of the strip steel, and the furnace temperature is controlled by the partition.
  • the accuracy of the furnace temperature measurement seriously affects the quality and performance of the product.
  • the accuracy of the furnace temperature is critical, and the decrease in the accuracy of the furnace temperature directly leads to unqualified product performance.
  • the general temperature control system has a large power design of the burner, which leads to a large thermal hysteresis and thermal inertia during temperature regulation, so that the furnace temperature curve in the steady state is equal amplitude oscillation, and the transition time is long in the non-steady state, which seriously affects Product performance and finished product rate.
  • the usual furnace temperature control method is double cross PID control.
  • This method achieves the purpose of controlling the furnace temperature by the ratio of gas to air and the ratio of each other.
  • This kind of control method works well for systems with less thermal hysteresis, but the thermal inertia and thermal hysteresis in the furnace are generally larger, and the furnace temperature control is more difficult.
  • the PID control method one is the pursuit of rapid In response, there is another kind of pursuit of stability. If the pursuit of rapid response, the transition time will be shortened, but the overshoot will become larger, the furnace temperature is difficult to stabilize; if the pursuit of stability, the steady state furnace temperature accuracy is good, but the furnace temperature transition time is bound to be very long, so that the control falls into a A dilemma.
  • PID adjustment is a kind of steady-state adjustment method after all, and there is no pre-judgment for the forward-looking situation of the incoming material and the change of the temperature set value. There are not many adjustment methods for the non-steady-state lag, and the adjustment effect is not good.
  • the feed control compensates for the unsteady hysteresis control.
  • the object of the present invention is to overcome the problems in the above furnace temperature control and to provide an open flame heating furnace temperature control method and control apparatus.
  • a method for controlling an oven temperature of an open flame heating furnace comprising: monitoring a furnace temperature to obtain a furnace temperature feedback value;
  • the deviation value DVi obtains the second multi-feedforward output component FF T ;
  • the PID control parameters are searched based on the fuzzy control rule, and the adjustment control parameter OP 1 is generated according to the PID control parameters ;
  • the gas flow regulating valve and the air flow regulating valve are controlled by the adjustment control parameter OPi in combination with the first multi-feedforward output component FF V and the second multi-feedforward output component FF T as final control output values.
  • the furnace temperature difference calculation module is connected to the thermocouple's analog-to-digital conversion module, and the furnace temperature difference calculation module stores the furnace temperature setting value, and the furnace temperature difference calculation module calculates the furnace temperature setting value according to the furnace temperature feedback value and the furnace temperature setting value.
  • the difference from the furnace temperature feedback value and the difference is taken as the deviation value DV 1;
  • the furnace temperature change slope calculation module is connected to the furnace temperature difference calculation module, and calculates the difference between the furnace temperature set value and the furnace temperature feedback value in the unit time, that is, the slope of the furnace temperature change value as the deviation value DV 2 ;
  • the speed regulator of the open flame heating furnace unit is used for obtaining the speed V of the open fire heating furnace unit;
  • the first multi-feedforward module is connected to the speed regulator, and obtains the first multi-feedforward output component FF V according to the speed V of the open flame heating furnace unit;
  • the second multi-feedforward module is connected to the furnace temperature difference calculation module, and according to the difference between the furnace temperature setting value and the furnace temperature feedback value, the deviation value DVi obtains the second multi-feedforward output component FF T ;
  • the adjustment control parameter generation module is connected to the furnace temperature difference calculation module and the furnace temperature change slope calculation module, and according to the deviation values DV 1 and DV 2 , finds the PID control parameter based on the fuzzy control rule, and generates the adjustment control parameter OP 1 according to the PID control parameter. ;
  • the flow controller is connected to the adjustment control parameter generation module, the first multi-feedforward module and the second multi-feedforward module, and the first multi-feedforward output component FF V and the second multi-feedforward output component FF are combined by the adjustment control parameter OPi T produces the final control output value;
  • Gas flow regulating valve connected to the flow controller, regulates the gas flow according to the final control output value the amount
  • a gas flow detector connected to the flow controller to detect current gas flow and feedback; an air flow regulating valve connected to the flow controller to regulate air flow based on the final control output value;
  • An air flow detector connected to the flow controller, detects the current air flow and feeds back.
  • the control method and the control device of the invention adopt the fuzzy control algorithm, and do not need to establish the transfer function of the forward channel, and have certain adaptability and rapidity for the system with non-linearity, time-varying and regularity, and the unit has good advantages.
  • the steady-state control effect is better; the multi-feedforward control has a better effect on the incoming material and the temperature set value change.
  • the present invention designs a fuzzy control algorithm for the characteristics of the continuous annealing furnace temperature control, and is good at using fuzzy control.
  • Steady-state control and multi-feedforward control are good at non-steady-state control.
  • the basic idea of the furnace temperature control method and the control device of the open flame heating furnace of the present invention is to obtain the numerical value of the furnace temperature deviation and the trend of the furnace temperature change by the furnace temperature change amount and the furnace temperature change rate, design a fuzzy control algorithm and a fuzzy control rule, and utilize Fuzzy control is good at steady-state control and feedforward control. It is good at non-steady-state control. Different multi-feedforward compensation values and fuzzy control rules are used for different situations. Different PID parameter combinations are adopted to achieve fast response when large deviations occur. Quickly adjust and reduce the transition time. When the deviation is small, the adjustment trend is slowed down, the overshoot is reduced, the furnace temperature can be stabilized quickly, and the furnace temperature control accuracy is improved.
  • Fig. 1 is a flow chart showing a method of controlling the temperature of an open flame heating furnace according to the present invention.
  • Fig. 2 is a structural view showing an oven temperature control apparatus for an open flame heating furnace according to the present invention.
  • Figure 3 discloses the basic control logic of the furnace temperature control method of the open flame furnace of the present invention. Detailed description of the invention
  • the present invention discloses a method for controlling the temperature of an open flame furnace, comprising the following steps:
  • the deviation value DVi is assigned to the set ⁇ negative large, negative, negative small, zero, small , center, Zhengda ⁇ , and use the set ⁇ NB, NM, NS, ZE, PS, PM, PB ⁇ .
  • the slope of the furnace temperature change value is set as a fuzzy control subset as the deviation value DV 2
  • the deviation value DV 2 is classified into the set ⁇ negative, negative small, zero, small, medium ⁇ , and Expressed using the set ⁇ NM, NS, ZE, PS, PM ⁇ .
  • the step S104 is implemented as follows: According to the open flame unit speed V, the first multi-feedforward output component FF V is obtained based on Table 1 below :
  • FFvi to FF V7 is a set of set parameters.
  • the deviation value DVi obtains the second multi-feedforward output component FF T .
  • the step S105 is implemented as follows: According to the difference DVi between the furnace temperature set value and the furnace temperature feedback value, the two feedforward output components FF T are obtained based on the following Table 2 :
  • the range of the difference DV 1 between the different furnace temperature set value and the furnace temperature feedback value corresponds to a different second multi-feedforward output component FF T .
  • ⁇ to FF T7 is a set of set parameters.
  • the PID control parameters are searched based on the fuzzy control rule, and the adjustment control parameter OPi is generated according to the PID control parameters.
  • the fuzzy control rules are as
  • the results of fuzzy rule rules include NB, NM, NS, ZE, PS, PM, and PB, according to the mode.
  • Each fuzzy rule result corresponds to a set of values of parameters P, I, and D, that is, parameter basic values, where Pl-P7, 11-17, and D1-D7 are predetermined parameter basic values.
  • the value of the PID parameter base value is:
  • the PID control parameters are calculated according to the following formula:
  • PID(k) Kp[e(k)-e(k-l)]+Kie(k)+Kd(e(k)_2e(k-l)+(k-2)),
  • Kp the proportional link
  • e(k) the deviation of the kth sampling period
  • Ki KpT/Ti o
  • Kd KpTd/T
  • T the sampling period
  • Ti the integration time
  • Td the differentiation time
  • the adjustment control parameter 0Pi is obtained according to the PID control parameters.
  • the adjustment control parameter O oPi is combined with the first multi-feedforward output component FF V and the second multi-feedforward output component FF T as a final control output value Q for the gas flow regulating valve and the air flow regulating valve
  • the present invention also discloses an open flame heating furnace temperature control device, the equipment package
  • Thermocouple 201 includes furnace temperature difference calculation module 202, furnace II temperature change slope calculation module 203, open flame o o
  • thermocouple 201 is placed close to the burner 200, and the thermocouple 201 is used to monitor the furnace temperature II, the thermocouple has
  • the analog to digital conversion module 201b outputs a furnace temperature feedback value. o o
  • the furnace temperature difference calculation module 202 is connected to the analog to digital conversion module 201b of the thermocouple 201.
  • the furnace temperature difference calculation module 202 stores the furnace temperature setting value, and the furnace temperature difference calculation module 202 calculates the furnace according to the furnace temperature feedback value and the furnace temperature setting value.
  • the difference between the temperature set value and the furnace temperature feedback value is used as the deviation value DVi.
  • the deviation value DV ⁇ of the furnace temperature set value and the furnace temperature feedback value is set to a fuzzy control subset
  • the deviation value DVi is included in the set ⁇ negative large, negative, negative small, zero, small , center, Zhengda ⁇ , and use the set ⁇ NB, NM, NS, ZE, PS, PM, PB ⁇ .
  • the furnace temperature change slope calculation module 203 is connected to the furnace temperature difference calculation module 202, and the furnace temperature change slope calculation module 203 calculates the difference between the furnace temperature set value and the furnace temperature feedback value, that is, the slope of the furnace temperature change value as a deviation.
  • the value is DV 2 .
  • the deviation value DV 2 is classified into the set ⁇ negative, negative small, zero, small, medium ⁇ , and Expressed using the set ⁇ NM, NS, ZE, PS, PM ⁇ .
  • the speed regulator 204 of the open flame heating furnace unit is used to obtain the speed V of the open flame heating furnace unit.
  • the first multi-feedforward module 205 is coupled to the speed regulator 204 to obtain a first multi-feedforward output component FF V based on the open flame unit speed V.
  • the first multi-feedforward module 205 derives a first multi-feedforward output component FF V based on the open flame unit speed V based on Table 1 below :
  • FF V7 is a set of set parameters.
  • the second multi-feedforward module 206 is connected to the furnace temperature difference calculation module 202. According to the difference between the furnace temperature set value and the furnace temperature feedback value, the deviation value DVi obtains the second multi-feedforward output component FF T . In one embodiment, the second multi-feedforward module 206 obtains the second multi-feedforward output component FF T based on the difference DVi between the furnace temperature setpoint and the furnace temperature feedback value based on Table 2 below :
  • FF T7 is a set of set parameters.
  • the adjustment control parameter generation module 207 is connected to the furnace temperature difference calculation module 202 and the furnace temperature change slope calculation module 203, and according to the deviation values DV 1 and DV 2 , searches for PID control parameters based on the fuzzy control rules, and generates adjustment control parameters according to the PID control parameters.
  • the fuzzy control rule as follows:
  • the fuzzy rule rule results include NB, NM, NS, ZE, PS, PM, and PB. According to the results of the fuzzy rule, the basic values of the PID parameters are obtained based on Table 4 below:
  • Each fuzzy rule result corresponds to a set of values of parameters P, I, and D, that is, parameter basic values, where Pl-P7, 11-17, and D1-D7 are predetermined parameter basic values.
  • the value of the PID parameter base value is:
  • the PID control parameters are calculated according to the following formula:
  • PID(k) Kp[e(k)-e(k-l)]+Kie(k)+Kd(e(k)_2e(k-l)+(k-2)),
  • the adjustment control parameter generation module 207 obtains the adjustment control parameter OPi based on the PID control parameter.
  • the flow controller 208 is connected to the adjustment control parameter generation module 207, the first multi-feedforward module 205 and the second multi-feedforward module 206, and combines the first multi-feedforward output component FF V and the second multi-front by the adjustment control parameter OPi
  • the feed output component FF T produces the final control output value.
  • a gas flow regulating valve 209 connected to the flow controller 208, regulates the gas flow based on the final control output value.
  • the gas flow detector 210 connected to the flow controller 208, detects the current gas flow and feeds back.
  • An air flow regulating valve 211 is coupled to the flow controller 208 to regulate the air flow based on the final control output value.
  • An air flow detector 212 coupled to the flow controller 208, detects the current air flow and feeds back.
  • the basic control logic of the open flame heating furnace temperature control method of the present invention is to obtain the value of the furnace temperature deviation and the tendency of the furnace temperature to change by the furnace temperature change amount and the furnace temperature change rate.
  • fuzzy control is good at steady-state control and multi-feedforward control is good at non-steady-state control. Different multi-feedforward compensation values and fuzzy control rules are adopted for different situations, and different PID parameter combinations are adopted to achieve large deviation.
  • Quick response, quick adjustment, and reduced transition time When the deviation is small, the adjustment trend is slowed down, the overshoot is reduced, the furnace temperature can be stabilized quickly, and the furnace temperature control accuracy is improved.
  • Fig. 3 discloses the basic control logic of the furnace temperature control method of the open flame heating furnace of the present invention.
  • the basic idea of the furnace temperature control method and the control device of the open flame heating furnace of the present invention is to obtain the numerical value of the furnace temperature deviation and the trend of the furnace temperature change by the furnace temperature change amount and the furnace temperature change rate, design a fuzzy control algorithm and a fuzzy control rule, and utilize Fuzzy control is good at steady-state control and feedforward control. It is good at non-steady-state control. Different multi-feedforward compensation values and fuzzy control rules are used for different situations. Different PID parameter combinations are adopted to achieve fast response when large deviations occur. Quickly adjust and reduce the transition time. When the deviation is small, the adjustment trend is slowed down, the overshoot is reduced, the furnace temperature can be stabilized quickly, and the furnace temperature control accuracy is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Feedback Control In General (AREA)
  • Control Of Temperature (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Tunnel Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Control Of Combustion (AREA)
  • Furnace Details (AREA)

Description

明火加热炉炉温控制方法及控制设备 发明领域
本发明涉及冶炼设备领域, 尤其涉及明火加热炉炉温控制方法及控制设 备。 背景技术
连续退火的卧式炉一种比较常见的加热炉, 炉内沿带钢行进方向划分为若 干区, 分区控制炉温。 炉温测量的准确性严重影响产品的质量和性能, 对于产 品性能来说炉温精度至关重要, 炉温精度下降会直接导致产品性能不合格。 一 般的温度控制系统因为烧嘴的功率设计较大, 导致温度调节时热滞后和热惯性 较大, 使稳态时炉温曲线呈等幅振荡, 非稳态时过渡时间长, 这些都严重影响 了产品的性能和成材率。 通常的炉温控制方法为双交叉 PID控制, 这种方法通 过煤气和空气的比例以及比例的互相牵制来达到控制炉温的目的。 这种控制方 法对热滞后较小的系统效果较好, 但退火炉一般炉内的热惯性和热滞后较大, 炉温控制难度较大; 此外对于 PID控制方法来讲, 一种是追求快速响应, 还有 一种就是追求稳定。 如果追求快速响应, 过渡时间是会缩短, 但是超调会变大, 炉温很难稳定下来; 如果追求稳定, 稳态炉温精度虽然好, 但是炉温过渡时间 势必很长,使控制陷入一种两难境地。另外 PID调节毕竟是一种稳态调节方法, 对来料情况以及温度设定值变化的前瞻性缺乏预判, 对非稳态滞后的情况调节 手段不多, 调节效果也不太好, 需要前馈控制对非稳态滞后控制进行补偿。 发明概述
本发明的目的旨在克服上述炉温控制中存在的问题, 提供一种明火加热炉 炉温控制方法及控制设备。
根据本发明的一方面, 提出一种明火加热炉炉温控制方法, 包括: 监测炉温, 获得炉温反馈值;
根据炉温反馈值和炉温设定值计算炉温设定值与炉温反馈值的差值, 将该 差值作为偏差值 DV1 ;
计算单位时间内炉温设定值与炉温反馈值的差值, 即炉温变化值的斜率作 为偏差值 DV2;
从明火加热炉机组的速度调节器获取明火加热炉机组速度 V, 根据明火加 热炉机组速度 V获得第一多前馈输出分量 FFV;
根据炉温设定值与炉温反馈值的差值, 偏差值 DVi获得第二多前馈输出分 量 FFT;
根据偏差值 DVi和 DV2,基于模糊控制规则查找 PID控制参数,并根据 PID 控制参数产生调节控制参数 OP1 ;
由调节控制参数 OPi结合第一多前馈输出分量 FFV和第二多前馈输出分量 FFT作为最终的控制输出值对到煤气流量调节阀和空气流量调节阀进行控制。
根据本发明的另一方面, 提出一种明火加热炉炉温控制设备, 包括: 热电偶, 靠近烧嘴设置, 热电偶用于监测炉温, 热电偶具有模数转换模块 输出炉温反馈值;
炉温差值计算模块, 连接到热电偶的模数转换模块, 炉温差值计算模块保 存炉温设定值, 炉温差值计算模块根据炉温反馈值和炉温设定值计算炉温设定 值与炉温反馈值的差值并将该差值作为偏差值 DV1;
炉温变化斜率计算模块, 连接到炉温差值计算模块, 计算单位时间内炉温 设定值与炉温反馈值的差值, 即炉温变化值的斜率作为偏差值 DV2;
明火加热炉机组的速度调节器, 用于获取明火加热炉机组速度 V; 第一多前馈模块, 连接到速度调节器, 根据明火加热炉机组速度 V获得第 一多前馈输出分量 FFV;
第二多前馈模块, 连接到炉温差值计算模块, 根据炉温设定值与炉温反馈 值的差值, 偏差值 DVi获得第二多前馈输出分量 FFT;
调节控制参数产生模块, 连接到炉温差值计算模块和炉温变化斜率计算模 块,根据偏差值 DV1和 DV2,基于模糊控制规则查找 PID控制参数,并根据 PID 控制参数产生调节控制参数 OP1 ;
流量控制器, 连接到调节控制参数产生模块、 第一多前馈模块和第二多前 馈模块, 由调节控制参数 OPi结合第一多前馈输出分量 FFV和第二多前馈输出 分量 FFT产生最终的控制输出值;
煤气流量调节阀, 连接到流量控制器, 根据最终的控制输出值调节煤气流 量;
煤气流量检测器, 连接到流量控制器, 检测当前煤气流量并反馈; 空气流量调节阀, 连接到流量控制器, 根据最终的控制输出值调节空气流 量;
空气流量检测器, 连接到流量控制器, 检测当前空气流量并反馈。
本发明的控制方法及控制设备采用模糊控制算法, 无需建立前向通道的传 递函数, 对非线性、 时变性以及规律性不是非常明确的系统具有一定的适应能 力及快速性好的优点, 对机组稳态控制效果较好; 多前馈控制对来料情况以及 温度设定值变化前瞻性预判效果较好, 本发明针对连续退火炉炉温控制的特点 设计了模糊控制算法, 利用模糊控制擅长稳态控制和多前馈控制擅长非稳态控 制的特点, 将模糊控制与多前馈控制及 PID控制结合, 构建多前馈模糊控制系 统。
本发明的明火加热炉炉温控制方法和控制设备的基本思想是通过炉温变 化量和炉温变化率得到炉温偏差的数值以及炉温变化的趋势, 设计模糊控制算 法和模糊控制规则, 利用模糊控制擅长稳态控制和前馈控制擅长非稳态控制的 特点,针对不同情况采用不同的多前馈补偿值和模糊控制规则,采取不同的 PID 参数组合, 做到大偏差时能够快速响应, 迅速调节, 缩小过渡时间。 小偏差时 调节趋势趋缓, 超调变小, 炉温能够很快稳定下来, 提高炉温控制精度。 附图说明
图 1是根据本发明的明火加热炉炉温控制方法的流程图。
图 2是根据本发明的明火加热炉炉温控制设备的结构图。
图 3揭示了本发明的明火加热炉炉温控制方法的基本控制逻辑。 发明的详细说明
参考图 1所示, 本发明揭示了一种明火加热炉炉温控制方法, 包括如下的 步驟:
5101. 监测炉温, 获得炉温反馈值。
5102. 根据炉温反馈值和炉温设定值计算炉温设定值与炉温反馈值的差 值, 将该差值作为偏差值 D¼。 在一个实施例中, 炉温设定值与炉温反馈值的 偏 差 值 D 被设定 为 一 个模 糊 控制 子 集 , 模糊 控制 子 集 E ={NB,NM,NS,ZE,PS,PM,PB}={ ^大, 负 中, 负小, 零, 正小, 正中, 正 大}={-18,-12,-6,0,6,12,18}。 即根据偏差值 DVi与集合 {-18,-12,-6,0,6,12,18} 的大小比较将偏差值 DVi划入到集合 {负大, 负中, 负小, 零, 正小, 正中, 正大 }中, 并使用集合 {NB,NM,NS,ZE,PS,PM,PB}表示。
5103. 计算单位时间内炉温设定值与炉温反馈值的差值, 即炉温变化值的 斜率作为偏差值 DV2。 在一个实施例中, 炉温变化值的斜率作为偏差值 DV2被 设定为一个模糊控制子集, 模糊控制子集 EC ={NM,NS,ZE,PS,PM}={负中, 负 小, 零, 正小, 正中 }={-1.5,-1,0,1,1.5}。 即根据偏差值 DV2 与集合 {-1.5,-1,0,1,1.5}的大小比较将偏差值 DV2划入到集合 {负中, 负小, 零, 正小, 正中 }中, 并使用集合 {NM,NS,ZE,PS,PM}表示。
5104. 从明火加热炉机组的速度调节器获取明火加热炉机组速度 V, 根据 明火加热炉机组速度 V获得第一多前馈输出分量 FFV。 在一个实施例中, 该步 驟 S104实现如下: 根据明火加热炉机组速度 V, 基于下述的表 1获得第一多 前馈输出分量 FFV:
Figure imgf000006_0001
Figure imgf000006_0003
即, 对于不同的明火加热炉机组速度 v的范围, 对应不同的第一多前馈输 出分量 FFV。 FFvi到 FFV7是一组设定的参数。在一个实施例中, FFV的取值如下:
Figure imgf000006_0002
FFV5=8; FFV6= 10; FFV7= 12。
S105. 根据炉温设定值与炉温反馈值的差值, 偏差值 DVi获得第二多前馈 输出分量 FFT。 在一个实施例中, 该步驟 S105实现如下: 根据炉温设定值与炉 温反馈值的差值 DVi基于下述的表 2获 二多前馈输出分量 FFT:
Figure imgf000006_0004
FFT FFTI FFT2 FFT3 FFT4 FFT5 FFT6 FFT7 即, 对于不同的炉温设定值与炉温反馈值的差值 DV1的范围, 对应不同的 第二多前馈输出分量 FFT。 ^到 FFT7是一组设定的参数。 在一个实施例中, FFT的取值如下: FFJI = 6 ;
Figure imgf000007_0001
FFT5 =- 1.6 ; FFT6=-3.5 ; FFT7=-6。 II
S106. 根据偏差 o值 DV1和 DV2, 基于模糊控制规则查找 PID控制参数, 并 根据 PID控制参数产生调节控制参数 OPi。 在一个实施例中, 模糊控制规则如
II
下: O
根据 DV1和 DV2的子集, 基于下述的表 3获取模糊规则结果:
表 3
Figure imgf000007_0002
模糊规则规则结果包括 NB、 NM、 NS、 ZE、 PS、 PM和 PB几种, 根据模
II
糊规则结果, 基于下述的表 4获取 PID参数基本值: 寸
o 表 4
Figure imgf000007_0003
每一个模糊规则结果对应了参数 P、 I和 D的一组取值, 即参数基本值, 其中 Pl-P7、 11-17以及 D1-D7都是预定的参数基本值。 在一个实施例中, PID 参数基本值的取值为:
P P3=55 P4=60 P5=55 P6=45 I 12=55 13=60 15=65 17=45
D Dl = 30 D5=45 D7=35 根据 PID参数基本值, 根据下述的公式计算 PID控制参数:
PID(k)=Kp[e(k)-e(k-l)]+Kie(k)+Kd(e(k)_2e(k-l)+(k-2)),
其中 k是第 k II次采用周期、 Kp是比例环节、 e(k)是第 k次采样周期的偏差 值、 Ki = KpT/Ti o
、 Kd = KpTd/T、 T为采样周期、 Ti为积分时间、 Td为微分时间。
Q
根据 PID控制参数得到调节控制参数 0Pi。
II
S107. 寸
由调节控制参数 O oPi结合第一多前馈输出分量 FFV和第二多前馈输 出分量 FFT作为最终的控制输出值 Q对到煤气流量调节阀和空气流量调节阀进行
II
控制。 寸
o
参考图 2所示, 本发明还揭示了一种明火加热炉炉温控制设备, 该设备包
寸寸
II
括: 热电偶 201、 炉温差值计算模块 202、 炉 II温寸变化斜率计算模块 203、 明火 o o
加热炉机组的速度调节器 204、 第一多前馈模块 205、 第二多前馈模块 206、 调节控制参数产生模块 207、 流量控制器 208、 煤气流量调节阀 209、 煤气流 量检测器 210、 空气流量调节阀 211和空气流量检测器 212。
Q
热电偶 201靠近烧嘴 200设置, 热电偶 201用于监测炉温 II, 热电偶具有
II寸
模数转换模块 201b输出炉温反馈值。 o o
炉温差值计算模块 202连接到热电偶 201的模数转换模块 201b , 炉温差 值计算模块 202保存炉温设定值,炉温差值计算模块 202根据炉温反馈值和炉 温设定值计算炉温设定值与炉温反馈值的差值并将该差值作为偏差值 DVi。 在 一个实施例中, 炉温设定值与炉温反馈值的偏差值 DV^ 设定为一个模糊控制 子集, 模糊控制子集 E ={NB,NM,NS,ZE,PS,PM,PB}={负大, 负中, 负小, 零, 正小, 正中, 正大 }={-18,-12,-6,0,6,12,18}。 即根据偏差值 DVi 与集合 {-18,-12,-6,0,6,12,18}的大小比较将偏差值 DVi划入到集合 {负大,负中,负小, 零, 正小, 正中, 正大 }中, 并使用集合 {NB,NM,NS,ZE,PS,PM,PB}表示。
炉温变化斜率计算模块 203连接到炉温差值计算模块 202, 炉温变化斜率 计算模块 203计算单位时间内炉温设定值与炉温反馈值的差值, 即炉温变化值 的斜率作为偏差值 DV2。 在一个实施例中, 炉温变化值的斜率作为偏差值 DV2 被设定为一个模糊控制子集, 模糊控制子集 EC ={NM,NS,ZE,PS,PM}={负中, 负小, 零, 正小, 正中 }={-1.5,-1,0,1,1.5}。 即根据偏差值 DV2 与集合 {-1.5,-1,0,1,1.5}的大小比较将偏差值 DV2划入到集合 {负中, 负小, 零, 正小, 正中 }中, 并使用集合 {NM,NS,ZE,PS,PM}表示。
明火加热炉机组的速度调节器 204, 用于获取明火加热炉机组速度V。 第一多前馈模块 205, 连接到速度调节器 204, 根据明火加热炉机组速度 V获得第一多前馈输出分量 FFV。 在一个实施例中, 第一多前馈模块 205根据 明火加热炉机组速度 V, 基于下述的表 1 得第一多前馈输出分量 FFV:
Figure imgf000009_0001
Figure imgf000009_0005
即, 对于不同的明火加热炉机组速度 v的范围, 对应不同的第一多前馈输 出分量 FFV。 ^到 FFV7是一组设定的参数。在一个实施例中, FFV的取值如下:
Figure imgf000009_0002
FFV5=8; FFV6=10; FFV7=12。
第二多前馈模块 206, 连接到炉温差值计算模块 202, 根据炉温设定值与 炉温反馈值的差值, 偏差值 DVi获得第二多前馈输出分量 FFT。 在一个实施例 中, 第二多前馈模块 206根据炉温设定值与炉温反馈值的差值 DVi基于下述的 表 2获得第二多前馈输出分量 FFT:
Figure imgf000009_0003
Figure imgf000009_0006
即, 对于不同的炉温设定值与炉温反馈值的差值 DV1的范围, 对应不同的 第二多前馈输出分量 FFT。 ^到 FFT7是一组设定的参数。 在一个实施例中, FFT的取值如下:
Figure imgf000009_0004
FFT5=-1.6; FFT6=-3.5; FFT7=-6。
调节控制参数产生模块 207连接到炉温差值计算模块 202和炉温变化斜率 计算模块 203, 根据偏差值 DV1和 DV2, 基于模糊控制规则查找 PID控制参数, 并根据 PID控制参数产生调节控制参数 OPi。 在一个实施例中, 模糊控制规则 如下:
根据 DV1和 DV2的子集, 基于下述的表 3获取模糊规则结果:
表 3
Figure imgf000010_0001
模糊规则规则结果包括 NB、 NM、 NS、 ZE、 PS、 PM和 PB几种, 根据模 糊规则结果, 基于下述的表 4获取 PID参数基本值:
表 4
Figure imgf000010_0002
每一个模糊规则结果对应了参数 P、 I和 D的一组取值, 即参数基本值, 其中 Pl-P7、 11-17以及 D1-D7都是预定的参数基本值。 在一个实施例中, PID 参数基本值的取值为:
Figure imgf000010_0003
根据 PID参数基本值, 根据下述的公式计算 PID控制参数:
PID(k)=Kp[e(k)-e(k-l)]+Kie(k)+Kd(e(k)_2e(k-l)+(k-2)),
其中 k是第 k次采用周期、 Kp是比例环节、 e(k)是第 k次采样周期的偏差 值、 Ki = KpT/Ti、 Kd = KpTd/T、 T为采样周期、 Ti为积分时间、 Td为微分时间。 调节控制参数产生模块 207根据 PID控制参数得到调节控制参数 OPi。 流量控制器 208,连接到调节控制参数产生模块 207、第一多前馈模块 205 和第二多前馈模块 206, 由调节控制参数 OPi结合第一多前馈输出分量 FFV和 第二多前馈输出分量 FFT产生最终的控制输出值。
煤气流量调节阀 209, 连接到流量控制器 208, 根据最终的控制输出值调 节煤气流量。
煤气流量检测器 210, 连接到流量控制器 208, 检测当前煤气流量并反馈。 空气流量调节阀 211 , 连接到流量控制器 208, 根据最终的控制输出值调 节空气流量。
空气流量检测器 212, 连接到流量控制器 208, 检测当前空气流量并反馈。 本发明的明火加热炉炉温控制方法的基本控制逻辑是通过炉温变化量和 炉温变化率得到炉温偏差的数值和炉温变化的趋势。 通过模糊控制规则, 利用 模糊控制擅长稳态控制和多前馈控制擅长非稳态控制, 针对不同情况采用不同 的多前馈补偿值和模糊控制规则, 采取不同的 PID参数组合, 做到大偏差时能 够快速响应, 迅速调节, 缩小过渡时间。 小偏差时调节趋势趋缓, 超调变小, 炉温能够很快稳定下来, 提高炉温控制精度。 图 3揭示了本发明的明火加热炉 炉温控制方法的基本控制逻辑。
本发明的明火加热炉炉温控制方法和控制设备的基本思想是通过炉温变 化量和炉温变化率得到炉温偏差的数值以及炉温变化的趋势, 设计模糊控制算 法和模糊控制规则, 利用模糊控制擅长稳态控制和前馈控制擅长非稳态控制的 特点,针对不同情况采用不同的多前馈补偿值和模糊控制规则,采取不同的 PID 参数组合, 做到大偏差时能够快速响应, 迅速调节, 缩小过渡时间。 小偏差时 调节趋势趋缓, 超调变小, 炉温能够很快稳定下来, 提高炉温控制精度。

Claims

权 利 要 求 书
1. 一种明火加热炉炉温控制方法, 其特征在于, 包括:
监测炉温, 获得炉温反馈值;
根据炉温反馈值和炉温设定值计算炉温设定值与炉温反馈值的差值, 将该 差值作为偏差值 DV1 ;
计算单位时间内炉温设定值与炉温反馈值的差值, 即炉温变化值的斜率作 为偏差值 DV2;
从明火加热炉机组的速度调节器获取明火加热炉机组速度 V, 根据明火加 热炉机组速度 V获得第一多前馈输出分量 FFV;
根据炉温设定值与炉温反馈值的差值, 偏差值 DVi获得第二多前馈输出分 量 FFT;
根据偏差值 DV1和 DV2,基于模糊控制规则查找 PID控制参数,并根据 PID 控制参数产生调节控制参数 OP1 ;
由调节控制参数 OPi结合第一多前馈输出分量 FFV和第二多前馈输出分量
FFT作为最终的控制输出值对到煤气流量调节阀和空气流量调节阀进行控制。
2. 如权利要求 1 所述的明火加热炉炉温控制方法, 其特征在于, 所述模 糊控制规则包括:
偏差值 DV1的模糊控制子集设定为 E={NB,NM,NS,ZE,PS,PM,PB}={负大, 负中, 负小, 零, 正小, 正中, 正大 }={- 18,- 12,-6,0,6, 12, 18};
偏差值 DV2的模糊控制子集设定为 EC={NM,NS,ZE,PS,PM}={负中,负小, 零, 正小, 正中 }={- 1.5,-1,0,1, 1.5}。
3. 如权利要求 2所述的明火加热炉炉温控制方法, 其特征在于, 所述模 糊控制规则进一步包括:
根据 DVi和 DV2的子集, 基于下述的表格获取模糊规则结果: E
NB NM NS ZE PS PM PB
NM PB PB PM PM PS PS PS
NS PB PM PM PS PS PS PS
EC ZE PM PM PS PS PS PS PS
PS PS PS PS NS NM NM NM
PM PM PS NS NM NB NB NB 根据模糊规则结果, 基于下表获取 PID参数基本值:
Figure imgf000013_0001
根据 PID参数基本值, 计算 PID控制参数:
PID(k)=Kp[e(k)-e(k-l)]+Kie(k)+Kd(e(k)_2e(k-l)+(k-2)),
其中 k是第 k次采用周期、 Kp是比例环节、 e(k)是第 k次采样周期的偏差 值、 Ki = KpT/Ti、 Kd = KpTd/T、 T为采样周期、 Ti为积分时间、 Td为微分时间。
4. 如权利要求 1 所述的明火加热炉炉温控制方法, 其特征在于, 根据明 火加热炉机组速度 V获得第一多前馈输出分量 FFV包括:
根据明火加热炉机组速度 V, 基于下述的表格获得第一多前馈输出分量
FFV: V
100 110 120 130 140 150 160
FFV FFvi FFV2 FFV3 FFV4 FFvs FFve FFV7 其中, FFV的取值为 FFvi = 2 ; FFV2=3.5 ; FFV3=5 ; FFV4=6.5 ; FFV5=8; FFV6= 10; FFV7= 12。
5. 如权利要求 1 所述的明火加热炉炉温控制方法, 其特征在于, 根据炉 温设定值与炉温反馈值的差值,偏差值 DVi获得第二多前馈输出分量 FFT包括: 根据炉温设定值与炉温反馈值的差值 DVi基于下述的表格获得第二多前馈 输出分量 FFT:
Figure imgf000014_0001
其中, FFT的取值为 FFT1 = 6 ; FFT2= 3; FFT3= 1.5 ; FFT4= 0.2; FFT5=- 1.6; FFT6=-3.5; FFT7=-6。
6. 一种明火加热炉炉温控制设备, 其特征在于, 包括:
热电偶, 靠近烧嘴设置, 热电偶用于监测炉温, 热电偶具有模数转换模块 输出炉温反馈值;
炉温差值计算模块, 连接到热电偶的模数转换模块, 炉温差值计算模块保 存炉温设定值, 炉温差值计算模块根据炉温反馈值和炉温设定值计算炉温设定 值与炉温反馈值的差值并将该差值作为偏差值 DV1 ;
炉温变化斜率计算模块, 连接到炉温差值计算模块, 计算单位时间内炉温 设定值与炉温反馈值的差值, 即炉温变化值的斜率作为偏差值 DV2;
明火加热炉机组的速度调节器, 用于获取明火加热炉机组速度 V; 第一多前馈模块, 连接到速度调节器, 根据明火加热炉机组速度 V获得第 一多前馈输出分量 FFV;
第二多前馈模块, 连接到炉温差值计算模块, 根据炉温设定值与炉温反馈 值的差值, 偏差值 DVi获得第二多前馈输出分量 FFT; 调节控制参数产生模块, 连接到炉温差值计算模块和炉温变化斜率计算模 块,根据偏差值 DV1和 DV2,基于模糊控制规则查找 PID控制参数,并根据 PID 控制参数产生调节控制参数 OP1 ;
流量控制器, 连接到调节控制参数产生模块、 第一多前馈模块和第二多前 馈模块, 由调节控制参数 OPi结合第一多前馈输出分量 FFV和第二多前馈输出 分量 FFT产生最终的控制输出值;
煤气流量调节阀, 连接到流量控制器, 根据最终的控制输出值调节煤气流 量;
煤气流量检测器, 连接到流量控制器, 检测当前煤气流量并反馈; 空气流量调节阀, 连接到流量控制器, 根据最终的控制输出值调节空气流 量;
空气流量检测器, 连接到流量控制器, 检测当前空气流量并反馈。
7. 如权利要求 6所述的明火加热炉炉温控制设备, 其特征在于, 所述模 糊控制规则包括:
偏差值 DVi的模糊控制子集设定为 E={NB,NM,NS,ZE,PS,PM,PB}={负大, 负中, 负小, 零, 正小, 正中, 正大 }={-18,-12,-6,0,6,12,18};
偏差值 DV2的模糊控制子集设定为 EC={NM,NS,ZE,PS,PM}={负中,负小, 零, 正小, 正中 }={-1.5,-1,0,1,1.5}。
8. 如权利要求 7所述的明火加热炉炉温控制设备, 其特征在于, 所述模 糊控制规则进一步包括:
根据 DVi和 DV2的子集, 基于下述的表格获取模糊规则结果:
E
NB NM NS ZE PS PM PB
NM PB PB PM PM PS PS PS
NS PB PM PM PS PS PS PS
EC ZE PM PM PS PS PS PS PS
PS PS PS PS NS NM NM NM
PM PM PS NS NM NB NB NB 根据模糊规则结果, 基于下表获取 PID参数基本值:
Figure imgf000016_0001
根据 PID参数基本值, 计算 PID控制参数:
PID(k)=Kp[e(k)-e(k-l)]+Kie(k)+Kd(e(k)_2e(k-l)+(k-2)),
其中 k是第 k次采用周期、 Kp是比例环节、 e(k)是第 k次采样周期的偏差 值、 Ki = KpT/Ti、 Kd = KpTd/T、 T为采样周期、 Ti为积分时间、 Td为微分时间。
9. 如权利要求 6所述的明火加热炉炉温控制设备, 其特征在于, 第一多 前馈模块根据明火加热炉机组速度 V, 基于下述的表格获得第一多前馈输出分 量 FFV:
Figure imgf000016_0002
其中, FFV的取值为 FFV1 = 2; FFV2=3.5 ; FFV3=5 ; FFV4=6.5; FFV5=8; FFV6=10; FFV7= 12。
10. 如权利要求 6所述的明火加热炉炉温控制设备, 其特征在于, 第二多 前馈模块根据炉温设定值与炉温反馈值的差值 D¼基于下述的表格获得第二多 前馈输出分量 FFT: DVI
-18 -12 -6 0 6 12 18
FFT FFTI FFT2 FFT3 FFT4 FFT5 FFT6 FFT7 其中, FFT的取值为 FFT1=6; FFT2=3; FFT3=1.5; FFT4=0.2; FFT5=- =-3.5; FFT7=-6。
PCT/CN2011/073363 2010-10-27 2011-04-27 明火加热炉炉温控制方法及控制设备 WO2012055222A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11835496.8A EP2634519B1 (en) 2010-10-27 2011-04-27 Device for controlling furnace temperature of burning heating furnace
US13/881,682 US9383745B2 (en) 2010-10-27 2011-04-27 Method and device for controlling furnace temperature of burning heating furnace
MX2013004723A MX342765B (es) 2010-10-27 2011-04-27 Metodo para controlar la temperatura de horno de calentamiento a fuego directo y dispositivo de control.
KR1020137013108A KR101443281B1 (ko) 2010-10-27 2011-04-27 가열로 연소의 노 온도를 제어하는 방법 및 장치
JP2013535246A JP5536286B2 (ja) 2010-10-27 2011-04-27 燃焼加熱炉の炉温の制御方法および制御装置
RU2013124036/02A RU2557113C2 (ru) 2010-10-27 2011-04-27 Способ управления температурой печи для печи с непосредственным подогревом и устройство управления

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010521573.0 2010-10-27
CN2010105215730A CN102455135B (zh) 2010-10-27 2010-10-27 明火加热炉炉温控制设备

Publications (1)

Publication Number Publication Date
WO2012055222A1 true WO2012055222A1 (zh) 2012-05-03

Family

ID=45993118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073363 WO2012055222A1 (zh) 2010-10-27 2011-04-27 明火加热炉炉温控制方法及控制设备

Country Status (8)

Country Link
US (1) US9383745B2 (zh)
EP (1) EP2634519B1 (zh)
JP (1) JP5536286B2 (zh)
KR (1) KR101443281B1 (zh)
CN (1) CN102455135B (zh)
MX (1) MX342765B (zh)
RU (1) RU2557113C2 (zh)
WO (1) WO2012055222A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105911862A (zh) * 2016-05-13 2016-08-31 中南大学 一种电加热炉温度控制方法
CN110160081A (zh) * 2019-05-27 2019-08-23 国电科学技术研究院有限公司 一种火力发电机组中锅炉的主控前馈构造方法及装置
CN112430727A (zh) * 2020-10-15 2021-03-02 宝钢日铁汽车板有限公司 一种连续退火炉炉温预警方法及系统
CN112711237A (zh) * 2020-12-29 2021-04-27 华润电力技术研究院有限公司 一种火电机组自动控制品质在线评估方法和系统
CN115576194A (zh) * 2022-10-14 2023-01-06 中冶南方工程技术有限公司 基于脉冲燃烧连续退火炉的煤气总管压力控制方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952529B (zh) * 2014-05-08 2015-08-12 济钢集团有限公司 一种步进式加热炉基于热平衡的炉温优化方法
CN104390354A (zh) * 2014-10-17 2015-03-04 中国石油天然气股份有限公司 油田负压式加热炉的温度精确控制装置及方法
CN104407642B (zh) * 2014-12-01 2016-09-07 杭州电子科技大学 一种基于迭代学习控制的连铸坯感应加热过程温控方法
CN104807036B (zh) * 2015-04-13 2018-01-19 山西太钢不锈钢股份有限公司 一种连续式燃气加热炉的温度控制方法
CN104898432A (zh) * 2015-06-16 2015-09-09 中冶华天南京电气工程技术有限公司 高压炉顶调压阀组的模糊pid控制系统
CA3012298C (en) 2016-01-28 2021-03-02 Jfe Steel Corporation Steel sheet temperature control device and temperature control method
JP6146553B1 (ja) * 2016-01-28 2017-06-14 Jfeスチール株式会社 鋼板の温度制御装置及び温度制御方法
CN105867128B (zh) * 2016-04-18 2019-10-15 中国神华能源股份有限公司 一种非均衡偏差控制方法、装置及火电厂自动控制系统
CN105807615A (zh) * 2016-05-13 2016-07-27 东北林业大学 模糊前馈反馈控制器
CN106440827B (zh) * 2016-10-20 2018-06-19 志圣科技(广州)有限公司 一种无氧化烤炉气水冷降温斜率控制方法
WO2018206515A1 (en) * 2017-05-07 2018-11-15 Feracitas Oy Improvement for glass tempering furnace control system
CN107158935B (zh) * 2017-05-19 2019-12-24 中国神华能源股份有限公司 控制scr脱硝热解炉温度的方法及装置
CN107092284A (zh) * 2017-06-07 2017-08-25 重庆大学 一种导爆索热熔的温度控制技术
CN107450622A (zh) * 2017-08-18 2017-12-08 曹阳 加热炉炉温智能控制系统及控制方法
KR102053656B1 (ko) * 2018-03-30 2019-12-09 효성화학 주식회사 파이어 히터의 연료 조절 시스템
CN108343971A (zh) * 2018-04-12 2018-07-31 阮红艺 一种垃圾处理炉
CN109357539A (zh) * 2018-09-26 2019-02-19 中材海外工程有限公司 新型智能水泥熟料烧成控制系统
CN109913636A (zh) * 2019-04-17 2019-06-21 福建船政交通职业学院 一种热处理炉温度控制方法和系统
CN111240190A (zh) * 2020-04-14 2020-06-05 福建三钢闽光股份有限公司 一种基于可变模糊区间时间序列的pid控制器
CN111856938B (zh) * 2020-07-28 2022-04-08 中国农业科学院油料作物研究所 自适应模糊控制的微波反应器智能化温度控制方法及装置
CN112378268B (zh) * 2020-11-13 2023-03-31 水滴智能装备技术(苏州)有限公司 一种加热炉在线式炉温控制系统和控制方法
CN112695193B (zh) * 2020-12-17 2022-05-13 中冶南方工程技术有限公司 一种保证热轧加热炉烧嘴高效工作的协调控制方法
CN112925198B (zh) * 2021-01-23 2022-06-14 西安热工研究院有限公司 一种一维多象限燃煤机组主汽温模糊控制方法
CN113587120B (zh) * 2021-07-29 2023-08-29 光大环保技术研究院(深圳)有限公司 一种等离子灰渣熔融炉的控制方法
CN113867438A (zh) * 2021-09-27 2021-12-31 湖南省计量检测研究院 一种润滑油蒸发损失测定仪电热炉温度的测控方法及系统
CN114198914B (zh) * 2021-11-18 2023-04-28 邯郸钢铁集团有限责任公司 一种基于动态跟踪斜率思想的热风炉自动燃烧控制方法
CN114911280B (zh) * 2022-05-30 2024-06-07 西门子(中国)有限公司 湿度控制方法和装置
CN115130769B (zh) * 2022-07-07 2024-03-01 青岛恒小火软件有限公司 一种高炉喷煤制粉系统温度智能自适应方法
CN118168348B (zh) * 2024-05-14 2024-07-12 常州陆铭光电科技有限公司 一种炉膛双光谱温度监测系统及监测方法
CN118567416B (zh) * 2024-07-24 2024-10-18 湖南超弦科技股份有限公司 一种硅片生产管式炉plc均衡控温方法及相关设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09316545A (ja) * 1996-05-28 1997-12-09 Nippon Steel Corp 連続焼鈍炉の板温制御方法
JPH1183005A (ja) * 1997-09-08 1999-03-26 Toshiba Corp 炉温燃焼制御装置
CN1510360A (zh) * 2002-12-20 2004-07-07 北京众和达自控技术开发有限公司 用于加热炉出口温度的综合控制方法及其装置
CN1690892A (zh) * 2004-04-30 2005-11-02 深圳市佳运通电子有限公司 油田加热炉自动控制系统
CN101464096A (zh) * 2008-12-11 2009-06-24 江苏金源锻造股份有限公司 燃气加热炉温度多点传感与智能控制方法
CN101693945A (zh) * 2009-09-29 2010-04-14 中冶南方(武汉)自动化有限公司 一种热处理炉脉冲燃烧的温度控制方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2031765C (en) * 1989-12-08 1996-02-20 Masahide Nomura Method and system for performing control conforming with characteristics of controlled system
JP2607734Y2 (ja) * 1992-05-12 2002-07-08 株式会社ガスター 給湯器の制御装置
JP2746115B2 (ja) * 1994-04-15 1998-04-28 株式会社ノーリツ 給湯器のファンモータ制御装置
FR2741939B1 (fr) * 1995-12-01 1998-02-20 Gaz De France Installation de production d'eau chaude sanitaire par chaudiere a gaz et procede de regulation de la temperature d'eau chaude sanitaire dans une telle installation
JPH09241731A (ja) * 1996-03-11 1997-09-16 Kawasaki Steel Corp 連続焼鈍炉の操業方法
JP3235643B2 (ja) * 1996-12-11 2001-12-04 東京都 汚泥焼却炉の燃焼制御方法およびその装置
JP3802965B2 (ja) * 1997-03-21 2006-08-02 ヴイ.ウリヤノフ セルゲイ 非線形の物理的な制御対象の最適制御のための自己組織化方法及び装置
US6882992B1 (en) * 1999-09-02 2005-04-19 Paul J. Werbos Neural networks for intelligent control
PL1906092T3 (pl) * 2006-09-30 2014-11-28 Powitec Intelligent Tech Gmbh Sposób regulacji procesu spalania
JP5144963B2 (ja) * 2007-06-05 2013-02-13 新日鉄住金エンジニアリング株式会社 鋼帯連続熱処理炉の温度制御方法
CN201144265Y (zh) * 2007-12-26 2008-11-05 中冶集团北京冶金设备研究设计总院 一种连续热处理炉温度控制系统
US8160730B2 (en) * 2008-03-03 2012-04-17 Xinsheng Lou Fuzzy logic control and optimization system
JP5316765B2 (ja) 2008-12-08 2013-10-16 大同特殊鋼株式会社 熱処理炉の雰囲気制御方法
CN101749730B (zh) * 2008-12-09 2011-05-18 上海交技发展股份有限公司 一种燃煤热载体炉高精度温度调节燃烧控制方法
CN101739004A (zh) * 2009-11-11 2010-06-16 中冶北方工程技术有限公司 烧结机点火炉的Fuzzy-PID复合控制系统
US9063551B2 (en) * 2013-02-14 2015-06-23 Intellihot Green Technologies, Inc. Adaptive heating control system for a water heater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09316545A (ja) * 1996-05-28 1997-12-09 Nippon Steel Corp 連続焼鈍炉の板温制御方法
JPH1183005A (ja) * 1997-09-08 1999-03-26 Toshiba Corp 炉温燃焼制御装置
CN1510360A (zh) * 2002-12-20 2004-07-07 北京众和达自控技术开发有限公司 用于加热炉出口温度的综合控制方法及其装置
CN1690892A (zh) * 2004-04-30 2005-11-02 深圳市佳运通电子有限公司 油田加热炉自动控制系统
CN101464096A (zh) * 2008-12-11 2009-06-24 江苏金源锻造股份有限公司 燃气加热炉温度多点传感与智能控制方法
CN101693945A (zh) * 2009-09-29 2010-04-14 中冶南方(武汉)自动化有限公司 一种热处理炉脉冲燃烧的温度控制方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105911862A (zh) * 2016-05-13 2016-08-31 中南大学 一种电加热炉温度控制方法
CN105911862B (zh) * 2016-05-13 2018-08-24 中南大学 一种电加热炉温度控制方法
CN110160081A (zh) * 2019-05-27 2019-08-23 国电科学技术研究院有限公司 一种火力发电机组中锅炉的主控前馈构造方法及装置
CN112430727A (zh) * 2020-10-15 2021-03-02 宝钢日铁汽车板有限公司 一种连续退火炉炉温预警方法及系统
CN112711237A (zh) * 2020-12-29 2021-04-27 华润电力技术研究院有限公司 一种火电机组自动控制品质在线评估方法和系统
CN115576194A (zh) * 2022-10-14 2023-01-06 中冶南方工程技术有限公司 基于脉冲燃烧连续退火炉的煤气总管压力控制方法

Also Published As

Publication number Publication date
RU2013124036A (ru) 2014-12-10
JP5536286B2 (ja) 2014-07-02
US20140364994A1 (en) 2014-12-11
KR101443281B1 (ko) 2014-09-23
RU2557113C2 (ru) 2015-07-20
EP2634519A1 (en) 2013-09-04
EP2634519B1 (en) 2019-03-20
JP2014500939A (ja) 2014-01-16
KR20130083455A (ko) 2013-07-22
CN102455135A (zh) 2012-05-16
CN102455135B (zh) 2013-11-20
EP2634519A4 (en) 2018-01-03
US9383745B2 (en) 2016-07-05
MX342765B (es) 2016-10-12
MX2013004723A (es) 2013-05-28

Similar Documents

Publication Publication Date Title
WO2012055222A1 (zh) 明火加热炉炉温控制方法及控制设备
CN102453792B (zh) 连续退火炉炉压控制方法及控制设备
CN103397171B (zh) 一种确定钢坯加热炉炉温设定值的方法
CN101482732A (zh) 混合煤气热值的稳定控制方法
CN112650169B (zh) 基于焓值及燃料在线热值计算的发电机组主参数控制系统
JP6409876B2 (ja) 制御装置
JP4849961B2 (ja) 熱分析装置
CN206301228U (zh) 控制设备以及具有控制设备的调温设备
CN113587120B (zh) 一种等离子灰渣熔融炉的控制方法
JP5698219B2 (ja) 前炉内の温度を制御するシステム及び方法
JP2001021141A (ja) 加熱炉の燃焼制御方法及び装置
CN111443594B (zh) 一种基于估算模型的锅炉氧量跟踪控制方法
CN105278359B (zh) 一种通过单变量控制单元达成多变量控制的控制器
TW202012857A (zh) 熱水器之恆溫控制裝置及其恆溫控制方法
TWI807507B (zh) 加熱爐之溫度控制方法
TWI621001B (zh) 藉由單變數控制單元達成多變數控制之控制器
CN114442478B (zh) 一种控制发烟设备输出稳定co浓度的增量式pid方法
JP3627957B2 (ja) 炉排ガスのco濃度の制御装置
JP6248698B2 (ja) ボイラ装置
JPH02264302A (ja) プロセス制御装置
SU709664A1 (ru) Способ автоматического управлени процессом пиролиза
JP2012187602A (ja) 熱間圧延ラインにおける圧延材の上反り防止方法及び装置
Jing et al. A Decoupling Control Method of Ceramic Roller Kiln Temperature Based on Thermal Balance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835496

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013535246

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011835496

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/004723

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137013108

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013124036

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13881682

Country of ref document: US