WO2012053633A1 - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
WO2012053633A1
WO2012053633A1 PCT/JP2011/074283 JP2011074283W WO2012053633A1 WO 2012053633 A1 WO2012053633 A1 WO 2012053633A1 JP 2011074283 W JP2011074283 W JP 2011074283W WO 2012053633 A1 WO2012053633 A1 WO 2012053633A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift
engine
request
control
controller
Prior art date
Application number
PCT/JP2011/074283
Other languages
English (en)
French (fr)
Inventor
香織 谷嶋
弘明 川村
史博 山中
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP11834472.0A priority Critical patent/EP2631142B1/en
Priority to JP2012539781A priority patent/JP5578238B2/ja
Priority to CN201180062572.7A priority patent/CN103370246B/zh
Priority to US13/879,776 priority patent/US8868276B2/en
Publication of WO2012053633A1 publication Critical patent/WO2012053633A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a control device for a hybrid vehicle having an engine, a motor, and an automatic transmission in a drive system.
  • an engine start controller and a shift controller are connected by a bidirectional communication line, and two controls are performed by exchanging information calculated by each controller. .
  • two controls are performed by exchanging information calculated by each controller. .
  • the engine start and the shift may be processed simultaneously even under conditions where it is not desired to process them simultaneously. is there.
  • there is a problem that a large shock may occur when the engine starts in the start prohibition region during the shift control.
  • the present invention has been made paying attention to the above problem, and an object of the present invention is to provide a control device for a hybrid vehicle that can prevent the occurrence of a large shock caused by starting the engine in the start prohibition region during the shift control.
  • the hybrid vehicle control apparatus of the present invention is configured to include an engine, a motor, a mode switching unit, an automatic transmission, and a controller.
  • the motor is provided in a drive system from the engine to drive wheels, and starts the engine and drives the drive wheels.
  • the mode switching means is provided at a connection portion between the engine and the motor, and switches between a hybrid vehicle mode using the engine and the motor as a drive source and an electric vehicle mode using the motor as a drive source.
  • the automatic transmission has a plurality of gear positions that are interposed between the motor and the drive wheels and have different gear ratios.
  • the controller performs start control of the engine based on a start request at the time of mode transition from the electric vehicle mode to the hybrid vehicle mode, and displays a shift stage of the automatic transmission based on the shift request at the time of traveling. Shift control for shifting from the shift speed to the required shift speed is performed.
  • the controller outputs a shift command prior to the engine start command when a simultaneous output prediction condition for predicting that the shift request and the start request are output simultaneously is satisfied.
  • the shift command is output prior to the engine start command in the controller. That is, when both the simultaneous output prediction condition and the shift command advance permission condition are satisfied, the output of the shift command based on the prediction timing ⁇ the output of the shift request or the start request by crossing the shift line or the start line ⁇ the output of the engine start command It becomes a series. That is, a time difference process is ensured in which the output of the shift command precedes the output of the engine start command. Therefore, the simultaneous processing of starting the engine in the start prohibition region during the shift control can be reliably avoided by the shift advance command based on the prediction. As a result, it is possible to prevent the occurrence of a large shock caused by starting the engine in the start prohibition region during the shift control.
  • FIG. It is a figure which shows an example of the EV-HEV selection map set to the mode selection part of the integrated controller 10 of Example 1.
  • FIG. It is a skeleton diagram showing an example of an automatic transmission AT mounted on an FR hybrid vehicle to which the control device of the first embodiment is applied. It is a fastening operation
  • FIG. 3 is a control block diagram illustrating information exchange using a CAN communication line for engine start control and shift control by the integrated controller and the AT controller according to the first embodiment. It is a figure which shows an example of the driving
  • FIG. 7 is an operation explanatory diagram illustrating an example of a shift advance control operation when simultaneous output of a shift request and a start request is predicted in the apparatus of the first embodiment.
  • FIG. 10 is an operation explanatory diagram illustrating an example of a start prohibition flag advance control operation when simultaneous output of a shift request and a start request is not predicted in the apparatus of the first embodiment.
  • FIG. 10 is an operation explanatory diagram showing a shift canceling action among the simultaneous processing prohibition control actions in the apparatus of the first embodiment.
  • FIG. 10 is an operation explanatory diagram showing a target shift canceling action among the simultaneous processing prohibition control actions in the apparatus of the first embodiment.
  • FIG. 1 is an overall system diagram showing a rear-wheel drive hybrid vehicle to which the control device of the first embodiment is applied.
  • the drive system of the FR hybrid vehicle in the first embodiment includes an engine Eng, a flywheel FW, a first clutch CL1 (mode switching means), a motor / generator MG (motor), a second Clutch CL2, automatic transmission AT, transmission input shaft IN, mechanical oil pump MO / P, sub oil pump SO / P, propeller shaft PS, differential DF, left drive shaft DSL, right drive It has a shaft DSR, a left rear wheel RL (drive wheel), and a right rear wheel RR (drive wheel). Note that FL is the left front wheel and FR is the right front wheel.
  • the engine Eng is a gasoline engine or a diesel engine, and engine start control, engine stop control, throttle valve opening control, fuel cut control, and the like are performed based on an engine control command from the engine controller 1.
  • the engine output shaft is provided with a flywheel FW.
  • the first clutch CL1 is a clutch interposed between the engine Eng and the motor / generator MG, and is generated by the first clutch hydraulic unit 6 based on a first clutch control command from the first clutch controller 5. Engagement / semi-engagement state / release is controlled by the first clutch control oil pressure.
  • the first clutch CL1 for example, a normal state in which complete engagement, slip engagement, and complete release are controlled by stroke control using a hydraulic actuator 14 having a piston 14a is maintained by an urging force of a diaphragm spring. A closed dry single plate clutch is used.
  • the motor / generator MG is a synchronous motor / generator in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator, and a three-phase AC generated by an inverter 3 based on a control command from the motor controller 2. It is controlled by applying.
  • the motor / generator MG can operate as an electric motor that rotates by receiving electric power supplied from the battery 4 (powering). When the rotor receives rotational energy from the engine Eng or driving wheels, the stator coil
  • the battery 4 can also be charged (regeneration) by functioning as a generator that generates electromotive force at both ends of the battery. Note that the rotor of the motor / generator MG is connected to the transmission input shaft IN of the automatic transmission AT.
  • the second clutch CL2 is a clutch interposed between the motor / generator MG and the left and right rear wheels RL and RR, and is generated by the second clutch hydraulic unit 8 based on the second clutch control command from the AT controller 7. Fastening / slip fastening / release is controlled by the controlled hydraulic pressure.
  • the second clutch CL2 for example, a normally open wet multi-plate clutch or a wet multi-plate brake capable of continuously controlling the oil flow rate and hydraulic pressure with a proportional solenoid is used.
  • the first clutch hydraulic unit 6 and the second clutch hydraulic unit 8 are built in a hydraulic control valve unit CVU attached to the automatic transmission AT.
  • the automatic transmission AT is a stepped transmission that automatically switches the stepped gears according to the vehicle speed, the accelerator opening, and the like.
  • the automatic transmission AT has seven forward speeds and one reverse gear stage. It is a step transmission.
  • the second clutch CL2 is not newly added as a dedicated clutch independent of the automatic transmission AT, but a plurality of friction elements that are engaged at each gear stage of the automatic transmission AT. Among them, a friction element (clutch or brake) that matches a predetermined condition is selected.
  • the drive control of the sub oil pump S-O / P is performed by an AT controller 7 described later.
  • the propeller shaft PS is connected to the transmission output shaft of the automatic transmission AT.
  • the propeller shaft PS is coupled to the left and right rear wheels RL and RR via a differential DF, a left drive shaft DSL, and a right drive shaft DSR.
  • the FR hybrid vehicle has an electric vehicle mode (hereinafter referred to as “EV mode”), a hybrid vehicle mode (hereinafter referred to as “HEV mode”), a driving torque control mode (hereinafter referred to as “HEV mode”) as driving modes depending on driving modes.
  • EV mode electric vehicle mode
  • HEV mode hybrid vehicle mode
  • HEV mode driving torque control mode
  • WSC mode driving torque control mode
  • the “EV mode” is a mode in which the first clutch CL1 is disengaged and the vehicle travels only by the driving force of the motor / generator MG, and has a motor travel mode and a regenerative travel mode.
  • the “EV mode” is selected when the required driving force is low and the battery SOC is secured.
  • the “HEV mode” is a mode for traveling with the first clutch CL1 engaged, and has a motor assist traveling mode, a power generation traveling mode, and an engine traveling mode, and travels in any mode.
  • the “HEV mode” is selected when the required driving force is high or when the battery SOC is insufficient.
  • the second clutch CL2 is maintained in the slip engagement state by controlling the rotational speed of the motor / generator MG, and the clutch transmission torque that passes through the second clutch CL2 depends on the vehicle state and the driver's operation. In this mode, the clutch torque capacity is controlled so that the required drive torque is determined.
  • the “WSC mode” is selected in a travel region where the engine speed is lower than the idle speed, such as when the vehicle is stopped, started, or decelerated in the selected state of the “HEV mode”.
  • the control system of the FR hybrid vehicle in the first embodiment includes an engine controller 1, a motor controller 2, an inverter 3, a battery 4, a first clutch controller 5, and a first clutch hydraulic unit 6. And an AT controller 7 (controller, shift controller), a second clutch hydraulic unit 8, a brake controller 9, and an integrated controller 10 (controller, engine start controller).
  • the controllers 1, 2, 5, 7, and 9 and the integrated controller 10 are connected via a CAN communication line 11 that can exchange information with each other.
  • the engine controller 1 inputs the engine speed information from the engine speed sensor 12, the target engine torque command from the integrated controller 10, and other necessary information. Then, a command for controlling the engine operating point (Ne, Te) is output to the throttle valve actuator or the like of the engine Eng.
  • the motor controller 2 inputs information from the resolver 13 that detects the rotor rotational position of the motor / generator MG, a target MG torque command and a target MG rotational speed command from the integrated controller 10, and other necessary information. Then, a command for controlling the motor operating point (Nm, Tm) of the motor / generator MG is output to the inverter 3. The motor controller 2 monitors the battery SOC representing the charge capacity of the battery 4 and supplies the battery SOC information to the integrated controller 10 via the CAN communication line 11.
  • the first clutch controller 5 inputs sensor information from the first clutch stroke sensor 15 that detects the stroke position of the piston 14a of the hydraulic actuator 14, a target CL1 torque command from the integrated controller 10, and other necessary information. . Then, a command for controlling engagement / semi-engagement / release of the first clutch CL1 is output to the first clutch hydraulic unit 6 in the hydraulic control valve unit CVU.
  • the AT controller 7 inputs information from an accelerator opening sensor 16, a vehicle speed sensor 17, and other sensors 18 and the like. When traveling with the D range selected, the optimum shift speed is searched based on the position where the driving point determined by the accelerator opening APO and the vehicle speed VSP exists on the shift map shown in FIG.
  • the control command to obtain is output to the hydraulic control valve unit CVU.
  • the shift map is a map in which an up shift line and a down shift line are written according to the accelerator opening APO and the vehicle speed VSP, as shown in FIG.
  • a command for controlling slip engagement of the second clutch CL2 is output to the second clutch hydraulic unit 8 in the hydraulic control valve unit CVU. Perform clutch control.
  • the brake controller 9 inputs a wheel speed sensor 19 for detecting each wheel speed of the four wheels, sensor information from the brake stroke sensor 20, a regenerative cooperative control command from the integrated controller 10, and other necessary information. And, for example, at the time of brake depression, if the regenerative braking force is insufficient with respect to the required braking force required from the brake stroke BS, the shortage is compensated with mechanical braking force (hydraulic braking force or motor braking force) Regenerative cooperative brake control is performed.
  • the integrated controller 10 manages the energy consumption of the entire vehicle and has a function for running the vehicle with the highest efficiency.
  • the motor rotation number sensor 21 for detecting the motor rotation number Nm and other sensors and switches 22 Necessary information and information via the CAN communication line 11 are input.
  • the target engine torque command to the engine controller 1, the target MG torque command and the target MG speed command to the motor controller 2, the target CL1 torque command to the first clutch controller 5, the target CL2 torque command to the AT controller 7, and the brake controller 9 Regenerative cooperative control command is output.
  • the integrated controller 10 searches for the optimum driving mode according to the position where the driving point determined by the accelerator opening APO and the vehicle speed VSP exists on the EV-HEV selection map shown in FIG. 3, and the searched driving mode is set as the target driving. It has a mode selection part which selects as a mode.
  • the EV ⁇ HEV switching line that switches from “EV mode” to “HEV mode” and the operating point that exists in the HEV region
  • the HEV ⁇ EV switching line that switches from “HEV mode” to “EV mode” and when the operating point (APO, VSP) enters the WSC range when “HEV mode” is selected, the “WSC mode”
  • the HEV ⁇ EV switching line and the HEV ⁇ EV switching line are set with a hysteresis amount as a line dividing the EV region and the HEV region.
  • the HEV ⁇ WSC switching line is set along the first set vehicle speed VSP1 at which the engine Eng maintains the idling speed when the automatic transmission AT is in the first speed. However, while the “EV mode” is selected, if the battery SOC falls below a predetermined value, the “HEV mode” is forcibly set as the target travel mode.
  • FIG. 4 is a skeleton diagram showing an example of an automatic transmission AT mounted on an FR hybrid vehicle to which the control device of the first embodiment is applied.
  • the automatic transmission AT is a stepped automatic transmission with 7 forward speeds and 1 reverse speed, and driving force from at least one of the engine Eng and the motor / generator MG is input from a transmission input shaft Input.
  • the rotation speed is changed by one planetary gear and the seven friction elements, and is output from the transmission output shaft Output.
  • the transmission gear mechanism includes a first planetary gear set GS1 and a third planetary gear G3 formed by a first planetary gear G1 and a second planetary gear G2 in order on an axis from the transmission input shaft Input side to the transmission output shaft Output side.
  • a second planetary gear set GS2 by the fourth planetary gear G4 is arranged.
  • a first clutch C1, a second clutch C2, a third clutch C3, a first brake B1, a second brake B2, a third brake B3, and a fourth brake B4 are arranged as friction elements.
  • a first one-way clutch F1 and a second one-way clutch F2 are arranged.
  • the first planetary gear G1 is a single pinion type planetary gear having a first sun gear S1, a first ring gear R1, a first pinion P1, and a first carrier PC1.
  • the second planetary gear G2 is a single pinion type planetary gear having a second sun gear S2, a second ring gear R2, a second pinion P2, and a second carrier PC2.
  • the third planetary gear G3 is a single pinion type planetary gear having a third sun gear S3, a third ring gear R3, a third pinion P3, and a third carrier PC3.
  • the fourth planetary gear G4 is a single pinion type planetary gear having a fourth sun gear S4, a fourth ring gear R4, a fourth pinion P4, and a fourth carrier PC4.
  • the transmission input shaft Input is connected to the second ring gear R2 and inputs rotational driving force from at least one of the engine Eng and the motor generator MG.
  • the transmission output shaft Output is connected to the third carrier PC3 and transmits the output rotational driving force to the driving wheels (left and right rear wheels RL, RR) via a final gear or the like.
  • the first ring gear R1, the second carrier PC2, and the fourth ring gear R4 are integrally connected by a first connecting member M1.
  • the third ring gear R3 and the fourth carrier PC4 are integrally connected by a second connecting member M2.
  • the first sun gear S1 and the second sun gear S2 are integrally connected by a third connecting member M3.
  • FIG. 5 is a fastening operation table showing a fastening state of each friction element at each shift stage in the automatic transmission AT mounted on the FR hybrid vehicle to which the control device of the first embodiment is applied.
  • indicates that the friction element is hydraulically engaged in the drive state
  • ( ⁇ ) indicates that the friction element is hydraulically engaged (one-way clutch operation in the drive state) in the coast state.
  • No mark indicates that the friction element is in a released state.
  • one of the friction elements that have been fastened is released, and one of the friction elements that have been released is fastened, and a changeover speed change is performed.
  • a first reverse speed with seven forward speeds.
  • FIG. 6 shows a configuration and flow of a shift advance control process executed by the integrated controller 10 (controller) of the first embodiment. Hereinafter, each step of FIG. 6 will be described.
  • step S1 it is determined whether a precondition is satisfied. If YES (the prerequisite is met), the process proceeds to step S3, and if NO (the prerequisite is not met), the process proceeds to step S2.
  • the precondition is ⁇ Vehicle acceleration is on the acceleration side. When the acceleration is on the deceleration side, no shift advance is performed. ⁇ The road slope is below the specified value (%). When the road surface gradient is equal to or greater than the specified value, the shift advance is not performed. The speed change is 1 ⁇ 2 up speed change, 2 ⁇ 3 up speed change. The frequency is small at 3 ⁇ 4 up shift or more, and shift advance is not performed.
  • -ASC mode is "Normal mode" or "Eco mode". Other modes do not have an engine start line. Say.
  • step S2 following the determination that the preconditions are not satisfied in step S1, engine start control and shift control are performed according to the shift request, start request, and prohibition flag, and the process proceeds to return.
  • step S3 following the determination that the precondition in step S1 is satisfied, the operating points (VSP, APO) on both maps shown in FIGS. 2 and 3 simultaneously cross the upshift line and the engine start line. It is determined whether or not it exists in a neighborhood area (see area F in FIG. 9) that has a high possibility. If YES (present in the neighboring area), the process proceeds to step S4. If NO (not present in the neighboring area), the process proceeds to step S12.
  • the neighboring region is a triangle connecting a point on the start line slightly shifted to the low vehicle speed side from a position where the up shift line and the engine start line intersect with a point on the shift line slightly shifted to the low accelerator opening side. It is set as a polygonal area such as an area. When the vehicle speed lower limit based on the idle speed of the engine Eng passes through the neighborhood area, the neighborhood area is limited by the vehicle speed lower limit.
  • step S4 it is determined whether or not the accelerator opening change speed ⁇ APO is in the range from the first specified value A to the second specified value B, following the determination in step S3 that it is in the vicinity region. If YES (A ⁇ ⁇ APO ⁇ B), the process proceeds to step S5. If NO (A> ⁇ APO, ⁇ APO> B), the process proceeds to step S12.
  • A.ltoreq..DELTA.APO.ltoreq.B is a condition for determining, for example, that the accelerator depressing operation is being performed with the aim of increasing the vehicle speed VSP after the EV starts.
  • the conditions in step S3 and step S4 correspond to the simultaneous output prediction condition for predicting that the shift request and the start request are output simultaneously.
  • step S5 following the determination that A ⁇ ⁇ APO ⁇ B in step S4, it is determined whether there is no output of a start request simultaneously with or prior to the determination of A ⁇ ⁇ APO ⁇ B. If YES (no start request), the process proceeds to step S6. If NO (start request is present), the process proceeds to step S9.
  • the condition of step S5 corresponds to a shift command advance permission condition for permitting advance of a shift command based on a shift request.
  • step S6 following the determination that there is no start request in step S5, a first-out shift command is output even though no shift request is output, and the process proceeds to step S7.
  • the advance shift command is output, the predicted upshift control is started.
  • step S9 following the determination that there is a start request in step S5, an engine start command is output according to the request, and the process proceeds to step S10.
  • step S12 it is determined whether or not there is a shift request prior to the start request, following the determination that there is no near area in step S3 or that A> ⁇ APO and ⁇ APO> B. If YES (shift request is present), the process proceeds to step S13. If NO (shift request is not present), the process proceeds to step S17. Here, if it is determined that there is a shift request first, a shift command is output and shift control is started.
  • step S13 following the determination that there is a shift request in step S12, it is determined whether or not there is a start request during preprocessing in shift control. If YES (no start request during preprocessing), the process proceeds to step S14. If NO (start request occurs during preprocessing), the process proceeds to step S17.
  • the preprocessing means a processing period from when the shift command gear ratio NEXTGP_MAP is turned on to when the control gear ratio NEXTGP is turned on, and the processing is terminated by a gear ratio or a timer.
  • Steps S12 and S13 correspond to a start prohibition first-out permission condition for permitting first-out of the start prohibition flag.
  • step S14 following the determination that there is no start request during preprocessing in step S13, the start prohibition flag is set to ON by the advance operation during preprocessing in the shift control, and the process proceeds to step S15.
  • step S15 it is determined whether or not the torque phase performed subsequent to the pre-processing in the shift control is completed following the advancement of the start prohibition flag in step S14. If YES (end of torque phase), the process proceeds to step S16. If NO (torque phase not ended), the determination in step S15 is repeated.
  • step S16 following the determination that the torque phase is ended in step S15, the start prohibition flag is switched from ON to OFF, and the process proceeds to return.
  • step S17 following the determination that there is no shift request in step S12 or the determination that there is a start request during preprocessing in step S13, it is determined whether the start request and the shift request are simultaneous. If YES (simultaneous start request and shift request), the process proceeds to step S18. If NO (when start request and shift request are different), the process proceeds to step S2.
  • step S18 following the determination that the start request and the shift request are the same in step S17, after canceling either the start command or the shift command, a command that is canceled by shifting the time by the communication delay is issued.
  • the simultaneous processing prohibition control to be output again is executed, and the process proceeds to return.
  • the functions of the FR hybrid vehicle control apparatus are as follows: “Regarding engine start control, shift control, and prohibition flag”, “necessity of shift advance control”, “shift advance control operation”, “start prohibition flag advance control operation” "And” simultaneous processing inhibition control action "will be described separately.
  • shift control performed by a command from the AT controller 7 independently of “engine start control” will be described.
  • the speed change control is basically performed by changing hydraulic pressure control in which one engaged friction element is released and one released friction element is engaged. This shift control shifts from pre-processing control ⁇ torque phase control ⁇ inertia phase control ⁇ CL synchronous phase control ⁇ post-processing control to complete the shift.
  • phase management is performed by monitoring the degree of progress of the shift using timer information, gear ratio change information calculated from the input / output rotation speed of the automatic transmission AT, and the like.
  • (a) During the shift phase in which the second clutch CL2 cannot maintain slip due to the capacity balance between the second clutch CL2 (slip clutch) that is slipped by engine start control and the shift clutch that is involved in the shift. As a specific example, engine start is prohibited during pre-processing with a 1 ⁇ 2 upshift.
  • the second clutch CL2 to be slipped by the engine start control and the engagement clutch at the time of shift are in the same shift.
  • engine start is prohibited during a 2 ⁇ 3 upshift and a 3 ⁇ 4 upshift.
  • (c) During shifting using a one-way clutch.
  • engine start is prohibited during a 3 ⁇ 2 downshift and a 2 ⁇ 1 downshift.
  • (d) In the shift phase region where the motor speed control is being performed during the shift.
  • engine start is prohibited in a region where the shift phase is in the CL synchronization phase.
  • (e) When the speed is being controlled during motor rotation speed control and the gear ratio cannot be determined by the speed change control. As a specific example, the entire upshift is prohibited during engine startup. In addition, all up / down shifts in WSC mode are prohibited.
  • (f) When shifting with a constant accelerator and a high demand for shock reduction from the driver. As a specific example, a power-on down shift with a constant accelerator during engine startup is prohibited. However, the prohibited area is set according to the accelerator opening condition.
  • FIG. 7 shows information exchange through the CAN communication line for engine start control and shift control by the integrated controller 10 and AT controller 7 of the first embodiment.
  • the necessity of the shift advance control of the first embodiment will be described with reference to FIG.
  • the feature of the control system is that a shift prohibition flag is set on the integrated controller 10 side having information on engine start / stop control and output to the AT controller 7.
  • a start prohibition flag is set on the AT controller 7 side having information on the shift control, and is output to the integrated controller 10. This is because, for example, when setting the shift prohibition flag and the start prohibition flag on the integrated controller 10 side, it is necessary to input detailed information regarding the shift control from the AT controller 7. On the other hand, the start prohibition flag can be set with high accuracy without inputting information related to the shift control from the AT controller 7.
  • the AT controller 7 has a shift pattern control unit 7a.
  • the shift pattern control unit 7a basically does not accept an upshift request when an engine start is requested.
  • the integrated controller 10 includes an engine start determination unit 10a.
  • the engine start determination unit 10a determines whether to start the engine based on necessary information.
  • the integrated controller 10 performs a start request determination and a final start execution determination, and transmits them to the AT controller 7.
  • the AT controller 7 sets a shift request and a start prohibition flag during the shift control, and transmits it to the integrated controller 10.
  • the integrated controller 10 makes a start request and a final start execution determination in the next calculation job.
  • Shift advance control is required to prohibit engine start in this start prohibition region.
  • FIG. 8 shows an example of the operating point operation pattern on the map when the simultaneous output of the upshift request and the engine start request to which the shift advance control of the first embodiment is applied is predicted.
  • FIG. 8 shows an example in which the shift advance control of the first embodiment is applied.
  • the shift map (shift schedule) shown in FIG. 2 and the EV-HEV selection map shown in FIG. 3 both have the vehicle speed VSP on the horizontal axis and the accelerator opening APO on the vertical axis, and the operating point (VSP, APO).
  • VSP vehicle speed
  • APO operating point
  • an upshift request is issued when the upshift line is crossed
  • an engine start request is issued when the engine start line (EV ⁇ HEV line) is crossed. Therefore, as shown in FIG. 8, in the vicinity of the engine start line and the upshift line, even if the driver recognizes that the accelerator is almost the same as the accelerator, the performance depends on the movement pattern of the driving points (VSP, APO). Changes.
  • step S1 When the vehicle is traveling and the precondition is not satisfied, the flow of step S1 ⁇ step S2 ⁇ return is repeated in the flowchart of FIG. That is, in step S2, engine start control and shift control are performed according to the shift request, start request, start prohibition flag, and shift prohibition flag.
  • step S1 When the vehicle is accelerating from an EV start and the precondition, the simultaneous output prediction condition, and the shift command advance permission condition are all satisfied, step S1 ⁇ step S3 ⁇ step S4 ⁇ step S5 ⁇ step in the flowchart of FIG. Proceed to S6.
  • step S6 the advance shift command is output, and the predicted upshift control is started based on the output of the advance shift command.
  • step S7 it is determined whether or not the start prohibition flag is OFF and the start request is present. If YES is determined, the process proceeds to step S8, and an engine start command is output.
  • the output of the shift command based on the prediction timing ⁇ the output of the shift request or the start request crossing the shift line or the start line ⁇ the engine start command It becomes a time series called output. That is, a time difference process is ensured in which the output of the shift command precedes the output of the engine start command. Therefore, even if there is a communication delay or computation delay between the integrated controller 10 and the AT controller 7 via the CAN communication line 11, the engine is started in the start prohibition region during the shift control by the shift advance command based on the prediction. Simultaneous processing of entering can be surely avoided.
  • the accelerator opening change rate ⁇ APO is Suppose that it exists in the range below 1st specified value A and below 2nd specified value B.
  • the advance shift command is output at the time of determination of the simultaneous output prediction condition, which is the start point of the arrow G in FIG. For this reason, even if there is a communication delay or calculation delay between the integrated controller 10 and the AT controller 7, the occurrence of a large shock caused by starting the engine in the start prohibition region during the shift control is prevented.
  • the accelerator opening change speed ⁇ APO is the first, although there is a possibility of crossing the upshift line and the engine start line at the same time. 1 It is assumed that it is less than the specified value A. At this time, since the simultaneous output prediction condition is not satisfied, engine start control and shift control are performed according to the shift request, the start request, the start prohibition flag, and the shift prohibition flag.
  • the configuration in which the shift command is issued in advance is adopted.
  • the following merits are obtained.
  • -Stable shifting / starting performance can be provided near the upshift line and the engine starting line regardless of how the driver steps on the accelerator.
  • -By starting the upshift the input speed of the transmission is reduced and the engine can be started in a low speed range, which leads to improved fuel efficiency.
  • the shift command gear ratio NEXTGP_MAP is turned on at time t1
  • the control gear ratio NEXTGP is turned on at time t3
  • the current gear ratio is turned on at time t6.
  • CURGP is turned on.
  • pre-processing is from time t1 to time t3, and this pre-processing is terminated by a gear ratio or a timer, so the start prohibition flag can be advanced at time t2 by calculating backward from the timer value.
  • the configuration in which the start prohibition flag is advanced is adopted. Due to the advance configuration of the start prohibition flag, when the simultaneous output prediction condition is not satisfied, the engine is started in the start prohibition region during the shift due to a CAN communication delay or calculation delay between the integrated controller 10 and the AT controller 7. The occurrence of a large shock due to entering can be prevented.
  • step S1-> step S3 -> step S4-> step S12 (-> step S13)-> step S17-> step S18.
  • step S18 after canceling either the start command or the shift command, simultaneous processing prohibition control is executed in which the canceled command is output again with the time shifted by the communication delay.
  • the start request flag is displayed from the time t0 when the start prohibition flag is lowered. Start the engine and cancel the shift control. In addition, once the shift control is canceled, the canceled shift request is issued again. In this case, it is determined by the shift line, and if the shift prohibition flag is output, it is obeyed.
  • the communication is performed after canceling either the start or the shift command. After the delay, issue the canceled command again.
  • the following merits are obtained. -Due to a CAN communication delay or calculation delay between the integrated controller 10 and the AT controller 7, it is possible to prevent a large shock from being caused by starting the engine in the start prohibition region during the shift. -Since the command is issued again by shifting the communication delay, the start and the shift can be processed simultaneously as much as possible, and the start lag or the shift lag can be reduced as much as possible.
  • Engine Eng A motor (motor / generator MG) provided in a drive system from the engine Eng to the drive wheels RL and RR, for starting the engine Eng and driving the drive wheels RL and RR;
  • a hybrid vehicle mode HEV mode
  • HEV mode using the engine Eng and the motor (motor / generator MG) as a drive source
  • a motor motor / generator MG
  • Mode switching means for switching between an electric vehicle mode (EV mode) using the generator MG) as a drive source;
  • start control of the engine Eng is performed based on a start request, and at the time of travel, the automatic transmission is performed based on a shift request.
  • a controller integrated controller 10 and AT controller 7) that performs shift control for shifting the shift speed of the AT from the current shift speed to the required shift speed,
  • the controller the integrated controller 10 and the AT controller 7) A shift command is output prior to (FIG. 6). For this reason, it is possible to prevent the occurrence of a large shock caused by starting the engine in the start prohibition region during the shift control.
  • the controller (integrated controller 10) is when a simultaneous output prediction condition for predicting that the shift request and the start request are simultaneously output is satisfied (YES in step S3 and step S4), and When the shift command advance permission condition for permitting the advance of the shift command based on the shift request is satisfied (YES in step S5), the shift command is output prior to the engine start command (FIG. 6). For this reason, when the simultaneous output prediction condition and the shift command advance permission condition are satisfied at the same time, it is possible to reliably start the shift control preceding the engine start by outputting the shift command prior to the engine start command.
  • the controller (integrated controller 10) is when a simultaneous output prediction condition for predicting that the shift request and the start request are output simultaneously is not satisfied (NO in step S3 and step S4), and When the start prohibition advance advance permission condition for permitting advance start of the start prohibition flag is satisfied (YES in steps S12 and S13), a start prohibition flag advance control unit (step S14) that outputs a start prohibition flag preceding the shift prohibition flag. ) (FIG. 6). For this reason, in addition to the effect of (1) or (2), when the simultaneous output prediction condition is not satisfied, there is a communication delay or calculation delay between the engine start controller (integrated controller 10) and the shift controller (AT controller 7). Even so, it is possible to prevent the occurrence of a large shock caused by starting the engine in the start prohibition region during the shift control.
  • the controller includes an engine start controller (integrated controller 10) and a shift controller (AT controller 7) that can exchange information by communication,
  • the controller integrated controller 10) is when the simultaneous output prediction condition for predicting that the shift request and the start request are output simultaneously is not satisfied (NO in step S3 and step S4), and start prohibition is performed.
  • start prohibition advance permission condition for permitting flag advance is not satisfied (NO in step S12 and step S13)
  • start request and the shift request are output simultaneously (YES in step S17)
  • step S18 simultaneous processing prohibition control unit that outputs the canceled command again by shifting the time by the communication delay (FIG. 6).
  • Example 1 As mentioned above, although the control apparatus of the hybrid vehicle of this invention was demonstrated based on Example 1, it is not restricted to this Example 1 about a concrete structure, The invention which concerns on each claim of a claim Design changes and additions are permitted without departing from the gist of the present invention.
  • the second clutch CL2 is selected from the friction elements built in the stepped automatic transmission AT.
  • the second clutch CL2 may be provided separately from the automatic transmission AT.
  • the second clutch CL2 may be provided separately from the automatic transmission AT between the motor / generator MG and the transmission input shaft.
  • An example in which the second clutch CL2 is provided separately from the automatic transmission AT between the transmission output shaft and the drive wheels is also included.
  • the number of gears is not limited to this, and any automatic transmission having a plurality of gears with two or more speeds as gears may be used.
  • Example 1 an example in which the first clutch CL1 is used as mode switching means for switching between the HEV mode and the EV mode has been described.
  • the mode switching means for switching between the HEV mode and the EV mode for example, a differential device or a power split device that exhibits a clutch function without using a clutch, such as a planetary gear, may be used.
  • control device is applied to a rear-wheel drive hybrid vehicle.
  • control device can also be applied to a front-wheel drive hybrid vehicle.
  • present invention can be applied to any hybrid vehicle equipped with an automatic transmission and having a HEV mode and an EV mode as travel modes.
  • a device having the integrated controller 10 and the AT controller 7 capable of exchanging information by communication has been described as an example of the controller.
  • these controllers are integrated into one controller, and the present invention can be applied even to a device that has both the functions of the integrated controller 10 of the first embodiment and the functions of the AT controller 7 in one controller. Is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 変速制御中の始動禁止領域でエンジン始動に入ることによる大きなショックの発生を防止すること。 ハイブリッド車両の制御装置は、エンジンEngと、モータ/ジェネレータMGと、第1クラッチCL1と、自動変速機ATと、統合コントローラ10と、ATコントローラ7と、を備える。統合コントローラ10は、変速要求と始動要求が同時に出力されることを予測する同時出力予測条件が成立するとき、エンジン始動指令に先行して変速指令を出力する(図6)。

Description

ハイブリッド車両の制御装置
 本発明は、駆動系にエンジンとモータと自動変速機を備えたハイブリッド車両の制御装置に関する。
 従来、ハイブリッド車両の制御装置としては、エンジン始動制御と変速制御を同時に行うことに起因するショックを防止するため、エンジン始動制御と変速制御を排他処理するものが知られている。つまり、エンジン始動制御が先に来た場合には、エンジン始動制御が終わってから変速制御を開始する。また、変速制御が先に来た場合には、変速制御が終わってからエンジン始動制御を開始する(例えば、特許文献1参照)。
特開平10-2241号公報
 しかしながら、従来のハイブリッド車両の制御装置にあっては、エンジン始動コントローラと変速コントローラを双方向通信線で接続し、それぞれのコントローラで演算した情報を交換することで2つの制御を行うようにしている。このため、2つのコントローラ間での通信遅れや演算遅れにより、始動要求と変速要求の信号が同時に送信される場合は、エンジン始動と変速を同時処理したくない条件でも同時処理してしまうことがある。その際、変速制御中の始動禁止領域でエンジン始動に入ると大きなショックが発生するおそれがある、という問題があった。
 本発明は、上記問題に着目してなされたもので、変速制御中の始動禁止領域でエンジン始動に入ることによる大きなショックの発生を防止することができるハイブリッド車両の制御装置を提供することを目的とする。
 上記目的を達成するため、本発明のハイブリッド車両の制御装置では、エンジンと、モータと、モード切り替え手段と、自動変速機と、コントローラと、を備える手段とした。
前記モータは、前記エンジンから駆動輪への駆動系に設けられ、前記エンジンの始動と前記駆動輪の駆動を行う。
前記モード切り替え手段は、前記エンジンと前記モータの連結部に設けられ、前記エンジンと前記モータを駆動源とするハイブリッド車モードと、前記モータを駆動源とする電気自動車モードと、を切り替える。
前記自動変速機は、前記モータと前記駆動輪との間に介装され、変速比が異なる複数の変速段を有する。
前記コントローラは、前記電気自動車モードから前記ハイブリッド車モードへのモード遷移時、始動要求に基づいて前記エンジンの始動制御を行うとともに、走行時、変速要求に基づいて前記自動変速機の変速段を現変速段から要求変速段へ移行する変速制御を行う。
そして、前記コントローラは、前記変速要求と前記始動要求が同時に出力されることを予測する同時出力予測条件が成立するとき、エンジン始動指令に先行して変速指令を出力する。
 したがって、変速要求と始動要求が同時に出力されることを予測する同時出力予測条件が成立するとき、コントローラにおいて、エンジン始動指令に先行して変速指令が出力される。
すなわち、同時出力予測条件と変速指令先出し許可条件が共に成立するとき、予測タイミングによる変速指令の出力→変速線や始動線を横切ることによる変速要求または始動要求の出力→エンジン始動指令の出力という時系列となる。つまり、変速指令の出力がエンジン始動指令の出力に先行するという時間差処理が確保される。したがって、予測に基づく変速先出し指令により、変速制御中の始動禁止領域でエンジン始動に入るという同時処理を確実に回避することができる。
この結果、変速制御中の始動禁止領域でエンジン始動に入ることによる大きなショックの発生を防止することができる。
実施例1の制御装置が適用された後輪駆動によるFRハイブリッド車両(ハイブリッド車両の一例)を示す全体システム図である。 実施例1のATコントローラ7に設定されている自動変速機ATのシフトマップ(=シフトスケジュール)の一例を示す図である。 実施例1の統合コントローラ10のモード選択部に設定されているEV-HEV選択マップの一例を示す図である。 実施例1の制御装置が適用されたFRハイブリッド車両に搭載された自動変速機ATの一例を示すスケルトン図である。 実施例1の制御装置が適用されたFRハイブリッド車両に搭載された自動変速機ATでの変速段ごとの各摩擦要素の締結状態を示す締結作動表である。 実施例1の統合コントローラにて実行される変速先出し制御処理の構成および流れを示すフローチャートである。 実施例1の統合コントローラとATコントローラによるエンジン始動制御と変速制御のCAN通信線による情報交換を示す制御ブロック図である。 実施例1の変速先出し制御が適用されるアップ変速要求とエンジン始動要求の同時出力が予測されるときのマップ上での運転点動作パターンの一例を示す図である。 実施例1の装置において変速要求と始動要求の同時出力が予測されるときの変速先出し制御作用の一例を示す作用説明図である。 実施例1の装置において変速要求と始動要求の同時出力が予測されないときの始動禁止フラグ先出し制御作用の一例を示す作用説明図である。 実施例1の装置において同時処理禁止制御作用のうち変速キャンセル作用を示す作用説明図である。 実施例1の装置において同時処理禁止制御作用のうち狙いとする変速キャンセル作用を示す作用説明図である。
 以下、本発明のハイブリッド車両の制御装置を実現する最良の形態を、図面に示す実施例1に基づいて説明する。
 まず、構成を説明する。
図1は、実施例1の制御装置が適用された後輪駆動によるハイブリッド車両を示す全体システム図である。
 実施例1におけるFRハイブリッド車両の駆動系は、図1に示すように、エンジンEngと、フライホイールFWと、第1クラッチCL1(モード切り替え手段)と、モータ/ジェネレータMG(モータ)と、第2クラッチCL2と、自動変速機ATと、変速機入力軸INと、メカオイルポンプM-O/Pと、サブオイルポンプS-O/Pと、プロペラシャフトPSと、ディファレンシャルDFと、左ドライブシャフトDSLと、右ドライブシャフトDSRと、左後輪RL(駆動輪)と、右後輪RR(駆動輪)と、を有する。なお、FLは左前輪、FRは右前輪である。
 前記エンジンEngは、ガソリンエンジンやディーゼルエンジンであり、エンジンコントローラ1からのエンジン制御指令に基づいて、エンジン始動制御やエンジン停止制御やスロットルバルブのバルブ開度制御やフューエルカット制御等が行われる。なお、エンジン出力軸には、フライホイールFWが設けられている。
 前記第1クラッチCL1は、前記エンジンEngとモータ/ジェネレータMGの間に介装されたクラッチであり、第1クラッチコントローラ5からの第1クラッチ制御指令に基づき第1クラッチ油圧ユニット6により作り出された第1クラッチ制御油圧により、締結・半締結状態・解放が制御される。この第1クラッチCL1としては、例えば、ダイアフラムスプリングによる付勢力にて完全締結を保ち、ピストン14aを有する油圧アクチュエータ14を用いたストローク制御により、完全締結~スリップ締結~完全解放までが制御されるノーマルクローズの乾式単板クラッチが用いられる。
 前記モータ/ジェネレータMGは、ロータに永久磁石を埋設しステータにステータコイルが巻き付けられた同期型モータ/ジェネレータであり、モータコントローラ2からの制御指令に基づいて、インバータ3により作り出された三相交流を印加することにより制御される。このモータ/ジェネレータMGは、バッテリ4からの電力の供給を受けて回転駆動する電動機として動作することもできるし(力行)、ロータがエンジンEngや駆動輪から回転エネルギーを受ける場合には、ステータコイルの両端に起電力を生じさせる発電機として機能し、バッテリ4を充電することもできる(回生)。なお、このモータ/ジェネレータMGのロータは、自動変速機ATの変速機入力軸INに連結されている。
 前記第2クラッチCL2は、前記モータ/ジェネレータMGと左右後輪RL,RRの間に介装されたクラッチであり、ATコントローラ7からの第2クラッチ制御指令に基づき第2クラッチ油圧ユニット8により作り出された制御油圧により、締結・スリップ締結・解放が制御される。この第2クラッチCL2としては、例えば、比例ソレノイドで油流量および油圧を連続的に制御できるノーマルオープンの湿式多板クラッチや湿式多板ブレーキが用いられる。なお、第1クラッチ油圧ユニット6と第2クラッチ油圧ユニット8は、自動変速機ATに付設される油圧コントロールバルブユニットCVUに内蔵している。
 前記自動変速機ATは、有段階の変速段を車速やアクセル開度等に応じて自動的に切り替える有段変速機であり、実施例1では前進7速/後退1速の変速段を持つ有段変速機としている。そして、実施例1では、前記第2クラッチCL2として、自動変速機ATとは独立の専用クラッチとして新たに追加したものではなく、自動変速機ATの各変速段にて締結される複数の摩擦要素のうち、所定の条件に適合する摩擦要素(クラッチやブレーキ)を選択している。
 前記自動変速機ATの変速機入力軸IN(=モータ軸)には、変速機入力軸INにより駆動されるメカオイルポンプM-O/Pが設けられている。そして、車両停止時等でメカオイルポンプM-O/Pからの吐出圧が不足するとき、油圧低下を抑えるために電動モータにより駆動されるサブオイルポンプS-O/Pが、モータハウジング等に設けられている。なお、サブオイルポンプS-O/Pの駆動制御は、後述するATコントローラ7により行われる。
 前記自動変速機ATの変速機出力軸には、プロペラシャフトPSが連結されている。そして、このプロペラシャフトPSは、ディファレンシャルDF、左ドライブシャフトDSL、右ドライブシャフトDSRを介して左右後輪RL,RRに連結されている。
 このFRハイブリッド車両は、駆動形態の違いによる走行モードとして、電気自動車モード(以下、「EVモード」という。)と、ハイブリッド車モード(以下、「HEVモード」という。)と、駆動トルクコントロールモード(以下、「WSCモード」という。)と、を有する。
 前記「EVモード」は、第1クラッチCL1を解放状態とし、モータ/ジェネレータMGの駆動力のみで走行するモードであり、モータ走行モード・回生走行モードを有する。「EVモード」は、要求駆動力が低く、バッテリSOCが確保されているときに選択される。
 前記「HEVモード」は、第1クラッチCL1を締結状態として走行するモードであり、モータアシスト走行モード・発電走行モード・エンジン走行モードを有し、何れかのモードにより走行する。「HEVモード」は、要求駆動力が高いとき、あるいは、バッテリSOCが不足するようなときに選択される。
 前記「WSCモード」は、モータ/ジェネレータMGの回転数制御により、第2クラッチCL2をスリップ締結状態に維持し、第2クラッチCL2を経過するクラッチ伝達トルクが、車両状態や運転者操作に応じて決まる要求駆動トルクとなるようにクラッチトルク容量をコントロールしながら走行するモードである。この「WSCモード」は、「HEVモード」の選択状態での停車時・発進時・減速時等のように、エンジン回転数がアイドル回転数を下回るような走行領域において選択される。
 次に、FRハイブリッド車両の制御系を説明する。
実施例1におけるFRハイブリッド車両の制御系は、図1に示すように、エンジンコントローラ1と、モータコントローラ2と、インバータ3と、バッテリ4と、第1クラッチコントローラ5と、第1クラッチ油圧ユニット6と、ATコントローラ7(コントローラ、変速コントローラ)と、第2クラッチ油圧ユニット8と、ブレーキコントローラ9と、統合コントローラ10(コントローラ、エンジン始動コントローラ)と、を有して構成されている。なお、各コントローラ1,2,5,7,9と、統合コントローラ10とは、情報交換が互いに可能なCAN通信線11を介して接続されている。
 前記エンジンコントローラ1は、エンジン回転数センサ12からのエンジン回転数情報と、統合コントローラ10からの目標エンジントルク指令と、他の必要情報を入力する。そして、エンジン動作点(Ne,Te)を制御する指令を、エンジンEngのスロットルバルブアクチュエータ等へ出力する。
 前記モータコントローラ2は、モータ/ジェネレータMGのロータ回転位置を検出するレゾルバ13からの情報と、統合コントローラ10からの目標MGトルク指令および目標MG回転数指令と、他の必要情報を入力する。そして、モータ/ジェネレータMGのモータ動作点(Nm,Tm)を制御する指令をインバータ3へ出力する。なお、このモータコントローラ2では、バッテリ4の充電容量をあらわすバッテリSOCを監視していて、このバッテリSOC情報を、CAN通信線11を介して統合コントローラ10へ供給する。
 前記第1クラッチコントローラ5は、油圧アクチュエータ14のピストン14aのストローク位置を検出する第1クラッチストロークセンサ15からのセンサ情報と、統合コントローラ10からの目標CL1トルク指令と、他の必要情報を入力する。そして、第1クラッチCL1の締結・半締結・解放を制御する指令を油圧コントロールバルブユニットCVU内の第1クラッチ油圧ユニット6に出力する。
 前記ATコントローラ7は、アクセル開度センサ16と、車速センサ17と、他のセンサ類18等からの情報を入力する。そして、Dレンジを選択しての走行時、アクセル開度APOと車速VSPにより決まる運転点が、図2に示すシフトマップ上で存在する位置により最適な変速段を検索し、検索された変速段を得る制御指令を油圧コントロールバルブユニットCVUに出力する。前記シフトマップとは、図2に示すように、アクセル開度APOと車速VSPに応じてアップ変速線とダウン変速線を書き込んだマップをいう。
この変速制御に加えて、統合コントローラ10から目標CL2トルク指令を入力した場合、第2クラッチCL2のスリップ締結を制御する指令を油圧コントロールバルブユニットCVU内の第2クラッチ油圧ユニット8に出力する第2クラッチ制御を行う。
 前記ブレーキコントローラ9は、4輪の各車輪速を検出する車輪速センサ19と、ブレーキストロークセンサ20からのセンサ情報と、統合コントローラ10からの回生協調制御指令と、他の必要情報を入力する。そして、例えば、ブレーキ踏み込み制動時、ブレーキストロークBSから求められる要求制動力に対し回生制動力だけでは不足する場合、その不足分を機械制動力(液圧制動力やモータ制動力)で補うように、回生協調ブレーキ制御を行う。
 前記統合コントローラ10は、車両全体の消費エネルギーを管理し、最高効率で車両を走らせるための機能を担うもので、モータ回転数Nmを検出するモータ回転数センサ21や他のセンサ・スイッチ類22からの必要情報およびCAN通信線11を介して情報を入力する。そして、エンジンコントローラ1へ目標エンジントルク指令、モータコントローラ2へ目標MGトルク指令および目標MG回転数指令、第1クラッチコントローラ5へ目標CL1トルク指令、ATコントローラ7へ目標CL2トルク指令、ブレーキコントローラ9へ回生協調制御指令を出力する。
 この統合コントローラ10には、アクセル開度APOと車速VSPにより決まる運転点が、図3に示すEV-HEV選択マップ上で存在する位置により最適な走行モードを検索し、検索した走行モードを目標走行モードとして選択するモード選択部を有する。このEV-HEV選択マップには、EV領域に存在する運転点(APO,VSP)が横切ると「EVモード」から「HEVモード」へと切り替えるEV⇒HEV切替線と、HEV領域に存在する運転点(APO,VSP)が横切ると「HEVモード」から「EVモード」へと切り替えるHEV⇒EV切替線と、「HEVモード」の選択時に運転点(APO,VSP)がWSC領域に入ると「WSCモード」へと切り替えるHEV⇒WSC切替線と、が設定されている。前記HEV⇒EV切替線と前記HEV⇒EV切替線は、EV領域とHEV領域を分ける線としてヒステリシス量を持たせて設定されている。前記HEV⇒WSC切替線は、自動変速機ATが1速段のときに、エンジンEngがアイドル回転数を維持する第1設定車速VSP1に沿って設定されている。但し、「EVモード」の選択中、バッテリSOCが所定値以下になると、強制的に「HEVモード」を目標走行モードとする。
 図4は、実施例1の制御装置が適用されたFRハイブリッド車両に搭載された自動変速機ATの一例を示すスケルトン図である。
 前記自動変速機ATは、前進7速後退1速の有段式自動変速機であり、エンジンEngとモータ/ジェネレータMGのうち、少なくとも一方からの駆動力が変速機入力軸Inputから入力され、4つの遊星ギアと7つの摩擦要素とによって回転速度が変速されて変速機出力軸Outputから出力される。
 変速ギア機構は、変速機入力軸Input側から変速機出力軸Output側までの軸上に、順に第1遊星ギアG1と第2遊星ギアG2による第1遊星ギアセットGS1及び第3遊星ギアG3と第4遊星ギアG4による第2遊星ギアセットGS2が配置されている。また、摩擦要素として第1クラッチC1、第2クラッチC2、第3クラッチC3及び第1ブレーキB1、第2ブレーキB2、第3ブレーキB3、第4ブレーキB4が配置されている。また、第1ワンウェイクラッチF1と第2ワンウェイクラッチF2が配置されている。
 前記第1遊星ギアG1は、第1サンギアS1と、第1リングギアR1と、第1ピニオンP1と、第1キャリアPC1と、を有するシングルピニオン型遊星ギアである。前記第2遊星ギアG2は、第2サンギアS2と、第2リングギアR2と、第2ピニオンP2と、第2キャリアPC2と、を有するシングルピニオン型遊星ギアである。前記第3遊星ギアG3は、第3サンギアS3と、第3リングギアR3と、第3ピニオンP3と、第3キャリアPC3と、を有するシングルピニオン型遊星ギアである。前記第4遊星ギアG4は、第4サンギアS4と、第4リングギアR4と、第4ピニオンP4と、第4キャリアPC4と、を有するシングルピニオン型遊星ギアである。
 前記変速機入力軸Inputは、第2リングギアR2に連結され、エンジンEngとモータージェネレータMGの少なくとも一方からの回転駆動力を入力する。前記変速機出力軸Outputは、第3キャリアPC3に連結され、出力回転駆動力を、ファイナルギア等を介して駆動輪(左右後輪RL,RR)に伝達する。
 前記第1リングギアR1と第2キャリアPC2と第4リングギアR4とは、第1連結メンバM1により一体的に連結される。前記第3リングギアR3と第4キャリアPC4とは、第2連結メンバM2により一体的に連結される。前記第1サンギアS1と第2サンギアS2とは、第3連結メンバM3により一体的に連結される。
 前記第1クラッチC1(=インプットクラッチI/C)は、変速機入力軸Inputと第2連結メンバM2とを選択的に断接するクラッチである。前記第2クラッチC2(=ダイレクトクラッチD/C)は、第4サンギアS4と第4キャリアPC4とを選択的に断接するクラッチである。前記第3クラッチC3(=H&LRクラッチH&LR/C)は、第3サンギアS3と第4サンギアS4とを選択的に断接するクラッチである。前記第2ワンウェイクラッチF2(=1&2速ワンウェイクラッチ1&2OWC)は、第3サンギアS3と第4サンギアS4の間に配置されている。前記第1ブレーキB1(=フロントブレーキFr/B)は、第1キャリアPC1の回転をトランスミッションケースCaseに対し選択的に停止させるブレーキである。前記第1ワンウェイクラッチF1(=1速ワンウェイクラッチ1stOWC)は、第1ブレーキB1と並列に配置されている。前記第2ブレーキB2(=ローブレーキLOW/B)は、第3サンギアS3の回転をトランスミッションケースCaseに対し選択的に停止させるブレーキである。前記第3ブレーキB3(=2346ブレーキ2346/B)は、第1サンギアS1及び第2サンギアS2を連結する第3連結メンバM3の回転をトランスミッションケースCaseに対し選択的に停止させるブレーキである。前記第4ブレーキB4(=リバースブレーキR/B)は、第4キャリアPC3の回転をトランスミッションケースCaseに対し選択的に停止させるブレーキである。
 図5は、実施例1の制御装置が適用されたFRハイブリッド車両に搭載された自動変速機ATでの変速段ごとの各摩擦要素の締結状態を示す締結作動表である。尚、図5において、○印はドライブ状態で当該摩擦要素が油圧締結であることを示し、(○)印はコースト状態で当該摩擦要素が油圧締結(ドライブ状態ではワンウェイクラッチ作動)であることを示し、無印は当該摩擦要素が解放状態であることを示す。
 上記のように構成された変速ギア機構に設けられた各摩擦要素のうち、締結していた1つの摩擦要素を解放し、解放していた1つの摩擦要素を締結するという架け替え変速を行うことで、下記のように、前進7速で後退1速の変速段を実現することができる。
 すなわち、「1速段」では、第2ブレーキB2のみが締結状態となり、これにより第1ワンウェイクラッチF1及び第2ワンウェイクラッチF2が係合する。「2速段」では、第2ブレーキB2及び第3ブレーキB3が締結状態となり、第2ワンウェイクラッチF2が係合する。「3速段」では、第2ブレーキB2、第3ブレーキB3及び第2クラッチC2が締結状態となり、第1ワンウェイクラッチF1及び第2ワンウェイクラッチF2はいずれも係合しない。「4速段」では、第3ブレーキB3、第2クラッチC2及び第3クラッチC3が締結状態となる。「5速段」では、第1クラッチC1、第2クラッチC2及び第3クラッチC3が締結状態となる。「6速段」では、第3ブレーキB3、第1クラッチC1及び第3クラッチC3が締結状態となる。「7速段」では、第1ブレーキB1、第1クラッチC1及び第3クラッチC3が締結状態となり、第1ワンウェイクラッチF1が係合する。「後退速段」では、第4ブレーキB4、第1ブレーキB1及び第3クラッチC3が締結状態となる。
 図6は、実施例1の統合コントローラ10(コントローラ)にて実行される変速先出し制御処理の構成および流れを示す。以下、図6の各ステップについて説明する。
 ステップS1では、前提条件が成立するか否かを判断する。YES(前提条件成立)の場合はステップS3へ進み、NO(前提条件不成立)の場合はステップS2へ進む。
ここで、前提条件とは、
・車両加速度が増速側である。加速度が減速側では、変速先出しをやらない。
・路面勾配が規定値(%)以下である。路面勾配≧規定値では、変速先出しをやらない。
・変速が1→2アップ変速、2→3アップ変速である。3→4アップ変速以上では頻度が小さく、変速先出しをやらない。
・ASCモードが「ノーマルモード」、「エコモード」である。その他のモードは、エンジン始動線が無い。
をいう。
 ステップS2では、ステップS1での前提条件不成立であるとの判断に続き、変速要求と始動要求と禁止フラグにしたがってエンジン始動制御と変速制御を行い、リターンへ進む。
 ステップS3では、ステップS1での前提条件成立であるとの判断に続き、図2及び図3に示す両マップ上での運転点(VSP,APO)が、アップ変速線とエンジン始動線を同時に横切る可能性が高い近傍領域(図9のF領域を参照)に存在するか否かを判断する。YES(近傍領域に有り)の場合はステップS4へ進み、NO(近傍領域に無し)の場合はステップS12へ進む。
ここで、近傍領域は、アップ変速線とエンジン始動線の交わる位置から、低車速側へ少しずらした始動線上の点と、低アクセル開度側へ少しずらした変速線上の点と、を結ぶ三角形領域等の多角形領域として設定される。なお、エンジンEngのアイドル回転数による車速下限が近傍領域を通る場合は、車速下限により近傍領域を制限する。
 ステップS4では、ステップS3での近傍領域に有りとの判断に続き、アクセル開度変化速度ΔAPOが第1規定値A以上で第2規定値B以下の範囲にあるか否かを判断する。YES(A≦ΔAPO≦B)の場合はステップS5へ進み、NO(A>ΔAPO、ΔAPO>B)の場合はステップS12へ進む。
ここで、A≦ΔAPO≦Bとは、例えば、EV発進後、車速VSPの上昇を目指し、アクセル踏み込み操作が行われていることを判断する条件である。
なお、ステップS3とステップS4の条件は、変速要求と前記始動要求が同時に出力されることを予測する同時出力予測条件に相当する。
 ステップS5では、ステップS4でのA≦ΔAPO≦Bであるとの判断に続き、A≦ΔAPO≦Bの判断と同時、あるいは、先行して始動要求の出力が無いかどうかを判断する。YES(始動要求無し)の場合はステップS6へ進み、NO(始動要求有り)の場合はステップS9へ進む。
なお、ステップS5の条件は、変速要求に基づく変速指令の先出しを許可する変速指令先出し許可条件に相当する。
 ステップS6では、ステップS5での始動要求無しであるとの判断に続き、変速要求が出力されていないにもかかわらず、先出し変速指令を出力し、ステップS7へ進む。
この先出し変速指令が出力されると、予測されているアップ変速制御を開始する。
 ステップS7では、ステップS6での先出し変速指令の出力に続き、始動禁止フラグ=OFF、且つ、始動要求有り、であるか否かを判断する。YES(始動禁止フラグ=OFF、且つ、始動要求有り)の場合はステップS8へ進み、NO(始動禁止フラグ=ON、または、始動要求無し)の場合はステップS7の判断を繰り返す。
 ステップS8では、ステップS7での始動禁止フラグ=OFF、且つ、始動要求有りであるとの判断に続き、エンジン始動指令を出力し、リターンへ進む。
 ステップS9では、ステップS5での始動要求有りであるとの判断に続き、要求にしたがってエンジン始動指令を出力し、ステップS10へ進む。
 ステップS10では、ステップS9でのエンジン始動指令の出力に続き、変速禁止フラグ=OFF、且つ、変速要求有り、であるか否かを判断する。YES(変速禁止フラグ=OFF、且つ、変速求有り)の場合はステップS11へ進み、NO(変速禁止フラグ=ON、または、変速要求無し)の場合はステップS10の判断を繰り返す。
 ステップS11では、ステップS10での変速禁止フラグ=OFF、且つ、変速求有りであるとの判断に続き、変速指令を出力し、リターンへ進む。
 ステップS12では、ステップS3での近傍領域に無しとの判断、あるいは、A>ΔAPO、ΔAPO>Bであるとの判断に続き、始動要求より先に変速要求有りか否かを判断する。YES(変速要求有り)の場合はステップS13へ進み、NO(変速要求無し)の場合はステップS17へ進む。ここで、先に変速要求有りと判断された場合は、変速指令を出力し、変速制御を開始する。
 ステップS13では、ステップS12での変速要求有りとの判断に続き、変速制御での前処理中に始動要求が無いか否かを判断する。YES(前処理中始動要求無し)の場合はステップS14へ進み、NO(前処理中に始動要求有り)の場合はステップS17へ進む。
ここで、前処理とは、変速指令ギア比NEXTGP_MAPがONとなってから制御ギア比NEXTGPがONとなるまでの処理期間をいい、ギア比やタイマーで処理を終了する。
なお、ステップS12とステップS13は、始動禁止フラグの先出しを許可する始動禁止先出し許可条件に相当する。
 ステップS14では、ステップS13での前処理中始動要求無しであるとの判断に続き、変速制御での前処理中における先出し動作により始動禁止フラグをONとし、ステップS15へ進む。
 ステップS15では、ステップS14での始動禁止フラグの先出しに続き、変速制御において前処理に引き続いて行われるトルクフェーズを終了したか否かを判断する。YES(トルクフェーズ終了)の場合はステップS16へ進み、NO(トルクフェーズ未終了)の場合はステップS15の判断を繰り返す。
 ステップS16では、ステップS15でのトルクフェーズ終了であるとの判断に続き、始動禁止フラグをONからOFFに切り替え、リターンへ進む。
 ステップS17では、ステップS12での変速要求無しとの判断、あるいは、ステップS13での前処理中始動要求有りとの判断に続き、始動要求と変速要求が同時であるか否かを判断する。YES(始動要求と変速要求が同時)の場合はステップS18へ進み、NO(始動要求と変速要求が異なる時)の場合はステップS2へ進む。
 ステップS18では、ステップS17での始動要求と変速要求が同時であるとの判断に続き、一旦、始動指令または変速指令のどちらかをキャンセルした後、通信遅れ分だけ時間をずらしてキャンセルした指令を再度出力する同時処理禁止制御を実行し、リターンへ進む。
 次に、作用を説明する。
実施例1のFRハイブリッド車両の制御装置における作用を、「エンジン始動制御と変速制御と禁止フラグについて」、「変速先出し制御の必要性」、「変速先出し制御作用」、「始動禁止フラグ先出し制御作用」、「同時処理禁止制御作用」に分けて説明する。
 [エンジン始動制御と変速制御と禁止フラグについて]
まず、統合コントローラ10からの指令により行われる「エンジン始動制御」について説明する。
EVモードでの走行状態でエンジン始動線をアクセル開度APOが越えるとエンジン始動要求が出され、このエンジン始動要求に基づいて「エンジン始動制御」を開始する。エンジン始動制御では、まず、第2クラッチCL2を半クラッチ状態にスリップさせるように、第2クラッチCL2のトルク容量を制御する。そして、第2クラッチCL2のスリップ開始を判断した後、第1クラッチCL1の締結を開始し、モータ/ジェネレータMGを始動モータとするクランキングによりエンジン回転を上昇させる。そして、エンジン回転が初爆可能な回転数に達成したらエンジンEngを燃焼作動させ、モータ回転数とエンジン回転数が近くなったところで第1クラッチCL1を完全に締結する。その後、第2クラッチCL2をロックアップさせてHEVモードに遷移させる。
 次に、「エンジン始動制御」とは独立に、ATコントローラ7からの指令により行われる「変速制御」について説明する。
走行状態で、運転点(VSP,APO)が、図2に示すシフトマップ上でアップ変速線またはダウン変速線を横切ると変速要求が出され、この変速要求に基づいて「変速制御」を開始する。変速制御では、基本的に、締結されている1つの摩擦要素を解放し、解放されている1つの摩擦要素を締結するという掛け替え油圧制御により行われる。この変速制御は、前処理制御→トルクフェーズ制御→イナーシャフェーズ制御→CL同期フェーズ制御→後処理制御へと移行して変速を完了する。このとき、変速開始から変速終了までを、前処理/トルクフェーズ/イナーシャフェーズ/CL同期フェーズ/後処理というように個別に分けて管理している。このフェーズ個別管理は、タイマー情報や自動変速機ATの入出力回転数から演算されるギア比変化情報、等を用い、変速の進行度合いを監視することで行っている。
 前記エンジン始動制御を禁止する始動禁止フラグ=ON(禁止)は、基本的に、下記の(a)~(d)のとき設定し、それ以外のときは、始動禁止フラグ=OFF(許可)とする。
(a) エンジン始動制御でスリップさせる第2クラッチCL2(スリップクラッチ)と、変速に関与する変速クラッチと、の容量バランスにより、第2クラッチCL2がスリップを維持できない変速フェーズのとき。具体例としては、1→2アップ変速での前処理中におけるエンジン始動を禁止する。
(b) エンジン始動制御を入れると、エンジン始動制御でスリップさせる第2クラッチCL2と、変速での締結クラッチと、が同じクラッチになる変速中のとき。具体例としては、2→3アップ変速中と3→4アップ変速中におけるエンジン始動を禁止する。
(c) ワンウェイクラッチを用いた変速中のとき。具体例としては、3→2ダウン変速中と2→1ダウン変速中におけるエンジン始動を禁止する。
(d) 変速においてモータ回転数制御が行われている変速フェーズ領域のとき。具体例としては、変速フェーズがCL同期フェーズ中の領域におけるエンジン始動を禁止する。
 前記変速制御を禁止する変速禁止フラグ=ON(禁止)は、基本的に、下記の(e)~(g)のとき設定し、それ以外のときは、変速禁止フラグ=OFF(許可)とする。
(e) モータ回転数制御中の変速であり、変速制御側でギア比の判定ができないとき。具体例としては、エンジン始動中におけるアップ変速全域禁止とする。また、WSCモード中におけるアップ/ダウン変速共に全域禁止とする。
(f) アクセル一定による変速であり、ドライバーからのショック低減要求が高いとき。具体例としては、エンジン始動中におけるアクセル一定によるパワーオンダウン変速を禁止する。但し、アクセル開度条件により禁止領域を設定する。
(g) 変速機入力トルクの管理が難しい変速であり、ショックに影響する可能性が高いとき。具体例としては、コーストでのエンジン始動時におけるアップ/ダウン変速共に全域禁止する。バックアップ始動時(CL2滑らせない始動)におけるアップ/ダウン変速共に全域禁止する。
 [変速先出し制御の必要性について]
図7は、実施例1の統合コントローラ10とATコントローラ7によるエンジン始動制御と変速制御のCAN通信線による情報交換を示す。以下、図7に基づいて、実施例1の変速先出し制御の必要性を説明する。
 制御システムの特徴は、エンジン始動/停止制御に関する情報を持つ統合コントローラ10側で変速禁止フラグを設定し、ATコントローラ7に出力する。また、変速制御に関する情報を持つATコントローラ7側で始動禁止フラグを設定し、統合コントローラ10に出力する。その理由は、例えば、統合コントローラ10側で変速禁止フラグと始動禁止フラグを設定する場合には、ATコントローラ7から変速制御に関するきめ細かな情報を入力する必要がある。これに対し、ATコントローラ7から変速制御に関する情報を入力することなく、精度の高い始動禁止フラグの設定ができることによる。
 前記ATコントローラ7は、図7に示すように、変速パターン制御部7aを有し、この変速パターン制御部7aでは、基本的にエンジン始動要求時には、アップ変速要求を受け付けないようにしている。前記統合コントローラ10は、図7に示すように、エンジン始動判定部10aを有し、このエンジン始動判定部10aでは、必要情報に基づきエンジン始動をするか否かを判定する。
 すなわち、統合コントローラ10で始動要求判断と最終始動実施判断を行い、ATコントローラ7へ送信する。ATコントローラ7は、変速要求及び変速制御中の始動禁止フラグの設定を行い、統合コントローラ10に送信している。このシステムでは、例えば、前回演算ジョブでATコントローラ7からの始動禁止フラグが送信されてこなかったため、次回の演算ジョブで統合コントローラ10にて始動要求及び最終始動実施判断を行った。しかし、始動要求及び最終始動実施判断と同時にATコントローラ7で始動禁止フラグを送信していた場合、始動禁止領域でエンジン始動を実施することになる。この始動禁止領域でのエンジン始動を禁止するために変速先出し制御が必要になる。
 図8は、実施例1の変速先出し制御が適用されるアップ変速要求とエンジン始動要求の同時出力が予測されるときのマップ上での運転点動作パターンの一例を示す。以下、図8に基づいて、実施例1の変速先出し制御が適用される一例を説明する。
 まず、図2に示すシフトマップ(シフトスケジュール)と図3に示すEV-HEV選択マップとは、いずれも横軸が車速VSPで縦軸がアクセル開度APOであり、運転点(VSP,APO)の移動により、アップ変速線を横切るとアップ変速要求が出され、エンジン始動線(EV→HEV線)を横切るとエンジン始動要求が出される。したがって、図8に示すように、エンジン始動線とアップ変速線の近傍では、ドライバーにとってアクセルの踏み方がほぼ同じであると認識していても、運転点(VSP,APO)の移動パターンによって性能が変わる。
 例えば、図8の矢印Cのように運転点(VSP,APO)が移動する場合は、エンジン始動後にアップ変速する。図8の矢印Dのように運転点(VSP,APO)が移動する場合は、アップ変速後にエンジン始動する。また、図8の矢印Eのように運転点(VSP,APO)が移動する場合は、アップ変速とエンジン始動がほぼ同時となる。
 つまり、図8の矢印Eのような運転点(VSP,APO)の移動パターンのときは、ATコントローラ7での変速要求と、統合コントローラ10での始動要求と、が同時に立ち、この場合、変速制御での始動禁止領域でエンジン始動を実施してしまうという課題がある。このように、運転点(VSP,APO)が、アップ変速線とエンジン始動線の近傍にある時、実施例1の変速先出し制御を適用することで対応することができる。
 [変速先出し制御作用]
実施例1での変速先出し制御作用を、図6のフローチャートと図9の作用説明図に基づき説明する。
 走行中であって、前提条件が不成立であるときは、図6のフローチャートにおいて、ステップS1→ステップS2→リターンへと進む流れが繰り返される。すなわち、ステップS2では、変速要求と始動要求と始動禁止フラグと変速禁止フラグにしたがってエンジン始動制御と変速制御が行われる。
 EV発進からの加速走行中等であり、前提条件と同時出力予測条件と変速指令先出し許可条件とが共に成立するときは、図6のフローチャートにおいて、ステップS1→ステップS3→ステップS4→ステップS5→ステップS6へと進む。そして、ステップS6では、先出し変速指令が出力され、この先出し変速指令の出力に基づき、予測されているアップ変速制御が開始される。そして、ステップS7において、始動禁止フラグ=OFF、且つ、始動要求有り、であるか否かが判断され、YESと判断された場合は、ステップS8へ進み、エンジン始動指令が出力される。
 すなわち、前提条件と同時出力予測条件と変速指令先出し許可条件が共に成立するとき、予測タイミングによる変速指令の出力→変速線や始動線を横切ることによる変速要求または始動要求の出力→エンジン始動指令の出力という時系列となる。つまり、変速指令の出力がエンジン始動指令の出力に先行するという時間差処理が確保される。したがって、統合コントローラ10とATコントローラ7の間でCAN通信線11を介しての通信遅れや演算遅れがあったとしても、予測に基づく変速先出し指令により、変速制御中の始動禁止領域でエンジン始動に入るという同時処理を確実に回避することができる。
 例えば、図9の矢印Gに示すように、同時出力予測条件の判断時点において、アップ変速線とエンジン始動線を同時に横切る可能性が高い近傍領域に存在し、且つ、アクセル開度変化速度ΔAPOが第1規定値A以上で第2規定値B以下の範囲にあるとする。このときには、図9の矢印Gの開始点である同時出力予測条件の判断時点で先出し変速指令が出力される。このため、統合コントローラ10とATコントローラ7の間で通信遅れや演算遅れがあったとしても、変速制御中の始動禁止領域でエンジン始動に入ることによる大きなショックの発生が防止される。
 一方、前提条件と同時出力予測条件が共に成立し変速先出し条件を効かせていても、同時もしくは先行して始動要求が出力され、変速指令先出し許可条件が不成立になると、図6のフローチャートにおいて、ステップS1→ステップS3→ステップS4→ステップS5→ステップS9へと進む。そして、ステップS9では、エンジン始動指令が出力され、このエンジン始動指令の出力に基づき、先にエンジン始動制御が開始される。そして、ステップS10において、変速禁止フラグ=OFF、且つ、変速要求有り、であるか否かが判断され、YESと判断された場合は、ステップS11へ進み、変速指令が出力される。
 例えば、図9の矢印Hに示すように、同時出力予測条件の判断時点において、アップ変速線とエンジン始動線を同時に横切る可能性が高い近傍領域に存在し、且つ、アクセル開度変化速度ΔAPOが第1規定値A以上で第2規定値B以下の範囲にあるとする。このときには、図9の矢印Hの開始点である同時出力予測条件の判断時点において始動要求が出力される。このため、アクセルが早く踏まれた場合には、エンジン始動制御を開始した後、変速制御が行われることになり、エンジン始動制御と変速制御の同時制御が回避されることで、何ら問題は発生しない。
 ただし、図9の矢印Iに示すように、同時出力予測条件の判断時点において、アップ変速線とエンジン始動線を同時に横切る可能性が高い近傍領域に存在するが、アクセル開度変化速度ΔAPOが第1規定値A未満であるとする。このときには、同時出力予測条件が成立しないため、変速要求と始動要求と始動禁止フラグと変速禁止フラグにしたがってエンジン始動制御と変速制御が行われる。
 上記のように、実施例1では、変速要求と始動要求が同時に来ると予測され、変速指令を先出ししても良い場合は、変速指令を先出しする構成を採用した。これにより、下記のメリットが得られる。
・統合コントローラ10とATコントローラ7の間でのCAN通信遅れや演算遅れにより、変速中の始動禁止領域でエンジン始動に入ることによる大きなショックの発生を防止することができる。
・アップ変速線とエンジン始動線の近傍において、ドライバーによるアクセルの踏み方によらず安定した変速/始動性能を提供できる。
・アップ変速を先出しすることで、変速機入力回転数が低下し、低回転域にてエンジン始動を行うことができるため、燃費向上にもつながる。
 [始動禁止フラグ先出し制御作用]
実施例1での始動禁止フラグ先出し制御作用を、図6のフローチャートと図10の作用説明図に基づき説明する。
 前提条件が成立するEV発進からの加速走行中等であるが、同時出力予測条件が不成立で、且つ、始動禁止先出し許可条件が成立するときは、図6のフローチャートにおいて、ステップS1→ステップS3(→ステップS4)→ステップS12→ステップS13→ステップS14へと進む。そして、ステップS14では、始動禁止フラグ=ONが先出しされ、この始動禁止フラグ=ONの出力に基づき、アップ変速制御中にエンジン始動要求があったとしても、エンジン始動が禁止される。そして、ステップS15において、変速制御において前処理に引き続いて行われるトルクフェーズを終了したか否かが判断され、次のステップS16において、始動禁止フラグがONからOFFに切り替えられる。
 例えば、1→2アップ変速時には、図10に示すように、まず、時刻t1にて変速指令ギア比NEXTGP_MAPがONとなり、時刻t3にて制御ギア比NEXTGPがONとなり、時刻t6にて現在ギア比CURGPがONとなる。このうち、時刻t1から時刻t3までが前処理であり、この前処理は、ギア比またはタイマーで終了するため、タイマー値から逆算して時刻t2にて始動禁止フラグを先出しすることができる。
 上記のように、変速要求と始動要求が同時に来ると予測できない場合、且つ、始動禁止フラグを先出し出来る場合は、始動禁止フラグを先出しする構成を採用した。この始動禁止フラグの先出し構成により、同時出力予測条件が成立していない場合において、統合コントローラ10とATコントローラ7の間でのCAN通信遅れや演算遅れにより、変速中の始動禁止領域でエンジン始動に入ることによる大きなショックの発生を防止することができる。
 [同時処理禁止制御作用]
実施例1での同時処理禁止制御作用を、図6のフローチャートと図11および図12の作用説明図に基づき説明する。
 前提条件が成立するEV発進からの加速走行中等であるが、同時出力予測条件も始動禁止先出し許可条件も不成立であり、始動要求と変速要求が同時に出力されたときは、図6のフローチャートにおいて、ステップS1→ステップS3(→ステップS4)→ステップS12(→ステップS13)→ステップS17→ステップS18へと進む。そして、ステップS18では、一旦、始動指令または変速指令のどちらかをキャンセルした後、通信遅れ分だけ時間をずらしてキャンセルした指令を再度出力する同時処理禁止制御が実行される。
 例えば、図11に示すように、始動要求と変速要求が同時であるが、変速制御の前処理中に始動禁止フラグが立った場合には、始動禁止フラグが降ろされた時刻t0から始動要求フラグにしたがってエンジン始動を開始し、変速制御をキャンセルする。
また、一旦、変速制御をキャンセルした後は、再度、キャンセルした変速要求を出し直すが、その場合は、変速線によって決めるし、変速禁止フラグが出ていた場合は、それに従う。
 同時処理禁止制御での狙いの動きは、
図12の矢印Jの場合、
(J)アップ変速開始⇒前処理中始動要求⇒アップ変速キャンセル⇒始動のみ(ダウン変速線を横切ってもダウン変速要求は、実質効かない)
図12の矢印Kの場合、
(K) アップ変速開始⇒前処理中始動要求⇒アップ変速キャンセル⇒始動後にアップ変速
となる。
 上記のように、実施例1では、変速要求と始動要求が同時に来ると予測出来ない場合、且つ、始動禁止フラグを先出し出来ない場合は、一旦始動または変速指令のどちらかをキャンセルした後、通信遅れ分後に、キャンセルした指令を再度出す。これにより、下記のメリットが得られる。
・統合コントローラ10とATコントローラ7の間でのCAN通信遅れや演算遅れにより、変速中の始動禁止領域でエンジン始動に入ることによる大きなショックの発生を防止することができる。
・通信遅れ分ずらして指令を出し直すので、できる限り始動と変速を同時に処理することができ、始動ラグまたは変速ラグを極力低減できる。
 次に、効果を説明する。
実施例1のFRハイブリッド車両の制御装置にあっては、下記に列挙する効果を得ることができる。
 (1) エンジンEngと、
 前記エンジンEngから駆動輪RL,RRへの駆動系に設けられ、前記エンジンEngの始動と前記駆動輪RL,RRの駆動を行うモータ(モータ/ジェネレータMG)と、
 前記エンジンEngと前記モータ(モータ/ジェネレータMG)の連結部に設けられ、前記エンジンEngと前記モータ(モータ/ジェネレータMG)を駆動源とするハイブリッド車モード(HEVモード)と、前記モータ(モータ/ジェネレータMG)を駆動源とする電気自動車モード(EVモード)と、を切り替えるモード切り替え手段(第1クラッチCL1)と、
 前記モータ(モータ/ジェネレータMG)と前記駆動輪RL,RRとの間に介装され、変速比が異なる複数の変速段を有する自動変速機ATと、
 前記電気自動車モード(EVモード)から前記ハイブリッド車モード(HEVモード)へのモード遷移時、始動要求に基づいて前記エンジンEngの始動制御を行うとともに、走行時、変速要求に基づいて前記自動変速機ATの変速段を現変速段から要求変速段へ移行する変速制御を行うコントローラ(統合コントローラ10及びATコントローラ7)と、を備え、
 前記コントローラ(統合コントローラ10及びATコントローラ7)は、前記変速要求と前記始動要求が同時に出力されることを予測する同時出力予測条件が成立するとき(ステップS3、ステップS4でYES)、エンジン始動指令に先行して変速指令を出力する(図6)。
  このため、変速制御中の始動禁止領域でエンジン始動に入ることによる大きなショックの発生を防止することができる。
 (2) 前記コントローラ(統合コントローラ10)は、前記変速要求と前記始動要求が同時に出力されることを予測する同時出力予測条件が成立するときであって(ステップS3、ステップS4でYES)、且つ、前記変速要求に基づく変速指令の先出しを許可する変速指令先出し許可条件が成立するとき(ステップS5でYES)、エンジン始動指令に先行して変速指令を出力する(図6)。
  このため、同時出力予測条件と変速指令先出し許可条件が同時に成立するとき、エンジン始動指令に先行して変速指令を出力することで、エンジン始動に先行する変速制御を確実に開始することができる。
 (3) 前記コントローラ(統合コントローラ10)は、前記変速要求と前記始動要求が同時に出力されることを予測する同時出力予測条件が不成立のときであって(ステップS3、ステップS4でNO)、且つ、始動禁止フラグの先出しを許可する始動禁止先出し許可条件が成立するとき(ステップS12,ステップS13でYES)、変速禁止フラグに先行して始動禁止フラグを出力する始動禁止フラグ先出し制御部(ステップS14)を有する(図6)。
  このため、(1)または(2)の効果に加え、同時出力予測条件が不成立のとき、エンジン始動コントローラ(統合コントローラ10)と変速コントローラ(ATコントローラ7)の間で通信遅れや演算遅れがあったとしても、変速制御中の始動禁止領域でエンジン始動に入ることによる大きなショックの発生を防止することができる。
 (4) 前記コントローラとして、通信により情報交換可能なエンジン始動コントローラ(統合コントローラ10)と変速コントローラ(ATコントローラ7)を有し、
 前記コントローラ(統合コントローラ10)は、前記変速要求と前記始動要求が同時に出力されることを予測する同時出力予測条件が不成立のときであって(ステップS3、ステップS4でNO)、且つ、始動禁止フラグの先出しを許可する始動禁止先出し許可条件が不成立のときであって(ステップS12,ステップS13でNO)、且つ、始動要求と変速要求が同時に出力されるとき(ステップS17でYES)、一旦、始動指令または変速指令のどちらかをキャンセルした後、通信遅れ分だけ時間をずらしてキャンセルした指令を再度出力する同時処理禁止制御部(ステップS18)を有する(図6)。
  このため、(1)~(3)の効果に加え、始動要求と変速要求が同時に出力されるとき、エンジン始動コントローラ(統合コントローラ10)と変速コントローラ(ATコントローラ7)の間で通信遅れや演算遅れがあったとしても、変速制御中の始動禁止領域でエンジン始動に入ることによる大きなショックの発生を防止することができると共に、変速ラグや始動ラグを極力低減することができる。
 以上、本発明のハイブリッド車両の制御装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1では、第2クラッチCL2を、有段式の自動変速機ATに内蔵した摩擦要素の中から選択する例を示した。しかし、自動変速機ATとは別に第2クラッチCL2を設けても良く、例えば、モータ/ジェネレータMGと変速機入力軸との間に自動変速機ATとは別に第2クラッチCL2を設ける例や、変速機出力軸と駆動輪の間に自動変速機ATとは別に第2クラッチCL2を設ける例も含まれる。
 実施例1では、自動変速機ATとして、前進7速後退1速の有段式の自動変速機を用いる例を示した。しかし、変速段数はこれに限られるものではなく、変速段として2速段以上の複数の変速段を有する自動変速機であれば良い。
 実施例1では、HEVモードとEVモードを切り替えるモード切り替え手段として、第1クラッチCL1を用いる例を示した。しかし、HEVモードとEVモードを切り替えるモード切り替え手段としては、例えば、プラネタリギア等のように、クラッチを用いることなくクラッチ機能を発揮するような差動装置や動力分割装置を用いる例としても良い。
 実施例1では、制御装置を後輪駆動のハイブリッド車両に対し適用した例を示したが、前輪駆動のハイブリッド車両に対しても適用することができる。要するに、自動変速機が搭載され、走行モードとして、HEVモードとEVモードを有するハイブリッド車両であれば適用できる。
 実施例1では、コントローラとして、通信により情報交換可能な統合コントローラ10とATコントローラ7を有する装置を例として説明した。しかし、これらのコントローラが1つのコントローラに統合されており、1つのコントローラ中に、実施例1の統合コントローラ10の機能と、ATコントローラ7の機能を併せ持った装置であっても、本発明は適用可能である。
関連出願の相互参照
 本出願は、2010年10月22日に日本国特許庁に出願された特願2010-237261に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。

Claims (4)

  1.  エンジンと、
     前記エンジンから駆動輪への駆動系に設けられ、前記エンジンの始動と前記駆動輪の駆動を行うモータと、
     前記エンジンと前記モータの連結部に設けられ、前記エンジンと前記モータを駆動源とするハイブリッド車モードと、前記モータを駆動源とする電気自動車モードと、を切り替えるモード切り替え手段と、
     前記モータと前記駆動輪との間に介装され、変速比が異なる複数の変速段を有する自動変速機と、
     前記電気自動車モードから前記ハイブリッド車モードへのモード遷移時、始動要求に基づいて前記エンジンの始動制御を行うとともに、走行時、変速要求に基づいて前記自動変速機の変速段を現変速段から要求変速段へ移行する変速制御を行うコントローラと、を備え、
     前記コントローラは、前記変速要求と前記始動要求が同時に出力されることを予測する同時出力予測条件が成立するとき、エンジン始動指令に先行して変速指令を出力する
     ことを特徴とするハイブリッド車両の制御装置。
  2.  請求項1に記載されたハイブリッド車両の制御装置において、
     前記コントローラは、前記変速要求と前記始動要求が同時に出力されることを予測する同時出力予測条件が成立するときであって、且つ、前記変速要求に基づく変速指令の先出しを許可する変速指令先出し許可条件が成立するとき、エンジン始動指令に先行して変速指令を出力する
     ことを特徴とするハイブリッド車両の制御装置。
  3.  請求項1または請求項2に記載されたハイブリッド車両の制御装置において、
     前記コントローラは、前記変速要求と前記始動要求が同時に出力されることを予測する同時出力予測条件が不成立のときであって、且つ、始動禁止フラグの先出しを許可する始動禁止先出し許可条件が成立するとき、変速禁止フラグに先行して始動禁止フラグを出力する始動禁止フラグ先出し制御部を有する
     ことを特徴とするハイブリッド車両の制御装置。
  4.  請求項1から3までの何れか1項に記載されたハイブリッド車両の制御装置において、
     前記コントローラとして、通信により情報交換可能なエンジン始動コントローラと変速コントローラを有し、
     前記コントローラは、前記変速要求と前記始動要求が同時に出力されることを予測する同時出力予測条件が不成立のときであって、且つ、始動禁止フラグの先出しを許可する始動禁止先出し許可条件が不成立のときであって、且つ、エンジン始動制御と変速制御が同時に処理されるとき、始動指令または変速指令のどちらかをキャンセルした後、通信遅れ分だけ時間をずらしてキャンセルした指令を再度出力する同時処理禁止制御部を有する
     ことを特徴とするハイブリッド車両の制御装置。
PCT/JP2011/074283 2010-10-22 2011-10-21 ハイブリッド車両の制御装置 WO2012053633A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11834472.0A EP2631142B1 (en) 2010-10-22 2011-10-21 Control device of hybrid vehicle
JP2012539781A JP5578238B2 (ja) 2010-10-22 2011-10-21 ハイブリッド車両の制御装置
CN201180062572.7A CN103370246B (zh) 2010-10-22 2011-10-21 混合动力车辆的控制装置
US13/879,776 US8868276B2 (en) 2010-10-22 2011-10-21 Hybrid vehicle control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-237261 2010-10-22
JP2010237261 2010-10-22

Publications (1)

Publication Number Publication Date
WO2012053633A1 true WO2012053633A1 (ja) 2012-04-26

Family

ID=45975341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074283 WO2012053633A1 (ja) 2010-10-22 2011-10-21 ハイブリッド車両の制御装置

Country Status (5)

Country Link
US (1) US8868276B2 (ja)
EP (1) EP2631142B1 (ja)
JP (1) JP5578238B2 (ja)
CN (1) CN103370246B (ja)
WO (1) WO2012053633A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140144622A (ko) * 2013-06-11 2014-12-19 현대자동차주식회사 유단 변속기를 장착한 하이브리드 자동차의 제어 방법
JP2015061772A (ja) * 2013-09-23 2015-04-02 現代自動車株式会社 ハイブリッド車両のシフトダウン制御方法およびシステム
JP6032351B2 (ja) * 2013-04-04 2016-11-24 日産自動車株式会社 ハイブリッド車両の制御装置
US10131345B2 (en) * 2012-12-25 2018-11-20 Nissan Motor Co., Ltd. Hybrid vehicle control device
US10737682B2 (en) 2017-09-04 2020-08-11 Toyota Jidosha Kabushiki Kaisha Drive force control system for hybrid vehicle
JP2020128179A (ja) * 2019-02-08 2020-08-27 トヨタ自動車株式会社 車両の制御装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5817136B2 (ja) * 2011-02-16 2015-11-18 日産自動車株式会社 エンジンの始動装置の保護装置
DE102011078670A1 (de) * 2011-07-05 2013-01-10 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Hybridantriebsstrangs eines Fahrzeugs
CN103796890B (zh) * 2011-09-06 2016-08-24 丰田自动车株式会社 混合动力汽车的控制装置
JP2013203287A (ja) * 2012-03-29 2013-10-07 Denso Corp ハイブリッド車の制御装置
US9193353B2 (en) * 2013-10-30 2015-11-24 GM Global Technology Operations LLC Systems and methods for controlling an automatic transmission during a flying engine start using a flow accumulator
US9533677B2 (en) * 2014-08-26 2017-01-03 Ford Global Technologies, Llc Method of transitioning among shift schedules
JP6420653B2 (ja) * 2014-12-11 2018-11-07 株式会社エフ・シー・シー ハイブリッド車両の動力伝達装置
US9731706B2 (en) * 2015-03-24 2017-08-15 Ford Global Technologies, Llc Coordinating non-demand engine start and stop with gear shift
JP6390788B2 (ja) * 2015-03-31 2018-09-19 アイシン・エィ・ダブリュ株式会社 制御装置
MY168268A (en) * 2015-06-03 2018-10-17 Nissan Motor Mode transition control device for hybrid vehicle
DE102015211572A1 (de) * 2015-06-23 2016-12-29 Robert Bosch Gmbh Verfahren zur Steuerung eines Start-/Stopp-Systems eines Hybridkraftfahrzeugs
KR101694074B1 (ko) * 2015-11-10 2017-01-18 현대자동차주식회사 하이브리드 dct 차량의 변속 제어방법
JP6561978B2 (ja) * 2016-12-21 2019-08-21 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
JP6540680B2 (ja) * 2016-12-26 2019-07-10 トヨタ自動車株式会社 ハイブリッド車両
DE102017214787A1 (de) * 2017-08-23 2019-02-28 Bayerische Motoren Werke Aktiengesellschaft Impulsstart in einem Hybrid-Antriebsstrang
CN109094553B (zh) * 2018-09-06 2020-07-10 重庆长安汽车股份有限公司 混合动力汽车及其发动机启动控制方法
JP7081541B2 (ja) * 2019-03-20 2022-06-07 トヨタ自動車株式会社 車両の制御装置
CN112824178B (zh) * 2019-11-21 2022-04-05 广州汽车集团股份有限公司 行星齿轮机构控制方法、装置、控制器和可读存储介质
DE102020201374A1 (de) 2020-02-05 2021-08-05 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Hybridfahrzeugs
US11846085B2 (en) 2020-02-17 2023-12-19 Deere & Company Energy management system for a hybrid vehicle with an electrically powered hydraulic system
US11613246B2 (en) * 2021-01-21 2023-03-28 Deere & Company Power control system with engine throttle shift function
US11628822B2 (en) 2021-02-09 2023-04-18 Deere & Company Power control system with stall prevention clutch modulation function
US11820361B2 (en) 2021-11-30 2023-11-21 Deere & Company Transmission assembly with electrical machine unit for improved shift quality
US11607948B1 (en) 2021-12-22 2023-03-21 Deere & Company Electronically-variable power shift transmission for work vehicles
US11585412B1 (en) 2021-12-22 2023-02-21 Deere & Company Electronically-variable, dual-path power shift transmission for work vehicles
US11913528B1 (en) 2022-10-28 2024-02-27 Deere & Company Multi-mode continuously variable transmission assembly with drop set arrangement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH102241A (ja) 1996-04-19 1998-01-06 Toyota Motor Corp ハイブリッド車両の制御装置
JP2007069789A (ja) * 2005-09-08 2007-03-22 Nissan Motor Co Ltd ハイブリッド車両のエンジン始動制御装置
JP2010215189A (ja) * 2009-03-18 2010-09-30 Toyota Motor Corp 車両用駆動装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982045A (en) * 1996-04-19 1999-11-09 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle drive system adapted to prevent concurrent mode change and transmission shifting or torque distribution ratio change
JP3963868B2 (ja) * 2003-06-23 2007-08-22 トヨタ自動車株式会社 ハイブリッド駆動装置の制御装置
JP2006123642A (ja) * 2004-10-27 2006-05-18 Aisin Aw Co Ltd ハイブリッド車用駆動装置、その制御方法及び制御装置
JP4341611B2 (ja) * 2005-11-09 2009-10-07 日産自動車株式会社 ハイブリッド車両のエンジン再始動制御装置
JP2006315484A (ja) * 2005-05-11 2006-11-24 Nissan Motor Co Ltd 車両用ハイブリッド駆動装置のモード切り替え制御装置
JP4234710B2 (ja) * 2005-10-26 2009-03-04 トヨタ自動車株式会社 電動車両駆動制御装置及びその制御方法
US7670258B2 (en) * 2006-06-15 2010-03-02 Toyota Jidosha Kabushiki Kaisha Control device for vehicle drive apparatus
JP2008137619A (ja) * 2006-12-05 2008-06-19 Toyota Motor Corp 車両用駆動装置の制御装置
JP5076516B2 (ja) * 2007-01-24 2012-11-21 日産自動車株式会社 ハイブリッド車両の変速時モード切り替え制御装置
US8204659B2 (en) * 2007-03-12 2012-06-19 Nissan Motor Co., Ltd. Engine start control system for hybrid vehicle
JP5125199B2 (ja) * 2007-04-20 2013-01-23 トヨタ自動車株式会社 ハイブリッド車両のエンジン始動制御装置
JP4501956B2 (ja) * 2007-04-20 2010-07-14 トヨタ自動車株式会社 ハイブリッド車両用駆動装置の制御装置
JP5082669B2 (ja) * 2007-08-10 2012-11-28 トヨタ自動車株式会社 ハイブリッド車両用動力伝達装置の制御装置
JP5228677B2 (ja) * 2008-07-30 2013-07-03 日産自動車株式会社 ハイブリッド車両の制御装置
JP2010083351A (ja) * 2008-09-30 2010-04-15 Mazda Motor Corp 車両用駆動装置の制御方法
JP5742124B2 (ja) * 2010-07-21 2015-07-01 日産自動車株式会社 ハイブリッド車両の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH102241A (ja) 1996-04-19 1998-01-06 Toyota Motor Corp ハイブリッド車両の制御装置
JP2007069789A (ja) * 2005-09-08 2007-03-22 Nissan Motor Co Ltd ハイブリッド車両のエンジン始動制御装置
JP2010215189A (ja) * 2009-03-18 2010-09-30 Toyota Motor Corp 車両用駆動装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10131345B2 (en) * 2012-12-25 2018-11-20 Nissan Motor Co., Ltd. Hybrid vehicle control device
JP6032351B2 (ja) * 2013-04-04 2016-11-24 日産自動車株式会社 ハイブリッド車両の制御装置
KR20140144622A (ko) * 2013-06-11 2014-12-19 현대자동차주식회사 유단 변속기를 장착한 하이브리드 자동차의 제어 방법
KR101976858B1 (ko) * 2013-06-11 2019-05-09 현대자동차주식회사 유단 변속기를 장착한 하이브리드 자동차의 제어 방법
JP2015061772A (ja) * 2013-09-23 2015-04-02 現代自動車株式会社 ハイブリッド車両のシフトダウン制御方法およびシステム
US10737682B2 (en) 2017-09-04 2020-08-11 Toyota Jidosha Kabushiki Kaisha Drive force control system for hybrid vehicle
JP2020128179A (ja) * 2019-02-08 2020-08-27 トヨタ自動車株式会社 車両の制御装置
JP7172689B2 (ja) 2019-02-08 2022-11-16 トヨタ自動車株式会社 車両の制御装置

Also Published As

Publication number Publication date
US20130231815A1 (en) 2013-09-05
EP2631142A4 (en) 2018-05-02
JP5578238B2 (ja) 2014-08-27
EP2631142A1 (en) 2013-08-28
US8868276B2 (en) 2014-10-21
CN103370246A (zh) 2013-10-23
EP2631142B1 (en) 2019-09-18
JPWO2012053633A1 (ja) 2014-02-24
CN103370246B (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
JP5578238B2 (ja) ハイブリッド車両の制御装置
JP5742124B2 (ja) ハイブリッド車両の制御装置
JP5861891B2 (ja) ハイブリッド車両の制御装置
EP2669132B1 (en) Hybrid vehicle control device
JP4341611B2 (ja) ハイブリッド車両のエンジン再始動制御装置
JP4341610B2 (ja) ハイブリッド車両のエンジン再始動制御装置
JP5163093B2 (ja) ハイブリッド車両の制御装置
JP4973113B2 (ja) 車両の制御装置
JP5353276B2 (ja) 電動車両の制御装置
KR20120089597A (ko) 하이브리드 차량의 제어 장치
JP5915245B2 (ja) ハイブリッド車両の制御装置
JP5206495B2 (ja) ハイブリッド車両の制御装置
JP2010188776A (ja) ハイブリッド車両の制御装置
JP5233642B2 (ja) ハイブリッド車両の制御装置
JP5413008B2 (ja) ハイブリッド車両の制御装置
JP5035228B2 (ja) 電動車両の制御装置
JP6004026B2 (ja) 電動車両の制御装置
JP5338332B2 (ja) ハイブリッド車両の制御装置
JP5359639B2 (ja) 電動車両の制御装置
JP5359300B2 (ja) 電動車両の制御装置
JP5636872B2 (ja) ハイブリッド車両の制御装置
JP2012086751A (ja) 電動車両の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180062572.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834472

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012539781

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011834472

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13879776

Country of ref document: US