WO2012050161A1 - 透明導電性フィルム、その製造方法、電子デバイス用部材及び電子デバイス - Google Patents

透明導電性フィルム、その製造方法、電子デバイス用部材及び電子デバイス Download PDF

Info

Publication number
WO2012050161A1
WO2012050161A1 PCT/JP2011/073543 JP2011073543W WO2012050161A1 WO 2012050161 A1 WO2012050161 A1 WO 2012050161A1 JP 2011073543 W JP2011073543 W JP 2011073543W WO 2012050161 A1 WO2012050161 A1 WO 2012050161A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
layer
transparent conductive
gas barrier
atoms
Prior art date
Application number
PCT/JP2011/073543
Other languages
English (en)
French (fr)
Inventor
公市 永元
近藤 健
智史 永縄
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to US13/879,286 priority Critical patent/US20130230731A1/en
Priority to EP11832593.5A priority patent/EP2629307B1/en
Priority to KR1020137009412A priority patent/KR101464094B1/ko
Priority to CN201180049693.8A priority patent/CN103262175B/zh
Publication of WO2012050161A1 publication Critical patent/WO2012050161A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • G02F2201/501Blocking layers, e.g. against migration of ions
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/01Function characteristic transmissive
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to a transparent conductive film, a method for producing the same, a member for an electronic device made of the transparent conductive film, and an electronic device provided with the member for an electronic device.
  • Patent Document 1 proposes a flexible display substrate in which a transparent gas barrier layer made of a metal oxide is laminated on a transparent plastic film.
  • the flexible display substrate described in this document is obtained by laminating a transparent gas barrier layer made of a metal oxide on the surface of a transparent plastic film by vapor deposition, ion plating, sputtering, or the like. If it is bent or bent, the gas barrier layer may crack and gas barrier properties may be deteriorated.
  • a transparent conductive film having a transparent conductor layer on a substrate made of transparent plastic is known.
  • a transparent conductor layer forming material of such a transparent conductive film tin-doped indium oxide (ITO) is mainly used.
  • ITO indium oxide
  • zinc oxide-based transparent conductive material has recently been used as an ITO alternative transparent conductive material.
  • Conductive materials have been proposed.
  • the zinc oxide-based conductive material has a problem that the sheet resistance value deteriorates under high temperature and high humidity conditions as compared with ITO.
  • Patent Document 2 discloses a transparent conductor in which a silicon oxide-doped zinc oxide film is formed on a hard coat layer provided on a plastic substrate.
  • the crystallinity of the conductive material may be reduced and the conductivity may be impaired.
  • Patent Document 3 discloses a transparent heating element having a transparent conductive film whose heat resistance is improved by adding a specific amount of gallium to zinc.
  • gallium must be contained in zinc under special conditions, and manufacturing conditions are limited.
  • Patent Document 4 proposes a substrate with a transparent conductive film that has improved heat resistance by providing a heat-resistant conductive layer with an increased degree of oxidation. However, it has been difficult to control the sheet resistance value of the transparent conductive layer in a high temperature and high humidity environment.
  • Non-Patent Document 1 discloses that in a gallium oxide-zinc oxide based transparent conductor, a transparent conductive layer is formed in a high temperature and high humidity environment by increasing the doping amount of gallium oxide and increasing the thickness to 400 nm. A technique for controlling the sheet resistance value to a desired value is disclosed. However, in the method described in this document, it is necessary to form a transparent conductor with a thickness of 400 nm, so that the productivity is remarkably inferior, and a large amount of gallium oxide is doped. Not.
  • JP 2000-338901 A JP-A-8-45352 JP-A-6-187833 JP 2009-199812 A
  • the present invention has been made in view of the above-described conventional technology, and has an excellent gas barrier property and transparency, and further has a low sheet resistance value even in a high temperature and high humidity environment, and is excellent in conductivity.
  • the manufacturing method, the member for electronic devices which consists of this transparent conductive film, and an electronic device provided with this member for electronic devices are provided.
  • the inventors of the present invention have a transparent conductive film having a base material layer, a gas barrier layer, and a transparent conductor layer, and the gas barrier layer includes silicon atoms, oxygen atoms, and carbon. It is composed of an atom-containing material, and the content of silicon atoms, oxygen atoms and carbon atoms in the surface layer portion of the gas barrier layer is a specific ratio, and the transparent conductive film has a relative temperature of 40 ° C.
  • a transparent conductive film having a water vapor transmission rate under a 90% humidity atmosphere of 6.0 g / m 2 / day or less and a visible light transmittance of 90% or more at a wavelength of 550 nm has excellent gas barrier properties and transparency. Further, the present inventors have found that the sheet resistance value is low and the conductivity is excellent even in a high temperature and high humidity environment. Furthermore, the gas barrier layer of such a transparent conductive film can be easily and efficiently formed by injecting ions into a layer containing a hydrolysis / dehydration condensate of a tetrafunctional organosilane compound such as tetraethoxysilane.
  • the headline and the present invention were completed.
  • the following transparent conductive films (1) to (6), (7) to (10) transparent conductive film production methods, (11) electronic device members, and (12) An electronic device is provided.
  • a transparent conductive film having a base material layer, a gas barrier layer and a transparent conductor layer The gas barrier layer is made of a material containing silicon atoms, oxygen atoms, and carbon atoms, and the content of silicon atoms, oxygen atoms, and carbon atoms in the surface layer portion of the gas barrier layer is measured by XPS elemental analysis.
  • the silicon atom content is 18.0% or more and 28.0% or less, and the oxygen atom content is 48.0% or more and 66.0% or less, with respect to a total of 100 atom% of silicon atoms, oxygen atoms, and carbon atoms,
  • the carbon atom content is 10.0% or more and 28.0% or less, and the water vapor permeability of the transparent conductive film in an atmosphere of 40 ° C. and 90% relative humidity is 6.0 g / m 2.
  • a transparent conductive film having a base material layer, a gas barrier layer and a transparent conductor layer The transparent conductive film according to (1), wherein the gas barrier layer is a layer obtained by injecting ions into a layer containing a hydrolysis / dehydration condensate of a tetrafunctional organosilane compound.
  • the ion is characterized in that at least one gas selected from the group consisting of hydrogen, oxygen, nitrogen, argon, helium, xenon, krypton, silicon compound, and hydrocarbon is ionized (
  • the gas barrier layer is a layer obtained by implanting ions into a layer containing a hydrolysis / dehydration condensate of a tetrafunctional organosilane compound by a plasma ion implantation method. Transparent conductive film.
  • the ion is characterized in that at least one gas selected from the group consisting of hydrogen, oxygen, nitrogen, argon, helium, xenon, krypton, silicon compound, and hydrocarbon is ionized ( The manufacturing method of the transparent conductive film as described in 8). (10) The method for producing a transparent conductive film according to (8), wherein the step of implanting ions is a step of implanting ions by a plasma ion implantation method.
  • An electronic device member comprising the transparent conductive film according to any one of (1) to (7).
  • An electronic device comprising the electronic device member according to (11).
  • the transparent conductive film of the present invention has excellent gas barrier properties and transparency, and has a low sheet resistance value and excellent conductivity even in a high temperature and high humidity environment.
  • the transparent conductive film of the present invention can be suitably used as a flexible display or a member for an electronic device such as a solar battery (for example, a solar battery back sheet).
  • the transparent conductive material of the present invention has excellent gas barrier properties and transparency, and has a small change in sheet resistance value even in a high-temperature and high-humidity environment. Can be manufactured easily and efficiently. In addition, the area can be easily increased at a lower cost than the inorganic film formation.
  • the electronic device member of the present invention has excellent gas barrier properties and transparency, and also has a low sheet resistance value and excellent conductivity even in a high-temperature and high-humidity environment. Therefore, it is suitable for electronic devices such as displays and solar cells. Can be used.
  • the transparent conductive film of the present invention comprises: A transparent conductive film having a base material layer, a gas barrier layer and a transparent conductor layer, wherein the gas barrier layer is composed of a material containing silicon atoms, oxygen atoms and carbon atoms, and in the surface layer portion of the gas barrier layer
  • the content of silicon atoms, oxygen atoms, and carbon atoms is 18.0% or more and 28. 0% or less, an oxygen atom content of 48.0% or more and 66.0% or less, a carbon atom content of 10.0% or more and 28.0% or less, and a transparent conductive film
  • the gas barrier layer has ions implanted into a layer containing a hydrolysis / dehydration condensate of a tetrafunctional organosilane compound (hereinafter sometimes referred to as a “silicate layer”). It may be a layer obtained by
  • the transparent conductive film of the present invention has a base material layer.
  • the material for the base material layer is not particularly limited as long as it meets the purpose of the transparent conductive film.
  • polyester, polyamide, polysulfone, polyether sulfone, polyphenylene sulfide, polyarylate, and cycloolefin polymer are preferable, and polyester or cycloolefin polymer is more preferable because of excellent transparency and versatility.
  • polyester examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyarylate.
  • polyamide examples include wholly aromatic polyamide, nylon 6, nylon 66, nylon copolymer, and the like.
  • cycloolefin polymers include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof. Specific examples thereof include Apel (an ethylene-cycloolefin copolymer manufactured by Mitsui Chemicals), Arton (a norbornene polymer manufactured by JSR), Zeonoa (a norbornene polymer manufactured by Nippon Zeon), and the like. .
  • Apel an ethylene-cycloolefin copolymer manufactured by Mitsui Chemicals
  • Arton a norbornene polymer manufactured by JSR
  • Zeonoa a norbornene polymer manufactured by Nippon Zeon
  • the thickness of the base material layer is not particularly limited, and may be determined according to the purpose of use of the transparent conductive film, but is usually 0.5 to 500 ⁇ m, preferably 10 to 250 ⁇ m.
  • the gas barrier layer of the transparent conductive film of the present invention contains silicon atoms, oxygen atoms and carbon atoms in the above-mentioned range in the surface layer portion.
  • the “surface layer portion” of the gas barrier layer refers to a region from the surface of the gas barrier layer to 15 nm in the depth direction of the surface.
  • the surface of the gas barrier layer includes a boundary surface with other layers.
  • the content of silicon atoms, oxygen atoms and carbon atoms in the surface layer portion of the gas barrier layer is the sum of silicon atoms, oxygen atoms and carbon atoms in the elemental analysis measurement of XPS.
  • the silicon atom content is 18.0% or more and 28.0% or less, preferably 19.0% or more and 26.0% or less, and the oxygen atom content is 48.0% or more and 66.0% with respect to 100 atom%. % Or less, preferably 50.0% or more and 64.0% or less, and the carbon atom content is 10.0% or more and 28.0% or less, preferably 12.0% or more and 28.0% or less.
  • plasma treatment is applied to the layer containing the hydrolysis / dehydration condensate of the tetrafunctional organosilane compound. And a method of implanting ions.
  • the gas barrier layer of the transparent conductive film of the present invention is preferably a layer obtained by implanting ions into a silicate layer.
  • the silicate layer is a layer containing a hydrolysis / dehydration condensate of a tetrafunctional organosilane compound.
  • the content of the hydrolysis / dehydration condensate of the tetrafunctional organosilane compound in the silicate layer is preferably 50% by weight or more from the viewpoint of forming an ion-implanted layer having excellent gas barrier properties and transparency. More preferably, it is at least wt%.
  • the tetrafunctional organosilane compound used in the present invention is a compound in which four hydrolyzable groups are bonded to silicon element, and specifically, a compound represented by the formula (A): SiX 4 .
  • X represents a hydrolysis substituent and may be the same or different from each other.
  • X is a group represented by the formula: OR (R represents a hydrocarbon group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms), and a formula: OSi (R a ) (R b )
  • R c A group represented by (R c ) (R a , R b , and R c each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a phenyl group), a halogen atom, and the like.
  • OR include carbon numbers such as methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, t-butoxy group, pentyloxy group, hexyloxy group and the like.
  • OSi (R a ) (R b ) (R c ) examples include silyloxy group, trimethylsilyloxy group, triethylsilyloxy group, phenyldimethylsilyloxy group, t-butyldimethylsilyloxy Groups and the like. Moreover, a chlorine atom, a bromine atom, etc. are mentioned as a halogen atom.
  • tetrafunctional organosilane compound examples include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetrabutoxysilane, and the like (C1-C10) alkoxysilane; trimethoxychlorosilane, triethoxychlorosilane, Tri (C1-C10) alkoxyhalogenosilanes such as tripropoxychlorosilane; Di (C1-C10) dihalogenoalkoxysilanes such as dimethoxycyclosilane, diethoxydichlorosilane, dipropoxydichlorosilane; methoxytrichlorosilane, ethoxytrichlorosilane, Mono (C1-C10) alkoxytrihalogenosilanes such as propoxytrichlorosilane; tetrahalogenosilanes such as
  • tetra (C1 to C10) alkoxysilane is preferable from the viewpoint of excellent handleability and the ability to form a layer having better gas barrier properties and transparency.
  • the hydrolysis / dehydration condensate of the tetrafunctional organosilane compound can be obtained by hydrolysis / dehydration condensation of the tetrafunctional organosilane compound in a suitable solvent in the presence of water and optionally a catalyst.
  • the amount of water used is preferably such that the molar equivalent of water (H 2 O) to the hydrolyzable group (X), that is, the molar ratio [H 2 O] / [X] is 1.0 or more. More preferably, it is 5.0 or less. If it is less than 1.0, the amount of unreacted hydrolyzable groups increases, which may adversely affect the refractive index of the cured film. On the other hand, if it exceeds 5.0, the condensation reaction proceeds extremely, and the gel There is a risk that
  • Both an acidic catalyst and a basic catalyst can be used.
  • the acidic catalyst include organic acids such as acetic acid, chloroacetic acid, citric acid, benzoic acid, dimethylmalonic acid, formic acid, propionic acid, glutaric acid, glycolic acid, maleic acid, malonic acid, toluenesulfonic acid, and oxalic acid; And inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid and halogenated silane; acidic sol-like fillers such as acidic colloidal silica and titania sol; These acidic catalysts can be used alone or in combination of two or more.
  • Basic catalysts include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide; ammonia water; amines such as triethylamine, diisopropylethylamine and pyridine; Can be mentioned. These basic catalysts can be used alone or in combination of two or more. Among these, an acidic catalyst is preferable from the viewpoint of shortening the time required for the production process.
  • the hydrolysis / dehydration condensation of the tetrafunctional organosilane compound may be performed by heating as necessary.
  • the weight average molecular weight of the resulting hydrolysis / dehydration condensate of the tetrafunctional organosilane compound is not particularly limited, but in order to obtain a silicate layer having excellent mechanical strength, it is in the range of 200 to 50,000. Preferably, it is in the range of 200 to 10,000. If the weight average molecular weight is less than 200, the film-forming ability may be inferior, whereas if it exceeds 50,000, the mechanical strength of the cured film may be inferior.
  • the silicate layer may contain other components in addition to the hydrolysis / dehydration condensate of the tetrafunctional organosilane compound as long as the object of the present invention is not impaired.
  • Other components include other polymers, curing agents, anti-aging agents, light stabilizers, flame retardants, fillers, pigments, leveling agents, antifoaming agents, antistatic agents, UV absorbers, pH adjusters, dispersions Agents, surface modifiers, plasticizers, drying accelerators, flow inhibitors and the like.
  • the method for forming the silicate layer is not particularly limited.
  • the silicate layer forming solution is applied onto the base material layer by a known coating method, and the obtained coating film is appropriately dried.
  • the method of forming is mentioned.
  • silicate layer forming solution As the silicate layer forming solution to be used, (a) a solution containing a tetrafunctional organosilane compound, water, a catalyst, a solvent, and other components as required, and (a) a (partial) hydrolysis product of the tetrafunctional organosilane compound Solution containing water, catalyst, solvent, and other components as required, (c) hydrolysis and (partial) dehydration condensate of tetrafunctional organosilane compound, water, catalyst, solvent and other components as desired Examples thereof include solutions containing the same.
  • a tetrafunctional organosilane compound As the solvent used here, a tetrafunctional organosilane compound, a (partial) hydrolysis product of a tetrafunctional organosilane compound, a solvent that stably dissolves a hydrolysis / (partial) dehydration condensate of a tetrafunctional organosilane compound. preferable.
  • esters such as xylene, toluene, butyl carbitol acetate, n-butyl acetate and ethyl acetate; glycol ethers such as cellosolve and cellosolve acetate; ketones such as acetone and methylethylketone; a mixed solvent composed of two or more of these And the like.
  • the amount (ratio) of the solvent used is usually from 5 to 99% by mass, preferably from 5 to 60% by mass, based on the coating method, the type of tetrafunctional organosilane compound used, and the like.
  • the coating method is not particularly limited, and examples thereof include a method using a known coating apparatus such as a spin coater, a knife coater, or a gravure coater.
  • the coating film In order to dry the obtained coating film and improve the gas barrier property of the transparent conductive film, it is preferable to heat the coating film. Heating is performed at 80 to 150 ° C for several tens of seconds to several tens of minutes. By such heating, the (functional) hydrolysis product of the tetrafunctional organosilane compound, the (partial) hydrolysis product of the tetrafunctional organosilane compound, and the hydrolysis / dehydration condensation reaction of the hydrolysis / (partial) dehydration condensate of the tetrafunctional organosilane compound are sufficient. And a high quality cured film can be formed.
  • the thickness of the silicate layer to be formed is not particularly limited, but is usually 20 nm to 100 ⁇ m, preferably 30 to 500 nm, more preferably 40 to 200 nm.
  • a transparent conductive film having sufficient gas barrier performance can be obtained even if the thickness of the silicate layer is nano-order.
  • ions to be implanted ions of rare gases such as argon, helium, neon, krypton, and xenon; ions of fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, sulfur, silicon compounds, hydrocarbons, etc .; gold And ions of metals such as silver, copper, platinum, nickel, palladium, chromium, titanium, molybdenum, niobium, tantalum, tungsten, and aluminum.
  • rare gases such as argon, helium, neon, krypton, and xenon
  • fluorocarbon hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, sulfur, silicon compounds, hydrocarbons, etc .
  • gold And ions of metals such as silver, copper, platinum, nickel, palladium, chromium, titanium, molybdenum, niobium, tantalum, tungsten, and aluminum.
  • hydrogen, nitrogen, oxygen, argon, helium, neon, xenon, krypton, silicon compounds, which can be implanted more easily and an ion implantation layer having particularly excellent gas barrier properties and transparency can be obtained.
  • Examples of the silicon compound include silane (SiH 4 ) and organosilicon compounds.
  • organosilicon compounds include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, and tetra t-butoxysilane;
  • An alkylalkoxysilane having an unsubstituted or substituted group such as dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane;
  • Arylalkoxysilanes such as diphenyldimethoxysilane and phenyltriethoxysilane; Disiloxanes such as hexamethyldisiloxane (HMDSO); Aminosilanes such as bis (dimethylamino) dimethylsilane, bis (dimethylamino) methylvinylsilane, bis (ethylamino) dimethylsilane, diethylaminotrimethylsilane, dimethylaminodimethylsilane, tetrakisdimethylaminosilane, tris (dimethylamino) silane; Silazanes such as hexamethyldisilazane, hexamethylcyclotrisilazane, heptamethyldisilazane, nonamethyltrisilazane, octamethylcyclotetrasilazane, tetramethyldisilazane; Cyanate silanes such
  • Silylalkenes such as 1,4-bistrimethylsilyl-1,3-butadiyne, cyclopentadienyltrimethylsilane; Arylalkylsilanes such as phenyldimethylsilane and phenyltrimethylsilane; Alkynylalkylsilanes such as propargyltrimethylsilane; Alkenylalkylsilanes such as vinyltrimethylsilane; Disilanes such as hexamethyldisilane; Siloxanes such as octamethylcyclotetrasiloxane, tetramethylcyclotetrasiloxane, hexamethylcyclotetrasiloxane; N, O-bis (trimethylsilyl) acetamide; Bis (trimethylsilyl) carbodiimide; Etc.
  • Arylalkylsilanes such as phenyldimethylsilane and phenyltrimethyls
  • alkanes such as methane, ethane, propane, butane, pentane and hexane; alkenes such as ethylene, propylene, butene and pentene; alkadienes such as pentadiene and butadiene; alkynes such as acetylene and methylacetylene; benzene, toluene, Aromatic hydrocarbons such as xylene, indene, naphthalene and phenanthrene; cycloalkanes such as cyclopropane and cyclohexane; cycloalkenes such as cyclopentene and cyclohexene; and the like. These ions can be used alone or in combination of two or more.
  • the ion implantation amount may be appropriately determined according to the purpose of use of the transparent conductive film to be formed (necessary gas barrier properties, transparency, etc.).
  • Examples of the ion implantation method include a method of irradiating ions accelerated by an electric field (ion beam), a method of implanting ions in plasma (plasma ion implantation method), and the like.
  • the plasma ion implantation method is preferable.
  • plasma is generated in an atmosphere containing a plasma generation gas, and a negative high voltage pulse is applied to a layer into which ions are implanted, whereby ions (positive ions) in the plasma are ionized. Can be performed by injecting into the surface portion of the layer to be injected.
  • the thickness of the portion into which ions are implanted can be controlled by the implantation conditions such as ion type, applied voltage, and processing time, and is determined according to the thickness of the layer into which ions are implanted, the purpose of use of the transparent conductive film, Usually, it is 10 to 1000 nm.
  • the ion implantation can be confirmed by performing an elemental analysis measurement in the vicinity of 10 nm from the surface using X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the transparent conductive film of the present invention further has a transparent conductor layer.
  • the gas barrier film can be provided with a function as an electrode.
  • the obtained transparent conductive film can be suitably used for an organic EL display element or the like.
  • the material constituting the transparent conductor layer is not particularly limited as long as the visible light transmittance at 550 nm of the transparent conductor layer is 90% or more.
  • metals such as platinum, gold, silver, and copper
  • carbon materials such as graphene and carbon nanotubes
  • organic conductive materials such as polyarinin, polyacetylene, polythiophene, polyparaphenylene vinylene, polyethylenedioxythiophene, and polypyrrole
  • copper iodide, sulfide Inorganic conductive materials such as copper
  • non-oxidized compounds such as chalcogenide, lanthanum hexaboride, titanium nitride, titanium carbide
  • zinc oxide, zinc dioxide, gallium doped zinc oxide, aluminum doped zinc oxide, zinc oxide doped indium oxide IZO: Registered trademark
  • iodine, arsenic pentafluoride, alkali metal, polyanion poly (styrene sulfonate) or the like may be added as a dopant.
  • specific examples include polyethylene dioxythiophene (trade name “CLEVIOS P AI 4083” manufactured by Starck Vitec Co., Ltd.).
  • a conductive metal oxide is preferable because a transparent conductive film having excellent conductivity and transparency can be obtained more easily.
  • indium oxide such as zinc oxide-doped indium oxide (IZO: registered trademark), indium oxide, tin-doped indium oxide (ITO), tin and gallium-doped indium oxide (IGZO), and fluorine-doped indium oxide are the main components.
  • Indium-based oxides zinc-based oxides mainly composed of zinc oxide such as zinc oxide, zinc dioxide, gallium-doped zinc oxide, aluminum-doped zinc oxide; and tin oxide, antimony-doped tin oxide, fluorine-doped tin oxide (FTO) Tin-based oxides mainly composed of stannic oxide such as) are more preferable, indium-based oxides and zinc-based oxides are more preferable, and zinc-based oxides are particularly preferable.
  • the indium-based oxide preferably contains indium oxide as a main component, and the zinc-based oxide preferably contains 90% by mass or more of zinc oxide as a main component.
  • the composition other than the main component is not particularly limited.
  • aluminum, boron, gallium, silicon, tin, germanium, antimony, iridium, rhenium, cerium, zirconium, scandium, yttrium, zinc, indium and oxides thereof may be used to reduce the resistivity. These are added for the purpose of reducing the resistivity of the conductor layer. These can be used alone or in combination of two or more.
  • the addition amount is preferably 0.05 to 10% by mass with respect to the entire transparent conductor layer from the viewpoint of the balance between conductivity and crystallinity.
  • the transparent conductor layer can be formed by a conventionally known method.
  • a sputtering method, an ion plating method, a vacuum deposition method, a chemical vapor deposition method, a coating method such as a bar coater or a micro gravure coater, and the like can be given.
  • the sputtering method is preferable because the transparent conductor layer can be easily formed.
  • a process of performing a heat treatment under vacuum or atmospheric pressure, or performing a plasma treatment or an ultraviolet irradiation treatment on the surface on which the transparent conductive material is formed may be provided.
  • the thickness of the transparent conductor layer varies depending on the application, but is usually 10 nm to 5 ⁇ m, preferably 20 nm to 1000 nm, more preferably 20 nm to 500 nm.
  • the formed conductor layer may be patterned as necessary.
  • the patterning method include chemical etching by photolithography and the like, physical etching using a laser and the like, vacuum deposition method using a mask, sputtering method, lift-off method, printing method, and the like.
  • the transparent conductive film of the present invention comprises a base material layer, a gas barrier layer, and a transparent conductor layer.
  • the transparent conductive film of the present invention may be composed of each layer of the base material layer, the gas barrier layer and the transparent conductor layer, may have a plurality of each layer, or may be another layer. May be included.
  • the stacking order of the base material layer, the gas barrier layer, and the transparent conductor layer is not particularly limited.
  • An example of the layer structure of the conductive film of the present invention is shown in FIG.
  • FIG. 1 S represents a base material layer
  • a represents a gas barrier layer
  • b represents a conductor layer
  • FIG. 1A shows a three-layer structure comprising a base material layer-gas barrier layer-conductor layer
  • FIG. 1B shows a three-layer structure comprising a conductor layer-base material layer-gas barrier layer.
  • the other layers may be a single layer or two or more of the same or different types.
  • the stacking position of the other layers is not particularly limited, and may be determined according to the installation purpose of the other layers to be used. Examples of the other layers include a hard coat layer, an inorganic compound layer, a shock absorbing layer, and a primer layer.
  • the hard coat layer is provided so that the surface of the transparent conductive film is not damaged.
  • the material for forming the hard coat layer is not particularly limited, and examples thereof include energy beam curable resins and thermosetting resins.
  • the thickness of the hard coat layer is usually 0.1 to 20 ⁇ m, preferably 1 to 10 ⁇ m.
  • the inorganic compound layer is a layer composed of one or more inorganic compounds.
  • Inorganic compounds that can be generally formed in a vacuum and have a gas barrier property, such as inorganic oxides, inorganic nitrides, inorganic carbides, inorganic sulfides, inorganic oxynitrides and inorganic oxide carbides that are composites thereof Inorganic nitride carbide, inorganic oxynitride carbide, and the like.
  • the thickness of the inorganic compound layer is usually in the range of 10 nm to 1000 nm, preferably 20 to 500 nm, more preferably 20 to 100 nm.
  • the impact absorbing layer is for protecting the gas barrier layer when an impact is applied to the gas barrier layer.
  • the material for forming the shock absorbing layer is not particularly limited, and examples thereof include acrylic resins, urethane resins, silicone resins, olefin resins, and rubber materials.
  • an adhesive, a coating agent, a sealing agent etc. can also be used, and adhesives, such as an acrylic adhesive, a silicone adhesive, and a rubber adhesive, are especially preferable.
  • an impact-absorbing layer there is no restriction
  • examples include a method in which a shock absorbing layer forming solution containing other components is applied onto a layer to be laminated, the obtained coating film is dried, and heated, if necessary.
  • a shock absorbing layer may be separately formed on the release substrate, and the obtained film may be transferred and stacked on the layer to be stacked.
  • the thickness of the shock absorbing layer is usually 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the primer layer plays a role of enhancing interlayer adhesion between the base material layer and the gas barrier layer or the transparent conductor layer.
  • the material constituting the primer layer is not particularly limited, and known materials can be used.
  • a photopolymerizable composition comprising a silicon-containing compound; a photopolymerizable compound comprising a photopolymerizable monomer and / or a photopolymerizable prepolymer, and a polymerization initiator that generates radicals by light in at least the visible light region or the ultraviolet light region
  • acrylic resins acrylic resins
  • polycarbonate resins vinyl chloride / vinyl acetate copolymers
  • resins such as polyvinyl butyral resin and nitrocellulose resin; alkyl titanates; ethyleneimine; These materials can be used alone or in combination of two or more.
  • a primer layer forming solution obtained by dissolving or dispersing the material constituting the primer layer in an appropriate solvent is applied to one or both sides of the base material layer, and the obtained coating film is dried to obtain a desired layer. It can form by heating by.
  • a normal wet coating method can be used as a method for applying the primer layer forming solution to the base material layer. Examples include dipping method, roll coating, gravure coating, knife coating, air knife coating, roll knife coating, die coating, screen printing method, spray coating, gravure offset method and the like.
  • a conventionally known drying method such as hot air drying, hot roll drying, infrared irradiation or the like can be employed.
  • the thickness of the primer layer is usually 10 to 1000 nm.
  • ion implantation may be performed on the obtained primer layer by a method similar to the method of ion implantation described later. By performing ion implantation also on the primer layer, a more excellent transparent conductive film can be obtained.
  • the order of lamination of each layer may be any.
  • the thickness of the transparent conductive film of the present invention is not particularly limited and can be appropriately determined depending on the intended use of the electronic device. Usually 1 to 1000 ⁇ m.
  • the transparent conductive film of the present invention has excellent gas barrier properties and transparency, and has a low sheet resistance value and excellent conductivity even in a high temperature and high humidity environment.
  • the transparent conductive film of the present invention has an excellent gas barrier property because the transparent conductive film of the present invention has a remarkably low gas permeability such as water vapor.
  • the water vapor transmission rate is 6.0 g / m 2 / day or less, preferably 1.5 g / m 2 / day or less in an atmosphere of 40 ° C. and 90% relative humidity.
  • steam, of a transparent conductive film can be measured using a well-known gas-permeability measuring apparatus.
  • the fact that the transparent conductive film of the present invention has excellent transparency can be confirmed from the high visible light transmittance of the transparent conductive film of the present invention.
  • the visible light transmittance at a wavelength of 550 nm of the transparent conductive film of the present invention is 90% or more.
  • the visible light transmittance can be measured using a known visible light transmittance measuring device.
  • the fact that the transparent conductive film of the present invention has excellent conductivity can be confirmed from the low sheet resistance value (surface resistivity) of the transparent conductive film.
  • the sheet resistance value (surface resistivity) of the transparent conductive film of the present invention is usually 1000 ⁇ / ⁇ or less, preferably 550 ⁇ / ⁇ or less.
  • the sheet resistance value of the transparent conductive film can be measured by a known method.
  • the transparent conductive film of the present invention has a low sheet resistance value and excellent conductivity even in a high temperature and high humidity environment.
  • the sheet resistance value change rates T1 and T2 shown below are confirmed to be small. be able to.
  • R0 is the initial sheet resistance value of the transparent conductive film
  • R1 is the sheet resistance value after being placed in an environment of 60 ° C. for 3 days
  • R2 is placed in an environment of 60 ° C. and 90% RH for 3 days. Each subsequent sheet resistance value is shown.
  • T1 is usually less than 1.0, preferably 0.5 or less, more preferably 0.1 or less
  • T2 is usually 1.0 or less, preferably 0.5 or less, More preferably, it is 0.35 or less.
  • the production method of the transparent conductive film of the present invention is a molded product in which a layer (silicate layer) containing a hydrolysis / dehydration condensate of a tetrafunctional organosilane compound is formed on the surface.
  • the ions used in the ion implantation step are preferably the same as those exemplified in the section 1) Transparent conductive film.
  • a plasma ion implantation method is preferable.
  • a negative high-voltage pulse is applied to a molded article that has been exposed to plasma and has a polymer layer on the surface, whereby ions in the plasma are implanted into the surface portion of the layer. It is a method of injection.
  • (A) a method in which ions existing in plasma generated using an external electric field are implanted into the surface portion of the layer, or (B) the layer is formed without using an external electric field.
  • a method of injecting ions present in the plasma generated only by the electric field by the negative high voltage pulse to be applied to the surface portion of the layer is preferable.
  • the pressure during ion implantation is preferably 0.01 to 1 Pa.
  • the pressure during plasma ion implantation is in such a range, a uniform ion implantation layer can be easily and efficiently formed, and an ion implantation layer having both transparency and gas barrier properties can be efficiently formed. Can do.
  • the processing operation is simple, and the processing time can be greatly shortened. Further, the entire layer can be processed uniformly, and ions in the plasma can be continuously injected into the surface portion of the layer with high energy when a negative high voltage pulse is applied. Furthermore, without applying special other means such as radio frequency (hereinafter abbreviated as “RF”) or a high frequency power source such as a microwave, just applying a negative high voltage pulse to the layer, Ions can be uniformly implanted into the surface portion of the silicate layer.
  • RF radio frequency
  • a high frequency power source such as a microwave
  • the pulse width when applying a negative high voltage pulse is preferably 1 to 15 ⁇ sec.
  • the pulse width is in such a range, uniform ion implantation can be performed more simply and efficiently.
  • the applied voltage when generating plasma is preferably -1 kV to -50 kV, more preferably -1 kV to -30 kV, and particularly preferably -5 kV to -20 kV. If ion implantation is performed at an applied voltage greater than ⁇ 1 kV, the ion implantation amount (dose amount) becomes insufficient, and desired performance cannot be obtained. On the other hand, if ion implantation is performed at a value smaller than ⁇ 50 kV, the molded body is charged at the time of ion implantation, and defects such as coloring of the molded body occur.
  • the ion species for plasma ion implantation are as described above. Hydrogen, nitrogen, oxygen, argon, helium, neon, xenon, and krypton are preferred because they can be more easily ion-implanted and can efficiently produce a molded article having a transparent and excellent gas barrier property. Oxygen, argon, and helium are more preferable.
  • a plasma ion implantation apparatus is used. Specifically, as a plasma ion implantation apparatus, ( ⁇ ) a high-frequency power is superimposed on a feedthrough that applies a negative high-voltage pulse to a polymer layer (hereinafter also referred to as “ion-implanted layer”).
  • a device that uniformly surrounds the periphery of the ion-implanted layer with plasma and attracts, implants, collides and deposits ions in the plasma Japanese Patent Laid-Open No. 2001-26887
  • An antenna is provided in the chamber, and a high-frequency power After the plasma reaches the periphery of the layer to be ion-implanted by applying plasma, positive and negative pulses are alternately applied to the layer to be ion-implanted, so that the electrons in the plasma are attracted and collided with the positive pulse.
  • An apparatus for heating a layer to be ion-implanted and controlling the pulse constant to control the temperature while applying a negative pulse to attract and implant ions in the plasma Japanese Patent Laid-Open No. 2001-1560 13
  • a plasma ion implantation apparatus that generates plasma using an external electric field such as a high-frequency power source such as a microwave and applies high voltage pulses to attract and inject ions in the plasma
  • a plasma ion implantation apparatus that implants ions in plasma generated only by an electric field generated by applying a high voltage pulse without using an external electric field.
  • the plasma ion implantation apparatus ( ⁇ ) or ( ⁇ ) because the processing operation is simple, the processing time can be greatly shortened, and it is suitable for continuous use.
  • Examples of the method using the plasma ion implantation apparatus ( ⁇ ) and ( ⁇ ) include those described in International Publication No. WO2010 / 021326.
  • the plasma generating means for generating plasma is also used by the high voltage pulse power source, other special means such as a high frequency power source such as RF and microwave are used.
  • the plasma is generated only by applying a negative high voltage pulse, and ions in the plasma are implanted into the surface portion of the silicate layer, and the layers obtained by the ion implantation are continuously formed.
  • a transparent conductive film in which a layer obtained by ion implantation is formed can be mass-produced.
  • the step of implanting ions is a step of implanting ions into the surface portion of the silicate layer while conveying a long shaped product having a silicate layer formed on the surface in a certain direction.
  • ion implantation can be performed continuously.
  • the elongated molded product may be composed of a base material layer and a silicate layer, or may include other layers.
  • the thickness of the molded product is preferably 1 ⁇ m to 500 ⁇ m, more preferably 5 ⁇ m to 300 ⁇ m, from the viewpoint of operability of unwinding, winding and conveying.
  • the transparent conductive film of the present invention in which a base material layer, a gas barrier layer, and a transparent conductor layer are laminated in this order can be produced as follows.
  • a silicate layer is formed on one surface side of a long base material to be a base material layer.
  • the silicate layer is, for example, applied to the one surface of the base material with the silicate layer forming solution by the coating apparatus while transporting the long base material in a certain direction, and the obtained coating film is dried. It can be formed by heating or the like as necessary.
  • a transparent conductor layer is formed on the gas barrier layer of the obtained long molding by a sputtering method.
  • the transparent conductive film of the present invention can be obtained. According to such a production method of the present invention, the transparent conductive film of the present invention can be easily produced.
  • the electronic device member of the present invention is characterized by comprising the transparent conductive film of the present invention. Therefore, since the electronic device member of the present invention has excellent gas barrier properties, it is possible to prevent deterioration of the element due to gas such as water vapor. In addition, since it has high light transmittance, low sheet resistance even under high temperature and high humidity environment, and excellent conductivity, it is suitable for electronic devices such as display members such as liquid crystal displays and EL displays; solar cells; .
  • the electronic device of the present invention includes the electronic device member of the present invention. Specific examples include a liquid crystal display, an organic EL display, an inorganic EL display, electronic paper, and a solar battery. Since the electronic device of the present invention includes the electronic device member comprising the transparent conductive film of the present invention, the electronic device has excellent gas barrier properties, transparency, and conductivity.
  • Plasma ion implantation apparatus used, water vapor transmission rate measurement device and measurement conditions, visible light transmittance measurement device, sheet resistance measurement device, method of wet heat resistance test, and surface layer portion of gas barrier layer (ion implantation layer) by XPS
  • the measuring device for elemental analysis is as follows.
  • RF power source JEOL Ltd., model number “RF” 56000
  • High voltage pulse power supply “PV-3-HSHV-0835” manufactured by Kurita Manufacturing Co., Ltd.
  • the plasma ion implantation apparatus used is an apparatus for implanting ions using an external electric field.
  • Visible light transmittance measuring device The visible light transmittance was measured at a measurement wavelength of 550 nm using the following measuring device. Visible light transmittance measuring device: “UV-3101PC” manufactured by Shimadzu Corporation
  • the sheet resistance value of the transparent conductive film was measured by measuring the surface resistivity of the transparent conductor layer under the conditions of a relative humidity of 50% and 23 ° C. using the following measuring device. Further, the probe used was “PROBE TYPE LSP” manufactured by Mitsubishi Chemical Analytic Co., Ltd. Sheet resistance measurement device: “LORESTA-GP MCP-T600” manufactured by Mitsubishi Chemical Corporation
  • the transparent conductive film is placed in an environment of 60 ° C. and 60 ° C. and 90% RH for 3 days. After taking out, the temperature is controlled and humidity is adjusted for one day in an environment of 23 ° C. and 50% RH. Was measured. Next, the sheet resistance value change rates T1 and T2 were obtained by the calculation formula shown below.
  • RH means relative humidity.
  • Elemental analysis by X-ray photoelectron spectroscopy (XPS) was performed with the following measurement apparatus and measurement conditions. Only the transparent conductor layer of the transparent conductive film is removed by sputtering, the boundary portion of the gas barrier layer with the transparent conductor layer side is exposed, and the abundance ratio of oxygen atoms, carbon atoms and silicon atoms in the surface layer portion of the gas barrier layer was measured.
  • PHI Quantera SXM ULVAC-PHI X-ray source: AlK ⁇ X-ray beam diameter: 100 ⁇ m Electric power value: 25W Voltage: 15kV Extraction angle: 45 ° Degree of vacuum: 5.0 ⁇ 10 ⁇ 8 Pa Sputtering conditions Sputtering gas: Argon applied voltage: -4 kV
  • Example 1 Polyethylene terephthalate film (“PET188 A-4300” manufactured by Toyobo Co., Ltd., thickness 188 ⁇ m, hereinafter referred to as “PET film”) as a base material layer is a silicate coating that is a hydrolyzed / dehydrated condensation compound of tetraethoxylane.
  • a silicate with a thickness of 75 nm is applied (dried by Colcoat, product name: Colcoat N103-X, weight average molecular weight of silicate: 1,000 to 10,000, hereinafter referred to as “silicate coating solution A”) and dried.
  • a layer was formed to obtain a molding.
  • argon (Ar) was ion-implanted into the surface of the silicate layer of the molded product under the conditions shown below using a plasma ion implantation apparatus.
  • a zinc oxide target material manufactured by Sumitomo Metal Mining Co., Ltd.
  • a DC magnetron sputtering method on the surface side where ions of the obtained molded product are implanted.
  • a transparent conductor layer was formed to a thickness of 100 nm, and a transparent conductive film 1 was produced.
  • the sputtering conditions are as follows: Substrate temperature: room temperature DC output: 500 W ⁇ Carrier gas: Argon and oxygen are adjusted to a flow rate ratio of 100: 0 to 100: 3 ⁇ Vacuum degree: 0.3 to 0.8 Pa
  • Example 2 In Example 1, a transparent conductive film 2 was produced in the same manner as in Example 1 except that helium (He) was used instead of argon as the plasma generation gas.
  • He helium
  • Example 3 A transparent conductive film 3 was produced in the same manner as in Example 1 except that krypton (Kr) was used instead of argon as the plasma generation gas in Example 1.
  • Example 4 In Example 1, except for using nitrogen (N 2) instead of argon as the plasma generation gas to produce a transparent conductive film 4 in the same manner as in Example 1.
  • Example 5 In Example 1, except for using nitrogen (O 2) in place of argon as the plasma generation gas to produce a transparent conductive film 5 in the same manner as in Example 1.
  • Example 6 A transparent conductive film 6 was produced in the same manner as in Example 1 except that the applied voltage was ⁇ 10 kV in Example 1.
  • Example 7 A transparent conductive film 7 was produced in the same manner as in Example 1 except that the applied voltage was ⁇ 20 kV in Example 1.
  • Example 8 In Example 1, instead of the silicate coating liquid A, a silicate coating liquid (product of Colcoat, product name: Colcoat PX, weight average molecular weight of silicate: 20,000 to 30), which is a hydrolysis / dehydration condensation compound of tetraethoxylane A transparent conductive film 8 was produced in the same manner as in Example 1 except that 2,000, hereinafter referred to as “silicate coating solution B”) was used.
  • silicate coating solution B a silicate coating liquid
  • Comparative Example 1 A transparent conductor layer was formed directly on the PET film in the same manner as in Example 1 to obtain a transparent conductive film 1r of Comparative Example 1.
  • Example 2 a transparent conductive film 2r was produced in the same manner as in Example 1 except that plasma ion implantation was not performed.
  • Example 8 (Comparative Example 3) In Example 8, a transparent conductive film 3r was obtained in the same manner as Example 8 except that plasma ion implantation was not performed.
  • Example 5 (Comparative Example 5) In Example 1, instead of the silicate coating solution A, a polyorganosiloxane compound silicone release agent (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KS835, a silicone resin mainly composed of polydimethylsiloxane, hereinafter “Coating Solution D”) A molded product was produced in the same manner as in Example 1 except that the above was used. Next, plasma ions were implanted in the same manner as in Example 6 to produce a transparent conductive film 5r.
  • a polyorganosiloxane compound silicone release agent manufactured by Shin-Etsu Chemical Co., Ltd., product name: KS835
  • Coating Solution D a silicone resin mainly composed of polydimethylsiloxane
  • Example 6 (Comparative Example 6) In Example 1, instead of the silicate coating solution A, 3.97 g (20 mmol) of phenyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.), 4.73 g of 3-glycidoxypropyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) (20 mmol), 20 ml of toluene, 10 ml of distilled water and 0.10 g (1 mol) of phosphoric acid (manufactured by Kanto Chemical Co., Inc.) were mixed and reacted at room temperature for 24 hours (hereinafter “Coating Solution E”). A molded product was produced in the same manner as in Example 1 except that the above was used. Next, plasma ions were implanted in the same manner as in Example 6 to produce a transparent conductive film 6r.
  • Coating Solution E A molded product was produced in the same manner as in Example 1 except that the above was used.
  • the water vapor transmittance, the visible light transmittance at a wavelength of 550 nm, and the sheet resistance value ( R0) was measured.
  • the measurement results are shown in Table 2 below.
  • the moisture and heat resistance test was performed, the sheet resistance values R1 and R2 were measured, and the sheet resistance value change rates T1 and T2 were calculated. The results are shown in Table 2 below.
  • the transparent conductive films 1 to 8 of Examples 1 to 8 had low water vapor permeability and high gas barrier properties. Moreover, the visible light transmittance in wavelength 550nm was as high as 90%, the sheet resistance value was small, and it was excellent in transparency and electroconductivity. Furthermore, the transparent conductive films 1 to 8 of the Examples had a change rate T1 of the sheet resistance value after the wet heat resistance test of 0.02 or less and T2 compared to the transparent conductive films 1r to 4r of Comparative Examples 1 to 4. It was as small as 0.32 or less, and it was found that the sheet resistance value can be kept low even under high temperature and high humidity environment. In addition, the transparent conductive films 1 to 8 of Examples 1 to 8 had higher visible light transmittance at a wavelength of 550 nm than the transparent conductive films 5r and 6r of Comparative Examples 5 and 6, and were excellent in transparency. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Photovoltaic Devices (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明は、基材層、ガスバリア層及び透明導電体層を有する透明導電性フィルムであって、ガスバリア層が、ケイ素Si原子、酸素O原子及び炭素C原子を含む材料から構成されてなり、該ガスバリア層の表層部における、ケイ素Si原子、酸素O原子及び炭素C原子の含有量が、ケイ素Si原子、酸素O原子及び炭素C原子の合計100原子%に対し、ケイ素Si原子:18.0~28.0%、酸素O原子:48.0~66.0%、炭素C原子:10.0~28.0%であって、かつ、透明導電性フィルムの、40℃90%RH雰囲気下における水蒸気透過率が6.0g/m/day以下であり、波長550nmにおける可視光線透過率が90%以上である透明導電性フィルム等である。本発明によれば、優れたガスバリア性と透明性を有し、高温高湿度環境下においてもシート抵抗値の変化が少なく、低い値を保ち、導電性に優れる透明導電性フィルム等が提供される。

Description

透明導電性フィルム、その製造方法、電子デバイス用部材及び電子デバイス
 本発明は、透明導電性フィルム、その製造方法、この透明導電性フィルムからなる電子デバイス用部材、及びこの電子デバイス用部材を備える電子デバイスに関する。
 近年、液晶ディスプレイやエレクトロルミネッセンス(EL)ディスプレイ等のディスプレイには、薄型化、軽量化、フレキシブル化等を実現するために、電極を有する基板として、ガラス板に代えて透明プラスチックフィルムを用いることが検討されている。しかし、プラスチックフィルムは、ガラス板に比べて水蒸気や酸素等を透過しやすく、ディスプレイ内部の素子の劣化を起こしやすいという問題があった。
 この問題を解決すべく、特許文献1には、透明プラスチックフィルムに金属酸化物からなる透明ガスバリア層を積層したフレキシブルディスプレイ基板が提案されている。しかし、この文献記載のフレキシブルディスプレイ基板は、透明プラスチックフィルム表面に、蒸着法、イオンプレーティング法、スパッター法等により、金属酸化物からなる透明ガスバリア層を積層したものであるため、該基板を丸めたり折り曲げたりすると、ガスバリア層にクラックが発生してガスバリア性が低下する場合があった。
 従来、透明プラスチックからなる基板上に透明導電体層を有する透明導電性フィルムが知られている。かかる透明導電性フィルムの透明導電体層形成材料としては、錫ドープ酸化インジウム(ITO)が主に用いられているが、インジウムは希少金属であるため、近年ITO代替透明導電材料として、酸化亜鉛系導電材料が提案されている。しかし、酸化亜鉛系導電材料には、ITOと比較して高温高湿度条件下でシート抵抗値が劣化するという問題があった。
 この問題を解決すべく、特許文献2には、プラスチック基材上に設けられたハードコート層上に、ケイ素をドープした酸化亜鉛皮膜を形成した透明導電体が開示されている。しかし、かかる透明導電体においては、導電材料の結晶性が低下して導電性が損なわれる場合があった。
 特許文献3には、亜鉛に対して特定量のガリウムを含有させる等により耐熱性を向上させた透明導電膜を有する透明発熱体が開示されている。しかし、この透明発熱体の透明導電膜を形成する場合には、亜鉛にガリウムを特殊な条件で含有させなければならず、製造条件が制限されるという問題があった。
 特許文献4には、酸化度を増した耐熱導電性層を設けることで耐熱性を向上させた透明導電膜付基板が提案されている。しかし、高温高湿度環境下において、透明導電層のシート抵抗値を制御することが困難であった。
 また、非特許文献1には、酸化ガリウム-酸化亜鉛系透明導電体において、酸化ガリウムのドーピング量を非常に多くし、かつ厚みを400nmにすることにより、高温高湿度環境下において、透明導電層のシート抵抗値を所望の値に制御する技術が開示されている。しかし、この文献に記載された方法では、透明導電体を400nmの厚みに成膜する必要があるため生産性が著しく劣り、さらにドーピングする酸化ガリウムが多量であり、原材料のコスト面からも現実的でない。
特開2000-338901号公報 特開平8-45352号公報 特開平6-187833号公報 特開2009-199812号公報
APPLIED PHYSICS LETTERS 89,091904(2006)
 本発明は、上記した従来技術に鑑みてなされたものであり、優れたガスバリア性と透明性を有し、さらに高温高湿度環境下においてもシート抵抗値が低く、導電性に優れる透明導電性フィルム、その製造方法、この透明導電性フィルムからなる電子デバイス用部材、及び、この電子デバイス用部材を備える電子デバイスを提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、基材層、ガスバリア層及び透明導電体層を有する透明導電性フィルムであって、前記ガスバリア層が、ケイ素原子、酸素原子及び炭素原子を含む材料から構成されてなり、該ガスバリア層の表層部における、ケイ素原子、酸素原子及び炭素原子の含有量が特定の割合のものであり、かつ、透明導電性フィルムの、40℃、相対湿度90%雰囲気下における水蒸気透過率が6.0g/m/day以下で、波長550nmにおける可視光線透過率が90%以上である透明導電性フィルムは、優れたガスバリア性と透明性を有し、また、高温高湿度環境下においてもシート抵抗値が低く、導電性に優れることを見出した。さらに、このような透明導電性フィルムのガスバリア層は、テトラエトキシシラン等の4官能オルガノシラン化合物の加水分解・脱水縮合物を含む層に、イオンを注入することにより、簡便かつ効率よく形成できることを見出し、本発明を完成するに至った。
 かくして本発明によれば、下記(1)~(6)の透明導電性フィルム、(7)~(10)の透明導電性フィルムの製造方法、(11)の電子デバイス用部材、及び(12)の電子デバイスが提供される。
(1)基材層、ガスバリア層及び透明導電体層を有する透明導電性フィルムであって、
前記ガスバリア層が、ケイ素原子、酸素原子及び炭素原子を含む材料から構成されてなり、該ガスバリア層の表層部における、ケイ素原子、酸素原子及び炭素原子の含有量が、XPSの元素分析測定において、ケイ素原子、酸素原子及び炭素原子の合計100原子%に対し、ケイ素原子の含有量が18.0%以上28.0%以下、酸素原子の含有量が48.0%以上66.0%以下、炭素原子の含有量が10.0%以上28.0%以下であるものであり、かつ、透明導電性フィルムの、40℃、相対湿度90%雰囲気下における水蒸気透過率が6.0g/m/day以下で、波長550nmにおける可視光線透過率が90%以上であることを特徴とする透明導電性フィルム。
(2)基材層、ガスバリア層及び透明導電体層を有する透明導電性フィルムであって、
前記ガスバリア層が、4官能オルガノシラン化合物の加水分解・脱水縮合物を含む層に、イオンが注入されて得られる層であることを特徴とする(1)に記載の透明導電性フィルム。
(3)前記イオンが、水素、酸素、窒素、アルゴン、ヘリウム、キセノン、クリプトン、ケイ素化合物、及び炭化水素からなる群から選ばれる少なくとも一種のガスがイオン化されたものであることを特徴とする(2)に記載の透明導電性フィルム。
(4)前記ガスバリア層が、4官能オルガノシラン化合物の加水分解・脱水縮合物を含む層に、プラズマイオン注入法によりイオンが注入されて得られる層であることを特徴とする(1)に記載の透明導電性フィルム。
(5)前記4官能オルガノシラン化合物が、テトラ(C1~C10)アルコキシシランであることを特徴とする(2)~(4)のいずれかに記載の透明導電性フィルム。
(6)前記透明導電体層が、導電性金属酸化物からなるものである(1)に記載の透明導電性フィルム。
(7)前記導電性金属酸化物が、亜鉛系酸化物であることを特徴とする(6)に記載の透明導電性フィルム。
(8)前記(2)~(7)のいずれかに記載の透明導電性フィルムの製造方法であって、4官能オルガノシラン化合物の加水分解・脱水縮合物を含む層が表面に形成された成形物の、前記4官能オルガノシラン化合物の加水分解・脱水縮合化合物を含む層に、イオンを注入する工程を有する透明導電性フィルムの製造方法。
(9)前記イオンが、水素、酸素、窒素、アルゴン、ヘリウム、キセノン、クリプトン、ケイ素化合物、及び炭化水素からなる群から選ばれる少なくとも一種のガスがイオン化されたものであることを特徴とする(8)に記載の透明導電性フィルムの製造方法。
(10)イオンを注入する工程が、プラズマイオン注入法によりイオンを注入する工程であることを特徴とする(8)に記載の透明導電性フィルムの製造方法。
(11)前記(1)~(7)のいずれかに記載の透明導電性フィルムからなる電子デバイス用部材。
(12)前記(11)に記載の電子デバイス用部材を備える電子デバイス。
 本発明の透明導電性フィルムは、優れたガスバリア性と透明性を有し、さらに高温高湿度環境下においてもシート抵抗値が低く、導電性に優れる。
 本発明の透明導電性フィルムは、フレキシブルなディスプレイや、太陽電池等の電子デバイス用部材(例えば太陽電池バックシート)として好適に用いることができる。
 本発明の製造方法によれば、優れたガスバリア性と透明性を有し、さらに高温高湿度環境下においてもシート抵抗値の変化が少なく、低い値を保ち、導電性に優れる本発明の透明導電性フィルムを、簡便かつ効率よく製造することができる。また、無機膜成膜に比して低コストにて容易に大面積化を図ることができる。
 本発明の電子デバイス用部材は、優れたガスバリア性と透明性を有し、さらに高温高湿度環境下においてもシート抵抗値が低く、導電性に優れるため、ディスプレイ、太陽電池等の電子デバイスに好適に用いることができる。
本発明の透明導電性フィルムの層構成を示す図である。
 以下、本発明を、1)透明導電性フィルム、2)透明導電性フィルムの製造方法、並びに、3)電子デバイス用部材及び電子デバイスに項分けして詳細に説明する。
1)透明導電性フィルム
 本発明の透明導電性フィルムは、
基材層、ガスバリア層及び透明導電体層を有する透明導電性フィルムであって、前記ガスバリア層が、ケイ素原子、酸素原子及び炭素原子を含む材料から構成されてなり、該ガスバリア層の表層部における、ケイ素原子、酸素原子及び炭素原子の含有量が、XPSの元素分析測定において、ケイ素原子、酸素原子及び炭素原子の合計100原子%に対し、ケイ素原子の含有量が18.0%以上28.0%以下、酸素原子の含有量が48.0%以上66.0%以下、炭素原子の含有量が10.0%以上28.0%以下であるものであり、かつ、透明導電性フィルムの、40℃、相対湿度90%雰囲気下における水蒸気透過率が6.0g/m/day以下で、波長550nmにおける可視光線透過率が90%以上であることを特徴とする。
また、本発明の透明導電性フィルムは、前記ガスバリア層が、4官能オルガノシラン化合物の加水分解・脱水縮合物を含む層(以下、「シリケート層」ということがある。)に、イオンが注入されて得られる層であってもよい
(基材層)
 本発明の透明導電性フィルムは基材層を有する。該基材層の素材としては、透明導電性フィルムの目的に合致するものであれば特に制限されない。例えば、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド、ポリアリレート、アクリル系樹脂、シクロオレフィン系ポリマー、芳香族系重合体等の合成樹脂が挙げられる。
 これらの中でも、透明性に優れ、汎用性があることから、ポリエステル、ポリアミド、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド、ポリアリレート、シクロオレフィン系ポリマーが好ましく、ポリエステル又はシクロオレフィン系ポリマーがより好ましい。
 ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート等が挙げられる。
 ポリアミドとしては、全芳香族ポリアミド、ナイロン6、ナイロン66、ナイロン共重合体等が挙げられる。
 シクロオレフィン系ポリマーとしては、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体、及びこれらの水素化物が挙げられる。その具体例としては、アペル(三井化学社製のエチレン-シクロオレフィン共重合体)、アートン(JSR社製のノルボルネン系重合体)、ゼオノア(日本ゼオン社製のノルボルネン系重合体)等が挙げられる。
 基材層の厚みは、特に限定されず、透明導電性フィルムの使用目的に合わせて決定すればよいが、通常0.5~500μm、好ましくは10~250μmである。
(ガスバリア層)
 本発明の透明導電性フィルムのガスバリア層は、表層部において、ケイ素原子、酸素原子及び炭素原子を上記の範囲で含有してなる。
 ここで、ガスバリア層の「表層部」とは、ガスバリア層の表面から、該表面の深さ方向に対して15nmまでの領域をいう。また、ガスバリア層の表面には、他の層との境界面を含む。
 本発明の透明導電性フィルムのガスバリア層は、該ガスバリア層の表層部における、ケイ素原子、酸素原子及び炭素原子の含有量が、XPSの元素分析測定において、ケイ素原子、酸素原子及び炭素原子の合計100原子%に対し、ケイ素原子の含有量が18.0%以上28.0%以下、好ましくは19.0%以上26.0%以下、酸素原子の含有量が48.0%以上66.0%以下、好ましくは50.0%以上64.0%以下、炭素原子の含有量が10.0%以上28.0%以下、好ましくは12.0%以上28.0%以下である。
 表層部における、ケイ素原子、酸素原子及び炭素原子の含有量がこのような割合となるガスバリア層を形成するには、4官能オルガノシラン化合物の加水分解・脱水縮合物を含む層に、プラズマ処理を施す方法や、イオンを注入する方法が挙げられる。
 本発明の透明導電性フィルムのガスバリア層は、シリケート層に、イオンが注入されて得られる層であることが好ましい。
 シリケート層は、4官能オルガノシラン化合物の加水分解・脱水縮合物を含む層である。シリケート層中の4官能オルガノシラン化合物の加水分解・脱水縮合物の含有量は、優れたガスバリア性及び透明性を有するイオン注入層を形成できる観点から、50重量%以上であるのが好ましく、70重量%以上であるのがより好ましい。
 本発明に用いる4官能オルガノシラン化合物は、ケイ素元素に4個の加水分解性基が結合した化合物であり、具体的には、式(A):SiXで表される化合物である。
 式(A)中、Xは加水分解置換基を表し、互いに同一であっても相異なっていてもよい。
 Xとしては、式:OR(Rは炭素数1~10の炭化水素基、若しくは炭素数1~10のアルコキシ基を表す。)で表される基、式:OSi(R)(R)(R)で表される基(R、R、Rはそれぞれ独立して、水素原子、炭素数1~10のアルキル基、若しくはフェニル基を表す。)、ハロゲン原子等が挙げられる。
 前記式:ORで表される基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、t-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等の炭素数1~10のアルコキシ基;メトキシメトキシ基、エトキシメトキシ基、エトキシエトキシ基等の炭素数2~10のアルコキシアルコキシ基;等が挙げられる。
 式:OSi(R)(R)(R)で表される基の具体例としては、シリルオキシ基、トリメチルシリルオキシ基、トリエチルシリルオキシ基、フェニルジメチルシリルオキシ基、t-ブチルジメチルシリルオキシ基等が挙げられる。
 また、ハロゲン原子としては、塩素原子、臭素原子等が挙げられる。
 4官能オルガノシラン化合物の具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシラン、テトラブトキシシラン等のテトラ(C1~C10)アルコキシシラン;トリメトキシクロロシラン、トリエトキシクロロシラン、トリプロポキシクロロシラン等のトリ(C1~C10)アルコキシハロゲノシラン;ジメトキジシクロロシラン、ジエトキシジクロロシラン、ジプロポキシジクロロシラン等のジ(C1~C10)ジハロゲノアルコキシシラン;メトキシトリクロロシラン、エトキシトリクロロシラン、プロポキシトリクロロシラン等のモノ(C1~C10)アルコキシトリハロゲノシラン;テトラクロロシラン、テトラブロモシラン等のテトラハロゲノシラン;が挙げられる。ここで、(C1~C10)は炭素数が1~10であることを表す。
 これらの4官能オルガノシラン化合物は一種単独で、あるいは二種以上を組み合わせて用いることができる。
 これらの中でも、取り扱い性により優れ、より優れたガスバリア性及び透明性を有する層を形成できる観点から、テトラ(C1~C10)アルコキシシランが好ましい。
 4官能オルガノシラン化合物の加水分解・脱水縮合物は、適当な溶媒中、水及び必要に応じて触媒の存在下に、4官能オルガノシラン化合物を加水分解・脱水縮合することにより得ることができる。
 用いる水の量は、加水分解性基(X)に対する水(HO)のモル当量、すなわちモル比[HO]/[X]が1.0以上であることが好ましく、1.0以上5.0以下であるのがより好ましい。1.0未満では未反応な加水分解性基の量が多くなり、硬化被膜の屈折率を高くするといった悪影響を及ぼすおそれがあり、逆に5.0より多いと縮合反応が極端に進み、ゲル化を招くおそれがある。
 用いる触媒としては特に限定されず、酸性触媒及び塩基性触媒のいずれもが使用可能である。
 酸性触媒としては、例えば、酢酸、クロロ酢酸、クエン酸、安息香酸、ジメチルマロン酸、蟻酸、プロピオン酸、グルタール酸、グリコール酸、マレイン酸、マロン酸、トルエンスルホン酸、シュウ酸等の有機酸;塩酸、硝酸、硫酸、リン酸、ハロゲン化シラン等の無機酸;酸性コロイダルシリカ、酸化チタニアゾル等の酸性ゾル状フィラー;等が挙げられる。これらの酸性触媒は1種単独で、あるいは2種以上を組み合わせて使用することができる。
 塩基性触媒としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;水酸化カルシウム等のアルカリ土類金属水酸化物;アンモニア水;トリエチルアミン、ジイソプロピルエチルアミン、ピリジン等のアミン類;等が挙げられる。これらの塩基性触媒は1種単独で、あるいは2種以上を組み合わせて使用することができる。
 これらの中でも、製造工程に要する時間を短縮する点から、酸性触媒が好ましい。
 4官能オルガノシラン化合物の加水分解・脱水縮合は、必要に応じて、加温して行ってもよい。特に40~100℃の条件下で2~100時間かけて加水分解反応を促進させると、未反応の加水分解性基を限りなく少なくすることができて好ましい。上記の温度範囲や時間範囲を外れて加水分解すると、未反応の加水分解性基が残留するおそれがある。
 得られる4官能オルガノシラン化合物の加水分解・脱水縮合物の重量平均分子量は、特に限定されるものではないが、機械的強度にも優れるシリケート層を得るためには、200~50,000の範囲にあることが好ましく、200~10,000の範囲にあることがより好ましい。重量平均分子量が200より小さいと被膜形成能力に劣るおそれがあり、逆に50,000を超えると硬化被膜の機械的強度に劣るおそれがある。
 また、シリケート層は、4官能オルガノシラン化合物の加水分解・脱水縮合物の他に、本発明の目的を阻害しない範囲で他の成分を含んでいてもよい。他の成分としては、他の高分子、硬化剤、老化防止剤、光安定剤、難燃剤、充填剤、顔料、レベリング剤、消泡剤、帯電防止剤、紫外線吸収剤、pH調整剤、分散剤、表面改質剤、可塑剤、乾燥促進剤、流れ止め剤等が挙げられる。
 シリケート層を形成する方法としては、特に制限はなく、例えば、シリケート層形成用溶液を、前記基材層の上に、公知の塗工方法により塗布し、得られた塗膜を適度に乾燥して形成する方法が挙げられる。
 用いるシリケート層形成用溶液としては、(ア)4官能オルガノシラン化合物、水、触媒、溶媒、及び所望により他の成分を含有する溶液、(イ)4官能オルガノシラン化合物の(部分)加水分解生成物、水、触媒、溶媒、及び所望により他の成分を含有する溶液、(ウ)4官能オルガノシラン化合物の加水分解・(部分)脱水縮合物、水、触媒、溶媒及び所望により他の成分を含有する溶液等が挙げられる。
 ここで用いる溶媒としては、4官能オルガノシラン化合物、4官能オルガノシラン化合物の(部分)加水分解生成物、4官能オルガノシラン化合物の加水分解・(部分)脱水縮合物を安定的に溶解するものが好ましい。
 例えば、キシレン、トルエン、ブチルカルビトールアセテート、酢酸n-ブチル、酢酸エチル等のエステル類;セロソルブ、セロソルブアセテート等のグリコールエーテル類;アセトン、メチルエチルケトン等のケトン類;これらの二種以上からなる混合溶媒;等が挙げられる。
 溶媒の使用量(割合)は、コーティング方法、用いる4官能オルガノシラン化合物等の種類等にもよるが、通常、層形成用溶液の5~99質量%、好ましくは5~60質量%である。
 塗工方法としては、特に限定されず、スピンコーター、ナイフコーター、グラビアコーター等の公知の塗工装置を使用する方法が挙げられる。
 得られた塗膜の乾燥、透明導電性フィルムのガスバリア性向上のため、塗膜を加熱することが好ましい。加熱は80~150℃で、数十秒から数十分行う。
 このような加熱によって、4官能オルガノシラン化合物、4官能オルガノシラン化合物の(部分)加水分解生成物、4官能オルガノシラン化合物の加水分解・(部分)脱水縮合物の加水分解・脱水縮合反応を十分に進行させることにでき、高品質な硬化膜を形成することができる。
 形成されるシリケート層の厚みは、特に制限されないが、通常20nm~100μm、好ましくは30~500nm、より好ましくは40~200nmである。
 本発明においては、シリケート層の厚みがナノオーダーであっても、充分なガスバリア性能を有する透明導電性フィルムを得ることができる。
 注入されるイオンとしては、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガスのイオン;フルオロカーボン、水素、窒素、酸素、二酸化炭素、塩素、フッ素、硫黄、ケイ素化合物、炭化水素等のイオン;金、銀、銅、白金、ニッケル、パラジウム、クロム、チタン、モリブデン、ニオブ、タンタル、タングステン、アルミニウム等の金属のイオン;が挙げられる。
 なかでも、より簡便に注入することができ、特に優れたガスバリア性と透明性を有するイオン注入層が得られることから、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン、クリプトン、ケイ素化合物、及び炭化水素からなる群から選ばれる少なくとも一種のイオンが好ましい。
 ケイ素化合物としては、シラン(SiH)及び有機ケイ素化合物が挙げられる。
 有機ケイ素化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトラt-ブトキシシラン等のテトラアルコキシシラン;
ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、(3,3,3-トリフルオロプロピル)トリメトキシシラン等の無置換若しくは置換基を有するアルキルアルコキシシラン;
ジフェニルジメトキシシラン、フェニルトリエトキシシラン等のアリールアルコキシシラン;
ヘキサメチルジシロキサン(HMDSO)等のジシロキサン;
ビス(ジメチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルビニルシラン、ビス(エチルアミノ)ジメチルシラン、ジエチルアミノトリメチルシラン、ジメチルアミノジメチルシラン、テトラキスジメチルアミノシラン、トリス(ジメチルアミノ)シラン等のアミノシラン;
ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オクタメチルシクロテトラシラザン、テトラメチルジシラザン等のシラザン;
テトライソシアナートシラン等のシアナートシラン;
トリエトキシフルオロシラン等のハロゲノシラン;
ジアリルジメチルシラン、アリルトリメチルシラン等のアルケニルシラン;
ジ-t-ブチルシラン、1,3-ジシラブタン、ビス(トリメチルシリル)メタン、トリメチルシラン、テトラメチルシラン、トリス(トリメチルシリル)メタン、トリス(トリメチルシリル)シラン、ベンジルトリメチルシラン等の無置換若しくは置換基を有するアルキルシラン;
ビス(トリメチルシリル)アセチレン、トリメチルシリルアセチレン、1-(トリメチルシリル)-1-プロピン等のシリルアルキン;
1,4-ビストリメチルシリル-1,3-ブタジイン、シクロペンタジエニルトリメチルシラン等のシリルアルケン;
フェニルジメチルシラン、フェニルトリメチルシラン等のアリールアルキルシラン;
プロパルギルトリメチルシラン等のアルキニルアルキルシラン;
ビニルトリメチルシラン等のアルケニルアルキルシラン;
ヘキサメチルジシラン等のジシラン;
オクタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、ヘキサメチルシクロテトラシロキサン等のシロキサン;
N,O-ビス(トリメチルシリル)アセトアミド;
ビス(トリメチルシリル)カルボジイミド;
等が挙げられる。
 炭化水素としては、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等のアルカン;エチレン、プロピレン、ブテン、ペンテン等のアルケン;ペンタジエン、ブタジエン等のアルカジエン;アセチレン、メチルアセチレン等のアルキン;ベンゼン、トルエン、キシレン、インデン、ナフタレン、フェナントレン等の芳香族炭化水素;シクロプロパン、シクロヘキサン等のシクロアルカン;シクロペンテン、シクロヘキセン等のシクロアルケン;等が挙げられる。
 これらのイオンは一種単独で、あるいは二種以上を組み合わせて用いることができる。
 イオンの注入量は、形成する透明導電性フィルムの使用目的(必要なガスバリア性、透明性等)等に合わせて適宜決定すればよい。
 イオン注入する方法としては、電界により加速されたイオン(イオンビーム)を照射する方法、プラズマ中のイオンを注入する方法(プラズマイオン注入法)等が挙げられる。なかでも、本発明においては、簡便に優れたガスバリア性等を有する透明導電性フィルムが得られることから、プラズマイオン注入法が好ましい。
 プラズマイオン注入法は、例えば、プラズマ生成ガスを含む雰囲気下でプラズマを発生させ、イオンを注入する層に負の高電圧パルスを印加することにより、該プラズマ中のイオン(陽イオン)を、イオンを注入する層の表面部に注入して行うことができる。
 イオンが注入される部分の厚みは、イオンの種類や印加電圧、処理時間等の注入条件により制御することができ、イオンを注入する層の厚み、透明導電性フィルムの使用目的等に応じて決定すればよいが、通常、10~1000nmである。
 イオンが注入されたことは、X線光電子分光分析(XPS)を用いて、表面から10nm付近の元素分析測定を行うことによって確認することができる。
(透明導電体層)
 本発明の透明導電性フィルムは、さらに透明導電体層を有する。
 透明導電体層を設けることにより、ガスバリアフィルムに電極としての機能を付与することができる。得られる透明導電性フィルムは、有機EL表示素子等に好適に使用することができる。
 透明導電体層を構成する材料としては、透明導電体層の550nmにおける可視光線透過率が90%以上になれば、特に制約はない。例えば、白金、金、銀、銅等の金属;グラフェン、カーボンナノチューブ等の炭素材料;ポリアリニン、ポリアセチレン、ポリチオフェン、ポリパラフェニレンビニレン、ポリエチレンジオキシチオフェン、ポリピロール等の有機導電材料;ヨウ化銅、硫化銅等の無機導電性物質;カルコゲナイド、六ホウ化ランタン、窒化チタン、炭化チタン等の非酸化化合物;酸化亜鉛、二酸化亜鉛、ガリウムドープ酸化亜鉛、アルミニウムドープ酸化亜鉛、酸化亜鉛ドープ酸化インジウム(IZO:登録商標)、酸化錫、酸化インジウム、酸化カドミウム、錫ドープ酸化インジウム(ITO)、錫及びガリウムドープ酸化インジウム(IGZO)、フッ素ドープ酸化インジウム、アンチモンドープ酸化錫、フッ素ドープ酸化錫(FTO)等の導電性金属酸化物;等が挙げられる。
 前記有機導電材料には、ドーパントとして、ヨウ素、五フッ化ヒ素、アルカリ金属、ポリアニオンポリ(スチレンスルホン酸塩)等を添加してもよい。具体的には、ポリエチレンジオキシチオフェン(スタルクヴィテック株式会社製、商品名「CLEVIOS P AI 4083」)が挙げられる。
 これらの中でも、透明導電体層を構成する材料としては、優れた導電性及び透明性を有する透明導電性フィルムをより簡便に得られることから、導電性金属酸化物が好ましい。これらの中でも、酸化亜鉛ドープ酸化インジウム(IZO:登録商標)、酸化インジウム、錫ドープ酸化インジウム(ITO)、錫及びガリウムドープ酸化インジウム(IGZO)、フッ素ドープ酸化インジウム等の酸化インジウムを主成分とするインジウム系酸化物;酸化亜鉛、二酸化亜鉛、ガリウムドープ酸化亜鉛、アルミニウムドープ酸化亜鉛等の酸化亜鉛を主成分とする亜鉛系酸化物;及び、酸化錫、アンチモンドープ酸化錫、フッ素ドープ酸化錫(FTO)等の酸化第2錫を主成分とする錫系酸化物;がより好ましく、インジウム系酸化物及び亜鉛系酸化物がさらに好ましく、亜鉛系酸化物が特に好ましい。
 インジウム系酸化物は主成分である酸化インジウムを、亜鉛系酸化物は主成分である酸化亜鉛を、それぞれ90質量%以上含有するのが好ましい。
 主成分以外の組成は特に限定されない。例えば、抵抗率を低下させるために、アルミニウム、ホウ素、ガリウム、ケイ素、スズ、ゲルマニウム、アンチモン、イリジウム、レニウム、セリウム、ジルコニウム、スカンジウム、イットリウム、亜鉛、インジウム及びこれらの酸化物が挙げられる。これらは、導電体層の抵抗率を低下させるため等の目的で添加される。これらは1種単独で、あるいは2種以上を組み合わせて用いることができる。その添加量は、導電性と結晶性のバランスの観点から、透明導電体層全体に対して0.05~10質量%であるのが好ましい。
 透明導電体層は、従来公知の方法により形成することができる。例えば、スパッタリング法、イオンプレーティング法、真空蒸着法、化学気相成長法、バーコーターやマイクログラビアコーター等の塗布方法等が挙げられる。これらの中でも、簡便に透明導電体層が形成できることから、スパッタリング法が好ましい。
 透明導電材料を成膜するまえには、あらかじめ、透明導電材料を成膜する面に、真空もしくは大気圧下で加熱処理を施したり、プラズマ処理や紫外線照射処理を行う工程を設けてもよい。
 なお、透明導電体層の厚さは、用途によっても異なるが、通常10nm~5μm、好ましくは20nm~1000nm、より好ましくは20nm~500nmである。
 形成された導電体層には、必要に応じてパターニングを行ってもよい。パターニングする方法としては、フォトリソグラフィー等による化学的エッチング、レーザ等を用いた物理的エッチング等、マスクを用いた真空蒸着法やスパッタリング法、リフトオフ法、印刷法等が挙げられる。
(透明導電性フィルム)
 本発明の透明導電性フィルムは、基材層、ガスバリア層及び透明導電体層とを具備してなる。
 本発明の透明導電性フィルムは、前記基材層、ガスバリア層及び透明導電体層の各一層からなるものであってもよいし、各層を複数有するものであってもよいし、さらに他の層を含むものであってもよい。
 本発明の透明導電性フィルムにおいて、基材層、ガスバリア層及び透明導電体層の積層順は特に制約はない。
 本発明の導電性フィルムの層構成の例を図1に示す。
 図1中、Sは基材層を表し、aはガスバリア層を表し、bは導電体層を表す。
 図1(a)は基材層-ガスバリア層-導電体層からなる3層の層構成を、図1(b)は導電体層-基材層-ガスバリア層からなる3層の層構成を示す。これらの中でも、本発明の透明導電性フィルムにおいては、製造容易性の観点から、図1(a)に示す層構成を有するものが好ましい。
 本発明の透明導電性フィルムが他の層を含む場合、他の層は単層であっても、同種又は異種の2層以上であってもよい。他の層の積層位置は、特に制限されず、用いる他の層の設置目的等に合わせて、決定すればよい。
 前記他の層としては、ハードコート層、無機化合物層、衝撃吸収層、プライマー層等が挙げられる。
 ハードコート層は、前記透明導電性フィルムの表面に傷がつかないようにするために設けられる。ハードコート層の形成材料としては、特に限定されず、エネルギー線硬化型樹脂や熱硬化型樹脂等が挙げられる。
 ハードコート層の厚みは、通常0.1~20μm、好ましくは1~10μmである。
 無機化合物層は、無機化合物の一種又は二種以上からなる層である。無機化合物としては、一般的に真空成膜可能で、ガスバリア性を有するもの、例えば無機酸化物、無機窒化物、無機炭化物、無機硫化物、これらの複合体である無機酸化窒化物、無機酸化炭化物、無機窒化炭化物、無機酸化窒化炭化物等が挙げられる。
 無機化合物層の厚みは、通常10nm~1000nm、好ましくは20~500nm、より好ましくは20~100nmの範囲である。
 衝撃吸収層は、ガスバリア層に衝撃が加わった時に、ガスバリア層を保護するためのものである。衝撃吸収層を形成する素材は、特に限定されないが、例えば、アクリル系樹脂、ウレタン系樹脂、シリコーン系樹脂、オレフィン系樹脂、ゴム系材料等が挙げられる。
 また、粘着剤、コート剤、封止剤等として市販されているものを使用することもでき、特に、アクリル系粘着剤、シリコーン系粘着剤、ゴム系粘着剤等の粘着剤が好ましい。
 衝撃吸収層の形成方法としては特に制限はなく、例えば、前記ケイ素系化合物を含む層の形成方法と同様に、前記衝撃吸収層を形成する素材(粘着剤等)、及び、所望により、溶剤等の他の成分を含む衝撃吸収層形成溶液を、積層すべき層上に塗布し、得られた塗膜を乾燥し、必要に応じて加熱等して形成する方法が挙げられる。
 また、別途、剥離基材上に衝撃吸収層を成膜し、得られた膜を、積層すべき層上に転写して積層してもよい。
 衝撃吸収層の厚みは、通常1~100μm、好ましくは5~50μmである。
 プライマー層は、基材層と、ガスバリア層又は透明導電体層との層間密着性を高める役割を果たす。プライマー層を設けることにより、層間密着性に優れ、かつ、基材の凹凸を平滑化できることから、表面平滑性に極めて優れる透明導電性フィルムを得ることができる。
 プライマー層を構成する材料としては、特に限定されず、公知のものが使用できる。例えば、ケイ素含有化合物;光重合性モノマー及び/又は光重合性プレポリマーからなる光重合性化合物、及び少なくとも可視光域または紫外光域の光でラジカルを発生する重合開始剤を含む光重合性組成物;ポリエステル系樹脂、ポリウレタン系樹脂(特にポリアクリルポリオール、ポリエステルポリオール、ポリエーテルポリオール等とイソシアネート化合物との2液硬化型樹脂)、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル/酢酸ビニル共重合体、ポリビニルブチラール系樹脂、ニトロセルロース系樹脂等の樹脂類;アルキルチタネート;エチレンイミン;等が挙げられる。これらの材料は一種単独で、或いは二種以上を組み合わせて用いることができる。
 プライマー層は、プライマー層を構成する材料を適当な溶剤に溶解又は分散してなるプライマー層形成用溶液を、基材層の片面又は両面に塗付し、得られた塗膜を乾燥させ、所望により加熱することより形成することができる。
 プライマー層形成用溶液を基材層に塗付する方法としては、通常の湿式コーティング方法を用いることができる。例えばディッピング法、ロールコート、グラビアコート、ナイフコート、エアナイフコート、ロールナイフコート、ダイコート、スクリーン印刷法、スプレーコート、グラビアオフセット法等が挙げられる。
 プライマー層形成用溶液の塗膜を乾燥する方法としては、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法が採用できる。プライマー層の厚みは、通常、10~1000nmである。
 また、得られたプライマー層に、後述する、イオンを注入する方法と同様な方法によりイオン注入を行ってもよい。プライマー層にもイオン注入を行うことにより、より優れた透明導電性フィルムを得ることができる。
 本発明の透明導電性フィルムが、他の層を含む積層体である場合、各層の積層順はどのようなものであってもよい。
 本発明の透明導電性フィルムの厚みは、特に制限されず、目的とする電子デバイスの用途等によって適宜決定することができる。通常1~1000μmである。
 本発明の透明導電性フィルムは、優れたガスバリア性と透明性を有し、さらに高温高湿度環境下においてもシート抵抗値が低く、導電性に優れる。
 本発明の透明導電性フィルムが優れたガスバリア性を有していることは、本発明の透明導電性フィルムの水蒸気等のガスの透過率が、格段に小さいことから確認することができる。例えば、水蒸気透過率は、40℃、相対湿度90%雰囲気下で、6.0g/m/day以下、好ましくは1.5g/m/day以下である。なお、透明導電性フィルムの水蒸気等の透過率は、公知のガス透過率測定装置を使用して測定することができる。
 本発明の透明導電性フィルムが優れた透明性を有していることは、本発明の透明導電性フィルムの可視光線透過率が高いことから確認することができる。本発明の透明導電性フィルムの、波長550nmにおける可視光線透過率は、90%以上である。可視光線透過率は、公知の可視光線透過率測定装置を使用して測定することができる。
 本発明の透明導電性フィルムが優れた導電性を有していることは、透明導電性フィルムのシート抵抗値(表面抵抗率)が低いことから確認することができる。本発明の透明導電性フィルムのシート抵抗値(表面抵抗率)は、通常1000Ω/□以下、好ましくは550Ω/□以下である。透明導電性フィルムのシート抵抗値は、公知の方法により測定することができる。
 本発明の透明導電性フィルムが高温高湿度環境下においてもシート抵抗値が低く、導電性に優れることは、例えば、下記に示すシート抵抗値の変化率T1、T2の値が小さいことから確認することができる。
Figure JPOXMLDOC01-appb-M000001
 上記式中、R0は透明導電性フィルムの初期シート抵抗値、R1は、60℃の環境下に3日間置いた後のシート抵抗値、R2は、60℃90%RH環境下に3日間置いた後のシート抵抗値をそれぞれ示す。
 本発明の透明導電性フィルムにおいては、T1は通常1.0未満、好ましくは0.5以下、より好ましくは0.1以下であり、T2は通常1.0以下、好ましくは0.5以下、より好ましくは0.35以下である。
2)透明導電性フィルムの製造方法
 本発明の透明導電性フィルムの製造方法は、4官能オルガノシラン化合物の加水分解・脱水縮合物を含む層(シリケート層)が表面に形成された成形物の、前記シリケート層に、イオンを注入する工程を有する。
 本発明の透明導電性フィルムの製造方法によれば、本発明の透明導電性フィルムを簡便且つ効率よく製造することができる。
 前記イオンを注入する工程において用いるイオンは、前記1)透明導電性フィルムの項で例示したのと同様のものが好ましい。また、イオンを注入する方法としては、プラズマイオン注入法が好ましい。
プラズマイオン注入法は、プラズマ中に曝した、高分子層を表面に有する成形物に、負の高電圧パルスを印加することにより、プラズマ中のイオンを前記層の表面部に注入してイオンを注入する方法である。
プラズマイオン注入法としては、(A)外部電界を用いて発生させたプラズマ中に存在するイオンを、前記層の表面部に注入する方法、又は(B)外部電界を用いることなく、前記層に印加する負の高電圧パルスによる電界のみで発生させたプラズマ中に存在するイオンを、前記層の表面部に注入する方法が好ましい。
 前記(A)の方法においては、イオン注入する際の圧力(プラズマイオン注入時の圧力)を0.01~1Paとすることが好ましい。プラズマイオン注入時の圧力がこのような範囲にあるときに、簡便にかつ効率よく均一なイオン注入層を形成することができ、透明性、ガスバリア性を兼ね備えたイオン注入層を効率よく形成することができる。
 前記(B)の方法は、減圧度を高くする必要がなく、処理操作が簡便であり、処理時間も大幅に短縮することができる。また、前記層全体にわたって均一に処理することができ、負の高電圧パルス印加時にプラズマ中のイオンを高エネルギーで層の表面部に連続的に注入することができる。さらに、radio frequency(高周波、以下、「RF」と略す。)や、マイクロ波等の高周波電力源等の特別の他の手段を要することなく、層に負の高電圧パルスを印加するだけで、前記シリケート層の表面部にイオンを均一に注入することができる。
 前記(A)及び(B)のいずれの方法においても、負の高電圧パルスを印加するとき、すなわちイオン注入するときのパルス幅は、1~15μsecであるのが好ましい。パルス幅がこのような範囲にあるときに、均一にイオン注入をより簡便にかつ効率よく行なうことができる。
 また、プラズマを発生させるときの印加電圧は、好ましくは-1kV~-50kV、より好ましくは-1kV~-30kV、特に好ましくは-5kV~-20kVである。印加電圧が-1kVより大きい値でイオン注入を行うと、イオン注入量(ドーズ量)が不十分となり、所望の性能が得られない。一方、-50kVより小さい値でイオン注入を行うと、イオン注入時に成形体が帯電し、また成形体への着色等の不具合が生じ、好ましくない。
 プラズマイオン注入するイオン種は、上述した通りである。より簡便にイオン注入することができ、透明で優れたガスバリア性を有する成形体を効率良く製造することができることから、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン、クリプトンが好ましく、窒素、酸素、アルゴン、ヘリウムがより好ましい。
前記シリケート層の表面部にプラズマ中のイオンを注入する際には、プラズマイオン注入装置を用いる。
 プラズマイオン注入装置としては、具体的には、(α)高分子層(以下、「イオン注入する層」ということがある。)に負の高電圧パルスを印加するフィードスルーに高周波電力を重畳してイオン注入する層の周囲を均等にプラズマで囲み、プラズマ中のイオンを誘引、注入、衝突、堆積させる装置(特開2001-26887号公報)、(β)チャンバー内にアンテナを設け、高周波電力を与えてプラズマを発生させてイオン注入する層周囲にプラズマが到達後、イオン注入する層に正と負のパルスを交互に印加することで、正のパルスでプラズマ中の電子を誘引衝突させてイオン注入する層を加熱し、パルス定数を制御して温度制御を行いつつ、負のパルスを印加してプラズマ中のイオンを誘引、注入させる装置(特開2001-156013号公報)、(γ)マイクロ波等の高周波電力源等の外部電界を用いてプラズマを発生させ、高電圧パルスを印加してプラズマ中のイオンを誘引、注入させるプラズマイオン注入装置、(δ)外部電界を用いることなく高電圧パルスの印加により発生する電界のみで発生するプラズマ中のイオンを注入するプラズマイオン注入装置等が挙げられる。
 これらの中でも、処理操作が簡便であり、処理時間も大幅に短縮でき、連続使用に適していることから、(γ)又は(δ)のプラズマイオン注入装置を用いるのが好ましい。
 前記(γ)及び(δ)のプラズマイオン注入装置を用いる方法について、国際公開WO2010/021326号公報に記載のものが挙げられる。
 前記(γ)及び(δ)のプラズマイオン注入装置では、プラズマを発生させるプラズマ発生手段を高電圧パルス電源によって兼用しているため、RFやマイクロ波等の高周波電力源等の特別の他の手段を要することなく、負の高電圧パルスを印加するだけで、プラズマを発生させ、前記シリケート層の表面部にプラズマ中のイオンを注入し、イオンが注入されて得られる層を連続的に形成し、イオンが注入されて得られる層が形成された透明導電性フィルムを量産することができる。
 さらに、前記イオンを注入する工程は、表面にシリケート層が形成された長尺状の成形物を、一定方向に搬送しながら、前記シリケート層の表面部に、イオンを注入する工程であるのが好ましい。この製造方法によれば、イオン注入を連続的に行うことができる。
 前記長尺状の成形物は、表面部にシリケート層が形成されたものであれば、基材層とシリケート層からなるもの又はこれに他の層を含むものであってもよい。
 成形物の厚さは、巻き出し、巻き取り及び搬送の操作性の観点から、1μm~500μmが好ましく、5μm~300μmがより好ましい。
 例えば、基材層、ガスバリア層及び透明導電体層がこの順に積層されてなる本発明の透明導電性フィルムは、以下のようにして製造することができる。
 先ず、基材層となる長尺状の基材の一方の面側にシリケート層を形成する。シリケート層は、例えば、長尺状の基材を一定方向に搬送しながら、該基材の一面に、前記シリケート層形成用溶液を前記塗工装置により塗布し、得られた塗膜を乾燥し、必要に応じて加熱等することにより形成することができる。
 次に、該シリケート層に、プラズマイオン注入装置を用いてプラズマイオン注入し、
基材層上に、ガスバリア層が形成された長尺の成形物が得られる。
 次に、得られた長尺の成形物のガスバリア層上に、スパッタリング法により透明導電体層を形成する。
 以上のようにして、本発明の透明導電性フィルムを得ることができる。
 このような本発明の製造方法によれば、本発明の透明導電性フィルムを簡便に製造することができる。
3)電子デバイス用部材及び電子デバイス
 本発明の電子デバイス用部材は、本発明の透明導電性フィルムからなることを特徴とする。従って、本発明の電子デバイス用部材は、優れたガスバリア性を有しているので、水蒸気等のガスによる素子の劣化を防ぐことができる。また、光の透過性が高く、高温高湿度環境下においてもシート抵抗値が低く、導電性に優れるので、液晶ディスプレイ、ELディスプレイ等のディスプレイ部材;太陽電池;等の電子デバイス用として好適である。
 本発明の電子デバイスは、本発明の電子デバイス用部材を備える。具体例としては、液晶ディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー、太陽電池等が挙げられる。
 本発明の電子デバイスは、本発明の透明導電性フィルムからなる電子デバイス用部材を備えているので、優れたガスバリア性及び透明性、及び導電性を有する。
 以下、実施例を挙げて本発明をさらに詳細に説明する。但し、本発明は、以下の実施例になんら限定されるものではない。
 用いたプラズマイオン注入装置、水蒸気透過率測定装置と測定条件、可視光線透過率測定装置、シート抵抗値の測定装置、耐湿熱試験の方法、及びXPSによるガスバリア層(イオン注入層)の表層部の元素分析の測定装置は以下の通りである。
(プラズマイオン注入装置)
RF電源:日本電子社製、型番号「RF」56000
高電圧パルス電源:栗田製作所社製、「PV-3-HSHV-0835」
なお、用いたプラズマイオン注入装置は外部電界を用いてイオンを注入する装置である。
(水蒸気透過率測定装置と測定条件)
 透明導電性フィルムの水蒸気透過率の測定は、下記の測定装置を使用して、相対湿度90%、40℃の条件下で行った。
水蒸気透過率測定装置:mocon社製、「PERMATRAN」
(可視光線透過率測定装置)
 可視光線透過率の測定は、下記の測定装置を使用して、測定波長550nmで行った。
可視光透過率測定装置:島津製作所社製、「UV-3101PC」
(シート抵抗値の測定装置)
 透明導電性フィルムのシート抵抗値の測定は、下記の測定装置を使用して、相対湿度50%、23℃の条件下で透明導電体層の表面抵抗率の測定を行った。またプローブは、PROBE TYPE LSP」株式会社三菱化学アナリック社製を用いた。
シート抵抗値測定装置:三菱化学社製、「LORESTA―GP MCP-T600」
(耐湿熱試験の方法)
 透明導電性フィルムを、60℃及び60℃90%RH環境下にそれぞれ3日間置き、取り出し後、23℃50%RH環境下で1日調温・調湿を行い、上記の方法によりシート抵抗値を測定した。
 次に、下記に示す計算式により、シート抵抗値の変化率T1、T2を求めた。
投入前のシート抵抗値(初期抵抗値)R0、60℃3日間投入後のシート抵抗値R1、60℃90%RH3日間投入後のシート抵抗値R2とする。ここで、RHとは相対湿度のことをいう。
Figure JPOXMLDOC01-appb-M000002
(XPSによるガスバリア層(イオン注入層)の表層部の元素分析の測定装置)
 X線光電子分光(XPS:X-ray Photoelectron Spectroscopy)による元素分析は、下記に示す測定装置・測定条件で行った。透明導電性フィルムの透明導電体層のみをスパッタリングにより除去し、ガスバリア層の、透明導電体層側との境界部を露出させ、ガスバリア層の表層部の酸素原子、炭素原子及びケイ素原子の存在割合を測定した。
測定装置:「PHI Quantera SXM」アルバックファイ社製
X線源:AlKα
X線ビーム径:100μm
電力値:25W
電圧:15kV
取り出し角度:45°
真空度:5.0×10-8Pa
スパッタリング条件
スパッタリングガス:アルゴン
引加電圧:-4kV
(実施例1)
 基材層としてのポリエチレンテレフタレートフィルム(東洋紡績社製、「PET188 A-4300」、厚さ188μm、以下、「PETフィルム」という。)に、テトラエトキシランの加水分解・脱水縮合化合物であるシリケートコーティング液(コルコート社製、製品名:コルコートN103-X、シリケートの重量平均分子量:1,000~10,000、以下「シリケートコーティング液A」という。)を塗付、乾燥して厚みが75nmのシリケート層を形成して成形物を得た。
 次に、前記成形物のシリケート層の表面に、プラズマイオン注入装置を用いて、アルゴン(Ar)を以下に示す条件にてプラズマイオン注入してした。
〈プラズマイオン注入の条件〉
 ・プラズマ生成ガス:アルゴン
 ・ガス流量:100sccm
 ・Duty比:1.0%
 ・繰り返し周波数:1000Hz
 ・印加電圧:-15kV
 ・RF電源:周波数 13.56MHz、印加電力 1000W
 ・チャンバー内圧:0.2Pa
 ・パルス幅:5μsec
 ・処理時間(イオン注入時間):5分間
 ・搬送速度:0.2m/分
 得られた成形物のイオンが注入された面側に、DCマグネトロンスパッタ法にてGaが5.7質量%含有された酸化亜鉛ターゲット材(住友金属鉱山社製)を用いて、膜厚が100nmになるよう透明導電体層を形成し、透明導電性フィルム1を作製した。
 スパッタリングの条件を以下に示す
・基板温度:室温
・DC出力:500W
・キャリアガス:アルゴンと酸素を100:0~100:3の流量比率になるように調整
・真空度:0.3~0.8Paの範囲
(実施例2)
 実施例1において、プラズマ生成ガスとしてアルゴンに代えてヘリウム(He)を用いた以外は、実施例1と同様にして透明導電性フィルム2を作製した。
(実施例3)
 実施例1において、プラズマ生成ガスとしてアルゴンに代えてクリプトン(Kr)を用いた以外は、実施例1と同様にして透明導電性フィルム3を作製した。
(実施例4)
 実施例1において、プラズマ生成ガスとしてアルゴンに代えて窒素(N)を用いた以外は、実施例1と同様にして透明導電性フィルム4を作製した。
(実施例5)
 実施例1において、プラズマ生成ガスとしてアルゴンに代えて窒素(O)を用いた以外は、実施例1と同様にして透明導電性フィルム5を作製した。
(実施例6)
 実施例1において、印加電圧を-10kVとした以外は、実施例1と同様にして透明導電性フィルム6を作製した。
(実施例7)
 実施例1において、印加電圧を-20kVとした以外は、実施例1と同様にして透明導電性フィルム7を作製した。
(実施例8)
 実施例1において、シリケートコーティング液Aの代わりに、テトラエトキシランの加水分解・脱水縮合化合物であるシリケートコーティング液(コルコート社製、製品名:コルコートPX、シリケートの重量平均分子量:20,000~30,000、以下「シリケートコーティング液B」という。)を用いる以外は、実施例1と同様にして透明導電性フィルム8を作製した。
(比較例1)
 PETフィルム上に直接、実施例1と同様にして透明導電体層を形成し、比較例1の透明導電性フィルム1rとした。
(比較例2)
 実施例1において、プラズマイオン注入を行わない以外は、実施例1と同様にして、透明導電性フィルム2rを作製した。
(比較例3)
 実施例8において、プラズマイオン注入を行わない以外は、実施例8と同様にして、透明導電性フィルム3rとした。
(比較例4)
 PETフィルム上に、スパッタリング法により、厚さ50nmのSiO層の膜を成膜して、透明導電性フィルム4rを作製した。
(比較例5)
 実施例1において、シリケートコーティング液Aの代わりに、ポリオルガノシロキサン系化合物のシリコーン剥離剤(信越化学工業社製、製品名:KS835、ポリジメチルシロキサンを主成分とするシリコーン樹脂、以下「コーティング液D」という。)を用いる以外は、実施例1と同様にして成形物を作成した。次いで、実施例6と同様にしてプラズマイオンを注入して透明導電性フィルム5rを作製した。
(比較例6)
 実施例1において、シリケートコーティング液Aの代わりに、フェニルトリメトキシシラン(東京化成工業社製)3.97g(20mmol)、3-グリシドキシプロピルトリメトキシシラン(東京化成工業社製)4.73g(20mmol)、トルエン20ml、蒸留水10ml及びリン酸(関東化学社製)0.10g(1mol)を混合し、室温で24時間反応させて得られたポリオルガノシロキサン系化合物(以下「コーティング液E」という。)を用いる以外は、実施例1と同様にして成形物を作成した。次いで、実施例6と同様にしてプラズマイオンを注入して透明導電性フィルム6rを作製した。
 実施例1~8、比較例1~4の透明導電性フィルム1~8、1r~6rを形成する際の、シリケート層の種類、用いたイオン注入ガス、及びイオン注入する際の印加電圧を第1表にまとめて示す。第1表中、A~Eは、以下の意味を表す。
 また、形成されたガスバリア層表層部のケイ素原子、酸素原子及び炭素原子の存在割合を測定した。その結果を第1表に示す。
A:シリケートコーティング液Aから形成されたシリケート層
B:シリケートコーティング液Bから形成されたシリケート層
C:スパッタリング法により形成されたSiO
D:コーティング液Dから形成されたポリシロキサン層
E:コーティング液Eから形成されたポリシロキサン層
Figure JPOXMLDOC01-appb-T000003
 次に、実施例1~8、比較例1~6で得られた透明導電性フィルム1~8、1r~6rのそれぞれについて、水蒸気透過率、及び波長550nmにおける可視光線透過率、シート抵抗値(R0)を測定した。測定結果を下記第2表に示す。
 さらに、前記耐湿熱試験を行い、シート抵抗値R1、R2を測定し、シート抵抗値の変化率T1、T2を算出した。その結果を下記第2表に示す。
Figure JPOXMLDOC01-appb-T000004
 第2表から、実施例1~8の透明導電性フィルム1~8は、水蒸気透過率が小さく、高いガスバリア性を有していた。また、波長550nmにおける可視光線透過率が90%と高く、シート抵抗値が小さく、透明性及び導電性に優れていた。
 さらに、実施例の透明導電性フィルム1~8は、比較例1~4の透明導電性フィルム1r~4rに比べ、耐湿熱試験後のシート抵抗値の変化率T1が0.02以下、T2が0.32以下と共に小さく、高温高湿度環境下においても、シート抵抗値が低く抑えられることがわかった。また、実施例1~8の透明導電性フィルム1~8は、比較例5、6の透明導電性フィルム5r、6rに比して波長550nmにおける可視光線透過率が高く、透明性に優れていた。
a・・・ガスバリア層
b・・・導電体層
S・・・基材層

Claims (12)

  1.  基材層、ガスバリア層及び透明導電体層を有する透明導電性フィルムであって、
    前記ガスバリア層が、ケイ素原子、酸素原子及び炭素原子を含む材料から構成されてなり、該ガスバリア層の表層部における、ケイ素原子、酸素原子及び炭素原子の含有量が、XPSの元素分析測定において、ケイ素原子、酸素原子及び炭素原子の合計100原子%に対し、ケイ素原子の含有量が18.0%以上28.0%以下、酸素原子の含有量が48.0%以上66.0%以下、炭素原子の含有量が10.0%以上28.0%以下であるものであり、かつ、
    透明導電性フィルムの、40℃、相対湿度90%雰囲気下における水蒸気透過率が6.0g/m/day以下で、波長550nmにおける可視光線全光線透過率が90%以上であることを特徴とする透明導電性フィルム。
  2.  前記ガスバリア層が、4官能オルガノシラン化合物の加水分解・脱水縮合物を含む層に、イオンが注入されて得られる層であることを特徴とする請求項1に記載の透明導電性フィルム。
  3.  前記イオンが、水素、酸素、窒素、アルゴン、ヘリウム、キセノン、クリプトン、ケイ素化合物、及び炭化水素からなる群から選ばれる少なくとも一種のガスがイオン化されたものであることを特徴とする請求項2に記載の透明導電性フィルム。
  4.  前記ガスバリア層が、4官能オルガノシラン化合物の加水分解・脱水縮合物を含む層に、プラズマイオン注入法によりイオンが注入されて得られる層であることを特徴とする請求項1に記載の透明導電性フィルム。
  5.  前記4官能オルガノシラン化合物が、テトラ(C1~C10)アルコキシシランであることを特徴とする請求項2~4のいずれかに記載の透明導電性フィルム。
  6.  前記透明導電体層が、導電性金属酸化物からなるものである請求項1に記載の透明導電性フィルム。
  7.  前記導電性金属酸化物が、亜鉛系酸化物であることを特徴とする請求項6に記載の透明導電性フィルム。
  8.  請求項2~7のいずれかに記載の透明導電性フィルムの製造方法であって、4官能オルガノシラン化合物の加水分解・脱水縮合物を含む層が表面に形成された成形物の、前記4官能オルガノシラン化合物の加水分解・脱水縮合化合物を含む層に、イオンを注入する工程を有する透明導電性フィルムの製造方法。
  9.  前記イオンが、水素、酸素、窒素、アルゴン、ヘリウム、キセノン、クリプトン、ケイ素化合物、及び炭化水素からなる群から選ばれる少なくとも一種のガスがイオン化されたものであることを特徴とする請求項8に記載の透明導電性フィルムの製造方法。
  10.  イオンを注入する工程が、プラズマイオン注入法によりイオンを注入する工程であることを特徴とする請求項8に記載の透明導電性フィルムの製造方法。
  11.  請求項1~7のいずれかに記載の透明導電性フィルムからなる電子デバイス用部材。
  12.  請求項11に記載の電子デバイス用部材を備える電子デバイス。
PCT/JP2011/073543 2010-10-15 2011-10-13 透明導電性フィルム、その製造方法、電子デバイス用部材及び電子デバイス WO2012050161A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/879,286 US20130230731A1 (en) 2010-10-15 2011-10-13 Transparent electrically conductive film and process for production thereof, member for electronic device, and electronic device
EP11832593.5A EP2629307B1 (en) 2010-10-15 2011-10-13 Transparent electrically conductive film and process for production thereof, member for electronic device, and electronic device
KR1020137009412A KR101464094B1 (ko) 2010-10-15 2011-10-13 투명 도전성 필름, 그 제조 방법, 전자 디바이스용 부재 및 전자 디바이스
CN201180049693.8A CN103262175B (zh) 2010-10-15 2011-10-13 透明导电性膜、其制造方法、电子装置用部件及电子装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010232328A JP5343058B2 (ja) 2010-10-15 2010-10-15 透明導電性フィルム、その製造方法、電子デバイス用部材及び電子デバイス
JP2010-232328 2010-10-15

Publications (1)

Publication Number Publication Date
WO2012050161A1 true WO2012050161A1 (ja) 2012-04-19

Family

ID=45938385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073543 WO2012050161A1 (ja) 2010-10-15 2011-10-13 透明導電性フィルム、その製造方法、電子デバイス用部材及び電子デバイス

Country Status (7)

Country Link
US (1) US20130230731A1 (ja)
EP (1) EP2629307B1 (ja)
JP (1) JP5343058B2 (ja)
KR (1) KR101464094B1 (ja)
CN (1) CN103262175B (ja)
TW (1) TWI546195B (ja)
WO (1) WO2012050161A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130568A1 (ja) * 2016-01-29 2017-08-03 富士フイルム株式会社 ガスバリアフィルムおよびガスバリアフィルムの製造方法
JP2017136827A (ja) * 2016-01-29 2017-08-10 富士フイルム株式会社 ガスバリアフィルムおよびガスバリアフィルムの製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102181436B1 (ko) * 2013-11-29 2020-11-23 삼성전자주식회사 투명 전도성 박막
CN107405880B (zh) * 2015-03-27 2020-06-30 琳得科株式会社 透明导电层叠层用膜、其制造方法及透明导电膜
JP7238767B2 (ja) 2017-03-27 2023-03-14 凸版印刷株式会社 透明導電性ガスバリア積層体及びこれを備えたデバイス
CN110546107B (zh) * 2017-05-01 2022-12-09 Agc株式会社 含六硼化镧的复合粒子的制造方法和成形品的制造方法
WO2019205494A1 (zh) * 2018-04-27 2019-10-31 北京铂阳顶荣光伏科技有限公司 导电电极膜层和光伏元件
WO2020209202A1 (ja) * 2019-04-09 2020-10-15 東ソー株式会社 酸化ケイ素膜、ガスバリア膜用材料及び酸化ケイ素膜の製造方法
WO2023054176A1 (ja) * 2021-09-30 2023-04-06 日東電工株式会社 ガスバリアフィルム及びその製造方法、並びにガスバリア層付き偏光板及び画像表示装置
WO2023054177A1 (ja) * 2021-09-30 2023-04-06 日東電工株式会社 ガスバリアフィルム及びその製造方法、並びにガスバリア層付き偏光板及び画像表示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071837A (ja) * 2003-08-26 2005-03-17 Konica Minolta Holdings Inc 透明導電膜積層体の製造方法及び透明導電膜積層体並びにそれを用いた物品
JP2008041640A (ja) * 2006-07-14 2008-02-21 Dainippon Printing Co Ltd 透明導電膜付きフィルムおよびこの透明導電膜付きフィルムからなるディスプレイ用基板、ディスプレイ、液晶表示装置ならびに有機el素子
WO2011102198A1 (ja) * 2010-02-19 2011-08-25 リンテック株式会社 透明導電性フィルムおよびその製造方法並びに透明導電性フィルムを用いた電子デバイス

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664105A (ja) * 1992-08-12 1994-03-08 Mitsui Toatsu Chem Inc ガスバリヤー性透明導電性積層体
DE69813523T2 (de) * 1997-02-14 2003-11-13 Mitsubishi Chem Corp Polyalkoxysiloxanverbindungen,verfahren zur herstellung und diese verbindungen enthaltende beschichtungszusammensetzungen
EP1921491A1 (en) * 1998-11-30 2008-05-14 Teijin Limited Liquid crystal device and transparent conductive substrate suitable for the same
US6787989B2 (en) * 2000-06-21 2004-09-07 Nippon Sheet Glass Co., Ltd. Substrate with transparent conductive film and organic electroluminescence device using the same
KR20070011462A (ko) * 2004-04-15 2007-01-24 데이진 가부시키가이샤 투명 가스 배리어성 적층 필름
JP4716773B2 (ja) * 2005-04-06 2011-07-06 富士フイルム株式会社 ガスバリアフィルムとそれを用いた有機デバイス
JP2007313764A (ja) * 2006-05-26 2007-12-06 Sony Corp 透明積層膜及びその製造方法、並びに液体レンズ
JP5135726B2 (ja) * 2006-07-14 2013-02-06 大日本印刷株式会社 透明導電膜付きフィルムおよびその製造方法、この透明導電膜付きフィルムからなるディスプレイ用基板、ディスプレイならびに有機el素子
KR100960222B1 (ko) * 2008-06-30 2010-05-27 삼성코닝정밀유리 주식회사 산화아연계 스퍼터링 타겟, 그 제조 방법 및 그를 이용하여제조된 산화아연계 박막
CN102159395B (zh) * 2008-08-19 2014-09-10 琳得科株式会社 成型制品、其制备方法、电子设备构件以及电子设备
WO2010067857A1 (ja) * 2008-12-12 2010-06-17 リンテック株式会社 積層体、その製造方法、電子デバイス部材および電子デバイス
TWI491500B (zh) * 2009-02-16 2015-07-11 Lintec Corp A manufacturing method of a laminated body, a structure for an electronic device, and an electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071837A (ja) * 2003-08-26 2005-03-17 Konica Minolta Holdings Inc 透明導電膜積層体の製造方法及び透明導電膜積層体並びにそれを用いた物品
JP2008041640A (ja) * 2006-07-14 2008-02-21 Dainippon Printing Co Ltd 透明導電膜付きフィルムおよびこの透明導電膜付きフィルムからなるディスプレイ用基板、ディスプレイ、液晶表示装置ならびに有機el素子
WO2011102198A1 (ja) * 2010-02-19 2011-08-25 リンテック株式会社 透明導電性フィルムおよびその製造方法並びに透明導電性フィルムを用いた電子デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2629307A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130568A1 (ja) * 2016-01-29 2017-08-03 富士フイルム株式会社 ガスバリアフィルムおよびガスバリアフィルムの製造方法
JP2017136827A (ja) * 2016-01-29 2017-08-10 富士フイルム株式会社 ガスバリアフィルムおよびガスバリアフィルムの製造方法

Also Published As

Publication number Publication date
CN103262175B (zh) 2017-03-29
CN103262175A (zh) 2013-08-21
JP5343058B2 (ja) 2013-11-13
KR20130086353A (ko) 2013-08-01
TWI546195B (zh) 2016-08-21
EP2629307A4 (en) 2017-03-29
JP2012086378A (ja) 2012-05-10
US20130230731A1 (en) 2013-09-05
TW201231288A (en) 2012-08-01
KR101464094B1 (ko) 2014-12-04
EP2629307B1 (en) 2018-08-08
EP2629307A1 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
JP5343058B2 (ja) 透明導電性フィルム、その製造方法、電子デバイス用部材及び電子デバイス
JP5704610B2 (ja) 成形体、その製造方法、電子デバイス用部材および電子デバイス
JP5612277B2 (ja) ガスバリア性フィルム及び電子デバイス用部材
WO2013015096A1 (ja) ガスバリアフィルム積層体及び電子部材
EP2620279A1 (en) Formed body, production method thereof, electronic device member and electronic device
JP5635360B2 (ja) 透明導電性フィルム、その製造方法、電子デバイス用部材及び電子デバイス
WO2013141318A1 (ja) 透明導電性積層体及び電子デバイス又はモジュール
US9540519B2 (en) Formed article, method for producing same, electronic device member, and electronic device
JP5750441B2 (ja) 成形体、その製造方法、電子デバイス用部材及び電子デバイス
JP5726859B2 (ja) 成形体、その製造方法、電子デバイス用部材及び電子デバイス
JP2012206448A (ja) ガスバリア積層体、その製造方法、電子デバイス用部材及び電子デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137009412

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011832593

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13879286

Country of ref document: US